pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

End

CR16: Signal Processing and Networks Data analysis and processing for networks

Part 1 - Data, signal and image processing on graphs using spectral theory

Pierre Borgnat

CR1 CNRS – Laboratoire de Physique, ENS de Lyon, Université de Lyon

Équipe SISYPHE : Signaux, Systèmes et Physique

09/2014

ypical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Overview of the lecture

- General objective: revisit classical data analysis techniques (most used in signal and image processing) in the context of discrete structures such as networks and signals defined on graphs.
- The things we will discuss:
 - Introduce you to the emerging field of graph signal & image processing
 - Basic of spectral analysis of graphs, and on the graph Laplacian
 - Harmonic analysis on graphs: wavelets
 - Examples: denoising on graphs; communities;...
- Organization:
 - 1. This introduction with several examples
 - 2. Spectral analysis of the Laplacian; properties
 - 3. Spectral graph Fourier transform, operators and wavelets
 - 4. Laplacian pyramid, graph downsampling; applications

Introduction: on signals and graphs

- **My own bias**: I work in the SISYPHE (Signal, Systems and Physics) group in statistical signal processing, located in the Physics Laboratory of ENS de Lyon
- I have worked also on Internet traffic analysis, and on studies of complex systems
- Strong bias: nonstationary and/or multiscale approaches
- Hence, I will talk about

data analysis and processing for network

• Examples of topics that we study:

Technological networks (Internet, mobile phones, sensor networks,...)

Social networks; Transportation networks (Vélo'v) Biosignals: Human brain networks; genomic data; ECG

. . .

Introduction

Introduction: on signals and graphs

Why data analysis and processing is useful for networks?

- Many examples of data having both labels or values ("signals") and relational properties (graphs)
- Non-trivial estimation issues (e.g., non repeated measures; variables with large distributions (or power-laws); ...) → advanced statistical approaches
- large networks

 \rightarrow multiscale approaches

dynamical networks

 \rightarrow nonstationary methods

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

End

Examples of networks from our digital world

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples En

Examples of graph signals

USA Temperature

Color Point Cloud

fcMRI Brain Network

Image Database

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Typical problems [P. Vandergheynst, EPFL, 2013]

Compression / Visualization

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Recovery of signals on graphs [P. Vandergheynst, EPFL, 2013]

• Denoising of a signal with Tikhonov regularization

$$\arg\min_{f} ||f - y||_2^2 + \gamma f^\top L f$$

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

End

Writing Tikhonov denoising as a Graph filter [P. Vandergheynst, EPFL, 2013]

It is easy to solve this regularization problem in the spectral domain

$$\arg\min_{f} \frac{\tau}{2} ||f - y||_{2}^{2} + f^{\top} L f \Rightarrow L f_{*} + \frac{\tau}{2} (f_{*} - y) = 0$$

Move to the spectral domain of the Laplacian

$$\widehat{Lf}_{*}(i) + \frac{\tau}{2}(\widehat{f}_{*}(i) - \widehat{y}(i)) = 0, \quad \forall i \in \{0, 1, ..., N-1\}$$

• Solution:

$$\hat{f}_*(i) = \frac{\tau}{\tau + 2\lambda_i} \hat{y}(i)$$

• This is a 1st-order "low pass" filtering

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Recovery of signals on graphs [P. Vandergheynst, EPFL, 2013]

Limit of Tikhonov regularization

$$\arg\min_{f} ||f - y||_2^2 + \gamma f^\top L f$$

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

End

Recovery of signals on graphs [P. Vandergheynst, EPFL, 2013]

• Denoising of a signal with Wavelet regularization

$$\arg\min_{a} ||W^{\top}a - y||_{2}^{2} + \gamma ||a||_{1}$$

Wavelets will be described later on in the lectures... Stay tuned.

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Generalized translations

[Shuman, Ricaud, Vandergheynst, 2014]

Classical translation:

$$(\mathcal{T}_{ au}g)(t)=g(t- au)=\sum_{\mathbb{R}}\hat{g}(\xi)e^{-i2\pi au\xi}e^{-i2\pi t\xi}d\xi$$

• Graph translations by fundamental analogy:

$$(T_n f)(a) = \sum_{i=0}^{N-1} \hat{f}(i)\chi_i^*(n)\chi_i(a)$$

· Example on the Minnesota road networks

000000

Typical examples

Empirical mode decomposition on graphs

 Objective: decompose a graph signal in various "elementary" modes in a data-driven and non stationary approach

[N. Tremblay, P. Flandrin, P. Borgnat, 2014]

Graph Signal Processing

Cuts, clustering and communities

Other examples

Fourier transform of signals

"Signal processing 101"

The Fourier transform is of paramount importance: Given a times series x_n , n = 1, 2, ..., N, let its Discrete Fourier Transform (DFT) be

$$\forall k \in \mathbb{Z} \quad \hat{x}_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi k n/N}$$

Why?

- Inversion: $x_n = \frac{1}{N} \sum_{k=0}^{N-1} \hat{x}_k e^{-i2\pi kn/N}$
- Best domain to define Filtering (operator is diagonal)
- Definition of the **Spectral analysis** (FT of the autocorrelation)
- Alternate representation domains of signals are useful: Fourier domain, DCT, time-frequency representations,
- ^{p. 14} wavelets, chirplets,...

Graph Signal Processing

Cuts, clustering and communities

Other examples

Spectral analysis of networks

Spectral theory for network

This is the study of graphs through the **spectral analysis** (eigenvalues, eigenvectors) of matrices **related to the graph**: the adjacency matrix, the Laplacian matrices,....

Notations

$$\mathcal{G} = (V, E, w)$$

$$N = |V|$$

$$A$$

$$d$$

$$D$$

$$f$$

a weighted graph number of nodes adjacency matrix vector of strengths matrix of strengths signal (vector) defined on V

$$egin{aligned} & A_{ij} = w_{ij} \ d_i = \sum_{j \in V} w_{ij} \ D = diag(d) \end{aligned}$$

Relating the Laplacian of graphs to Signal Processing

Laplacian matrix

L or \mathscr{L}	laplacian matrix	L = D - A
(λ_i)	L's eigenvalues	$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_{N-1}$
(χ_i)	L's eigenvectors	$L \chi_i = \lambda_i \chi_i$

A simple example: the straight line

For this regular line graph, *L* is the 1-D classical laplacian operator (i.e. double derivative operator):

its eigenvectors are the Fourier vectors, and its eigenvalues the associated (squared) frequencies

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

A fundamental analogy [Shuman et al., *IEEE SP Mag*, 2013]

Objective: Definition of a Fourier Transform adapted to graph signals

f: signal defined on V $\leftrightarrow \hat{f}$: Fourier transform of f

Fundamental analogy

On *any* graph, the eigenvectors χ_i of the Laplacian matrix *L* will be considered as the Fourier vectors, and its eigenvalues λ_i the associated (squared) frequencies.

- Works exactly for all regular graphs (+ Beltrami-Laplace)
- Conduct to natural generalizations of signal processing

Graph Signal Processing 00000000000

The graph Fourier transform

• \hat{f} is obtained from *f*'s decomposition on the eigenvectors χ_i :

$$\hat{f} = \begin{pmatrix} <\chi_0, f > \\ <\chi_1, f > \\ <\chi_2, f > \\ \dots \\ <\chi_{N-1}, f > \end{pmatrix}$$

Define
$$\boldsymbol{\chi} = (\chi_0 | \chi_1 | ... | \chi_{N-1}) : \widehat{\boldsymbol{f}} = \boldsymbol{\chi}^\top \boldsymbol{f}$$

- Reciprocally, the inverse Fourier transform reads: $|f = \chi \hat{f}|$

 The Parseval theorem is valid: $\forall (q,h) < q, h > = < \hat{q}, \hat{h} >$

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Fourier modes: examples in 1D and in graphs

LOW FREQUENCY:

HIGH FREQUENCY:

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

More Fourier modes

Alternative fundamental spectral correspondance

With the Normalized Laplacian matrix

 $\mathscr{L} = I - D^{-1/2} A D^{-1/2}$

- Related to Ng. et al. normalized spectral clustering
- Good for degree heterogeneities
- Related to random walks
- For community detection
- With the random-walk Laplacian matrix (non symmetrized)

$$L_{rw} = D^{-1}L = I - D^{-1}W$$

- Better related to random walks
- Used by Shi-Malik spectral clustering (and graph cuts)
- Using the Adjacency matrix
 - Wigner semi-circular law
 - Discrete Signal Processing in Graphs (good for undirected graphs) [Sandryhaila, Moura, *IEEE TSP*, 2013]

vpical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Filtering

Definition of graph filtering

We define a filter function g in the Fourier space. It is discrete and defined on the eigenvalues $\lambda_i \rightarrow g(\lambda_i)$.

$$\hat{f}^{g} = \begin{pmatrix} \hat{f}(0) g(\lambda_{0}) \\ \hat{f}(1) g(\lambda_{1}) \\ \hat{f}(2) g(\lambda_{2}) \\ \dots \\ \hat{f}(N-1) g(\lambda_{N-1}) \end{pmatrix} = \hat{G} \hat{f} \text{ with } \hat{G} = \begin{pmatrix} g(\lambda_{0}) & 0 & 0 & \dots & 0 \\ 0 & g(\lambda_{1}) & 0 & \dots & 0 \\ 0 & 0 & g(\lambda_{2}) & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & g(\lambda_{N-1}) \end{pmatrix}$$

In the node-space, the filtered signal f^g can be written: $f^g = \chi \, \hat{\mathbf{G}} \, \chi^{ op} \, f$

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

For a graph with multiscale structure

finest scale (16 com.):

fine scale (8 com.):

coarser scale (4 com.):

coarsest scale (2 com.):

ypical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Spectral analysis: the χ_i and λ_i of a multiscale toy graph

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Cuts, clustering and communities The good, the bad and the ugly

- Networks are often inhomogeneous, with important links, hubs, clusters, or communities (modules)
- These are observed in various types of data on networks: social, technological, biological,...
- Importance of cuts: the min-cut max-flow theorem.
 These are two primal-dual linear programs.
 The max value of a flow = the min capacity over all cuts.
- For clusters and communities, see the extensive surveys:

[S. Fortunato, Physic Reports, 2010]

[von Luxburg, Statistics and Computating, 2007]

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

End

Some examples of networks with clusters or communities

Social face-to-face interaction networks

(Lab. physique, ENSL, 2013)

(école primaire, Sociopatterns)

Some examples of networks with clusters or communities

- Mobile phones (The Belgium case, [Blondel et al., 2008])
- Scientometric (co)-citation (or publication) networks [Jensen et al., 2011]

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Purpose of community detection?

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Purpose of community detection?

ypical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Purpose of community detection?

1) Gives us a sketch of the network:

ypical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Purpose of community detection?

1) Gives us a sketch of the network:

2) Gives us intuition about its components:

Methods to find clusters or communities

- I will not pretend to make a full survey... Some important steps are:
- Cut algorithms (classical problem in computer science)
- Spectral clustering (seen as relaxed cut problem)
- Modularity optimization (there arrive the physicists) [Newman, Girvan, 2004]
- Greedy modulatity optimization a la Louvain (computer science strikes back)
 [Blondel et al., 2008]
- Ideas from information compression (and random walks) [Rosvall, Bergstrom, 2008]

From graph cuts to spectral clustering

- Graph cuts in 2 (or bisection): find the partition in two groups of nodes that minimize the cut size (i.e., the number of links cut)
- Exhaustive search can be computationally challenging
- Also, the cut has to be normalized correctly to find groups of relevant sizes
- One usual metric: the Ratio-Cut between sets / and J of nodes

$$R(I,J) = \sum_{i \in I, j \in J} A_{ij}$$

and

$$\mathsf{RatioC}(A,\bar{A}) = \frac{1}{2} \frac{R(A,\bar{A})}{|A|}.$$

Graph Signal Processing

Spectral clustering for min-cut

- Spectral interpretation: compute the cut as function of the adjacency matrix *A*
- We have $R = \frac{1}{2} \sum_{i,j \text{ in }\neq \text{ groups}} A_{ij}$. This is equal to the cut size between the two groups
- Let us note s_i = ±1 the assignment of node *i* to group labelled +1 or −1

•
$$R = \frac{1}{2} \sum_{i,j} A_{ij} (1 - s_i s_j) = \frac{1}{4} \sum_{i,j} L_{ij} s_i s_j = \frac{1}{4} \mathbf{s}^\top L \mathbf{s}$$

• Hence, the problem reads as:

$$\min_{\mathbf{s}} \mathbf{s}^{\top} L \mathbf{s}$$

Typical examples

Graph Signal Processing

Spectral clustering for min-cut

• Let us assume the spectral decomposition of the Laplacian (to be seen later on):

$$L_{ij} = \sum_{k=1}^{N-1} \lambda_k(\chi_k)_i(\chi_k)_j$$

- The optimal assignment vector (that minimizes *R*) would be s_i = (χ₁)_i... if there were no constraints on the s_i's... Note: χ₁ is known as the the Fiedler vector.
- However, $s_i = +1$ or -1...
- Approximated solution: $s_i = sign((\chi_1)_i)$.
- The estimated groups are still close to χ₁.

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Spectral clustering for min-RatioCut

- Normalization by the size of the sets: $\min_{A \subset V} \text{RatioC}(A, \overline{A})$
- The same problem written in a relaxed form introducing:

$$\mathbf{f}(i) = +\sqrt{rac{|ar{A}|}{|m{A}|}} ext{ if } i \in m{A} ext{ and } \mathbf{f}(i) = -\sqrt{rac{|m{A}|}{|ar{A}|}} ext{ if } i \in ar{m{A}}$$

Then, $||\mathbf{f}|| = \sqrt{|V|}$ and $\mathbf{f}^{\top}\mathbf{1} = \mathbf{0}$.

Finally, one has

$$\mathbf{f}^{\top} L \mathbf{f} = |V| \cdot \operatorname{RatioC}(A, \overline{A}).$$

• Hence, problem with relaxed constraints:

$$\min_{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L} \mathbf{f}$$
such that $\mathbf{f}^{\top} \mathbf{1} = 0$, $||\mathbf{f}||_2 = \sqrt{|\mathbf{V}|}$

- This allows also for *Spectral clustering of data* represented by networks
- cf. [von Luxburg, Statistics and Computating, 2007]

p. 34

oical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Spectral clustering

• Example of spectral bisection on an irregular mesh

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Spectral clustering

 Example of spectral bisection on data irregularly spread in a space

- · It's good, very good in fact for clustering
- · However, not really good for natural modules / communities

ical examples (

Graph Signal Processing

Cuts, clustering and communities

Other examples

Quality of a partition: the Modularity

- Problems with spectral clustering:
 - 1) No assessment of the quality of the partitions
 - 2) No reference to comparison to some null hypothesis (or "mean field") situation
- Improvement: the modularity

[Newman, 2003]

$$Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{d_i d_j}{2m} \right] \delta(c_i, c_j)$$

where $2m = \sum_i d_i$.

• *Q* is between -1 and +1 (in fact, lower than $1 - 1/n_c$ if n_c groups)

p. 38

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Quality of a partition: the Modularity

• Interpretation: $\frac{d_i d_j}{2m}$ is, for a null model as a Bernoulli random graph (with prob. 2m/N/(N-1) of existence of each edge), the fraction of edges expected between nodes *i* and *j*.

(Note: in fact, it's best seen as a Chung-Lu model (2002))

• Re-written in term of groups, it gives

$$Q = \sum_{c=1}^{n_c} \left[\frac{l_c}{m} - \left(\frac{d_c}{2m} \right)^2 \right]$$

where l_c is the number of edges in group c and d_c is the sum of degrees of nodes in group c.

- Consequence: the larger *Q* is, the most pronounced the communities are
- Algebraic form: modularity matrix B = A/2m dd[⊤]/(2m)² and Q = Tr(c[⊤]Bc) for a partition matrix c (size n_c × N) of the nodes.

Community detection with modularity

- By optimization of Q
- For instance: by simulated annealing, by spectral approaches,...
- Works well, better than spectral clustering.

 Better algorithm: the greedy (ascending) Louvain approach (ok for millions of nodes !)
 [Blondel et al., 2008]

ypical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Multiscale community structure in a graph

Classical community detection algorithms do not have this "scale-vision" of a graph. Modularity optimisation finds:

Where the modularity function reads: $Q = \frac{1}{2N} \sum_{ij} \left[A_{ij} - \frac{d_i d_j}{2N} \right] \delta(c_i, c_j)$

cal examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Enc

Multiscale community structure in a graph

Q=0.74 :

Q=0.50:

All representations are correct but modularity optimisation favours one.

• Added to that: limit in resolution for modularity [Fortunato, Barthelemy, 2007]

Integrate a scale into modularity

- [Arenas et al., 2008] Remplace A by A + rI in Q. Self-loops.
- [Reichardt and Bornholdt, 2006]

$$m{Q}_{\gamma} = rac{1}{2m}\sum_{ij}\left[m{A}_{ij} - \gammarac{m{d}_im{d}_j}{2m}
ight]\delta(m{c}_i,m{c}_j)$$

- Equivalent for regular graph if $\gamma = 1 + \frac{r}{\overline{d}}$.
- "Corrected Arenas modularity": use $A_{ij} + r \frac{d_i}{\bar{d}} \delta_{ij}$; equivalent to Reichardt and Bornholdt [Lambiotte, 2010]

Some works on multiscale communities

- Lambiotte, "Multiscale modularity in complex networks" [*WiOpt*, 2010]
- Schaub, Delvenne et al., "Markov dynamics as a zooming lens for multiscale community detection: non clique-like communities and the field-of-view limit" [*PloS One*, 2012]
- Arenas et al., "Analysis of the structure of complex networks at different resolution levels" [*New Journal of Physics*, 2008]
- Reichardt and Bornholdt, "Statistical Mechanics of Community Detection" [*Physical Review E*, 2006]
- Mucha et al., "Community Structure in Time-Dependent, Multiscale, and Multiplex Networks" [*Science*, 2010]
- Tremblay, Borgnat, "Graph Wavelets for Multiscale Community Mining" [*IEEE TSP*, 2014]

More on that later in the next part of the lecture

Spectral clustering

- More general spectral clustering: Use all (or some) of the eigenvectors χ_i of L
- Then, use a classical *K*-means on the first *K* non-null eigenvectors of *L* (each node *a* has the (χ_k)_a avec features)
- If large heterogeneity of degrees: the normalized Laplacian gives better results

Normalized Laplacian matrix

\mathscr{L}	Laplacian matrix	$\mathscr{L} = I - D^{-1/2} A D^{-1/2}$
(λ_i)	\mathscr{L} 's eigenvalues	$0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \leq \lambda_{N-1}$
(χ_i)	\mathscr{L} 's eigenvectors	$\mathscr{L}\chi_i=\lambda_i\chi_i$

• Choice of K by eigengaps $|\lambda_{k+1} - \lambda_k|$

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Graph embedding, Laplacian maps

• Spectral clustering := embedding + K-means

 $\forall a \in V : a \rightarrow (\chi_1(a), \chi_2(a), ..., \chi_k(a)) \in \mathbb{R}^k$

 Objective of embedding: embed vertices in low dimensional space, so as to discover geometry

$$x_i \in \mathbb{R}^d \to y_i \in \mathbb{R}^k$$
 with $k < d$

Graph embedding, Laplacian maps

- A good embedding preserves locality in the embedding space, so that nearby points are mapped nearby. It preserves smoothness.
- For that, minimize the variations of the embedding:

$$\sum_{i,j} A_{ij} (y_i - y_j)^2$$

Laplacian eigenmaps:

argmin
$$\mathbf{y}^{\top} L \mathbf{y}$$

such that $\mathbf{y}^{\top} A \mathbf{y} = 1$
and $\mathbf{y}^{\top} L \mathbf{1} = 0$

Alternative formulation:

$$L\mathbf{y} = \lambda A\mathbf{y}$$

(generalized eigenproblem)

ć

Typical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

Graph embedding, Laplacian maps

Some examples

[Belkin, Niyogi, 2003]

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

A recommander system

[Vandergheynst et al., EPFL, 2014]

• Assume data in the form *M*[movie, user] = movie rating

- One observes only a subset of *M*. How to complete it?
- Hypotheses:
 - Users structured as communities,

and users in community rate similarly

- Movies are clustered in genres,

and similar movies are rated similarly by users

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

End

A recommander system

[Vandergheynst et al., EPFL, 2014]

- Let us write $A_{\Omega}(M)$ the observed part of the matrix M
- Matrix completion problem:

$$\min_{X} \operatorname{rank}(X) \ s.t. \ A_{\Omega}(X) = A_{\Omega}(M).$$

- Problem relaxed with the nuclear norm:
 ||X||_{*} = Tr((XX^T)^{1/2}) = ∑_k σ_k
 (where the σ_k are the singular values of X = UΣV^T)
- Tolerance to noise: change A_Ω(X) = A_Ω(M) into a penalty term ||A_Ω ∘ (A − M)||
- Completion by smoothness on the two graphs (users and movies), as quantified by a term

$$\gamma XLX^{\top} = \gamma \sum_{j,j'} Aij ||x_j - x_{j'}||^2.$$

pical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

End

A recommander system

[Vandergheynst et al., EPFL, 2014]

Hence an optimization problem to solve

 $\min_{X} \gamma_n ||X||_* + ||A_{\Omega} \circ (A - M)|| + \gamma_r X L_r X^\top + \gamma_c X L_c X^\top$

- Solution by advanced optimization tools for convex non-smooth functions.
- Here, the ADMM approach (Alternating Direction Method of Multipliers) works well (see other parts of the lectures)

ypical examples

Graph Signal Processing

Cuts, clustering and communities

Other examples

End

A small pause

- This was an invitation to "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains" See [Shuman, Narang, Frossard, Ortega, Vandergheynst, *IEEE SP Mag*, 2013]
- Next on our program:
 - Spectral analysis of the Laplacian; some properties
 - Spectral graph Fourier transform, operators and wavelets (hence a notion of scales)
 - Laplacian pyramid, graph downsampling Applications http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Renaud Lambiotte, Pierre Vandergheynst and Nicolas Tremblay for borrowing some of their figures or slides.