Learning Distances for Attributed Grap with Optimal Transport

Pierre Borgnat Chair of Equipe Sisyphe, Laboratoire de Physique, CNRS, ENS de Lyon

ENS

03/2023 perso.ens-lyon.fr/pierre.borgnat Work supported by: CNRS, ENS de Lyon, ANR, IDEXLyon, and the CHIST-Era project: GraphNEX

Graphs: useful stru

• Physics

Source: Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun, and Wei Wang. **Unsupervised inductive whole-graph embedding by preserving graph proximity.** arXiv preprint arXiv:1904.01098, 2019.

for data processing

....................

Michael Edwards and Xianghua Xie. **Graph based convolutional neural network.** CoRR, abs/1609.08965, 2016.

2D images
 3D Points clouds
 Other geometric

and/or irregular shapes

$$setting: Attributes, or Features 0/3 Signals$$

$$\mathcal{G} = (V, E, X) = (A, X)$$

$$x(u_1) = \begin{pmatrix} 0.1 \\ 1 \\ -0.4 \end{pmatrix}$$

$$x(u_1) = \begin{pmatrix} 0.1 \\ 1 \\ -0.4 \end{pmatrix}$$

$$u_1$$

$$u_1$$

$$x(u_2) = \begin{pmatrix} 0.1 \\ 1 \\ -0.4 \end{pmatrix}$$

$$u_1$$

$$u_1$$

$$u_1$$

$$u_2$$

$$u_2$$

$$u_2$$

$$u_4$$

 $\mathcal{G} = (V, E, X)$

an carry information:

Many Machine Learning tasks for Data on Graphs **Supervised Tasks**

• Learn to classify Nodes

• Learn to classify Graphs

Many Machine Learning tasks for Data on Graphs **Unsupervised Tasks**

• Learn to find clusters (or modules, communities,...)

• Learn to cluster collection of graphs

• Note: more general features -> small-world, scale-free, hubs, higher-order interactions...

Many Machine Learning tasks for Data on Graphs **Representation of graphs : Embeddings**

• For Visualisations or low-dim. embeddings (Laplacian Maps, LLE, ForceAtlas, t-SNE, UMAP,...)

From [Tremblay & Borgnat, 2014]

• For high-dimensional embeddings

From [Hamilton., "Graph Representation Learning", 2020]

Low Level task: (Graphs) Representation Learning

- **Representation Learning** = discover, or learn, adequate representations for studied data so as to extract information
- Machine Learning in one sentence: build a map from data x to decision y

$$y = \mathscr{F}(x)$$

• Machine Learning in the good all times

$$\mathcal{F} = \mathcal{F}_{decision} \circ \mathcal{F}_{features}(\mathcal{F})$$

learnt from data

• Machine Learning with Representation Learning / Deep Learning

$$\mathcal{F} = \mathcal{F}_{decision} \circ \mathcal{F}_{features}$$

All learnt from data

[From Pierre Vandergheynst' talk, 2021]

From [Goodfellow et al., "Deep Learning", 2016]

Low Level task: Graphs Representation Learning

• For Graphs, Representation learning can be summarised as: For Collection of Graphs

- For graphs: often one will agglomerate Nodes representations
- Combine a model of Classification & one of Representation
 - Define a task, a dataset, learn & see
- e.g.: the powerful Graph Neural Networks can do that...

Low Level task: Similarities or distances for Graphs **Some Associated Difficulties**

• Node-level: local inhomogeneities in structure => hard to compare two nodes

• Attributed Graphs => how to efficiently **combine structure and attributes**?

• Graph-level: possible isomorphism => hard to compare (even to find equality of) two graphs

What to do?

A different Low Level approach: (Dis)-Similarity or Distance-based methods for graphs

- Instead of finding a full representation space, focus on comparing graphs
- Advantages: think of the kernel trick d(x,x') can be put in many algorithms
 - SVM still have good (better) performance (than representation methods)
 - k-NN are still efficient / scalable approaches (no re-training)
- Disadvantages: •

•

- Direct comparisons of Graphs is hard / computationally challenging • e.g.: GED (Graph Edit Distance) is NP-hard (or use approximations)

Optimal Transport: a generic tool to probe the geometry of probability measures

- Optimal Transport: an approach to compute a distance between 2 distributions, while finding the optimal coupling (or transport plan) between them
- Put forward in Data Science/Processing & ML since...
 - since ~2010 (at least); since ~2000 in image processing (Earth Mover Distance); well before in mathematics (cf. Villani, 2003); in the 70's for the Mallows distance in statistics,...
 - (see my completely ignored ICASSP paper of 2012: "Using Surrogates and Optimal Transport for Synthesis of Stationary *Multivariate Series* [...]") (Title way too long!)
- cf. "Computational Optimal Transport" (G. Peyré & M. Cuturi), 2019 https://arxiv.org/abs/1803.00567v4
- cf. Cuturi & Salomon "A primer on Optimal Transport", NIPS 2017 Tutorial <u>https://optimaltransport.github.io/slides/</u> (and other resources)

Optimal Transport: a generic tool to probe the geometry of probability measures

• from Cuturi & Salomon "A primer on Optimal Transport", NIPS 2017 Tutorial

Optimal Transport for distributions

• from "Computational Optimal Transport" (G. Peyré & M. Cuturi), 2019 https://arxiv.org/abs/1803.00567v4

Problem of Monge : « Mémoire sur la théorie des déblais et des remblais », 1776

Optimal Transport for distributions

- Optimal Transport: Consider two finite s distributions on these $\mu = \sum a_i \delta_{\mathbf{x}_i}$ and $a_i \ge 0, b_i \ge 0 \text{ and } \sum_{i=1}^{n} a_i = 1, \sum_{i=1}^{n'} b_i = 1$ i=1 i=1

$$\mathscr{W}_{2}(\boldsymbol{\mu},\boldsymbol{\nu}) = \inf_{\pi_{i,j}\in\Pi_{a,b}} \left(\sum_{i,j=1}^{n,n'} \pi_{i,j} c(\mathbf{x}_{i},\mathbf{x}_{j}')^{2}\right)^{\frac{1}{2}}$$

where $\Pi_{a,b}$ is the set of joint distributions on $\mathbb{X} \times \mathbb{X}'$ whose marginals are the distributions

sets
$$\mathbb{X} = \{\mathbf{x}_i\}_{i=1}^{|\mathbb{X}|} \in \mathbb{R}^{q \times |\mathbb{X}|}$$
 and \mathbb{X}' and two
 $\nu = \sum_{\mathbf{x}'_i \in \mathbb{X}'} b_i \delta_{\mathbf{x}'_i}$ with

• Given a cost function $c : \mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}_+$, one builds the 2-Wasserstein distance \mathcal{W}_2 as:

$$\mu = \sum_{\mathbf{x}'_i \in \mathbb{X}'} \pi(\cdot, \mathbf{x}'_i) \text{ and } \nu = \sum_{\mathbf{x}_i \in \mathbb{X}} \pi(\mathbf{x}_i, \cdot)$$

Optimal Transport for Graphs

- For Graphs: one has to Associate a distribution to a graph
 - A first solution: rely on the the Weisfeiler-Lehman test
 - cf. [Togninalli et al., "Wasserstein Weisfeiler-Lehman graph kernels" NeurIPS 2019]

- A 2nd solution: Comparison through probabilistic models of graph signals - ["Graph Optimal Transport", H. Maretic et al. NeuRIPS 2019]

 - for a graph \mathscr{G} with Laplacian L, one considers: $x \sim \nu^{\mathscr{G}} = \mathscr{N}(0, L^{\dagger})$
 - then: compute the 2-Wasserstein distance between Gaussian signals
 - allows graph alignment, gives a structurally-meaningful graph distance,...

Optimal Transport for Graphs or Attributed Graphs

- A third solution: **The Gromov-Wasserstein distance**
 - [Mémoli, Found. Comp. Math. 2011; Peyré, Cuturi, Solomon, ICML 2016]
 - structures are compared through their pairwise distances
 - cf. also N. Courty, R. Flamary, T. Vayer [PhD 2020]
- One can then combine Attributes and Gromov-Wasserstein characterisation of graphs "Fused Gromov-Wasserstein distance" [Vayer et al., ICML 2019]

OT-based methods for Attributed Graphs

Some Recent examples from our works

How to **combine Structures and Attributes to define a distance**, then solve some Domain Adaptation problem ? Our proposition : Graph Diffusion Wasserstein Distance [A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat, R. Gribonval, T. Vayer, ECML-PKDD 2020; ICTAI 2021; GRETSI 2019]

How to learn distances between Attributed Graphs? Our contribution: Scalable Metric Learning for Graphs

[Y. Kaloga, P. Borgnat, A. Habrard, LoG 2022]

Graph Diffusion Wasserstein Distances & Application to Domain Adaptation for Graphs

From Amélie Barbe PhD thesis (12/2021) ; ECML-PKDD 2020 ; ICTAI (2021) ; GRETSI (2019)

Joint work with Marc Sebban (LabHC; Saint-Etienne) ; Rémi Gribonval, Paulo Gonçalves, and Titouan Vayer (LIP, Inria, ENS de Lyon)

Optimal Transport for Attributed Graphs

• A different way to combine Attributes and Structure of Graphs is to begin first by processing the Attributes according to the Structure of the graph

=> This is exactly what Graph Signal Processing is studying since ~2010 see from [Shuman et al., SP Mag 2013] to [Ortega, CUP, 2022]

- More precisely, given a signal x and a graph \mathcal{G} :
 - Adjacency matrix A, degree matrix $D = diag(A \cdot 1)$, Laplacian L = D A
 - The "processing" (filtering) of x through \mathcal{G} has the form: $\tilde{x} = f(L) \cdot x$
- Example of useful filter: the **heat diffusion**
 - A good model of graph signals [Thanou, Dong, Kressner, Frossard, 2017]
 - Characterizes some structure of the graphs, e.g. [Ricaud, Borgnat, et al. CR Phys., 2019]

Graph Signal Processing: Heat Diffusion

Heat diffusion, $\tau = 10$

Heat diffusion, $\tau = 5$

Heat diffusion, $\tau = 10$

Heat diffusion, $\tau = 20$

• from [Ricaud, Borgnat, Tremblay, Gonçalves, Vandergheynst. CR Phys., 2019]

"Fourier could be a data scientists: from Graph Fourier transform to signal processing on graphs"

Graph Signal Processing: distance from Heat Diffusion

2

- FOR WEIGHTED GRAPHS BASED ON THE GRAPH LAPLACIAN EXPONENTIAL KERNEL"
- They define a **Diffusion distance between graphs** having the same number of nodes

$$\xi(A_1, A_2; t) = \sum_{i,j} ((\exp(-tL_1))_{i,j} - (\exp(-tL_2))_{i,j})$$
$$= ||\exp(-tL_1) - \exp(-tL_2)||_F^2$$

$$d_{gdd}(A_1, A_2) = \max_t \sqrt{\xi(A_1, A_2; t)}.$$

• from [Hammond, Gur, Johnson, GlobalSIP 2013] "GRAPH DIFFUSION DISTANCE: A DIFFERENCE MEASURE (Title way too long!)

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5, K = 2. (b) Plot of ratio $d_{gdd}(G^{N,2}, G^{N,2}_{br})/d_{gdd}(G^{N,2}, G^{N,2}_{cc})$ vs N. (c) Plot of $\xi(t)$ for $A_1 = G^{5,2}$, $A_2 = G^{5,2}_{cc}$, red dot indicates maximum, corresponding to $d_{gdd}(A_1, A_2)^2$. (d) Values of normalized edge deletion perturbation, on edges of $G^{5,2}$.

Optimal Transport and Graph Signal Processing for Attributed Graphs

- We can leverage (combine) all that: OptTr; Diff distance; GSP (process signals by L) • We generalize the previous ideas, and we consider:
 - two graphs of sizes n and m and their associated Laplacians: \mathbf{L}^{s} and \mathbf{L}^{t}
 - the features of these source and target graphs: $\mathbf{X} \in \mathbb{R}^{m \times r}$; $\mathbf{Y} \in \mathbb{R}^{n \times r}$
 - a cost function between features: $M(\mathbf{X}, \mathbf{Y}) = [d(x_i, y_i)]$ for any $\mathbf{X} \in \mathbb{R}^{m \times r}$; $\mathbf{Y} \in \mathbb{R}^{n \times r}$
 - the diffused features: $\tilde{\mathbf{X}} = \exp(-\tau^{s}\mathbf{L}^{s}) \cdot \mathbf{X}$ and $\tilde{\mathbf{Y}} = \exp(-\tau^{t}\mathbf{L}^{t}) \cdot \mathbf{Y}$

The Diffusion Wasserstein Distances for Attributed Graphs

• Then, we define it as:

$$\mathtt{DW}_p^p(\mu,\nu\mid\tau^s,\tau^t) =$$

- Theoretically, it has good properties:
 - it is a distance
 - we have bounds for small and large au
 - it's efficient to be computed, more than Fused GW

The Diffusion Wasserstein Distances for Attributed Graphs

$$\mathsf{DW}_p^p(\mu,\nu\mid\tau^s,\tau^t)=\min_{\gamma\in\Pi(a,b)}\langle\gamma,\tilde{M}^p\rangle.$$

- Experimentally, it works well: the task for comparison is Domain Adaptation
 - by itself a cheap way for **DA** on Attr. Graphs

• can be combined with Fused GW, for an even better DifFused GW distance, which has best perf.!

(b) Distributions after alignment. (a) Distributions before alignment.

The Diffusion Wasserstein Distances for Attributed Graphs

$$\mathsf{DW}_p^p(\mu,\nu\mid\tau^s,\tau^t)=\min_{\gamma\in\Pi(a,b)}\langle\gamma,\tilde{M}^p\rangle.$$

Experimentally, it works well: the task for comparison is **Domain Adaptation** \bullet

The Diffusion Wasserstein Distances for Attributed Graphs, in action

- How to set diffusion parameters τ ? For unsupervised DA!
- Use an ER random graph and features as Wasserstein barycenter as an impostor:

$$X^0 = \operatorname*{argmin}_{X \in \mathbb{R}^{i \times r}} \left\{ \frac{1}{2} \left(\mathbb{W}(X^s, X) + \mathbb{W}(X^t, X) \right) \right\}.$$

• And a triplet loss to be optimized for τ :

 $\mathcal{L}(\tau) = \mathrm{DW}_p(\mathcal{G}^s, \mathcal{G}^t \mid \tau) - \left(\mathrm{DW}_p(\mathcal{G}^s, \mathcal{G}^0 \mid \tau) + \mathrm{DW}_p(\mathcal{G}^t, \mathcal{G}^0 \mid \tau) \right).$

from [Barbe et al., ICTAI 2021]

The Diffusion Wasserstein Distances for Attributed Graphs, in action $\tau^* = \operatorname{argmin} \{\mathcal{L}(\tau)\}, \text{ with }$ $\mathcal{L}(\tau) = \mathrm{DW}_p(\mathcal{G}^s, \mathcal{G}^t \mid \tau) - \big(\mathrm{DW}_p(\mathcal{G}^s, \mathcal{G}^0 \mid \tau) + \mathrm{DW}_p(\mathcal{G}^t, \mathcal{G}^0 \mid \tau) \big)$ • Impostor + Triplet loss = set the diffusion parameter τ ! • No Circular Validation => more stability, better perf. $DWL_{\varepsilon=1}$ 0 0 0 0 0 DWLo ocol | | poc OT_LAPLACE • **Take-Home message :** GSP + OT works very well L1L2_GL • or even : GSP + ML rocks for graphs learning! FGW ത 0 00 DW_CV 0 00-ഠഠയ 1000 GW $\exp(-\tau^{s}L^{s})$ <u>୦ ୦୦୦ | (anco</u>o W $\mathrm{DW}_p^p(U^s, U^t)$ 0.8 0.3 0.7 0.9 0.2 0.4 0.5 0.6

$$\mathsf{DW}_p^p(\mu,\nu\mid\tau^s,\tau^t)=\min_{\gamma\in\Pi(a,b)}\langle\gamma,\tilde{M}^p\rangle.$$

from [Barbe et al., Fig. 6: Median, quartile and decile accuracy of various OT ICTAI 2021] methods on the task of transferring the labels of \mathcal{G}^s to \mathcal{G}^t .

Accuracy

Another take at the low-level task: compute distances

- Distances are at the input of many (many!) methods • Why? "Real" distances between graphs are often hard to compute (G. Edit Distance), or can ignore some aspects (e.g. spectral distances), and usually forget about attributes
- What for ? Parametric distances allow for Metric Learning
- cf. Tutorial on Metric Learning (A. Bellet), 2013 & https://arxiv.org/abs/1306.6700

Metric Learning for Attributed Graphs = Leveraging the structure

- The main objective is to jointly code for topologies & attributes
- Some Existing Solutions :
 - In ML: low scalability when methods rely of GED (Graph Edit Distance)
 - In ML with kernels: usually nonparametric (exception multiple kernel learning)
 - In ML: the fruitful change of point-of-view: use Optimal Transport between distributions **representing graphs** so as to compare graphs+ attributes => Fused Gromov-Wasserstein
 - In GSP, as quoted, works using OT where signals on G allows comparisons / alignements of graphs
 - In GSP, notions of distances between graphs
 - In ML+GSP : ways to propose distances between Attributed Graphs, and parametric them

A Review of some existing works to compare attributed graphs

A Simple Way to Learn Metrics **Between Attributed Graphs**

 $G = (A, X_1, X_2, \dots, X_M)$ From Yacouba Kaloga PhD thesis (12/2021) ; LoG 2022 ; arXiv:2209.12727 (2022)

Joint work with Amaury Habrard (LabHC; Saint-Etienne)

Optimal Transport for Graphs or Attributed Graphs

• If you have followed up to now: The Diffusion Wasserstein distance

[Barbe et al., ECML 2020; ICTAI 2021]

 \mathcal{G}_1

• One can **combine Attributes and Gromov-Wasserstein** characterisation of graphs

"Fused Gromov-Wasserstein distance" [Vayer et al., ICML 2019]

Optimal Transport for Attributed Graphs, with Metric Learning

• Our proposition: 1) parametrize the (graphs+attributes) representation through a GCN 2) compute distance between them by optimal transport

3) (semi-)supervised training of the distance using positive (close) and negative (far) sets of examples

Optimal Transport for Attributed Graphs, with Metric Learning => The Simple (& Scalable) Graph Metric Learning model

- Our constraints :
- Be able to deal with graphs of **different sizes**, attributes of **various natures** • Keep a reasonable number of parameters (to avoid overfitting)
- Keep the computational load acceptable, as the training will call the distance function many times
- Focus on the scalability of the method
- Focus on a method which has not be trained anew if one is given new instances of data
- Motivation : frugal Machine Learning!

1) Trainable Learning and Graphs: Graph Neural Networks

then Stack them use Convolution

 y_{x+b}

n function

• For Graphs: One needs to combine information from irregular neighbourhoods.

• Thanks to Graph Signal Processing, one knows about convolutions in graphs.

$W = U D_{\Theta} U^T$

1) Trainable Learning and Graphs: Graph Neural Networks

- - $W = P_{\Theta}(L)$ Special form, polynomial of shift operator

$$\mathcal{F}_{i^{\text{th}} \text{ node}}(x) = \sigma(w_i^T x + b_i) \quad w_i = [P_{\Theta}($$

same parameters for all nodes

- What we will not do: propose a new GNN architecture
- Many exist, with various limits associated to GNNs /GCNs, and well studied
 - S. Luan et al., "Break the ceiling: Stronger multi-scale deep graph convolutional networks." NeurIPS 2019
 - K. Xu et al. "How powerful are Graph Neural Networks », ICLR 2019
 - A. Loukas et al. "What graph neural networks cannot learn: deepth vs. width" ICLR 2020
 - Z. We et al. "A comprehensive survey on graph neural networks." IEEE Trans. NNL 2020

and still counting...

Θ

• Convolutions are defined in the Speetral domain (L = Laplacian)

 $[L)]_i$

[Defferrard et al., 2016]

GCN [Kipf & Welling, 2017]

Learning and Graphs: Graph Neural Networks

- GNN = Gives a trend to powerful methods:
 - Whatever the flavor (filters ; attention-based ; message passing)

• Strong applications :

- Drug Discovery ChemProp [Cell 2020];
- repurposing]

- Some smart (and nice) people working on the subject
- Insights from Graph Signal Processing are useful for GCN/GNN/...

·Alphafold2 and Transformers use graphs • Drug repurposing [see S. Chepuri, 2020: Dr-COVID: graph neural networks for SARS-CoV-2 drug

• OpenCatalyst: discover new molecules that are catalysts for Chemistry (e.g., for fuel conversion)

1) Trainable Learning and Graphs: Graph Neural Networks

- What we will do: think of GNNs/GCNs as a way to obtain a Graph Representation
- Extract Features for Attributed Graphs: we use Simple GCN [2019]

Initial attributes $\mathbf{X} \in \mathbb{R}^{n \times q}$; Modified Adjacency matrix: $\mathbf{A} = \mathbf{A} + \mathbf{I}_n$ Features $\mathbf{Y} \in \mathbb{R}^{n \times p}$ are generated as $\mathbf{Y} = \operatorname{ReLU}(\widetilde{\mathbf{A}^r \mathbf{X} \boldsymbol{\Theta}})$

- Trainable Parameters:
- **Graph Representation:** $\mathcal{D}_{\Theta}(\mathcal{G},\mathbf{X})$

- Amounts to Graph Filtering (Feature Propagation) then standard Non-Linear Activation fct

 $\Theta \in \mathbb{R}^{q \times p}$ with hyper-parameters p and r

$$= \sum_{i=1}^{n} \frac{1}{n} \delta_{\mathbf{Y}(i,:)}$$

2) Optimal Transport with a Reduced Computational Load

- For Optimal Transport: Use the **Sliced methods**

 - One projects the distribution (in \mathbb{R}^p) onto various 1-D directions θ , then average

- Property: one can show that it is a metric (excepted specific conditions)

- [N. Bonneel et al., "Sliced and Radon Wasserstein barycenters of measures", JMIV 2015]

• The main advantage is that 1D optimal transport is easily computed by sorting

2) Optimal Transport with a Reduced Computational Load

$$\mathscr{W}_{2}(\mu,\nu) = \inf_{\pi_{i,j}\in\Pi_{a,b}} \left(\sum_{i,j=1}^{n,n'} \pi_{i,j} c(\mathbf{x}_{i},\mathbf{x}_{j}')^{2}\right)^{\frac{1}{2}}$$

- Thee candidates for fast OT:
 - Sliced Wasserstein Distance SW_2 with directions sampled at random, and

[Rowland et al. AISTATS 2019]

Property: \mathcal{RPW}_2 is a metric.

$$\mathcal{SW}_2(\mu,\nu)^2 = \int_{\mathbb{S}^{q-1}} \mathcal{W}_2(\mu_\theta,\nu$$

- **Projected Sliced Wasserstein Distance** \mathcal{PW}_2 , when n = n', computing the distance in the original domain

$$\mathscr{PW}_{2}(\mu,\nu)^{2} = \int_{\mathbb{S}^{q-1}} \sum_{i,j=1}^{n,n'} \pi_{i,j}^{\theta,*} \| x_{i} - x_{j}' \|$$

- Our proposition: **Restricted Projected Sliced-Wasserstein** \mathscr{RPW}_2 : One limits the integral to a spanning set fo vectors, conveniently chosen as the canonical basis vectors $\{u_k\}_{k=1}^p$, hence: $\mathscr{RPW}_2(\mu,\nu)^2 = \frac{1}{p} \sum_{k=1}^p \sum_{i,j=1}^{n,n'} \pi_{i,j}^{u_k,*} ||x_i - x_j'||_2^2$

 $\mathscr{W}_{2}(\mathscr{G},\mathscr{G}') = \mathscr{RPW}_{2}(\mathscr{D}_{\Theta}(\mathscr{G},\mathbf{X}),\mathscr{D}_{\Theta}(\mathscr{G}',\mathbf{X}'))$

3) Loss for training the stance: the Near Class Cloud Metric Learning

- **Objective function?**
- Go back to tutorial of Bellet et al.
- Here: a variant of NCA,
- => Nearest Class Cloud Metric Learning

- Designed to boost k-NN classification (remind : no retraining is what we look for)

Maximize the probability for each graph to have is own label

• Training of the SGML model in a nutshell:

Algorithm 1 SGML: High-level algorithm to build $d_{\Theta^*}^{\mathcal{RPW}_2}$.

Require: A dataset of attributed graphs \mathbb{G} and their labeling function \mathcal{E} . for each epoch $e \in \{1, \ldots, E\}$ do Build a partition: $\cup_k B_k = \mathbb{G}$ such that $B_k \cap B_{k'} = \emptyset$. for each batch B_k do for each graph pair $(\mathcal{G}, \mathcal{G}') \in B_k \times B_k$ do Compute distance $d_{\Theta}^{\mathcal{RPW}_2}(\mathcal{G}, \mathcal{G}')$ (Eq. (9)) Compute $-\mathcal{F}_{\Theta}^{B_k}$ (Eq. (11)) and apply an iteration of Adam descent algorithm. **return** all pairwise distance $d_{\Theta^*}^{\mathcal{RPW}_2}$ in \mathbb{G} .

- Hyper-Parameters: *p* and *r* for the SimpleGCN
- **Complexity** of the method:
 - Time complexity in $O(|\mathbb{G}|\tilde{n}(p^2 + \tilde{n}rp) + |\mathbb{G}|$
 - Space complexity in $O(\tilde{n}^2 p)$

Some elements on this Simple Graph Metric Learning model

$$|^2 p^2 \tilde{n} \log \tilde{n})$$

Graph Datasets

Datasets	BZR	COX2	PROTEINS	ENZYMES	MUTAG	NCI1	IMDB-B	IMDB-M	CUNEIFORM
#Graphs	405	467	1113	600	188	4110	1000	1500	267
#Nodes	35.75	41.22	39.06	32.63	17.93	29.97	19.77	13	21.27
Node attributes	cont.	cont.	cont. / lab.	cont. / lab.	deg.	lab.	deg.	deg.	cont. / lab.
q	3	3	1/3	18/3	4	38	135	88	3/3

	Method	MUTAG	NCI1	PROTEINS	ENZYMES	IMDB-M	IMDB-B
 Task of Supervised Classification 				k-NN			
Task of Supervised Classification	\mathcal{RPW}_2	90.00 ± 7.60	72.12 ± 1.65	$\textbf{70.18} \pm \textbf{4.01}$	49.00 ± 8.17	45.00 ± 5.46	68.90 ± 5.45
	Net-LSD-h	84.90	65.89	64.89	31.99	40.51	68.04
- either <i>k</i> -NN classifier	FGSD	86.47	75.77	65.30	41.58	41.14	69.54
CILIEI K-ININ CIASSIIICI	NetSimile	84.09	66.56	62.45	33.23	40.97	69.20
				SVM & GCN			
 or SVM with induced kernel 	$\overline{\mathcal{RPW}_2}$	88.95 ± 7.61	74.84 ± 1.81	74.55 ± 4.19	54.00 ± 7.07	51.00 ± 5.44	72.00 ± 3.16
	WWL	87.27 ± 1.50	85.75 ± 0.25	74.28 ± 0.56	59.13 ± 0.80	×	×
	\mathcal{FGW}	83.26 ± 10.30	72.82 ± 1.46	×	×	48.00 ± 3.22	63.80 ± 3.49
	$\mathcal{FGW} ext{-WL}$	88.42 ± 5.67	$\textbf{86.42} \pm \textbf{1.63}$	×	×	×	×
	WL-OA	87.15 ± 1.82	86.08 ± 0.27	$\textbf{76.37} \pm \textbf{0.30}$	58.97 ± 0.82	×	×
	PSCN	83.47 ± 10.26	70.65 ± 2.58	58.34 ± 7.71	×	×	×

Numerical Experiments

•	Graph	Datasets
---	-------	----------

Datasets	BZR	COX2	PROTEINS	ENZYMES	MUTAG	NCI1	IMDB-B	IMDB-M	CUNEIFORM
#Graphs	405	467	1113	600	188	4110	1000	1500	267
#Nodes	35.75	41.22	39.06	32.63	17.93	29.97	19.77	13	21.27
Node attributes	cont.	cont.	cont. / lab.	cont. / lab.	deg.	lab.	deg.	deg.	cont. / lab.
q	3	3	1/3	18/3	4	38	135	88	3/3

		. .				
 Task of Supervised Classification 	Method	BZR	COX2	PROTEINS	ENZYMES	CUNEI
	\mathcal{RPW}_2 (kNN)	$\textbf{85.61} \pm \textbf{2.98}$	79.79 ± 2.18	71.79 ± 4.47	51.66 ± 5.16	$54.81 \pm$
 either k-NN classifier 			SVM & GO	CN		
	\mathcal{RPW}_2	84.39 ± 3.81	78.51 ± 0.01	74.29 ± 4.11	48.83 ± 4.78	64.44 ±
 or SVM with induced kernel 	WWL	84.42 ± 2.03	78.29 ± 0.47	$\textbf{77.91} \pm \textbf{0.80}$	73.25 ± 0.87	×
OF SVIVE WITH HEAUCU KUNCI	\mathcal{FGW}	85.12 ± 4.15	77.23 ± 4.86	74.55 ± 2.74	71.00 ± 6.76	$76.67 \pm$
	PROPAK	79.51 ± 5.02	77.66 ± 3.95	61.34 ± 4.38	71.67 ± 5.63	$12.59 \pm$
	HGK-SP	76.42 ± 0.72	72.57 ± 1.18	75.78 ± 0.17	66.36 ± 0.37	×
	PSCN [K = 10] (GCN)	80.00 ± 4.47	71.70 ± 3.57	67.95 ± 11.28	26.67 ± 4.77	$25.19 \pm$

Numerical Experiments

• For MUTAG Dataset

).884).89(0.884	0.873	0	0.873	0.
	-		-	ghbors				
V	RSW	\mathcal{PSW}	PRSV	$\mathcal{W} \parallel \text{Net-LS}$	D Net-L	SD	Vet-LSD	
58 58)	0.858 (0.863)	0.890 (0.895)	0.868	0 865	0.86	55	0.865	

Embedding in 2D with t-SNE, comparing WWL and SGML

• Scalability in running time

Scalability and Ablation study

• Ablative study

Dataset	W	WL	SGMI	L - \mathcal{SW}_2	SGM	L - NCA	SGM	L - P
Method	Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ
BZR	78.05	- 7.56	82.93	- 2.68	83.41	- 2.20	84.39	- 1.2
COX2	78.51	-1.26	78.30	- 1.49	77.66	- 2.13	78.94	- 0.8
MUTAG	83.68	- 6.32	86.84	- 3.16	87.37	- 2.63	90.00	0.00
NCI1	80.43	5.31	69.03	- 3.09	69.66	- 2.46	72.90	0.78
PROTEINS	71.60	1.42	71.34	1.16	71.70	1.52	70.54	0.36
IMDB-B	68.20	- 0.7	68.20	-0.70	67.40	-1.5	68.80	- 0.1
IMDB-M	48.73	3.73	42.33	-2.67	42.73	-2.27	44.13	- 0.8
ENZYMES	56.00	7.00	44.33	- 4.67	55.33	6.33	44.83	-4.17

• Message: it's scalable, perf are ok, with some theoretical insights!

Now is the time to conclude

- 2) A scalable & simple model to Learn Distances between Attributed Graphs
- Évolution du système Vélo'v attributed graphs 00000
- 1) A novel way to **combine structu**
- -> Diffusion Wasserstein distanc
- We favor **simple methods**, with a :
- Our way forward:
 - 1) improve feature extraction th
 - 2) more explainability for thes

CNRS – ENS Lyon, Laboratoire de Physique (UMR 5672), Université de Lyon IXXI (Institut des Systèmes Complexes de Lyon)

• -> SGML: a simple, motivated, scalable and efficient. method for (semi-supervised) metric learning between Prédiction à l'heure Modèle statistique Conclusion

00000

00

 \bigcirc

Première approche :

Analyse du nombre de locations de Vélo'v

Pierre BORGNAT

23 octobre 2009

Lyon rgnat

ks