
1

Synoptic Graphlet: Bridging the Gap between
Supervised and Unsupervised Profiling of Host-level

Network Traffic
Yosuke Himura, Kensuke Fukuda, Member, IEEE, Kenjiro Cho, Member, IEEE, Pierre Borgnat, Member, IEEE,

Patrice Abry, Fellow, IEEE, and Hiroshi Esaki, Member, IEEE,

Abstract—End-host profiling by analyzing network traffic
comes out as a major stake in traffic engineering. Graphlet con-
stitutes an efficient and common framework for interpreting host
behaviors, which essentially consists of a visual representation as
a graph. However, graphlet analyses face the issues of choosing
between supervised and unsupervised approaches. The former
can analyze a priori defined behaviors but is blind to undefined
classes, while the latter can discover new behaviors at the cost of
difficult a posteriori interpretation. This work aims at bridging
the gap between the two. First, to handle unknown classes,
unsupervised clustering is originally revisited by extracting a set
of graphlet-inspired attributes for each host. Second, to recover
interpretability for each resulting cluster, a synoptic graphlet,
defined as a visual graphlet obtained by mapping from a cluster,
is newly developed. Comparisons against supervised graphlet-
based, port-based, and payload-based classifiers with two datasets
demonstrate the effectiveness of the unsupervised clustering of
graphlets and the relevance of the a posteriori interpretation
through synoptic graphlets. This development is further comple-
mented by studying evolutionary tree of synoptic graphlets, which
quantifies the growth of graphlets when increasing the number
of inspected packets per host.

Index Terms—Internet traffic analysis; Unsupervised host
profiling; Microscopic graph evolution; Visualization

I. INTRODUCTION

An essential task in network traffic engineering stems from
host-level traffic analyses, where the behavior of a host is
characterized based on traffic (i.e., packet sequence) generated
from the host. Host-level traffic analyses enable to find users
of specific applications for the purpose of traffic control,
to identify malicious or victim hosts for security, and to
understand the trend of network usage for network design
and management. Flow analysis, which also constitutes an
important networking stake, can be fruitfully complemented
by host profiling (e.g., by breaking down host behaviors into
flow characteristics).

Numerous attempts have been made to develop statistical
methods for host profiling. Such methods aim at overcoming
packet encryption, encapsulation, use of dynamic ports, or
dataset without payload – situations that impair the classical

Yosuke Himura and Hiroshi Esaki are with The University of Tokyo.
Kensuke Fukuda is with National Institute of Informatics and PRESTO, JST
Kenjiro Cho is with Internet Initiative Japan (IIJ) and Keio University.
Patrice Abry and Pierre Borgnat are with CNRS and École Normale

Supérieure de Lyon (ENS de Lyon), Laboratoire de Physique.
Work supported by CNRS/JSPS Grants “Benchmarking and statistical

analysis tools for modern Internet and sensor network traffics,” 2010 and 2012.

approaches relying on payload inspection [26, 17, 24] and
port-based rules [4]. The most recently proposed ones are
based on heuristic rules [15], statistical classification proce-
dures [27, 18, 22], Google database [28], or macroscopic graph
structure [30, 13, 10, 11].

In particular, an effective yet heuristic approach to host
profiling is based on graphlets [15, 14, 19]. A graphlet
is a detailed description of host communication patterns as
a graph, as illustrated in Figure 1. For each flow, the 5-
tuple defining it (proto, srcIP, dstIP, srcPort, dstPort) gives a
set of attributes (A1, A2, . . .) and the communication pattern
of a host is the union, for all flows, of edges connecting
nodes associated to flow’s attributes. This leads to diverse
visual shapes of graphlets depending on the host’s flows.
The graphlet representation facilitates the intuitive analysis of
differences and resemblances among host behaviors, whereas
conventional approaches directly handle numerical values of
statistical features, which are difficult to interpret.

However, as for any host-profiling approach, the use of
graphlets faces the classical issue of choosing supervised
versus unsupervised procedures. Supervised approaches rely
on a priori determined classes or models of graphlets [15], pre-
defined by human experts in a necessarily limited number, and
these approaches cannot substantially classify new or unknown
host behaviors. Unsupervised approaches are adaptive insofar
as the data directly define the output classes of graphlets
and can discover behaviors never observed before. These
approaches, however, potentially produce clusters composed
of a large number of numerical features that cannot receive
easy meaningful or useful interpretation.

The present work aims at bridging the gap between the two
types of approaches. The main idea for this is the combination
of two techniques: To avoid the limitation of supervised
approach, we use an unsupervised clustering of graphlets that
is able to capture previously unknown classes; To ease the
difficulties of unsupervised approach, the resulting clusters are
re-visualized into synoptic graphlets that allow us to interpret
the clusters obtained. Our approach is evaluated with two large
datasets of traffic collected on two different links (Sec. III).
The article is organized along three contributions.

First, the classical problem of supervised classification is
revisited (Sec. IV). This investigation comprises two aspects:
a list of graphlet-based features is proposed to quantify in a
relevant way the visual graphlet shape associated with each
host; An unsupervised clustering method is applied to these

2

A1 A2 A3 A4 A5 A6A1 A2 A3 A4 A5 A6

Drawn from first 100 observed packetsDrawn from first 100 observed packets

(b) Peer to peer(a) Host scan for a destination port

Fig. 1. Examples of graphlets. Traffic from a single source host is represented
as a graph connecting attributes such as proto, srcPort, dstPort, and dstIP.

features to yield classification in terms of graphlet shapes.
Comparisons against a supervised graphlet-based classifier
(BLINC [15]), a port-based one, and a payload-based one
allow us to check that most clusters match well-known host
behaviors. This result shows that our method makes it possible
to discover unknown graphlets, which avoids the problem
faced by supervised approaches.

Second, the issue of automatically providing interpretation
of the output of the unsupervised clustering is addressed
(Sec. V). We solve the inverse problem of reconstructing a
synoptic graphlet, defined as a graphlet inferred from each
obtained cluster, by using an original mapping of the cluster
attributes (cluster centroid) into a graphlet. Our development
of synoptic graphlets shows that an interpretable meaning
can be associated automatically to each cluster without any
a priori expertise. The effectiveness of synoptic graphlets,
which successfully provide interpretability for unsupervised
approaches as shown in this work, ends up in bridging the
gap between supervised and unsupervised methods.

Third, the nature of host behavior is further studied via
synoptic graphlets (Sec. VI). The use of synoptic graphlets
is expanded to creating an evolutionary tree, which explores
the visually intuitive growth of a set of synoptic graphlets as a
function of the number P of inspected packets per host. This
study is useful in integrating host-level traffic characteristics
of different P in an interpretable manner, and in quantifying
the order of magnitude P beyond which further increase does
not lead to substantially more relevant host profiling, i.e., how
many packets P we need to profile hosts.

II. PRELIMINARIES

Before turning to the method itself and the datasets used in
the next sections, we recall the definition of graphlets in the
context of Internet traffic and discuss related work. Then we
propose an overview of our approach.

A. Graphlet

A graphlet is defined as a graph having the following
characteristics in the context of network communication: (1)
the graph is composed of several columns (A1, A2, . . .) of
nodes, where each column represents one attribute of packets
or flows, (2) a node (vertex) in a column is a unique instance
of the attribute, and (3) there is an edge between two nodes of
neighboring columns if at least one packet/flow has the two

corresponding attributes. Columns of a graphlet are usually
related to flow attributes (5-tuple): proto (protocol number), sr-
cIP (source IP address), dstIP (destination IP address), srcPort
(source port number), and dstPort (destination port number),
which are specified in the header field of every packet.

Figure 1 illustrates two manually annotated examples of
graphlets drawn with P = 100 packets per source host.
Figure 1(a) shows that the source host, which is represented
as the single node in srcIP column, sends packets to a
specific destination port of many destination hosts (almost
one packet per flow); This suggests that the source host is
a malicious scanner aiming to find hosts running a vulnerable
application corresponding to the port. Figure 1(b) displays a
host communicating with several hosts without any specific
source/destination port, and hence this host is a peer-to-peer
user (not server or client). As shown in these examples, a
strong merit of graphlets is the visual interpretability of host
characteristics as compared to examining a large number of
raw packet traces or directly handling a set of numerical
statistics.

We draw a graphlet from host-level traffic. Here, host-level
traffic is defined as the sequence of packets sent from the
host; Headers in those packets contain source IP addresses
equivalent to the host’s address. Note that this measurement
does not necessarily capture initiation of communication (e.g.,
TCP hand shake). Each graphlet is drawn from a certain
number of observed packets P sent from each host.

The graphlet we use is composed of six columns
A1, . . . , A6, which represent srcIP-proto-srcPort-dstPort-
dstIP-srcPort1. The order of columns is different from the
original definition [15]. We consider that srcIP-srcPort-
dstPort-dstIP should be more comprehensive, because it
clarifies the activity of computer processes inside end-hosts
(IP-Port pairs) and network-wide inter-process communication
among hosts (srcPort-dstPort pairs). We place srcPort at the
right side again to capture the relation between dstIP and
srcPort (inspired by [14]). Since we draw one graphlet per
source host, there is only one point in the left column (srcIP).

B. Related work and open issues

Here the standpoints of the graphlet-based works and of
this work are presented in the context of network traffic
classification conducted over the course of a decade.

Many statistics-based methods for traffic analyses have been
proposed to classify flows and host characteristics by means
of supervised and unsupervised methods. These studies have
made use of various supervised machine learning methods
such as nearest neighbors [16, 8, 20], Bayesian statistics-based
techniques [23, 16, 25, 20], decision tree [16, 25, 20], Support
Vector Machine (SVM) [16, 20], or even natural language
processing on Google search results [28]. The others have
leveraged unsupervised ones including K-means clustering
[18, 1, 7], or hierarchical clustering [18]. Both the approaches
have been applied to traffic features from various aspects –
packet sizes only [1, 8], combinations of packet sizes, flow

1We define ‘pseudo’ source and destination ports for ICMP to be
srcPort = dstPort = icmp code in order to consistently draw graphlets.

3

...

host 1

host 2

host H

x1

x2

xH
Host-level traffic

(P packets per host)

...

Graphlet representations
and extracted feature vector

...

... Cluster

Cluster

C1

CN
Dataset: aggregated

packet traces (Sec. III)
Clusters of graphlets

(grouped in terms of)
Synoptic graphlet: re-
visualized from clusterxh

Synoptic graphlet
for Cluster C1

Synoptic graphlet
for Cluster CN

Extracting host-level traffic from
aggregated traffic

Drawing graphlet from
host-level traffic (Sec. II)

Unsupervised clustering
over graphlets (Sec. IV)

Construction of synoptic
graphlets from clusters (Sec. V)

(a) (b) (c) (d) (e)

...

Fig. 2. Overview of our approach.

sizes, inter-arrival times, flow durations etc. [23, 7, 25, 20],
and/or entropy regarding the number of related hosts/ports [18,
30]. Those statistics-based methods are capable of overcoming
packet encryption, encapsulation, use of dynamic ports, or
dataset without payload, which are limitations on conventional
approaches relying on payload inspection [26, 17, 24] and
port-based rules [4].

Several recent studies particularly focused on large-scale
host-to-host connections [27, 22, 13, 10, 11, 29], the use
of which promisingly enables to visualize how hosts com-
municate with one another and enables to find groups of
hosts communicating with each other. These works leverage
existing graph-based analytical capabilities such as feature
extraction regarding complex networks [10], community min-
ing techniques [11], or block identification in communication
(adjacency) matrix [13, 29].

Different from those previous works, the approach described
here focuses on graphlets – detailed aspects of host behaviors
including the usage of protocols and source/destination ports.
The use of graphlets has been motivated by their visual
interpretability (as shown before), and has been conducted
in a few works. For example, Karagiannis et al. perform
supervised classification of flows based on graphlet models
pre-determined by human experts [15]. Other works character-
ize graphlet-based host behaviors in unsupervised manners as
follows: Karagiannis et al. discuss in-degrees and out-degrees
of nodes and average degrees of graphlets in [14], and focus
on manual finding of typical graphlets as well as on time
transition of those features; In [6], Dewaele et al. classify
hosts, making use of various features (some of them inspired
by graphlets) applied to an unsupervised clustering technique.

To overcome the various limitations of super-
vised/unsupervised approaches that were discussed previously,
and in contrast to previous works, the present article aims
at bridging the gap between the two analytical approaches
on graphlets by proposing a new framework for graphlet
manipulation.

C. Overview of our approach

The three contributions of this work are: (1) the automation
of finding typical graphlets via unsupervised clustering in an
interpretable manner, (2) a method to re-visualize graphlets

from clustering results, and (3) an analysis on evolution
of typical graphlet shapes while increasing the number of
packets per graphlet, which is complementary to analyses on
time-transition of graphlet features. Each contribution is an
important step of our method. Steps (1) and (2) are depicted
in Figure 2 and step (3) is represented in Figure 9. Our method
is organized as follows.

As a preprocessing step, aggregated traffic traces are first
computed. (Figure 2(a)). The traffic is measured in a backbone
link and composed of packets sent from hundreds of thousands
of hosts (Sec. III). We identify per-host traffic (Figure 2(b))
according to the source IP addresses specified in the packets,
and draw graphlets from the first P measured packets sent
from each host (Figure 2(c)).

Step (1): An unsupervised clustering over graphlets is con-
ducted to find typical graphlets (Sec. IV). A numerical feature
vector xh, which represents shape-based characteristics of a
graphlet, is extracted from the graphlet of P packets sent from
host h. The set of feature vectors x1, . . . ,xH, representing a
set of H hosts, is used for hierarchical clustering to produce
clusters of hosts C1, . . . , CN (Figure 2(d)). Cluster Ci consists
of hosts that are similar in terms of their feature vector in the
feature space. For each cluster, we obtain the components of
a representative feature vector x which will be converted to
graphlets in the next step.

Step (2): Resulting clusters are visualized to recover in-
terpretability (Sec. V). Since unsupervised clustering han-
dles numerical features and thus loses visual information of
graphlets, we re-visualize a representative graphlet associated
with each cluster (Figure 2(e)). The reproduced graphlet,
called synoptic graphlet, is derived from the feature vector
x of the centroid of a cluster. We develop an original method
to re-visualize synoptic graphlets in a deterministic manner,
since conventional probabilistic ways of graph rewiring are
not suitable for highly-structured graphlets.

Step (3): Additionally, the evolutionary nature of synoptic
graphlets is studied (Sec. VI). The key observation is that our
knowledge of hosts may evolve as P increases from 1 to larger
numbers. To study the evolution of the associated synoptic
graphlets, we build an evolutionary tree of synoptic graphlets
that evolve from the single-line graphlet (the only existing
shape for P = 1) to the diversity of synoptic graphlets.

4

This evolutionary tree is obtained by combining the clustering
results of increasing P (see Figure 9). It provides intuitive
understanding of the divergences and convergences in the
growth of host characteristics as P increases.

III. DATASETS

This section describes first the two datasets used for the
validation of the proposed method, and, second, discusses
how combining three different and classical traffic classifiers
produces surrogates for real traffic ground-truth.

A. Traffic traces

We analyze traffic traces stored in the MAWI repository
[21, 3] and traces measured at Keio University (used in [16]
as Keio-I and Keio-II). MAWI traffic [21, 3] is measured
on a transpacific IPv4 link between the U.S. and Japan for
15 minutes everyday. The public repository removes packet
payloads, while the private repository retains payloads, up to
the first 96 bytes. Results are reported here based on 12 MAWI
traces collected once a month (on the 14th) in 2008. Keio
traces used here are those presented in [16] and measured for
30 minutes, for two different days in 2006, on a bi-directional
edge link in a campus of Keio University. Packet payloads up
to 96 bytes were also preserved. We first removed the packets
related to protocols other than TCP, UDP, and ICMP.

In the results reported below, we use the source hosts2

sending at least 1000 packets for MAWI trace (respectively,
100 packets for Keio trace). This choice balances the trade-
off between (a) having a lower reliability when hosts do
not exchange enough packets, and (b) not keeping enough
hosts when the required number of packet is too high. It
has been checked that this arbitrary choice is not crucial;
Results (e.g., the evolution of the number of clusters) similar
to those obtained with 500 < Q < 1000 were drawn with
200 < Q < 500, or with 100 < Q < 200 for MAWI
traces, where Q denotes the number of packets sent by a
host (observed in a trace). We will quantitatively evaluate the
differences of results regarding the choice of Q in the future.

Each of the 12 MAWI traces contains about 1,700 analyzed
hosts, yielding approximately a number of analyzed hosts
H = 20, 000 in total for the 12 traces, and the 2 Keio traces
contain about H = 10, 000 hosts in total (H is the number of
analyzed hosts). Those analyzed hosts for MAWI data account
for 1.1% (19K out of 1.7M) regarding the number of hosts,
86% regarding the number of packets (207M out of 239M),
and 93% regarding the number of bytes (1.43T out of 1.52T).

B. Pseudo ground-truth generators

Traffic analysis methods generally have to be evaluated with
dataset annotated from ground-truth. A crucial issue raised in
the recent literature, however, lies in designing a procedure to
obtain ground-truth on actual traffic traces. Most of researches

2It should also be meaningful to analyze destination hosts; With this
analysis, for instance, we will be able to capture hosts receiving lots of attack
packets. As a first step, we selected to analyze source hosts because of the
easier interpretation of results; Packets sent from a host can be well explained
by the application of the host, compared to packets received by a host.

indeed have regarded ground-truth as the labels put by a single
payload-based packet classifier. However a lot of packets are
labeled as unknown by payload classifiers (as exhibited in
this paper). Also, payload-based methods do not necessarily
produce correct outputs. To improve the ground-truth coverage
and accuracy, we carefully create three sets of pseudo ground-
truth from different methods detailed here.

(a) Reverse BLINC. BLINC was originally proposed in
[15] and extended to Reverse BLINC in [16], which is now
state-of-the-art. BLINC profiles a pair of a source address and
a port, and once the pair is matched with one of the heuristic
rules based on the graphlet models, all pairs connected to
that pair are classified. We used the default setting of Re-
verse BLINC as in [16]. BLINC’s classification framework is
WWW, CHAT, DNS, FTP, MAIL, P2P, SCAN, and UNKN
(unknown). Since this classifier reports classification results
as flow records, we need to convert them into a host-level
database. For each source host, we collect a set of flows
generated from the host and select the category (except for
UNKN) that is the most frequent among the flows. For
example, if ten flows from a host are classified into three
DNS, one WWW, and six UNKN, then the type of the host
is identified as DNS.

(b) Port-based classifier. We use another classifier, which
was originally developed in [5] and also used in [2, 9]. This
tool inspects a set of packets sent from a host, considering
port numbers, TCP flags, and the number of higher/lower
source/destination ports and destination addresses. The clas-
sification categories are WWWS (web server), WWWC (web
client), SCAN, FLOOD (flooding attacker), DNS, MAIL,
OTHERS, and UNKN [9]. This tool reports host-level clas-
sification results by itself.

(c) Payload classifier. We also use the payload-based clas-
sifier developed in [16] 3. This classifier inspects the payload
string of each packet by comparing it with its signature
database. The classification categories we select are WWW,
DNS, MAIL, FTP, SSH, P2P, STREAM, CHAT, FAILED
(when the packets have no payload), OTHERS (minor flows
such as games, nntp, smb, and snmp), and UNKN. Since this
tool also generates outputs in the form of flow tables, we
merge them into host-level reports by the same means used to
aggregate outputs from Reverse BLINC.

The hosts annotations given by the three classifiers of
different perspectives are used to evaluate the unsupervised
analysis on graphlets that is presented in the next section.

IV. UNSUPERVISED GRAPHLET ANALYSIS

We detail the first step of the method, which is an unsuper-
vised classifier for typical behaviors of hosts that does not rely
on predefined models. However, it will still allow us afterwards
to provide visual interpretation of the behaviors found.

3In our preliminary experiment, we examined l7-filter [17] and found
that the tool generated rather unreliable outputs because of loose payload
signatures that are represented as regular expressions with a few bytes. Also,
we found that OpenDPI [24] produced mostly unknown reports because it
uses strict rules.

5

TABLE I
NOTATIONS FOR GRAPHLET DESCRIPTION. AN ATTRIBUTE HAS TWO

DIFFERENT DEGREE DISTRIBUTIONS BASED ON DIRECTION (E.G., A2 IS
SEPARATED INTO 2 : 1 AND 2 : 3). SEE SEC. II-A FOR DETAILS.

Ai i-th column (or attribute) of graphlets (from left to right)
vk,i Node (vertex) in Ai

i : j Direction from Ai to Aj (j = i± 1)
dk,i:j In/out-degree of node vk,i: in-degree for i : i− 1 (left half of vk,i)

and out-degree for i : i + 1 (right half of vk,i)
Di:j Empirical distribution of in/out-degrees in Ai

TABLE II
NOTATIONS FOR GRAPHLET CLUSTERING.

xh Host h’s graphlet feature vector, composed of the five degree-based
features (Figure 3)

Dim Dimension of xh (44-dimensional for 6 columns)
H Number of hosts analyzed
P Number of packets per graphlet
Ci Cluster of label i obtained
N Total number of clusters obtained
θ Distance-based threshold for clustering

A. Methodology for unsupervised graphlet analysis

1) Extracting shape-based features from graphlets: We first
extract numerical feature values from graphlets, because visual
graphlets cannot be used directly as input to conventional
statistical methods (except for image processing). We choose
afterwards several types of features related to shapes. We note
xh the feature vector for the graphlet of host h.

Notations on graphlets. We denote the six attributes (srcIP-
. . .-srcPort) as column A1, . . . , A6. In column Ai, the total
number of nodes is ni, and nodes are v1,i, . . . , vni,i. We
define i : j as the direction from Ai to Aj , which is used
to define the in-degree and out-degree of nodes in column Ai

(j = i + 1 or i − 1). The in-degree of node vk,i is defined
on direction i : i − 1 as dk,i:i−1, namely, dk,i:i−1 is the
number of nodes in Ai−1 that are connected to node vk,i in
Ai. The out-degree is similarly defined on direction i : i + 1
as dk,i:i+1. As a consequence, node vk,i is characterized by
the pair of the in-degree and out-degree (dk,i:i−1, dk,i:i+1).
We define the array of in/out degrees for direction i : j as
Di:j = (d1,i:j , . . . , dni,i:j) where ni is the number of nodes
in column Ai. Di:j gives the empirical distribution measured
from an observed graphlet. Table I summarizes these notations.

Feature extraction. The proposed features are based on
five types of shape-related information, described formally as
follows and visually in Figure 3 (the relevance of the features
is discussed later).
(1) ni is the number of nodes in column Ai. Note that it is

equal to the size of arrays Di:i+1 and Di:i−1. (6 columns)
(2) oi:j =

∑
dk,i:j∈Di:j

I(dk,i:j = 1), where I(·) is the
indicator function, is the number of nodes that have
degree 1 in direction i : j (with j = i±1). (10 directions)

(3) µi:j = 1
ni

∑
dk,i:j∈Di:j

dk,i:j is the average degree of
direction i : j. (10 directions)

(4) αi:j = maxdk,i:j∈Di:j{dk,i:j} is the maximum degree of
direction i : j. (10 directions)

(5) βi:i+1 = dk,i:i−1, where k = arg maxl{dl,i:i+1} is, for
the node having maximum degree in i : i+1 (i.e., Feature
4), its degree in the backward direction i : i− 1. If more
than one node has the maximum degree for Feature 4,

A1 A3 A4

Feature 1:
Number of nodes = 4

A1 A2 A3 A4

Feature 2:
Number of one-degree nodes
 = 3

A1 A2 A3 A4

Feature 3:
Average degree
 = 1.5

A1 A2 A3 A4

Features 4 and 5:
Max degree = 3
Back degree of max = 1

n2 o2:3

μ 2:3
α2:3

β2:3

= (x1, x2, ...)
= (n 1, o 1:2, μ 1:2, α 1:2, β 1:2, n 2 ...)

x

Direction 2:3

Direction 2:3 Direction 2:3

A2

Fig. 3. Shape-based features for a graphlet (i.e., behavior of a host).

the pair with the highest degree is selected from among
the candidates. A similar definition holds for the reverse
direction βi:i−1. (8 directions, since the edge columns
have degree for only one direction)

As a result, from the graphlet for host h, we obtain a feature
vector xh = (xh,1, . . . , xh,44) = (n1, . . . , n6, o1:2, . . . , o6:5,
µ1:2, . . . , µ6:5, α1:2, . . . , α6:5, β2:1, . . . , β5:6) of dimension of
Dim = 44 (= 6 + 10 + 10 + 10 + 8). We examine packet
traces or flow lists (input) to compute these features (output).
The index i : j is omitted when not needed.

Examples. Figure 3 shows an example of features. For
direction 2 : 3, there are four nodes (n2 = 4) and three
nodes of one-degree (o2:3 = 3), and the average degree is
1.5 (µ2:3 = 1.5). The second bottom node has the highest
degree of three (α2:3 = 3) and the degree of the node for the
other direction is one (β2:3 = 1).

Practical meanings. Even though these features are se-
lected from the viewpoint of graphlet re-visualization (Sec. V),
a few of them can also be interpreted as traffic characteristics
in a practical sense. ni is the number of unique instances of the
flow attribute (e.g., the number of destination addresses). µi:j

and αi:j are respectively the average and maximum number
of unique flows of an instance of the attribute among all the
instances.

Relevance of features. The selection of the five types of
features is empirically motivated by two objectives: (i) the
expected ability to obtain relevant clustering results because a
few of the features are already well-known and well-studied
[6] and (ii) the ability to re-visualize graphlets from the
resulting clusters as explained in Sec. V. Also, the relative
importance of the five types of features is evaluated by a
feature selection method in Sec. IV-B4. Macroscopic degree-
related features such as betweenness, the assortativity coef-
ficient, or eigenvalues, are not used because graphlets are
microscopic and highly structured. We only use graph-based
features to evaluate the interpretability of graphlet clustering
results, although there are many other well-studied features
such as TCP flag, packet size, and flow size. Such features
and ours are not exclusive but complementary; Using both

6

 10

 20

 50

 100

 2000 5000 10000
No. of analyzed hosts H

θ = 10

θ = 50

θ = 100

θ = 200

θ = 20

 10

 50

 100

 200

 2000 5000 10000 20000

θ = 50

θ = 100

θ = 200

θ = 20

θ = 500

No. of analyzed hosts H

N
o.

 o
f c

lu
st

er
s

N

of

 c
lu

st
er

s
N

(a) MAWI (P = 1000) (b) Keio (P = 100)

1620

Fig. 4. Clustering threshold θ characterized by the dependency on the number
of analyzed hosts H and the number of resulting clusters N .

types would enhance host profiling schemes.
2) Applying graphlet features to unsupervised clustering:

Here, we establish a method to find typical host behaviors in
terms of graphlet shapes. At a high-level view, a set of hosts
x1, . . . ,xH are grouped into clusters C1, . . . , CN (clusters are
disjoint sets of the hosts). Table II lists the notations used for
the graphlet clustering.

Feature normalization. Each feature value xh,i from fea-
ture vector xh is mapped onto a log space as log10(xh,i + 1).
For the features related to the ID of the transport protocol, the
possible ranges of the values are adjusted to the other features
(i.e., addresses and ports) as follows: log10(P

xh,i

min(3,P) + 1),
where P is the number of analyzed packets to be drawn
as a graphlet, and the value 3 stems from the number of
analyzed protocols (TCP, UDP, and ICMP). Hence, this type
of feature is distributed into [0, log10(P + 1)] as well as the
other features for any P . This normalization onto the log space
is motivated by our empirical observation that graphlet shapes
can be logarithmically well characterized; For example, by
inspecting graphlet shapes with changing P, we observed that
difference in graphlet shapes between P = 10 and P = 20 was
intuitively similarly significant to P = 100 and P =200 (rather
than P =100 and P =110).

Unsupervised clustering. Unsupervised clustering finds
groups of hosts that are similar in terms of feature values by
analyzing the H hosts x1, . . . ,xH. The hierarchical clustering
[18] with Ward’s method is used, as it is known to outperform
other methods (e.g., single-linkage method). The similarity
between a pair of clusters (Ci, Cj) is defined as a merging
cost: Γ(Ci, Cj) = E(Ci ∪ Cj) − E(Ci) − E(Cj), with
E(Ci) =

∑
h∈Ci

(γ(xh, ci))2 the intra cluster variance in
Cluster Ci, the Euclidean distance γ(x,y) between vectors
x and y, and the average feature vector ci of all hosts in Ci.
The distance-based threshold θ is used to separate clusters in
this feature space. The clustering produces a set of N clusters
C1, . . . , CN , depending only on θ (each host is included in
a single cluster only). The selection of θ is discussed in
Sec. IV-B.

Motivation for distance-based threshold instead of
number-based one. The distance-based threshold θ is prefer-
able compared to cluster-number-based thresholds (such as the
one for the K-means technique). This is because a consistent
value of θ can be used for any P , which mitigates the
burden of parameter tuning in analyses with several P s as
performed in Sec. VI. Number-based thresholds would have
to be appropriately tuned through trial-and-error independently

for each P , as the number of typical clusters for each P
cannot be known. The consistent use of a single threshold
over different P s is empirically enabled by the normalization
of the feature spaces as [0, log10 P], because distance between
two clusters of typical behaviors will remain mostly the same
for different P s. Instead, conventional normalization into [0, 1]
would induce clusters with different behaviors at larger P to
be located closer, requiring θ to be decreased.

Computational load. We used hcluster methods in the
amap R-library. Approximately 1.5 GB memory was required
for about H = 20, 000 instances of Dim(x) = 44 dimensional
vectors. It took around 2.4 minutes with a 2.8 GHz Intel Core
2 Duo CPU with 4GB memory. By performing the clustering
with changing H , we empirically confirmed that time and
space complexities were both O(H2).

B. Results: finding typical patterns of host behaviors
1) Threshold selection: The distance-based threshold θ

eventually determines the number of extracted clusters N
according to a conventional trade-off: a too high θ misses
a number of typical host behaviors, while a too low θ pro-
duces redundant clusters (i.e., different clusters having similar
compositions). By changing the value of θ, we inspected the
list of synoptic graphlets (representative graphlets for resulting
clusters – details are defined in Sec. V) to identify whether
there are redundant clusters (having same shape of synoptic
graphlets) and new types of clusters (which cannot be found by
large θ). We experimentally found that thresholds that balance
this trade-off well are θ = 500 with the MAWI traces (about
H = 20, 000 hosts) for P = 1000, producing approximately
N = 20 clusters, and θ = 250 with the Keio traces (about
H = 10, 000 hosts) for P = 100, resulting in N = 16 clusters.
This trade-off has been manually inspected, because it is quite
difficult to computationally identify redundancy of clusters in
terms of the shapes of graphlets, which are one of our major
focus and are enumerated in Sec. V.

Figure 4 addresses the characteristics of θ by showing its
relationship to the number of analyzed hosts H and the number
of clusters N obtained from (a) MAWI (for P = 1000) and (b)
Keio (for P = 100). Each set of analyzed hosts was selected
from a random sample of the total number of original hosts
by changing the sampling rate. This figure suggests referential
values of θ for each dataset to obtain a certain number of
clusters that balances the trade-off well for any H .

We note that this value of θ can be consistently used for
other P , and this is the reason why we do not directly use
the number-based threshold. Since θ is based on the distance
in the feature space, we can compare the clustering outputs
from various P with a single consistent criteria. For example,
smaller P might lead to fewer numbers of clustering with
regard to the feature space. We confirmed that the value of θ
is consistently appropriate for other P as shown in Sec. VI.

2) Typical patterns of host behaviors: Table III shows the
clustering result, with H = 20, 000 hosts at P = 1000 of
MAWI data, obtained from a comparison between the graphlet
clustering and the three classifiers, i.e., Reverse BLINC (R-
BLINC), port-based classifier (Port), and payload-based clas-
sifier (Payload). This table displays the total number of hosts

7

TABLE III
RESULTING CLUSTERS (MAWI WITH P = 1000) COMPARED WITH THREE CLASSIFIERS: REVERSE BLINC (R-BLINC), PORT-BASED CLASSIFIER
(PORT), AND PAYLOAD-BASED CLASSIFIER (PAYLOAD). N = 20 CLUSTERS ARE OBTAINED FROM THE ANALYZED H = 20, 000 HOSTS WITH THE

SELECTED THRESHOLD θ = 500.
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

4594 1252 986 1283 1526 1427 1134 274 715 451 297 152 950 961 613 652 964 690 221 305

R
-B

L
IN

C WEB 10199 1612 672 348 991 825 1361 1031 9 249 5 13 885 233 199 539 681 527 7 12
DNS 1131 12 54 35 6 50 17 25 208 4 62 56 49 1 216 156 1 38 46 92 3

MAIL 721 17 21 8 21 25 34 39 7 2 8 16 189 183 17 44 81 9
P2P 1660 572 14 18 22 222 3 14 33 11 17 3 10 5 285 52 14 107 21 61 176

SCAN 191 191
FTP 253 33 95 5 1 8 17 1 93

CHAT 24 1 16 7
UNKN 5268 2348 491 577 242 309 12 25 24 439 174 238 72 42 30 23 64 77 15 54 12

Po
rt

WWWS 6538 1553 670 710 1178 101 1 6 1 2 892 154 9 709 538 14
WWWC 5457 1337 4 722 1351 987 9 255 1 1 19 35 202 532 2

DNS 807 8 51 33 2 5 5 10 180 3 53 43 32 1 114 74 40 50 103
MAIL 632 27 15 5 14 24 33 39 7 11 16 151 162 12 27 84 5
P2P 361 74 5 3 6 16 2 4 1 160 24 51 2 12 1
SSH 645 18 466 2 3 13 1 1 2 17 14 86 5 4 3 10

SCAN 620 2 3 1 1 6 389 19 64 38 30 1 64 2
FLOOD 709 66 1 111 3 3 5 2 66 173 4 224 4 6 15 26
PROXY 113 1 5 3 85 2 2 1 12 2

FTP 129 49 6 3 25 4 4 1 2 7 5 1 22
OTHER 121 46 4 12 3 19 3 10 3 1 1 4 2 13
UNKN 3315 1415 34 107 68 590 22 71 18 177 1 8 8 18 204 89 87 133 15 15 235

Pa
yl

oa
d

WEB 11392 2620 627 671 1143 810 1316 1003 4 225 1 11 858 177 183 519 694 522 6 2
MAIL 648 29 15 6 24 24 33 42 8 2 15 169 144 12 38 83 4
DNS 1171 14 50 33 6 53 14 25 241 4 56 54 52 1 201 169 3 40 50 104 1
P2P 430 309 2 20 7 68 1 16 4 2 1
SSH 1023 30 505 12 39 50 29 28 33 16 62 97 10 37 54 20 1

FAILED 504 128 5 11 7 54 16 7 9 18 21 66 1 29 40 7 2 5 69 9
FTP 300 28 1 1 124 6 1 12 1 18 1 107

CHAT 152 3 12 1 3 2 2 18 110 1
STREAM 107 41 18 3 43 1 1
OTHER 106 29 32 8 2 11 1 4 1 3 5 8 1 1
UNKN 3614 1363 4 205 51 286 17 28 20 414 374 242 4 8 236 54 54 25 9 42 178

#packets to stop separation 500 1000 1000 1000 1000 1000 1000 50 1000 20 50 1000 1000 1000 1000 1000 1000 1000 500 1000

TABLE IV
GRAPHLET FEATURES EVALUATED BY FCBF.

MAWI Keio
feature SUi,c feature SUi,c

oi:j of srcPort → dstPort 0.51 oi:j of srcPort → dstPort 0.57
oi:j of dstPort → srcPort 0.48 oi:j of dstPort → srcPort 0.50
oi:j of dstIP → dstPort 0.39 oi:j of dstIP → srcPort 0.41
oi:j of dstIP → srcPort 0.39 oi:j of dstIP → dstPort 0.40
µi:j of dstIP → srcPort 0.36 ni of proto 0.06
βi:j of dstIP → srcPort 0.34
µi:j of dstPort → dstIP 0.31
ni of proto 0.10

in each category and each cell shows the number of hosts in
the intersection between two classes of two classifiers. The
first row of the column headings is auto-generated labels.
The second row shows graphlets re-visualized from clusters
(Sec. V), and the bottom row is discussed in Sec. VI.

The sparseness of Table III indicates that each cluster
mostly corresponds to a type of host behavior. For instance,
C6 (containing 1427 hosts) is characterized by one typical
category because most of the hosts are labeled as a category
of each classifier: 1361 hosts as WEB by R-BLINC, 1351
hosts as WWWC by Port, and 1316 hosts as WEB by Payload.
In addition, the overall similarity among the results from the
three classifiers cross-validates their effectiveness.

Clusters can show the typical host behaviors hidden in a sin-
gle category. WEB of R-BLINC, for example, is separated into
a few clusters, reflecting the different behaviors of web hosts
such as server (C2, C3, C4, C13, C17), client (C5, C6, C7,
C16), and P2P user (C14) as suggested by WWWS, WWWC,
and P2P of Port, respectively. Moreover, the WWWC (web
client) category of Port is clustered into a few groups, and
a plausible reason for this is that there are a few typical
behaviors of web clients based on the usage of web such
as large-file transfer, web browsing, and ajax-based activity.

Also, the MAIL category of Port shows the behaviors of only
server (C18), only client (C5, C6, C7, C9) or both server and
client (C14). This observation can also be validated by the
other categories in the same cluster (e.g., P2P of Port in C14).

In particular, the ability to cluster unknown data is an
advantage of the unsupervised approaches. Our clustering
method provides key information to profile hosts that R-
BLINC classifies as UNKN4 by separating these hosts into
different categories. For example, C3 separates 577 UNKNs
of R-BLINC from the totally 5268 UNKNs of the classifier,
and we can speculate that most of the 577 UNKNs are web
servers as most hosts in the cluster are classified as web servers
(e.g., C3 mainly consists of 348 WEB hosts labeled by R-
BLINC other than the 577 UNKN hosts). The same is true
for other UNKNs of the three classifiers. Thus, the results of
the classifiers and of our approach complement each other.

The effectiveness of a connection pattern-based approach
can also be complementarily improved by port- and payload-
based approaches. One notable example is C1, which contains
the most of UNKN hosts from R-BLINC. The port and
payload classifiers both indicate that this cluster is mainly
related to web server and client hosts. Actually, for the 2348
UNKN hosts in C1, our additional inspection found that 1150

4We provide an example of UNKN hosts labeled by R-BLINC by examin-
ing Cluster C4, which consists of 1283 hosts. This cluster consists of mainly
WEB hosts as suggested by the three classifiers and the shape of synoptic
graphlet. As mentioned above, this synoptic graphlet can be mapped with
BLINC’s original WEB graphlet, but this cluster contains 242 UNKN hosts
classified by R-BLINC. A plausible reason of the UNKN hosts is as follows.
As one of the classification rules, R-BLINC considers WEB hosts to follow
“#dstPort - #dstIP > a”, where a is one of the 28 thresholds and its value with
our default setting is a = 4. The average and standard deviation of “#dstPort
- #dstIP” are 8.12±4.82 for WEB hosts of R-BLINC inside C4 (991 hosts),
and are 3.61 ± 2.39 for UNKN hosts of R-BLINC inside C4 (242 hosts),
which does not follow the above-mentioned R-BLINC’s classification rule for
WEB.

8

hosts are classified as web server or client by both the port-
and payload-based classifiers; This suggests that such cross-
validation would reduce the UNKN classification. Another
example is that 1404 hosts out of the 1612 WEB hosts for
R-BLINC in C1 are identified as web server or client as well
by both the port- and payload-based classifiers, which indicates
those hosts can be considered as web-related ones with high
‘plausibility.’

3) Inter-cluster distance: We examined the distribution
of clusters in the feature space by using the inter-cluster
distance metric: dist(Ci, Cj) defined as 1

Dim ||ci−cj||, where
ci is the centroid vector for Ci. We define mindist(Ci) =
minj dist(Ci,Cj). The average and standard deviation of
mindist(Ci) is 6.63 ± 4.50, with minimum mindist(C1) =
dist(C1, C3) = 0.56 and maximum mindist(C10) =
dist(C10, C11) = 26.7 in the log space. This means that the
clusters are not uniformly distributed. Our observation was that
graphlets with low number of flows (e.g., C1, C3, C5, C4) have
low dist between each other, i.e., they are densely distributed
yet clustered due to the high number of hosts; Whereas,
high dist derives from graphlets with high number of flows
(e.g., dist(C6, C7), dist(C10, C11)) having similar shape but
different typical number of flows.

4) Dominant features: Here we extend the discussion by
evaluating which out of the Dim = 44 features significantly
contributed to the N = 20 obtained clusters (Table III). For
this evaluation, we use Fast Correlation-Based Filter (FCBF)
[31, 23, 16], a feature ranking and selection method. We note
that FCBF is used only for evaluating the relative contribution
of the features to the clustering results and is not used for
other parts of this work.

FCBF selects the most effective and smallest set of features
with respect to symmetric uncertainty (SU) ∈ [0, 1], which
measures a form of correlation between two random variables:
SUX,Y = 2H(X)−H(X|Y)

H(X)+H(Y) , where H(·) is the information-
theoretical entropy and H(·|·) is the conditional entropy.
SUi,c is the correlation between feature i and clusters (SU
against clusters), and SUi,j is that between features i and j
(SU against features). A higher SUi,c means that feature i
contributes to detecting one or more clusters, whereas a higher
SUi,j indicates that joint use of features i and j is redundant.
The method first removes irrelevant features (having low
SUi,c) and then excludes redundant features (having higher
SUi,j than SUi,c).

Table IV lists the selected features showing their SU against
clusters for MAWI and Keio data: N = 20 clusters for
MAWI with P = 1, 000, and N = 16 clusters for Keio with
P = 100. The features selected by FCBF are mainly oi:j (the
number of one-degree nodes), and this result suggests that
this type of feature is more relevant and less redundant than
the other features. Our interpretation is that oi:j represents
well a part of the graphlet (i.e., the area between i : j and
j : i) in term of its shape (e.g., a square (parallel line(s)
between columns), or a triangle (a knot on a column)) and
of its number of lines (i.e., visual complexity) (e.g., one line,
a few lines, or many lines). These are basic characteristics
of the behavior of hosts, and the features oi:j represent such
characteristics better than the other features used here. Figure

1 shows examples for oi:j . Square shapes such as the area
between A5 and A6 in Figure 1(b) occur when both the values
of oi:i+1 and oi+1:i are high. On the other hand, triangle
shapes such as the area between A4 and A5 in the figure
appear when one of oi:i+1 and oi+1:i is quite low (e.g., zero or
one). In particular, oi:j between srcPort and dstPort contributes
significantly to the clustering (1st and 2nd ranks in Table IV).
The relation between the ports represents the detailed behavior
of inter-process communication, which is an important aspect
of networking.

Even though other features also have discriminative power,
such features are not part of the best set of features. For
example, we observe that n for srcPort has SUi,c = 0.43, and
αi:j of srcPort to dstPort has SUi,c = 0.41 for MAWI data,
indicating that these features are also useful. These features,
however, were removed because of their high correlation with
corresponding oi:j (e.g., a higher oi:j will be provided by a
higher ni). It means that they have similar but weaker effect on
the clustering compared to oi:j . In other words, oi:j is a good
approximation of the shapes of graphlets. Even so, the other
features are also necessary for inferring synoptic graphlets (see
next section), and this is why we keep all the features.

V. SYNOPTIC GRAPHLET

According to the unsupervised procedure described in
Sec. IV, graphlets associated with hosts are clustered with re-
spect to their feature vectors. Now, as an inverse problem aim-
ing at associating each cluster with a representative graphlet,
as sketched in Figure 5, we propose a method to construct
a synoptic graphlet from the feature vector representing a
cluster.

A. Synoptic graphlet: construction

An original mapping from a feature vector into a set of
bipartite graphs that constitute a graphlet is detailed here and
illustrated in Figure 5. This mapping is applied to the feature
vector of the cluster centroid. We will address the motivation
to use synoptic graphlets instead of centroid-nearest graphlets
at the end of this subsection.

Median centroid. Recalling that the feature vector of host
h was defined as xh = (xh,1, . . . , xh,Dim), let us define
ck = (ck,1, . . . , ck,Dim) as the centroid features of Cluster
Ck, where the |Ck|

2 -th largest value of xh,i among h ∈ Ck is
selected as the median feature ck,i

56.
(1) Considering a graphlet as a set of bipartite graphs.

To infer a graphlet from the centroid features of a cluster,
we construct a graphlet as a set of bipartite graphs. A1

and A2 are a disjoint set of a bipartite graph, A2 and A3

are another, and so on. In other words, we break down the

5As an example, for n2, if a cluster contains 100 hosts, the 50th largest
value in n2 is chosen as the median (xi and xj (i 6= j) do not necessarily
derive from the same host).

6We note that statistics other than the median could be chosen as a
representative. We also tried to use average as representative, but average is
not robust to outlier features, and more critically taking the averages lead to
decimal values, which are difficult to deal with for graph rewiring. The Dim-
dimensional median features are converted from a log scale into a linear scale
by inverting the normalization function defined in Sec. IV-A2.

9

Cluster Ci Centroid feature
vector

Re-visualized
synoptic graphlet

Ci

Fig. 5. Synoptic graphlet. Graphlets obtained from hosts are clustered. In
turn, each cluster is associated with a representative a posteriori synoptic
graphlet. The second row of Table III displays the synoptic graphlets re-
visualized from the actual clusters of hosts.

A1 A2 A3 A4A2 A3

(3) Rewire bipartite graphs from
 reproduced degree distributions

(4) Merge bipartite graphs with
and

A1 A2 A3 A4A2 A3

Node ID

Degree

1

0

Filled area :
A1 A2 A3 A4A2 A3

A1 A2 A3 A4A1 A2 A3 A4A2 A3

Resulting synoptic graphlet

(1) Put nodes based on (Inter-
mediate columns are duplicated)

n i (2) Reproduce degree distributions
from , , , andn i o i : i+1

α

o
n

(Merging i:i+1 and i:i-1)

n μ×

μ i : i+1 α i : i+1

α i : i+1 β i : i+1

(Rewiring between i:i+1 and i+1:i)

Fig. 6. Procedure of re-visualizing synoptic graphlets. A synoptic graphlet
of a cluster is reproduced from the graphlet features of the cluster centroid.
Graphlet features are defined in Sec. IV-A1 and Figure 3.

graphlet reproduction problem into (a) reproducing the degree
distributions of each bipartite graph, (b) rewiring each bipartite
graph based on the degree distributions, and (c) merging
neighboring bipartite graphs.

(2) Reproducing degree distributions. From a feature
vector, we build the degree distribution of direction i : j
(j = i + 1 or i− 1), denoted as D̂i:j = (d1, . . . , dn) where n
is the total number of nodes as defined in Sec. IV-A1 (“i : j”
is omitted from dk,ni:j and ni:j for brevity). We first consider
the one-degree nodes as follows: dn = dn−1 = dn−o+1 = 1.
If all the nodes have degree of one (i.e., n = o), this
procedure ends; Otherwise we rebuild the remaining part of
the degree distribution. We define the number of remaining
nodes ζ and the remaining degrees ξ as ζ = n − o and
ξ = µ × n − 1 × o. The degrees are estimated as follows:
d1 = α, d2 = α − ∆, . . . , dζ = α − (ζ − 1) × ∆, where
∆ = 2

ζ−1 (α − ξ
ζ), which satisfies ξ = d1 + . . . + dζ . This

process to distribute the remaining degrees to the remaining
nodes is based on the usual appearances of graphlets (e.g.,
some ‘knot’ nodes, only one, etc.).

(3) Rewiring bipartite graphs. A bipartite graph is gener-
ated from D̂i:i+1 and D̂i+1:i computed above. Nodes of higher
degrees of Ai are connected with those of lower degrees of

Ai+1, which reflects an emprical traffic characteristics (one-
to-many connection rather than two-to-many). An example
of this characteristics is server-client behavior, where (a) a
source port is connected with several destination hosts and
also (b) a destination host is associated with a set of several
destination ports, which are not related to other hosts. By
defining i : i+1 as r (right) and i+1 : i as l (left), we connect
v1,r with vnl,l, . . . , v(nl−d1,r−1),l, and then connect v2,r with
vk,l, . . . , v(k−d2,r−1),l, where k is the largest label of nodes
that have degree remaining after the previous connections. We
iterate this connection procedure until vnr,r is dealt with and
consequently obtain a bipartite graph.

(4) Merging bipartite graphs into a synoptic graphlet.
A synoptic graphlet is then drawn by combining each pair
of neighboring bipartite graphs. We additionally define the
direction: i : i+1 as f (forward) and i : i−1 as b (backward).
The two directions have different degree distributions with the
same number of nodes: D̂f and D̂b, and a pair (dk,f , dl,b) is
merged into a node vm,i, where k, l, and m are determined
as follows. We first compute the degree correlation between
D̂f and D̂b, which we define as γ = (αf − αb)× (βf − βb),
with αi:j and βi:j of the centroid features. If the correlation
is positive (γ ≥ 0), we combine the nodes in the same order
of degree value: v1,i = (d1,f , d1,b), . . . , vn,i = (dn,f , dn,b).
Conversely, for γ < 0, the combination order is reversed:
v1,i = (d1,f , dn,b), . . . , vn,i = (dn,f , d1,b).

Synoptic versus centroid graphlets. Instead of synoptic
graphlets, centroids may have been selected as cluster repre-
sentative. For clusters with very large number of flows, both
choices likely yield close representatives, however, centroids
suffer from a number of disadvantages: (i) Centroid graphlets
may show a very large variability (hence lacking robustness)
for clusters with small number of flows, while synoptic
graphlets are less dependent on the actual number of flow
per host, because it is regenerated from all the representative
features of a cluster; (ii) Centroid graphlets not necessarily
result into the typical representative of the cluster. The centroid
may occasionally correspond to a specific behavior, even
when many of its Dim features are close to the median, to
the contrary of synoptic graphlets that somehow make the
visualization/interpretation step independent from the classifi-
cation phase (in a semi-supervised spirit) 7; Therefore synoptic
graphlets should be more effective tools to represent what
actually happens in the feature space and thus to profile and
interpret host behaviors. More detailed comparisons between
centroid and synoptic graphlets are beyond the scope of the

7We briefly compared the synoptic graphlet and centroid-nearest graphlet
for each cluster. Approximately 80% of clusters produced intuitively similar
shapes of the two kinds of graphlets; This is plausibly due to the well-tuned
threshold θ and enough number of hosts inside a cluster. Such correspondence
between the two kinds implicitly validates the overall procedure of rewiring
graphlets. We also found the differences in shapes of the two kinds. For
example, in Cluster C2, there were differences in the #nodes in the dstIP
column between the corresponding synoptic graphlet and centroid-derived
graphlet; Indeed, the collapse in the shape of the synoptic graphlet (Table III)
indicates that this graphlet does not represent per-host behavior well but rather
represents an aggregated view. We manually inspected the composition of C2

and found that this cluster contained two types of typical host behaviors. This
graphlet suggests that it would be meaningful to further separate C2 into
different clusters.

10

present contribution and will be discussed elsewhere.

B. Synoptic graphlet: interpretation
The second row of the column headings in Table III

shows the synoptic graphlets, re-visualized from the N = 20
clusters presented in Sec. IV-B (larger versions are displayed
in Figure 9).

Effectiveness of synoptic graphlets. One of the advantages
of synoptic graphlets is the ability to construct an intuitive
understanding of clustering results. The “complexity” of the
shapes of synoptic graphlets meaningfully represents the inten-
sity of flows. For example, a graphlet of many lines is derived
from the use of many flows, indicating that the corresponding
host uses an application for many peers and/or many ports
(e.g., DNS and MAIL are the categories of the many-lines
graphlets such as C15). In addition, the number of nodes
for each column Ai is also meaningful. For instance, if A3

(srcPort) has only a few nodes, then the corresponding host
can be speculated to be a server (e.g., C3 is mainly labeled as
WWWS by Port).

BLINC models validity. Most of the synoptic graphlets in
Table III correspond to most of the BLINC graphlets8 (listed
in [15]), and thus our result validates the intuitions behind the
BLINC series. An exception, though, is pointed out by C11;
Most hosts are identified as UNKN by R-BLINC, whereas they
are mainly identified as FLOOD by Port (probably because of
a large amount of SYN packets and few targeted hosts). On
the other hand, some clusters having similar shape of synoptic
graphlets consist of similar breakdown such as C17 and C18.
As implied by the different number of lines in the shapes of
synoptic graphlets for the two clusters (Table III), this result
indicates two typical number of flows of graphlets, which
might not easily be found by applying untuned heuristic rules.

One-flow graphlets. C1 represents synoptic graphlets com-
posed of one flow (4594 in total – about 25% among the
analyzed hosts), and the three classifiers unfortunately identify
many of them as UNKN. This kind of isolated communi-
cation has been observed in prior studies [12, 10, 13] as
well. Although one-flow graphlets are classified into various
application categories as the three classifiers point out, the
one-line shape itself reveals the important information that
P = 1000 packets from a single host constitute only one
flow. In other words, a one-flow graphlet possibly implies large
file transfer, because we do not observe any control flows or
the other flows. This plausible interpretation is supported by
the finding that many of these hosts identified by the three
classifiers are web or P2P users, which are occasionally used
for host-to-host large-file transfer in some cases.

8For example, the synoptic graphlet of C4 can be mapped with WEB
graphlet (shown in Figure 5(d) of the original paper), because the two
graphlets commonly represent one srcPort, and several dstPort, and a few
dstIP nodes. The relevance of this mapping is supported by the fact that R-
BLINC classifies most of the hosts in C4 as related to WEB. For another
example, the synoptic graphlet of C8 can be related to DNS graphlet (shown
in Figure 5(g) of the original), because the two graphlets commonly represent
many srcPort, and one dstPort, and a few dstIP nodes. The original graphlet
represents both client-side and server-side behavior in a single figure, yet the
graphlet of C8 can be mapped with client-side one. The relevance of this
mapping is supported by the fact that R-BLINC classifies most of the hosts
in C8 as related to DNS.

...

...

...

...

...

...

pkt=1
(snap 1)

pkt=2
(snap 2)

pkt=5
(snap 3)

pkt=1
(snap 1)

pkt=2
(snap 2)

pkt=5
(snap 3)

C1,1

C2,2

C1,2

C1,3

C2,3

C3,3

Clustering results with different number
of packets (different snapshots)

Evolutionary tree connecting related
clusters of neighboring snapshots

Fig. 7. Creation of evolutionary tree.

Threshold φ
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0.001 0.01 0.1 1

No. of isolated clusters
No. of impossible evolutions

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0.001 0.01 0.1 1

No. of isolated clusters
No. of impossible evolutions

Threshold φ
Ev

al
ua

tio
n

m
et

ric
s

(a) MAWI (b) Keio

Fig. 8. Characteristics of the threshold for evolutionary tree φ.

In summary, synoptic graphlets are effective for an intuitive
and visual understanding of the clustering output, and the
comparison result indicates the relevance of the overall idea
of BLINC, while alleviating the difficulty of manually setting
appropriate rules and parameters.

VI. EVOLUTIONARY NATURE OF HOST-LEVEL TRAFFIC

Let us further discuss the effectiveness of the new method
by introducing evolutionary tree of synoptic graphlets, which
provides a way to understand the evolution of information
about host behaviors when the number P of analyzed packets
increases. To achieve this, we analyze the same set of H =
20, 000 hosts by changing the value of P . This tree can also
answer the question “how many packets P do we need to find
all typical patterns?” and “how accurately hosts can be profiled
with a given P ?.”

A. Evolutionary tree: creation

Snapshot. The next key question in the assessment of
synoptic graphlets is raised by the choice of the number P
of packets that need to be involved in graphlet construc-
tion to find all typical patterns and thus permit accurate
host profiling. This is addressed via the concept of synoptic
graphlet evolutionary tree that characterizes host behavior
profiling evolution when P increases. For example, a single
packet (thus a single flow) produces a single-line graphlet,
whereas two packets may result either in a single line if
they belong to the same flow or in two lines sharing nodes
and edges if they share common attributes. Any graphlet
may hence evolve from an identical single-line shape towards
a complex pattern as P increases. An evolutionary tree is

11

thus obtained from combining different snapshots s, i.e.,
graphlets obtained from different values of Ps

9. For MAWI
data, P = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 for snapshots
s = 1, . . . , 10; for Keio data, P = 1, 2, 5, 10, 20, 50, 100 for
s = 1, . . . , 7.

Tree creation. Let Cs,Ns
denote the set of Ns clusters

obtained at snapshot s (i.e., from Ps packets). For each s,
Cs,Ns is obtained with a value of the sole threshold θ that
remains constant and does not depend on Ps. Thus, θ serves
as distance basis in the feature space, and hence does not
determine a priori the number of clusters, which permits to
compare clustering outputs obtained with different P . The
evolutionary tree is created from a single criteria, relying on a
threshold φ: if the number of hosts in Cs,i ∩ Cs+1,j is larger
than φ × H (H being the total number of analyzed hosts),
the two clusters Cs,i and Cs+1,j are connected by an edge,
which materializes that the typical behavior Cs,i at snapshot
s tends to evolve into Cs+1,j at s+1. Finally, an evolutionary
tree provides an intuitive overview of the behavioral growth
of hosts (cf. e.g., Figure 9).

Threshold. Setting the threshold φ, which determines
whether neighboring clusters are connected or not, results from
the following trade-off: Too high φ may yield ‘isolated’ clus-
ters, not connected to any other clusters on any neighboring
snapshot; Too low φ may yield many ‘impossible’ evolutions
in graphlet shapes. For example, for some synoptic graphlets,
α might be reduced from s to s + 1 because of the changes
in the set of hosts within a cluster, despite the fact that this
never occurs in the evolution of the graphlet of a single host.
Therefore, the connection between Cluster i at snapshot s and
Cluster j at s+1 is declared impossible, if either of parameters
n, µ, and α is reduced. Figure 8 illustrates the trade-off,
plotting the number of isolated clusters and that of impossible
evolutions as a function of φ. Empirically, the threshold is set
to φ = 0.0077 (i.e., about 150 hosts) for MAWI data, and
to φ = 0.0070 (i.e., about 70 hosts) for Keio data, which
maintain no isolated cluster and a low number of impossible
evolutions.

B. Evolutionary tree: interpretation

1) Intuition from evolutionary tree – visual analysis:
Global view. Figure 9 depicts the resulting evolutionary tree
for MAWI data (H = 20, 000, θ = 500, cf. Sec. IV-B1, φ =
0.77%, cf. Sec. VI-A). Synoptic graphlets at snapshot s are
shown in the s-th column, and related synoptic graphlets (from
successive snapshots) are linked with arrows. The synoptic
graphlets at s = 10 correspond to the evaluations presented in
Secs. IV-B and V.

Figure 9 thus provides an intuitive and comprehensive
overview of the evolution of typical host behaviors, from
P = 1 (origin of graphlets) to large P , permitting inter-
pretation of graphlet changes with P . Interestingly, clusters
do not only separate but also merge as P increases. This

9It should also be interesting to analyze this by increasing the number of
flows per host (instead of increasing the number of packets P). However, we
have to elaborate on the appropriate way to deal with hosts with low number
of flows (e.g., 25% of hosts have only one flow).

Pr
ed

ic
ta

bi
lit

y
of

 fi
na

l s
ha

pe
 (P

re
d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

(a) MAWI (b) Keio

 Average predictability of snapshot
 Predictability of cluster

A

B
C

No. of analyzed packets for each host (P)No. of analyzed packets for each host (P)

Fig. 10. Predictability of evolution as a function of P .

suggests that there exist different evolution footprints, even
when hosts are clustered into a same group at a given snapshot.
Evolutionary trees thus enhance the profiling by providing
richer information.

Early stages. For P = 1, by nature, there is only one-
flow graphlets. For P = 2, although there are theoretically
24 = 16 possible graphlets (combination of four attributes:
proto, srcPort, dstPort, and dstIP), only 7 are actually observed.
Although some graphlets are actually different from the seven
synoptic graphlets and have different transitions, these are not
typical, and hence do not appear in the figure. Such minor
graphlets could be found by finer-grained clustering, with
lower θ.

Late stages. The final forms of graphlets become apparent
in the late stages. For example, one-flow graphlet A is destined
to mostly remain one-flow, after P = 20, as indicated by
the abrupt increase in predictability discussed in Sec. VI-B2.
Other examples are provided by synoptic graphlets B and
C, prominent at P = 20 and 50, respectively. They are
mainly related to scanning activities, which thus indicates that
P = 20 is large enough to permit separation of scanners
from other activities. As a whole, the total number of clusters
at P = 1000 remains quasi-unchanged compared to that at
P = 100. Thus, P = 100 can be considered as the reference
number of packets required for accurately discovering typical
host behaviors. Also, this result implies that P = 100 provides
some longitudinal stationarity of aggregated view of host
behaviors. The bottom row in Table III lists each stage at
which each Cluster CS,i stops its evolution along the tree (i.e.,
becomes predictable).

Keio data case. Similar results were obtained for Keio data,
but for the fact that one-flow graphlets continue to evolve
at P = 50. We interpret that the stagnation of one-flow
graphlets for MAWI could stem from the partial view of the
traffic, measured at the backbone link, whereas Keio traffic is
measured at an edge router.

2) Predictability in evolution – quantitative analysis: To
complement the understanding of synoptic graphlet evolu-
tion, the evolution predictability of a given host in the tree
is quantified. Let us define P (Cs2,j |Cs1,i) = |Cs2,j∩Cs1,i|

|Cs1,i| ,
which measures the probability that hosts in Cluster i at
snapshot s1 (Cs1,i) evolves into Cluster j at s2 (Cs2,j). We
define the predictability of Cluster Cs,i as Pred(Cs,i) =
1 + 1

log10 NS

∑NS

j=1 P (CS,j |Cs,i) × log10 P (CS,j |Cs,i), where
S is the final snapshot and NS the corresponding number
of clusters. Pred(Cs,i) is hence a normalized entropy that

12

A

CB

snapshot

of packets

s=1

P=1
s=2
P=2

s=3
P=5

s=4
P=10

s=5
P=20

s=6
P=50

s=7
P=100

s=8
P=200

s=9
P=500

s=10 (=S)
P=1000

Columns of graphlet:

major evolution between neighboring snapshots,

synoptic graphlet rewired from cluster centroidNode of tree:

Edge of tree:

srcIP proto srcPort dstPort srcPortdstIP

Cluster label at P=1000 (Table 3)

8C

15C

12C

14C

20C

9C

6C

16C

7C

5C

1C

3C

4C

13C

2C

17C

18C

11C

19C

10C

Fig. 9. Evolutionary tree of synoptic graphlets as a function of P (or s).

characterizes the dispersion of transition probabilities. Thus,
if Cs,i grows only to CS,1 then Pred(Cs,i) = 1, whereas if
Cs,i can evolve into any future shapes with equal probability
then Pred(Cs,i) = 0. Note that this predictability is computed
considering all possible evolutions (i.e., φ = 0).

Figure 10 displays the predictabilities of all clusters
Pred(Cs,i) as a function of P (or s) for MAWI and Keio.
Each dot stands for a synoptic graphlet (i.e., a cluster), for
a given snapshot. The dashed line represents the transition
in the average predictability and shows that the predictabil-
ity is approximately linear with log P (Pearson’s correlation
coefficient is 0.95). The predictability at P = 1 is almost 0,
which suggests that the corresponding origin of a graphlet can
evolve into any final graphlet. Conversely, this predictability
becomes higher with higher P . In addition, predictabilities
for some Cs,i abruptly become higher than for others, which
indicates the end of the evolution for that synoptic graphlet, as
shown by Points A and B at P = 20 and C at P = 50, (that
correspond to synoptic graphlets A, B, and C in Figure 9).
The high predictability value for these synoptic graphlets

at low snapshots confirms the observation made from the
evolutionary tree that the future of these graphlets is early set
and hence that can be easily distinguished with fewer packets
than other types of graphlets.

VII. DISCUSSION

Revisiting BLINC. The results presented in Secs. IV-B and
V validate the concepts at work in BLINC, as most of the
auto-generated synoptic graphlets can be related to empirically
defined BLINC graphlet models [15]. However, such heuris-
tic model-based approaches face the potential difficulties in
(a) designing appropriate rules as indicated by the observed
unknown clusters and in (b) determining the relevant values
of thresholds for accurate classification as partially implied
by a prior work [16], which conducted a number of trials
to determine appropriate parameters. Instead, unsupervised
approaches can potentially uncover new types of applications
with the tuning of only a very limited number of threshold
levels. In addition, an advantage of our approach should be

13

to avoid the assumption that the traffic of one host should be
mostly explained by a single application10.

Traffic characteristic evolution when increasing the
number of analyzed packets. Sec. VI showed that the method
requires around 100 packets to classify hosts. This is larger
than the findings of a few previous works. For instance, the
work reported in [1] showed that major TCP flows can be
identified on bi-directional links from their size and direction,
by examining only the first four or five packets (after the
handshake) in a connection. Other works [25, 8, 20] also
claimed such an ability. The present work, however, deals
with more general assumptions about traffic: uni-directional
links, legitimate as well as anomalous and unknown traffic, a
few protocols besides TCP, not certainty of observing the first
packets of flows. In this context, the need to collect a larger
amount of information to predict traffic characteristics does
not come as a surprise. Moreover, our work is to profile hosts,
not only identifying the application in a TCP connection.

Limitations. (a) The degree-based features used here do
not include relations among non-neighboring columns such as
A1 and A3. (b) In addition, real graphlets are not as clean as
rewired ones, because they include packets unrelated to the
main behaviors of the hosts. Features could be weighted to
remove such noise, e.g., the width of edges and the radius of
nodes could be set based on the number of packets. (c) In some
cases, host behaviors may result from two dominant kinds of
applications, e.g., a host serving both mail and DNS, or a
NAT gateway with a web client and a P2P user. Such a host
cannot easily be profiled. (d) In general, synoptic graphlets
only provide shape information; Although such information
provides meaningful insight into host behaviors as shown
throughout this work, it is still difficult to identify the exact
application names used by hosts. If we want to identify them,
it would be helpful to put port numbers in the graphlet figure
or to cross-compare with classifiers based on port numbers,
payloads, IP addresses [28], packet sizes [1, 8], and so on.

Application to supervised approaches. A potential appli-
cation is to create a reliable dataset of known flows, that then
an approach like that of Iliofotou et al. [11] could use. This
is because our experiment found graphlets corresponding to
a single application (say C13 in table III); Such graphlets
could be known signatures for any supervised methods. This
approach is better than just using a signature generator (say
a payload-based classifier), as any classifier will have some
misclassification; The clustering scheme presented here can
group highly inter-related flows that can be characterized as
learning data of enhanced reliability.

Application to unsupervised approaches. Another use

10To show the non-negligible amount of application mixture of a host, we
quantify the degree of this for a host h as pmax(h) = maxa

#flow(h,a)
#flow(h)

,
where a is an application (except for UNKN), #flow(h) is the total number
of h’s flows identified as a certain application (except for UNKN) by the
payload classifier, #flow(h, a) is the number of h’s flows identified as
application a by the classifier. In other words, pmax(h) is the fraction of
most dominant application in terms of #flows. For the result for H = 20, 000
hosts in the 12 MAWI traces, we found that bottom 10% of hosts have
pmax(h) < 75%, bottom 20% have pmax(h) < 95%, and bottom 25%
have pmax(h) < 99% (i.e., remaining 75% of hosts are mostly characterized
by a single application).

case of our method is to help researchers (or network ad-
ministrators) to interpret the results of unsupervised clustering
over graphlets. In general, interpretation of resulting clusters
should require to examine a lot of numerical features (xh), as
a prior work [6] does, which becomes significantly difficult
as the dimension increases. On the other hand, the use of
synoptic graphlet supports such interpretation by converting
those features in a single intuitive figure. For example, if a
synoptic graphlet for Cluster C contains only a single node
in the column for srcPort and the node has several edges,
one can easily interpret that C is mostly composed of server
hosts (similarly, that for dstPort implies that C is related to
client hosts). With such assistance in interpretation, operators
will efficiently notice and understand the emergence of new
types of application usages (e.g., malicious hosts, P2P software
users, or rapid increase in web clients) appearing as new
clusters in the monitored link.

VIII. CONCLUDING REMARKS

The main issue of the present work was the trade-off in
choosing between supervised and unsupervised approaches to
end-host profiling. The former is comprehensive but is blind
to undefined classes, while the latter can uncover unknown
pattens of behavior at the sacrifice of interpretability. We
aimed to bridge the gap between the two in the present
work. The proposed method was designed to perform un-
supervised clustering for finding undefined classes and to
re-visualize the resulting clusters as synoptic graphlets for
providing interpretability. We compared the method against
a graphlet-based state-of-the-art classifier (BLINC) as well as
against a classical port-based inspector and a payload-based
one, by applying these methods to two sets of actual traffic
traces measured at different locations. The proposed method
spontaneously generated synoptic graphlets that are typical in
their shape, which validates the graphlet models heuristically
pre-defined in earlier works. Also, for methodological study
of the improvements brought to host profiling, this work
demonstrated how to extend beyond a simple classification
to the production of an evolutionary tree by increasing the
number of observed packets per host. The entire procedure
requires only a few threshold to be tuned while the state-of-
the-art method needs many. The new achievements in this
contribution are as follows: (a) an unsupervised clustering
applied to graphlet shape-based characteristics, which is fur-
ther significantly extended to (b) a visualization-oriented auto-
enumeration of typical host behaviors generated from actual
data, successfully resulting in validating the relevance of past
works, and (c) an analysis on evolutionary characteristics of
the growth of host behaviors both in visual and quantitative
manners, which is useful in understanding the evolutionary
nature of host behaviors.

Acknowledgement. We thank Young J. Won (IIJ), Guil-
laume Dewaele (ENS de Lyon), and Romain Fontugne (Sok-
endai/NII) for their invaluable advice. We also thank Hyunchul
Kim (Seoul National University), Thomas Karagiannis (Mi-
crosoft Research), and Dhiman Barman (Juniper Networks) for
providing access to the payload-based classifier and BLINC.

14

REFERENCES
[1] L. Bernaille, R. Teixeira, and K. Salamatian. Early Application Identification. ACM

CoNEXT 2006, p. 12, 2006.
[2] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho. Seven Years and One

Day: Sketching the Evolution of Internet Traffic. IEEE INFOCOM 2009, pp. 711–
719, 2009.

[3] K. Cho, K. Mitsuya, and A. Kato. Traffic Data Reposity at the WIDE Project.
USENIX 2000 FREENIX Track, p. 8, 2000.

[4] CAIDA The CoralReef Project. http://www.caida.org/tools/measurement/coralreef/.
[5] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho. Extracting Hidden

Anomalies using Sketch and Non Gaussian Multiresolution Statistical Detection
Procedure. ACM SIGCOMM LSAD’07, pp. 145–152, 2007.

[6] G. Dewaele, Y. Himura, P. Borgnat, K. Fukuda, P. Abry, O. Michel, R. Fontugne,
K. Cho, and H. Esaki. Unsupervised host behavior classification from connection
patterns. International Journal of Network Management, Vol.10 Issue 5, pp. 317–
337, 2010.

[7] J. Erman, M. Arlitt, and A. Mahanti. Traffic Classification Using Clustering
Algorithms. ACM SIGCOMM’06 MINENET, pp. 281–286, 2006.

[8] V. C. Espanol, P. B. Ros, M. S. Simó, A. Dainotti, W. D. Donato, and A. Pescapé.
K-dimensional trees for continuous traffic classification. TMA 2010, p. 14, 2010.

[9] Y. Himura, K. Fukuda, P. Abry, K. Cho, and H. Esaki. Characterization of Host-
Level Application Traffic with Multi-Scale Gamma Model. IEICE Transactions on
Communications, E93-B(11):3048–3057, 2010.

[10] M. Iliofotou, M. Faloutsos, and M. Mitzenmacher. Exploiting Dynamicity in Graph-
based Traffic Analysis: Techniques and Applications. ACM CoNEXT 2009, pp.
241–252, 2009.

[11] M. Iliofotou, B. Gallagher, T. E.-Rad, G. Xie, and M. V. Faloutsos. Profiling-by-
Association: A Resilient Traffic Profiling Solution for the Internet Backbone. ACM
CoNEXT 2010, p. 12, 2010.

[12] M. Iliofotou, H. C. Kim, M. Faloutsos, M. Mitzenmacher, P. Pappu, and G. Vargh-
ese. Graph-based P2P Traffic Classification at the Internet Backbone. IEEE Global
Internet Symposium 2009, p. 6, 2009.

[13] Y. Jin, E. Sharafuddin, and Z. L. Zhang. Unveiling Core Network-Wide Commu-
nication Patterns through Application Traffic Activity Graph Decomposition. ACM
SIGMETRICS’09, pp. 49–60, 2009.

[14] T. Karagiannis, K. Papagianakki, N. Taft, and M. Faloutsos. Profiling the End
Host. PAM 2007, pp. 186–196, 2007.

[15] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel Traffic
Classification in the Dark. ACM SIGCOMM’05, pp. 229–240, 2005.

[16] H. Kim, kc claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Y. Lee. Internet
Traffic Classification Demystified: Myths, Caveats, and the Best Practices. ACM
CoNEXT 2008, p. 12, 2008.

[17] l7-filter. http://l7-filter.sourceforge.net.
[18] A. Lakhina, M. Crovella, and C. Diot. Mining Anomalies Using Traffic Feature

Distributions. ACM SIGCOMM’05, pp. 217–228, 2005.
[19] S. Lee, H. Kim, D. Barman, S. Lee, C. Kim, and T. T. Kwon. NeTraMark: A

Network Traffic Classification Benchmark. ACM SIGCOMM CCR Vol.41 No.1,
pp. 23–30, 2010.

[20] Y. Lim, H. Kim, J. Jeong, C. Kim, T. T. Kwon, and Y. Choi. Internet Traffic
Classification Demystified: On the Sources of the Discriminative Power. ACM
CoNEXT 2010, p. 12, 2010.

[21] MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/.
[22] J. McHugh, R. McLeod, and V. Nagaonkar. Passive network forensics: behavioural

classification of network hosts based on connection patterns. ACM SIGOPS
Operating Systems Review, Vol.42, No.3, pp. 99–111, 2008.

[23] A. W. Moore and D. Zuev. Internet traffic classification using bayesian analysis
techniques. ACM SIGMETRICS’05, pp. 50–60, 2005.

[24] OpenDPI. http://opendpi.org/.
[25] M. Pietrzyk, J. L. Costeux, G. Urvoy-Keller, and T. En-Najjary. Challenging

statistical classification for operational usage: the ADSL case. ACM IMC’09, pp.
122–135, 2009.

[26] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. USENIX
LISA’99, pp. 229–238, 1999.

[27] G. Tan, M. Poletto, J. Guttag, and F. Kaashoek. Role Classification of Hosts
within Enterprise Networks Based on Connection Patterns. 2003 USENIX Annual
Technical Conference, pp. 15–28, 2003.

[28] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci. Unconstrained Endpoint
Profiling (Googling the Internet). ACM SIGCOMM’08, pp. 279–290, 2008.

[29] K. Xu, F. Wang, and L. Gu. Network-Aware Behavior Clustering of Internet End
Hosts. IEEE INFOCOM 2011, pp. 2078–2086, 2011.

[30] K. Xu, Z. L. Zhang, and S. Bhattacharyya. Profiling Internet Backbone Traffic:
Behavior Models and Applications. ACM SIGCOMM’05, pp. 169–180, 2005.

[31] L. Yu and H. Liu. Feature Selection for High-Dimensional Data: A Fast Correlation-
Based Filter Solution. International Conference on Machine Leaning (ICML-03),
pp. 856–863, 2003.

Yosuke Himura is a Master course student in
Department of Information and Communication En-
gineering, Graduate School of Information Science
and Technology, the University of Tokyo. His re-
search interests include statistical analysis of Internet
traffic.

Kensuke Fukuda is an associate professor at the
National Institute of Informatics (NII) and is a
researcher, PRESTO, JST. He received his Ph.D
degree in computer science from Keio University in
1999. He worked in NTT laboratories from 1999 to
2005, and joined NII in 2006. His current research
interests are Internet traffic measurement and anal-
ysis, intelligent network control architectures, and
the scientific aspects of networks. In 2002, he was
a visiting scholar at Boston University.

Kenjiro Cho is Deputy Research Director at Internet
Initiative Japan, Inc. He is also an adjunct professor
at Keio University and Japan Advanced Institute of
Science and Technology, and a board member of the
WIDE project. He received the B.S. degree in elec-
tronic engineering from Kobe University, the M.Eng.
degree in computer science from Cornell University,
and the Ph.D. degree in media and governance
from Keio University. His current research interests
include traffic measurement and management, and
operating system support for networking.

Pierre Borgnat received the Professeur-Agrégé de
Sciences Physiques degree in 97, a Ms. Sc. in
Physics in 99 and defended a Ph.D. degree in
Physics and Signal Processing in 2002. In 2003-
2004, he spent one year in the Signal and Image
Processing group of the IRS, IST (Lisbon, Portugal).
Since October 2004, he has been a full-time CNRS
researcher with the Laboratoire de Physique, ENS de
Lyon. His research interests are in statistical signal
processing of non-stationary processes and scaling
phenomena for complex systems. He is also working

on Internet traffic measurements and modeling, and in analysis and modeling
of dynamical complex networks.

Patrice Abry received the degree of Professeur-
Agrégé in Physics, in 1989 and completed a Ph.D
in Physics and Signal Processing, at Ecole Normale
Supérieure de Lyon and Université Lyon I, in 1994.
He received the AFCET-MESR-CNRS prize for best
Ph.D in Signal Processing for the years 93-94. He is
a CNRS researcher since 1995 and became CNRS
Research Director in 2005 and IEEE Fellow in
2012. His research interests and include wavelet-
based analysis and modeling of scale invariance
phenomena and related topics (self-similarity and

multifractal) and range from theory to applications.

Hiroshi Esaki received Ph.D from the University
of Tokyo, Japan, in 1998. In 1987, he joined Re-
search and Development Center, Toshiba Corpora-
tion. From 1990 to 1991, he has been at Applied
Research Laboratory of Bellcore Inc., New Jersey,
as a residential researcher. From 1994 to 1996, he
has been at Center for Telecommunication Research
of Columbia University in New York. From 1998, he
has served as a professor at the University of Tokyo,
and as a board member of WIDE Project. Currently,
he is executive director of IPv6 promotion council,

vice president of JPNIC, IPv6 Forum Fellow, board member of WIDE Project
and Board of Trustee of Internet Society.

