
03/2023
perso.ens-lyon.fr/pierre.borgnat

Work supported by: CNRS, ENS de Lyon, ANR, IDEXLyon, and the CHIST-Era project: GraphNEX

Learning Distances for Attributed Graphs
with Optimal Transport

Pierre Borgnat
Chair of Equipe Sisyphe, Laboratoire de Physique, CNRS, ENS de Lyon

SiSyPh Topics Wrap-Up

SiSyPh: Signals, Systems and Physics.

CNRS, Physics Lab., Ecole Normale Supérieure, Lyon, France

Évolution du système Vélo’v Modèle statistique Prédiction à l’heure Conclusion

Première approche :

Analyse du nombre de locations de Vélo’v

Pierre BORGNAT

CNRS – ENS Lyon, Laboratoire de Physique (UMR 5672), Université de Lyon
IXXI (Institut des Systèmes Complexes de Lyon)

23 octobre 2009

ECOLE NORMALE SUPERIEURE DE LYON

Signaux, Systèmes et Physique, laboratoire de Physique - ENS de Lyon - Juillet 2019 - 1 / 17

http://perso.ens-lyon.fr/pierre.borgnat

Graphs: useful structures for data processing

• Social Networks

• Sensors’ data

• Transportations

• Electricity, Water,
communications,…

Intro. Optimal transport of attributed graphs Hierarchical and Unsupervised Graph Representation Learning Ccl

Motivation: Attributed graphs
• A general model for structured data
• (a.k.a. Graph Signals in GSP)

• Social networks ; Images, point clouds ; molecules ; ...

Attributed Graphs
What ? data structure for highly structured data:

● Social network
● Molecules
● Call-graph of malware
● Images (grid shaped graph)

Source: Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,Yizhou Sun, and Wei Wang.
Unsupervised inductive whole-graph embedding by preserving graph proximity.arXiv preprint arXiv:1904.01098,
2019.

Source: Michael Edwards and Xianghua Xie. Graph based convolutional neural network.
 CoRR, abs/1609.08965, 2016.

Source: Awesome Graph Classification
 https://github.com/benedekrozemberczki/awesome-graph-classification

2

Attributed Graphs
What ? data structure for highly structured data:

● Social network
● Molecules
● Call-graph of malware
● Images (grid shaped graph)

Source: Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,Yizhou Sun, and Wei Wang.
Unsupervised inductive whole-graph embedding by preserving graph proximity.arXiv preprint arXiv:1904.01098,
2019.

Source: Michael Edwards and Xianghua Xie. Graph based convolutional neural network.
 CoRR, abs/1609.08965, 2016.

Source: Awesome Graph Classification
 https://github.com/benedekrozemberczki/awesome-graph-classification

2

p. 3

• 2D images

• 3D Points clouds

• Other geometric

and/or irregular shapes

• Chemistry

• Physics

Setting: Attributed Graphs

• In the general case, nodes and/or edges can carry information:

❖ Edges = existence of some relationship

❖ Nodes = Attributes, or Features / Signals

/506/506

Graphes attribués

Les nœuds et les arêtes peuvent porter une information

Graphes attribués & pondérés

1

1
0.5

0.5

Matrice d’adjacence pondérée

Matrice d’attributs des nœuds

/506/506

Graphes attribués

Les nœuds et les arêtes peuvent porter une information

Graphes attribués & pondérés

1

1
0.5

0.5

Matrice d’adjacence pondérée

Matrice d’attributs des nœuds

/506/506

Graphes attribués

Les nœuds et les arêtes peuvent porter une information

Graphes attribués & pondérés

1

1
0.5

0.5

Matrice d’adjacence pondérée

Matrice d’attributs des nœuds

/506/506

Graphes attribués

Les nœuds et les arêtes peuvent porter une information

Graphes attribués & pondérés

1

1
0.5

0.5

Matrice d’adjacence pondérée

Matrice d’attributs des nœuds

• Attribute matrix

• Adjacency matrix

Many Machine Learning tasks for Data on Graphs

• Learn to classify Nodes

Supervised Tasks

/508/508

Apprentissage sur graphe
Supervisé : Apprendre à partir de données étiquetées.

Classification de nœuds

Etiquette rouge

Etiquette bleue

Quelle est
l’étiquette ?

Classification de graphes

Etiquette bleue

Etiquette rouge

Quelle est
l’étiquette ?

/508/508

Apprentissage sur graphe
Supervisé : Apprendre à partir de données étiquetées.

Classification de nœuds

Etiquette rouge

Etiquette bleue

Quelle est
l’étiquette ?

Classification de graphes

Etiquette bleue

Etiquette rouge

Quelle est
l’étiquette ?

• Learn to classify Graphs

Blue labels

Blue labels

Red labels

Red labels

Which label ?

Which label ?

Many Machine Learning tasks for Data on Graphs

• Learn to find clusters (or modules,
communities,…)

Unsupervised Tasks

• Learn to cluster collection of graphs

/509/509

Apprentissage sur graphe
Non Supervisé : Apprendre à partir de données non étiquetées.

Clustering de nœuds Clustering de graphes

Critère de séparation ?

Critère de séparation ?

Il existe deux classes d’éléments

/509/509

Apprentissage sur graphe
Non Supervisé : Apprendre à partir de données non étiquetées.

Clustering de nœuds Clustering de graphes

Critère de séparation ?

Critère de séparation ?

Il existe deux classes d’éléments

• Note: more general features -> small-world, scale-free, hubs, higher-order interactions…

How to separate clusters ?

How to separate clusters ?

Many Machine Learning tasks for Data on Graphs

• For Visualisations or low-dim. embeddings

(Laplacian Maps, LLE, ForceAtlas, t-SNE,
UMAP,…)

Representation of graphs : Embeddings

• For high-dimensional embeddings

Chapter 3

Neighborhood
Reconstruction Methods

This part of the book is concerned with methods for learning node embeddings.
The goal of these methods is to encode nodes as low-dimensional vectors that
summarize their graph position and the structure of their local graph neigh-
borhood. In other words, we want to project nodes into a latent space, where
geometric relations in this latent space correspond to relationships (e.g., edges)
in the original graph or network [Ho↵ et al., 2002] (Figure 3.1).

In this chapter we will provide an overview of node embedding methods for
simple and weighted graphs. Chapter 4 will provide an overview of analogous
embedding approaches for multi-relational graphs.

Figure 3.1: Illustration of the node embedding problem. Our goal is to learn an
encoder (enc), which maps nodes to a low-dimensional embedding space. These
embeddings are optimized so that distances in the embedding space reflect the
relative positions of the nodes in the original graph.

29

From [Hamilton., “Graph Representation Learning“, 2020]From [Tremblay & Borgnat, 2014]

Low Level task: (Graphs) Representation Learning

• Representation Learning = discover, or learn, adequate
representations for studied data so as to extract information

From [Goodfellow et al., “Deep Learning“, 2016]

• Machine Learning in one sentence: build a map from data to decision x y

y = ℱ(x)

• Machine Learning in the good all times

ℱ = ℱdecision ∘ ℱfeatures(x)
learnt from data

hand-crafted using domain knowledge

• Machine Learning with Representation Learning / Deep Learning

 / ℱ = ℱdecision ∘ ℱfeatures ℱ = ℱdecision ∘ ℱlayer d ∘ ⋯ℱlayer 1
All learnt from data

[From Pierre Vandergheynst’ talk, 2021]

in multiple layers

• For Graphs, Representation learning can be summarised as:

❖ For Collection of Graphs

/5010/5010

Objectif de la thèse

Apprendre des représentations

Appliquer des algorithmes classiques sur ces représentations

Graphes Nœuds

De dimension fixée

Problème déjà abordé dans la littérature

Application à des cas de figure inédits

Proposition de réponse à certaines limitations

❖ For Nodes in a Graph

/5010/5010

Objectif de la thèse

Apprendre des représentations

Appliquer des algorithmes classiques sur ces représentations

Graphes Nœuds

De dimension fixée

Problème déjà abordé dans la littérature

Application à des cas de figure inédits

Proposition de réponse à certaines limitations
❖ For graphs: often one will

agglomerate Nodes representations

Low Level task: Graphs Representation Learning

• Combine a model of Classification & one of Representation

• Define a task, a dataset, learn & see

• e.g.: the powerful Graph Neural Networks can do that…

Some Associated Difficulties

/5012/5012

Difficultés de l’apprentissage sur graphes
Les algorithmes de base de l’apprentissage s’appuient sur des mesures de similarités ou de distances

(K-moyennes, K-plus proches voisins, Régression logistique, etc.)

Il est difficile de comparer deux nœuds

Les graphes possèdent une structure locale inhomogène

Il est difficile de comparer deux graphes

Un graphe est défini à une permutation près

Il faut un moyen rapide de caractériser les graphes et/ou leurs nœuds /5012/5012

Difficultés de l’apprentissage sur graphes
Les algorithmes de base de l’apprentissage s’appuient sur des mesures de similarités ou de distances

(K-moyennes, K-plus proches voisins, Régression logistique, etc.)

Il est difficile de comparer deux nœuds

Les graphes possèdent une structure locale inhomogène

Il est difficile de comparer deux graphes

Un graphe est défini à une permutation près

Il faut un moyen rapide de caractériser les graphes et/ou leurs nœuds

• Node-level: local inhomogeneities in structure => hard to compare two nodes

• Graph-level: possible isomorphism => hard to compare (even to find equality of) two graphs

Low Level task: Similarities or distances for Graphs

• Attributed Graphs => how to efficiently combine structure and attributes ?

What to do ?

• Instead of finding a full representation space, focus on comparing graphs

• Advantages: think of the kernel trick ! d(x,x’) can be put in many algorithms

• SVM still have good (better) performance (than representation methods)

• k-NN are still efficient / scalable approaches (no re-training)

• …

• Disadvantages:

• Direct comparisons of Graphs is hard / computationally challenging

• e.g.: GED (Graph Edit Distance) is NP-hard (or use approximations)

• …

A different Low Level approach:
(Dis)-Similarity or Distance-based methods for graphs

Optimal Transport: a generic tool to probe
the geometry of probability measures

• Optimal Transport: an approach to compute a distance between 2 distributions, while
finding the optimal coupling (or transport plan) between them

• Put forward in Data Science/Processing & ML since…

• since ~2010 (at least) ; since ~2000 in image processing (Earth Mover Distance); well before
in mathematics (cf. Villani, 2003); in the 70’s for the Mallows distance in statistics,…

• (see my completely ignored ICASSP paper of 2012: “Using Surrogates and Optimal Transport for Synthesis of Stationary
Multivariate Series […]”) (Title way too long!)

• cf. “Computational Optimal Transport“ (G. Peyré & M. Cuturi), 2019

https://arxiv.org/abs/1803.00567v4

• cf. Cuturi & Salomon "A primer on Optimal Transport", NIPS 2017 Tutorial

https://optimaltransport.github.io/slides/ (and other resources)

https://arxiv.org/abs/1803.00567v4
https://optimaltransport.github.io/slides/

Optimal Transport: a generic tool to probe
the geometry of probability measures

What is Optimal Transport?

3

Generative
Models
vs. data

h1

Color Histograms

h2

Bags
of features

d

p✓

p✓0

Statistical Models Brain Activation Maps

µ

latent
space

The natural geometry for probability measures

• from Cuturi & Salomon "A primer on Optimal Transport", NIPS 2017 Tutorial

Chapter 1. Preliminaries

Figure 1.6: A toy optimal transport problem. On the left are blue heaps,
representing the source distribution. On the right are red holes, representing
the target distribution. Solving the corresponding optimal transport problem
consists in finding how to fill the holes with the heaps in a way that minimizes
the total transport cost.

Figure 1.7: Optimal transport map solving the OT problem of Figure 1.6. Low
matrix entries are lighter, and high matrix entries are darker.

the target (distribution). Knowing that the cost of moving some material from
a heap to a hole can be defined as the Euclidean distance Îxi ≠ yjÎ2 between
the two, an interesting question is to find the least costly way to do so. This
example uses heaps of material and holes; a more concrete example would be
moving products from factories to warehouses while minimizing fuel cost.

The solution of this discrete problem is called a transport map. It is a matrix
“

ú (œ R10◊10
+ here) where each entry “i,j indicates the quantity of material

transported from a heap to a hole. A visualisation of this matrix is given on
Figure 1.7. This matrix satisfies the following equation (with n = m = 10):

“
ú = argmin

“œRn◊m

“1n=a
“T 1m=b

Y
]

[

nÿ

i=1

mÿ

j=1
“i,j · Îxi ≠ yjÎ2

Z
^

\ . (1.10)

This equation states that the optimal transport map minimizes the total cost
of transport qn

i=1
qm

j=1 “i,j · Îxi ≠ yjÎ2, while conserving the masses (“1n = a

and “
T 1m = b).

In this example, some quantity of mass (either present [heaps] or required
[holes]) is present at various points on a 1D line. The OT framework abstracts
this, simply working with distributions in some probability measure space; the

14

Optimal Transport for distributions

• from “Computational Optimal Transport“ (G. Peyré & M. Cuturi), 2019

https://arxiv.org/abs/1803.00567v4

Problem of Monge : « Mémoire sur la théorie des
déblais et des remblais », 1776

Chapter 1. Preliminaries

Figure 1.6: A toy optimal transport problem. On the left are blue heaps,
representing the source distribution. On the right are red holes, representing
the target distribution. Solving the corresponding optimal transport problem
consists in finding how to fill the holes with the heaps in a way that minimizes
the total transport cost.

Figure 1.7: Optimal transport map solving the OT problem of Figure 1.6. Low
matrix entries are lighter, and high matrix entries are darker.

the target (distribution). Knowing that the cost of moving some material from
a heap to a hole can be defined as the Euclidean distance Îxi ≠ yjÎ2 between
the two, an interesting question is to find the least costly way to do so. This
example uses heaps of material and holes; a more concrete example would be
moving products from factories to warehouses while minimizing fuel cost.

The solution of this discrete problem is called a transport map. It is a matrix
“

ú (œ R10◊10
+ here) where each entry “i,j indicates the quantity of material

transported from a heap to a hole. A visualisation of this matrix is given on
Figure 1.7. This matrix satisfies the following equation (with n = m = 10):

“
ú = argmin

“œRn◊m

“1n=a
“T 1m=b

Y
]

[

nÿ

i=1

mÿ

j=1
“i,j · Îxi ≠ yjÎ2

Z
^

\ . (1.10)

This equation states that the optimal transport map minimizes the total cost
of transport qn

i=1
qm

j=1 “i,j · Îxi ≠ yjÎ2, while conserving the masses (“1n = a

and “
T 1m = b).

In this example, some quantity of mass (either present [heaps] or required
[holes]) is present at various points on a 1D line. The OT framework abstracts
this, simply working with distributions in some probability measure space; the

14

One solution:

With relaxation of
Kantorovich

https://arxiv.org/abs/1803.00567v4

• Optimal Transport: Consider two finite sets and and two
distributions on these with

• Given a cost function , one builds the 2-Wasserstein distance as:

where is the set of joint distributions on

whose marginals are the distributions and

𝕏 = {xi}|𝕏|
i=1 ∈ ℝq×|𝕏| 𝕏′

μ = ∑
xi∈𝕏

aiδxi
 and ν = ∑

x′ i∈𝕏′

biδx′ i

ai ≥ 0, bi ≥ 0 and
n

∑
i=1

ai = 1,
n′

∑
i=1

bi = 1

c : ℝq × ℝq → ℝ+ 𝒲2

𝒲2(μ, ν) = inf
πi,j∈Πa,b

(
n,n′

∑
i,j=1

πi,jc(xi, x′ j)2)
1
2

Πa,b 𝕏 × 𝕏′

μ = ∑
x′ i∈𝕏′

π(⋅ , x′ i) ν = ∑
xi∈𝕏

π(xi, ⋅)

Optimal Transport for distributions

Optimal Transport for Graphs

• For Graphs: one has to Associate a distribution to a graph

- A first solution: rely on the the Weisfeiler-Lehman test

- cf. [Togninalli et al., “Wasserstein Weisfeiler-Lehman graph kernels“ NeurIPS 2019]

• A 2nd solution: Comparison through probabilistic models of graph signals

- ["Graph Optimal Transport”, H. Maretic et al. NeuRIPS 2019]

- for a graph with Laplacian L, one considers:

- then: compute the 2-Wasserstein distance between Gaussian signals

- allows graph alignment, gives a structurally-meaningful graph distance,…

𝒢 x ∼ ν𝒢 = 𝒩(0,L†)

Optimal Transport for Graphs or Attributed Graphs

• A third solution: The Gromov-Wasserstein distance

- [Mémoli, Found. Comp. Math. 2011; Peyré, Cuturi, Solomon, ICML 2016]

- structures are compared through their pairwise distances

- cf. also N. Courty, R. Flamary, T. Vayer [PhD 2020]

• One can then combine Attributes and Gromov-Wasserstein characterisation of graphs

“Fused Gromov-Wasserstein distance“ [Vayer et al., ICML 2019]

•

Optimal Transport for structured data
with application on graphs

Titouan Vayer
Joint work with Laetitia Chapel, Remi Flamary, Romain Tavenard and Nicolas Courty

A novel distance between labeled graphs
based on optimal transport

28 Chapter 2. Generality about optimal transport

Figure 2.8: The GW problem considers two probability measures µ œ P(X), ‹ œ P(Y) over two spaces that do
not necessarily share a common metric. It is built upon the similarities cX , cY within each space and on a measure
of the distortion between each pair of points

--cX (x, x
Õ) ≠ cY(y, y

Õ)
--.

in depth in [Sturm 2012]. Another possibility is to consider triplets (X , cX , µ) where cX is a integrable
function, this notion refers to measure networks and was studied in [Chowdhury 2019a].

The GW objective is constructed so that if an optimal coupling fi maps x to y and xÕ to yÕ then the
couple (x, xÕ) should be “as similar” in X as (y, yÕ) in Y. When cX , cY are distances it implies that x, xÕ

are as close in X as y, yÕ in Y . In this work we consider a general setting where cX , cY are continuous and
X , Y are Polish spaces and we will detail the two previous settings.

As for the linear OT problem the equation (2.41) always admits a solution. To show that we define
L(x, xÕ, y, yÕ) =

--cX (x, xÕ) ≠ cY(y, yÕ)
--. If �(µ, ‹) is compact and the functionnal fi æ

´ ´
Ldfidfi is l.s.c.

for the weak-convergence, Weierstrass theorem (see Memo 2.2.1) proves that the infimum will be attained
at some optimal coupling. The first condition is a well-known result in OT theory provided that X , Y are
Polish spaces [Santambrogio 2015, Theorem 1.7]. For the lower semi-continuity w.r.t. the weak-convergence
we can show that it su�ces that L be itself l.s.c. using the following lemma:

Lemma 2.2.1. Let � be a Polish space. If f : � ◊ � æ R+ fi {+Œ} is lower semi-continuous, then the
functional J : P(�) æ R fi {+Œ} with J(µ) =

´ ´
f(w, wÕ)dµ(w)dµ(wÕ) is l.s.c. for the weak convergence

of measures.

Proof. Since f is l.s.c. and bounded from below by 0 we can consider (fk)k a sequence of continuous and
bounded functions converging increasingly to f (see e.g [Santambrogio 2015]). By the monotone convergence
theorem Jk(µ) æ J(µ) def= supk Jk(µ) = supk

´ ´
fkdµdµ. Moreover every Jk is continuous for the weak

convergence. Using theorem 2.8 [Billingsley 1999] on the Polish space � ◊ � we know that if µn converges
weakly to µ then the product measure µn ¢ µn converges weakly to µ ¢ µ. In this way limnæŒ Jk(µn) =
Jk(µ) since fk are continuous and bounded. In particular every Jk is l.s.c. We can conclude that J is
l.s.c. as the supremum of l.s.c. functionals on the metric space of (P(�), ”) (see e.g. [Santambrogio 2015]).
Here we equipped P(�) with a metric ” as e.g. ”(µ, ‹) =

q
Œ

k=1 2≠k|
´

� fkdµ ≠
´

� fkd‹| (see remark 5.11
in [Ambrosio 2005]).

Memo 2.2.1 (Weierstrass theorem). The Weierstrass theorem states that if f : X æ R fi +Œ is
l.s.c. and X is compact then there exists xú = infxœX f(x) (see box 1.1 in [Santambrogio 2015]).

 OT-based methods for Attributed Graphs
Some Recent examples from our works

• How to learn distances between Attributed Graphs ?
Our contribution: Scalable Metric Learning for Graphs

[Y. Kaloga, P. Borgnat, A. Habrard, LoG 2022]

Small distance
Small distance

Large distance

Méthodologie

Structure et attributs de 2 objets

I traitement du signal sur graphes pour combiner ces modalités

I transport optimal pour comparer les graphes attribués

Graphe source

0

1

2

3

4

5

6
7

8 9

nœud x0 x1 x2 ...

0 1.71 -0.15 3.83 ...

1 1.28 0.010 4.17 ...

...

Graphe cible

0 1

2 3 4

56

7

8

9

nœud x0 x1 x2 ...

0 2.03 -0.067 7.11 ...

1 2.11 -0.044 5.45 ...

...

8 / 41

• How to combine Structures and Attributes to define a distance, then solve some Domain
Adaptation problem ? Our proposition : Graph Diffusion Wasserstein Distance

[A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat, R. Gribonval, T. Vayer, ECML-PKDD 2020 ; ICTAI 2021 ; GRETSI 2019]

Graph Diffusion Wasserstein Distances
& Application to Domain Adaptation for Graphs

From Amélie Barbe PhD thesis (12/2021) ; ECML-PKDD 2020 ; ICTAI (2021) ; GRETSI (2019)

Joint work with Marc Sebban (LabHC; Saint-Etienne) ; Rémi Gribonval, Paulo Gonçalves, and
Titouan Vayer (LIP, Inria, ENS de Lyon)

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

Optimal Transport for Attributed Graphs

• A different way to combine Attributes and Structure of Graphs is to begin first by
processing the Attributes according to the Structure of the graph

=> This is exactly what Graph Signal Processing is studying since ~2010

see from [Shuman et al., SP Mag 2013] to [Ortega, CUP, 2022]

• More precisely, given a signal and a graph :

• Adjacency matrix , degree matrix , Laplacian

• The “processing” (filtering) of through has the form:

• Example of useful filter: the heat diffusion

• A good model of graph signals [Thanou, Dong, Kressner, Frossard, 2017]

• Characterizes some structure of the graphs, e.g. [Ricaud, Borgnat, et al. CR Phys., 2019]

x 𝒢

A D = diag(A ⋅ 1) L = D − A

x 𝒢 x̃ = f(L) ⋅ x

Graph Signal Processing: Heat Diffusion478 B. Ricaud et al. / C. R. Physique 20 (2019) 474–488

Fig. 1. Illustration of the heat diffusion over a 2-d manifold (top), and over a graph with communities (bottom), at different time τ . In both graphs, the heat
spreads from node to node, following the edges. Top: the initial hot spot is a node located on the ear of the bunny. The Bunny graph is a discretization of
a 2-d surface, with nodes connected to their nearest neighbours in 3 d. Bottom: The diffusion starts inside a community and quickly spreads within it.

Fig. 2. Some graph Fourier modes on a random sensor graph. From left to right: first non-constant eigenvector (Fiedler vector) u1, second and third
eigenvectors (u2 and u3). Colourmap: positive values in yellow, negative ones in blue.

computes the sum of the variations of a graph signal f , where Aij is the weight of the link (i, j). Hence, for each graph
Fourier mode uk , the (non-negative) eigenvalue λk quantifies its variation and smoothness, because: (uk, Luk)/(uk, uk) = λk .
This motivates us to identify this value with the mode frequency, opening the door to harmonic analysis on graphs: the
larger λk is, the less smooth the mode is and the faster it oscillates.

This argumentation does not necessarily imply that modes are pure oscillations. For regular domains (e.g., 1-d discrete
line or ring, or 2-d grids or torus), the notion of oscillation is well defined and corresponds to cosine and sine functions.
In the case of graphs, the domain can be so irregular that the intuitive idea of an oscillation may simply not hold. Let us
discuss the graph Fourier modes in order of increasing eigenvalue.

– No oscillation: classically, the zero frequency means no oscillation and this is the case for graphs. There is always a null
eigenvalue for L. Its multiplicity is equal to the number of connected components of G , and the associated eigenvectors
are constant on each connected component. Each connected component can be treated separately, and in the following,
we assume that there is only one component. Then, u0 is the only constant mode in the GFT, with eigenvalue (i.e.
frequency) λ0 = 0, as in the DFT case.

– One oscillation over the whole graph (see Fig. 2): as all other eigenmodes have to be orthogonal to u0, they must, at
least, behave as a crude oscillation in one way: their values are positive on some nodes and negative on others. This
is the case for the next smoothest possible Fourier mode, with the smallest non-zero possible frequency (eigenvalue).
Also named the Fiedler vector, this component verifies an insightful property: as it must change sign and because this
is costly in term of variations, it switches where the graph is the less connected. It turns out that, on a graph made
of two weakly connected communities, the Fiedler vector will have a different sign on each of the communities. It is
precisely this property that led to the celebrated spectral clustering method in machine learning [23].

• from [Ricaud, Borgnat, Tremblay, Gonçalves, Vandergheynst. CR Phys., 2019]

“Fourier could be a data scientists: from Graph Fourier transform to signal processing on graphs”

Graph Signal Processing: distance from Heat Diffusion

• from [Hammond, Gur, Johnson, GlobalSIP 2013] “GRAPH DIFFUSION DISTANCE: A DIFFERENCE MEASURE
FOR WEIGHTED GRAPHS BASED ON THE GRAPH LAPLACIAN EXPONENTIAL KERNEL” (Title way too long!)

• They define a Diffusion distance between graphs having the same number of nodes

diagonal. Note that we are not restricting ourselves to unweighted
(binary) graphs. We will make frequent use of the (unnormalized)
graph Laplacian operator [5] , defined by Ln = Dn � An (for n =
1, 2) , where Dn is a diagonal degree matrix for the adjacency An,
i.e. (Dn)i,i =

PN
j=1(An)i,j .

To describe the diffusion process on a graph with adjacency A
(for convenience, we suppress the subscript), we let v(t) 2 RN be
a time-varying vector representing the value of the quantity that is
undergoing diffusion at each vertex. The edge weights ai,j describe
the conductivity between vertices, so that for two vertices i and j,
the quantity ai,j(vi(t) � vj(t)) represents the flux from vertex i
to vertex j across the edge connecting them. Summing over these
fluxes for each vertex yields v0j(t) =

P
i ai,j(vi(t) � vj(t)). It is

straightforward to verify that this may be written as

v0(t) = �Lv(t) (1)

where L is the graph Laplacian corresponding to A. With initial
conditions v(0) at time t = 0, equation 1 has the analytic solution
v(t) = exp(�tL)v(0). Here exp(�tL) is an N ⇥N matrix-valued
function of t, known as the Laplacian exponential diffusion kernel
[6]. We now consider letting v(0) = ej , where ej 2 RN is the
unit vector with all zeros except in the j th component. Running the
diffusion up to time t gives the diffusion pattern exp(�tL)ej , which
is precisely the j th column of exp(�tL).

We are now ready to define the graph diffusion distance. The
columns of the Laplacian exponential kernels, exp(�tL1) and
exp(�tL2), describe the different diffusion patterns centered at
each vertex generated by diffusion up to time t under the two
different sets of weighted edges. Computing the sum of squared
differences between these patterns, summed over all the vertices,
yields

⇠(A1, A2; t) =
X

i,j

((exp(�tL1))i,j � (exp(�tL2))i,j)
2

= || exp(�tL1)� exp(�tL2)||2F (2)

where || · ||F is the matrix Frobenius norm. This defines a family
of distance measures depending on the diffusion time t. The graph
diffusion distance is given by

p
⇠ at the time of maximal difference,

i.e. dgdd(A1, A2) = maxt

p
⇠(A1, A2; t).

Given the spectral decomposition L = V ⇤V 0, the Laplacian
exponential may be computed by

exp(�tL) = V exp(�t⇤)V 0, (3)

where for ⇤, exp(�t⇤) is diagonal with ith entry given by e�t⇤i,i .
We compute dgdd(A1, A2) by first diagonalizing L1 and L2, then,
a straightforward application of (3) and (2) allows computation of
⇠(A1, A2; t) for any fixed t. Finally, we optimize over t by a line
search to give dgdd(A1, A2).

For completeness, we mention here that later we will be compar-
ing the GDD to the simpler edge difference distance, dedd, defined
for two adjacency matrices by

dedd(A1, A2) = |A1 �A2|F . (4)

2.1. Properties of GDD

The GDD is a metric, in the strict mathematical sense, i.e.

Proposition 2.1 For any N ⇥N adjacency matrices A,B,C
i) dgdd(A,B) � 0, and dgdd(A,B) = 0 iff A = B
ii) dgdd(A,B) = dgdd(B,A)
iii) dgdd(A,C)  dgdd(A,B) + dgdd(B,C)

(a) (b)

0 10
0

0.1

t

(c) (d)

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgdd(G

N,2, GN,2
br)/dgdd(G

N,2, GN,2
cc) vs

N . (c) Plot of ⇠(t) for A1 = G5,2, A2 = G5,2
cc , red dot indicates

maximum, corresponding to dgdd(A1, A2)
2. (d) Values of normal-

ized edge deletion perturbation, on edges of G5,2.

Proof Consider the mapping � : A ! e�tA taking A into
C([0,1),RN⇥N), the space of continuous functions from non-
negative real numbers to N ⇥ N matrices. First note that � is
one-to-one, as follows : �(A) = �(B) implies e�tA = e�tB for all
t � 0, then differentiating gives �Ae�tA = �Be�tB , and letting
t ! 0 shows A = B.

Next note that dgdd(A,B) = supt�0||�(A)(t) � �(B)(t)||F ,
so the GDD can be written in terms of the supremum norm, using
the fact the || · ||F is a proper norm. That dgdd is a metric follows
from the properties of the supremum norm.

We note some simple properties of ⇠. First, at t = 0, the dif-
fusion patterns are still equal to their initial conditions for both A1

and A2, and are thus all equal, which implies ⇠(A1, A2; 0) = 0.
Secondly, for any connected graph, i.e. a graph where any two ver-
tices can be connected by some path with nonzero edge weights, as
t ! 1 each diffusion pattern will converge to the constant vec-
tor (1/N, 1/N..., 1/N)T . This implies that if A1 and A2 are both
connected, then limt!1 ⇠(A1, A2; t) = 0 (see Figure 1(c)).

Finally, we note an interesting connection between the GDD and
|L1�L2|F , the Frobenius norm of the difference of the graph Lapla-
cians. This quantity is closely related to the edge difference distance,
specifically |L1 � L2|2F = dedd(A1, A2) +

P
i((d1)i � (d2)i)

2,
where (dn)i = (Dn)i,i is the weighted degree of vertex i for graph
n (for n = 1, 2). We have seen that ⇠(t) grows from zero at the
origin before decaying, and that the GDD is determined by its maxi-
mum value. Interestingly, ||L1 � L2||F is related to the growth of ⇠
at the origin, in particular

Proposition 2.2 ⇠(t) satisfies ⇠(0) = 0, ⇠0(0) = 0, and ⇠00(0) =
2||L1 � L2||2F , where the derivatives are understood as the right-

hand limits limt!0+⇠
0(t), limt!0+⇠

00(t).

Proof ⇠(0) = 0 was shown previously. Using the matrix relation
||X||2F = tr(XTX), and that e�tL is symmetric for symmetric L,

diagonal. Note that we are not restricting ourselves to unweighted
(binary) graphs. We will make frequent use of the (unnormalized)
graph Laplacian operator [5] , defined by Ln = Dn � An (for n =
1, 2) , where Dn is a diagonal degree matrix for the adjacency An,
i.e. (Dn)i,i =

PN
j=1(An)i,j .

To describe the diffusion process on a graph with adjacency A
(for convenience, we suppress the subscript), we let v(t) 2 RN be
a time-varying vector representing the value of the quantity that is
undergoing diffusion at each vertex. The edge weights ai,j describe
the conductivity between vertices, so that for two vertices i and j,
the quantity ai,j(vi(t) � vj(t)) represents the flux from vertex i
to vertex j across the edge connecting them. Summing over these
fluxes for each vertex yields v0j(t) =

P
i ai,j(vi(t) � vj(t)). It is

straightforward to verify that this may be written as

v0(t) = �Lv(t) (1)

where L is the graph Laplacian corresponding to A. With initial
conditions v(0) at time t = 0, equation 1 has the analytic solution
v(t) = exp(�tL)v(0). Here exp(�tL) is an N ⇥N matrix-valued
function of t, known as the Laplacian exponential diffusion kernel
[6]. We now consider letting v(0) = ej , where ej 2 RN is the
unit vector with all zeros except in the j th component. Running the
diffusion up to time t gives the diffusion pattern exp(�tL)ej , which
is precisely the j th column of exp(�tL).

We are now ready to define the graph diffusion distance. The
columns of the Laplacian exponential kernels, exp(�tL1) and
exp(�tL2), describe the different diffusion patterns centered at
each vertex generated by diffusion up to time t under the two
different sets of weighted edges. Computing the sum of squared
differences between these patterns, summed over all the vertices,
yields

⇠(A1, A2; t) =
X

i,j

((exp(�tL1))i,j � (exp(�tL2))i,j)
2

= || exp(�tL1)� exp(�tL2)||2F (2)

where || · ||F is the matrix Frobenius norm. This defines a family
of distance measures depending on the diffusion time t. The graph
diffusion distance is given by

p
⇠ at the time of maximal difference,

i.e. dgdd(A1, A2) = maxt

p
⇠(A1, A2; t).

Given the spectral decomposition L = V ⇤V 0, the Laplacian
exponential may be computed by

exp(�tL) = V exp(�t⇤)V 0, (3)

where for ⇤, exp(�t⇤) is diagonal with ith entry given by e�t⇤i,i .
We compute dgdd(A1, A2) by first diagonalizing L1 and L2, then,
a straightforward application of (3) and (2) allows computation of
⇠(A1, A2; t) for any fixed t. Finally, we optimize over t by a line
search to give dgdd(A1, A2).

For completeness, we mention here that later we will be compar-
ing the GDD to the simpler edge difference distance, dedd, defined
for two adjacency matrices by

dedd(A1, A2) = |A1 �A2|F . (4)

2.1. Properties of GDD

The GDD is a metric, in the strict mathematical sense, i.e.

Proposition 2.1 For any N ⇥N adjacency matrices A,B,C
i) dgdd(A,B) � 0, and dgdd(A,B) = 0 iff A = B
ii) dgdd(A,B) = dgdd(B,A)
iii) dgdd(A,C)  dgdd(A,B) + dgdd(B,C)

(a) (b)

0 10
0

0.1

t

(c) (d)

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgdd(G

N,2, GN,2
br)/dgdd(G

N,2, GN,2
cc) vs

N . (c) Plot of ⇠(t) for A1 = G5,2, A2 = G5,2
cc , red dot indicates

maximum, corresponding to dgdd(A1, A2)
2. (d) Values of normal-

ized edge deletion perturbation, on edges of G5,2.

Proof Consider the mapping � : A ! e�tA taking A into
C([0,1),RN⇥N), the space of continuous functions from non-
negative real numbers to N ⇥ N matrices. First note that � is
one-to-one, as follows : �(A) = �(B) implies e�tA = e�tB for all
t � 0, then differentiating gives �Ae�tA = �Be�tB , and letting
t ! 0 shows A = B.

Next note that dgdd(A,B) = supt�0||�(A)(t) � �(B)(t)||F ,
so the GDD can be written in terms of the supremum norm, using
the fact the || · ||F is a proper norm. That dgdd is a metric follows
from the properties of the supremum norm.

We note some simple properties of ⇠. First, at t = 0, the dif-
fusion patterns are still equal to their initial conditions for both A1

and A2, and are thus all equal, which implies ⇠(A1, A2; 0) = 0.
Secondly, for any connected graph, i.e. a graph where any two ver-
tices can be connected by some path with nonzero edge weights, as
t ! 1 each diffusion pattern will converge to the constant vec-
tor (1/N, 1/N..., 1/N)T . This implies that if A1 and A2 are both
connected, then limt!1 ⇠(A1, A2; t) = 0 (see Figure 1(c)).

Finally, we note an interesting connection between the GDD and
|L1�L2|F , the Frobenius norm of the difference of the graph Lapla-
cians. This quantity is closely related to the edge difference distance,
specifically |L1 � L2|2F = dedd(A1, A2) +

P
i((d1)i � (d2)i)

2,
where (dn)i = (Dn)i,i is the weighted degree of vertex i for graph
n (for n = 1, 2). We have seen that ⇠(t) grows from zero at the
origin before decaying, and that the GDD is determined by its maxi-
mum value. Interestingly, ||L1 � L2||F is related to the growth of ⇠
at the origin, in particular

Proposition 2.2 ⇠(t) satisfies ⇠(0) = 0, ⇠0(0) = 0, and ⇠00(0) =
2||L1 � L2||2F , where the derivatives are understood as the right-

hand limits limt!0+⇠
0(t), limt!0+⇠

00(t).

Proof ⇠(0) = 0 was shown previously. Using the matrix relation
||X||2F = tr(XTX), and that e�tL is symmetric for symmetric L,

diagonal. Note that we are not restricting ourselves to unweighted
(binary) graphs. We will make frequent use of the (unnormalized)
graph Laplacian operator [5] , defined by Ln = Dn � An (for n =
1, 2) , where Dn is a diagonal degree matrix for the adjacency An,
i.e. (Dn)i,i =

PN
j=1(An)i,j .

To describe the diffusion process on a graph with adjacency A
(for convenience, we suppress the subscript), we let v(t) 2 RN be
a time-varying vector representing the value of the quantity that is
undergoing diffusion at each vertex. The edge weights ai,j describe
the conductivity between vertices, so that for two vertices i and j,
the quantity ai,j(vi(t) � vj(t)) represents the flux from vertex i
to vertex j across the edge connecting them. Summing over these
fluxes for each vertex yields v0j(t) =

P
i ai,j(vi(t) � vj(t)). It is

straightforward to verify that this may be written as

v0(t) = �Lv(t) (1)

where L is the graph Laplacian corresponding to A. With initial
conditions v(0) at time t = 0, equation 1 has the analytic solution
v(t) = exp(�tL)v(0). Here exp(�tL) is an N ⇥N matrix-valued
function of t, known as the Laplacian exponential diffusion kernel
[6]. We now consider letting v(0) = ej , where ej 2 RN is the
unit vector with all zeros except in the j th component. Running the
diffusion up to time t gives the diffusion pattern exp(�tL)ej , which
is precisely the j th column of exp(�tL).

We are now ready to define the graph diffusion distance. The
columns of the Laplacian exponential kernels, exp(�tL1) and
exp(�tL2), describe the different diffusion patterns centered at
each vertex generated by diffusion up to time t under the two
different sets of weighted edges. Computing the sum of squared
differences between these patterns, summed over all the vertices,
yields

⇠(A1, A2; t) =
X

i,j

((exp(�tL1))i,j � (exp(�tL2))i,j)
2

= || exp(�tL1)� exp(�tL2)||2F (2)

where || · ||F is the matrix Frobenius norm. This defines a family
of distance measures depending on the diffusion time t. The graph
diffusion distance is given by

p
⇠ at the time of maximal difference,

i.e. dgdd(A1, A2) = maxt

p
⇠(A1, A2; t).

Given the spectral decomposition L = V ⇤V 0, the Laplacian
exponential may be computed by

exp(�tL) = V exp(�t⇤)V 0, (3)

where for ⇤, exp(�t⇤) is diagonal with ith entry given by e�t⇤i,i .
We compute dgdd(A1, A2) by first diagonalizing L1 and L2, then,
a straightforward application of (3) and (2) allows computation of
⇠(A1, A2; t) for any fixed t. Finally, we optimize over t by a line
search to give dgdd(A1, A2).

For completeness, we mention here that later we will be compar-
ing the GDD to the simpler edge difference distance, dedd, defined
for two adjacency matrices by

dedd(A1, A2) = |A1 �A2|F . (4)

2.1. Properties of GDD

The GDD is a metric, in the strict mathematical sense, i.e.

Proposition 2.1 For any N ⇥N adjacency matrices A,B,C
i) dgdd(A,B) � 0, and dgdd(A,B) = 0 iff A = B
ii) dgdd(A,B) = dgdd(B,A)
iii) dgdd(A,C)  dgdd(A,B) + dgdd(B,C)

(a) (b)

0 10
0

0.1

t

(c) (d)

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgdd(G

N,2, GN,2
br)/dgdd(G

N,2, GN,2
cc) vs

N . (c) Plot of ⇠(t) for A1 = G5,2, A2 = G5,2
cc , red dot indicates

maximum, corresponding to dgdd(A1, A2)
2. (d) Values of normal-

ized edge deletion perturbation, on edges of G5,2.

Proof Consider the mapping � : A ! e�tA taking A into
C([0,1),RN⇥N), the space of continuous functions from non-
negative real numbers to N ⇥ N matrices. First note that � is
one-to-one, as follows : �(A) = �(B) implies e�tA = e�tB for all
t � 0, then differentiating gives �Ae�tA = �Be�tB , and letting
t ! 0 shows A = B.

Next note that dgdd(A,B) = supt�0||�(A)(t) � �(B)(t)||F ,
so the GDD can be written in terms of the supremum norm, using
the fact the || · ||F is a proper norm. That dgdd is a metric follows
from the properties of the supremum norm.

We note some simple properties of ⇠. First, at t = 0, the dif-
fusion patterns are still equal to their initial conditions for both A1

and A2, and are thus all equal, which implies ⇠(A1, A2; 0) = 0.
Secondly, for any connected graph, i.e. a graph where any two ver-
tices can be connected by some path with nonzero edge weights, as
t ! 1 each diffusion pattern will converge to the constant vec-
tor (1/N, 1/N..., 1/N)T . This implies that if A1 and A2 are both
connected, then limt!1 ⇠(A1, A2; t) = 0 (see Figure 1(c)).

Finally, we note an interesting connection between the GDD and
|L1�L2|F , the Frobenius norm of the difference of the graph Lapla-
cians. This quantity is closely related to the edge difference distance,
specifically |L1 � L2|2F = dedd(A1, A2) +

P
i((d1)i � (d2)i)

2,
where (dn)i = (Dn)i,i is the weighted degree of vertex i for graph
n (for n = 1, 2). We have seen that ⇠(t) grows from zero at the
origin before decaying, and that the GDD is determined by its maxi-
mum value. Interestingly, ||L1 � L2||F is related to the growth of ⇠
at the origin, in particular

Proposition 2.2 ⇠(t) satisfies ⇠(0) = 0, ⇠0(0) = 0, and ⇠00(0) =
2||L1 � L2||2F , where the derivatives are understood as the right-

hand limits limt!0+⇠
0(t), limt!0+⇠

00(t).

Proof ⇠(0) = 0 was shown previously. Using the matrix relation
||X||2F = tr(XTX), and that e�tL is symmetric for symmetric L,

Optimal Transport and Graph Signal Processing for Attributed Graphs

• We can leverage (combine) all that: OptTr ; Diff distance ; GSP (process signals by L)

• We generalize the previous ideas, and we consider:

• two graphs of sizes and and their associated Laplacians:

• the features of these source and target graphs:

• a cost function between features: for any

• the diffused features: and

n m Ls and Lt

X ∈ ℝm×r; Y ∈ ℝn×r

M(X, Y) = [d(xi, yj)] X ∈ ℝm×r; Y ∈ ℝn×r

X̃ = exp(−τsLs) ⋅ X Ỹ = exp(−τtLt) ⋅ Y
Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

The Diffusion Wasserstein Distances for Attributed Graphs
• Then, we define it as:

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Graph Di↵usion Wasserstein Distances 7

so that exp(�⌧L) is a matrix characterizing the graph at some scale ⌧ . Then,
to compare two graphs of the same size (m nodes), given their Laplacian L1

and L2, the authors of [9] propose to consider || exp(�⌧L1)� exp(�⌧L2)||F and
keep the minimum value of this quantity over all the possible ⌧ ’s. While they
show that it is a distance, and that it captures well structural (dis)similarities
between graphs, its shortcoming is that (i) it can only be used with graphs of
the same size, (ii) it forgets about existing features on these graphs and (iii) it
cannot be directly used in an OT setting.

To introduce our proposed Di↵usion Wasserstein distance, we leverage the
closed-form solution of the heat equation applied now to r features X 2 Rm⇥r

on the graph: exp(�⌧L)X. Each such term describes now the smoothing of all
the features on the graph structure, at a specific characteristic scale ⌧ , as seen in
Fig. 2(b). Because it combines features and structure, this solution will be central
in the following definition of our new distance between graphs with features.

Definition 1. Consider a source graph G
s
, a target graph G

t
represented through

two discrete probability measures µ and ⌫ (cf (2)) with weights vectors a 2 Rm
,

b 2 Rn
and Laplacian matrices Ls

2 Rm⇥m
and Lt

2 Rn⇥n
. Let X 2 Rm⇥r

,

Y 2 Rn⇥r
represent the sample sets associated to the features on their vertices.

Given parameters 0  ⌧ s, ⌧ t < 1, consider the di↵used sample sets X̃, Ỹ
represented by the matrices X̃ = exp(�⌧ sLs)X 2 Rm⇥r

, Ỹ = exp(�⌧ tLt)Y 2

Rn⇥r
and define M̃(⌧ s, ⌧ t) := M(X̃, Ỹ) 2 Rm⇥n

, a cost matrix between features

that takes into account the structure of the graphs through di↵usion operators.

We define the Di↵usion Wasserstein distance (DW) between µ and ⌫ as:

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) = min

�2⇧(a,b)
h�, M̃p

i. (4)

Here again M̃p
is the entrywise p-th power of M̃ . The underlying distance is

implicit in M(·, ·). For the sake of concision, the dependency on ⌧ s and ⌧ t will

be omitted from the notation DW
p
p(µ, ⌫) if not specifically required.

3.2 Role of the di↵usion parameters on DW

Denote Ds = exp(�⌧ sLs) 2 Rm⇥m, Dt = exp(�⌧ tLt) 2 Rn⇥n the di↵usion
matrices, which depend on the (symmetric) Laplacians Ls

2 Rm⇥m, Lt
2 Rn⇥n

and the di↵usion parameters 0  ⌧ s, ⌧ t < 1. Given 1  i  m, 1  j  n
let xi, yj 2 Rr be the features on nodes i on G

s and j on G
t, i.e. respectively

the i-th row of X 2 Rm⇥r and the j-th row of Y 2 Rn⇥r, and similarly for
x̃i, ỹj 2 Rr built from X̃ = Ds

X and Ỹ = Dt
Y. Observe that M̃(⌧ s, ⌧ t) and

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) depend on the di↵usion parameters ⌧ s, ⌧ t. When ⌧ s = ⌧ t = 0,

since Ds = Im and Dt = In we have M̃(0, 0) = M hence

DW
p
p(µ, ⌫ | 0, 0) = W

p
p(µ, ⌫), (5)

i.e., DW generalizes the Wasserstein distance W.

• Theoretically, it has good properties:

• it is a distance

• we have bounds for small and large

• it’s efficient to be computed, more than Fused GW

τ

Graph Di↵usion Wasserstein Distances 9

Fig. 3: Numerical illustration of Proposition 2, with distance DW22(µ, ⌫ | ⌧s, ⌧ t) defined in

Eq. (4). E DW
2
2(µ, ⌫ | ⌧s, ⌧ t) is empirically estimated from 2500 independent realisations

of source and target graphs drawn from the same stochastic block model, with p11 =

0.32, p22 = 0.32, p12 = p21 = 0.02 and n = m = 100. The feature vectors X 2 Rm

and Y 2 Rn are arbitrarily chosen and remain fixed across all realisations, to restrict

randomness only to the structures. Empirical median (solid line) and quartiles 1 and 3

(strip) of DW22(µ, ⌫ | ⌧s=⌧, ⌧ t=⌧) are plotted against ⌧ and compared to the Wasserstein

distance W
2
2(µ, ⌫) = DW

2
2(µ, ⌫ | 0, 0) (upper bound) and to the asymptotic regime given

in Eq. (6), when ⌧ ! +1 (lower plateau).

Remark 2. The case where the Laplacians and/or the features are deterministic
is covered by considering probability distributions that are Diracs.

Proof. For brevity we omit the dependency on µ, ⌫.

EDW22 = E inf
�2⇧(a,b)

hM̃2, �i  inf
�

EhM̃2, �i = inf
�
hEM̃2, �i  inf

�
hM2, �i = W

2
2. ut

Moreover, by [18, Remark 2.19] we have W
2
2(µ, ⌫) � k

1
m

Pm
i=1 xi �

1
n

Pn
j=1 yjk

2
2.

If X and Y are such that in fact W22(µ, ⌫) > k
1
m

Pm
i=1 xi �

1
n

Pn
j=1 yjk

2
2 then for

su�ciently large ⌧ s, ⌧ t we must have DW22(µ, ⌫ | ⌧ s, ⌧ t) < W
2
2(µ, ⌫).

However we can find examples such that DW22(µ, ⌫) > W
2
2(µ, ⌫) and EDW22(µ, ⌫) >

W
2
2(µ, ⌫) for all 0 < ⌧s, ⌧ t < 1. For this, it is su�cient to choose X = Y, so that
W
2
2(µ, ⌫) = 0, and deterministic or random graphs and parameters ⌧ s, ⌧ t such

that exp(�⌧ sLs)X is not equal (even up to permutation) to exp(�⌧ tLt)Y, so
that (almost surely) DW22(µ, ⌫ | ⌧ s, ⌧t) > 0.

Figure 3 illustrates the results of Propositions 1 and 2, where we empirically
estimated E DW

2
2(µ, ⌫ | ⌧ s, ⌧ t), and plotted its evolution against ⌧ = ⌧ s = ⌧ t (ex-

perimental conditions are detailed in the legend of Fig. 3). Trivially, we verify
that DW22(µ, ⌫ | 0, 0) = W

2
2(µ, ⌫). But, more importantly, we observe that E DW

2
2 sys-

tematically stands below W
2
2, confirming thus the prediction of Proposition 2, and

converges towards the theoretical bound given in Eq. (6) of Proposition 1, when
⌧ ! 1. Interestingly also, although we know from the counter-example X = Y

above, that it is not true in general, the trend of E DW
2
2 in Fig. 3 seems to validate

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

The Diffusion Wasserstein Distances for Attributed Graphs

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Graph Di↵usion Wasserstein Distances 7

so that exp(�⌧L) is a matrix characterizing the graph at some scale ⌧ . Then,
to compare two graphs of the same size (m nodes), given their Laplacian L1

and L2, the authors of [9] propose to consider || exp(�⌧L1)� exp(�⌧L2)||F and
keep the minimum value of this quantity over all the possible ⌧ ’s. While they
show that it is a distance, and that it captures well structural (dis)similarities
between graphs, its shortcoming is that (i) it can only be used with graphs of
the same size, (ii) it forgets about existing features on these graphs and (iii) it
cannot be directly used in an OT setting.

To introduce our proposed Di↵usion Wasserstein distance, we leverage the
closed-form solution of the heat equation applied now to r features X 2 Rm⇥r

on the graph: exp(�⌧L)X. Each such term describes now the smoothing of all
the features on the graph structure, at a specific characteristic scale ⌧ , as seen in
Fig. 2(b). Because it combines features and structure, this solution will be central
in the following definition of our new distance between graphs with features.

Definition 1. Consider a source graph G
s
, a target graph G

t
represented through

two discrete probability measures µ and ⌫ (cf (2)) with weights vectors a 2 Rm
,

b 2 Rn
and Laplacian matrices Ls

2 Rm⇥m
and Lt

2 Rn⇥n
. Let X 2 Rm⇥r

,

Y 2 Rn⇥r
represent the sample sets associated to the features on their vertices.

Given parameters 0  ⌧ s, ⌧ t < 1, consider the di↵used sample sets X̃, Ỹ
represented by the matrices X̃ = exp(�⌧ sLs)X 2 Rm⇥r

, Ỹ = exp(�⌧ tLt)Y 2

Rn⇥r
and define M̃(⌧ s, ⌧ t) := M(X̃, Ỹ) 2 Rm⇥n

, a cost matrix between features

that takes into account the structure of the graphs through di↵usion operators.

We define the Di↵usion Wasserstein distance (DW) between µ and ⌫ as:

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) = min

�2⇧(a,b)
h�, M̃p

i. (4)

Here again M̃p
is the entrywise p-th power of M̃ . The underlying distance is

implicit in M(·, ·). For the sake of concision, the dependency on ⌧ s and ⌧ t will

be omitted from the notation DW
p
p(µ, ⌫) if not specifically required.

3.2 Role of the di↵usion parameters on DW

Denote Ds = exp(�⌧ sLs) 2 Rm⇥m, Dt = exp(�⌧ tLt) 2 Rn⇥n the di↵usion
matrices, which depend on the (symmetric) Laplacians Ls

2 Rm⇥m, Lt
2 Rn⇥n

and the di↵usion parameters 0  ⌧ s, ⌧ t < 1. Given 1  i  m, 1  j  n
let xi, yj 2 Rr be the features on nodes i on G

s and j on G
t, i.e. respectively

the i-th row of X 2 Rm⇥r and the j-th row of Y 2 Rn⇥r, and similarly for
x̃i, ỹj 2 Rr built from X̃ = Ds

X and Ỹ = Dt
Y. Observe that M̃(⌧ s, ⌧ t) and

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) depend on the di↵usion parameters ⌧ s, ⌧ t. When ⌧ s = ⌧ t = 0,

since Ds = Im and Dt = In we have M̃(0, 0) = M hence

DW
p
p(µ, ⌫ | 0, 0) = W

p
p(µ, ⌫), (5)

i.e., DW generalizes the Wasserstein distance W.

• Experimentally, it works well: the task for comparison is Domain Adaptation

• by itself a cheap way for DA on Attr. Graphs

• can be combined with Fused GW, for an even better

DifFused GW distance, which has best perf. !

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

1.4. Domain Adaptation

(a) Distributions before alignment. (b) Distributions after alignment.

Figure 1.9: Example of a toy DA problem. Two point distributions are given:
a source in red circles and a target in blue crosses. Both are similar up to a
displacement, indicated with a black arrow. A DA problem consists in finding
this displacement, looking only at the two distributions.

This theorem states that, provided the training sample is large enough (n
large), the true risk can be bounded arbitrarily close to the empirical risk with
arbitrarily large probability. For a more complete introduction, we refer the
reader to [61].

1.4.2 Definition of Domain Adaptation
A Domain Adaptation (DA) scenario arises in machine learning when we ob-
serve a change of distribution (a.k.a. domain shift) between the training data
(the source distribution) and the samples used at test time with the deployed
model (the target distribution). To cite a few examples, DA can occur in image
processing, when changing the lighting or camera lens while acquiring images,
in demography with social mobility of people or in fraud detection, with fraud-
sters trying to adapt over time to better mimic genuine behaviours. Most of
the time, training a new model from the target distribution is not desirable for
several reasons: (i) the algorithmic complexity required for optimizing from
scratch the parameters of a new model; (ii) the lack of target training exam-
ples; (iii) the lack (or absence) of supervision (i.e. no labelled target data
available), etc. In such a setting, the domain adaptation theory [63, 64] sug-
gests to reduce the divergence between the source and the target distributions
while learning an e�cient model from the labelled source data.

A visual illustration of a DA problem is given on Figure 1.9. It features two
similar point clouds. The red one represents the source data; they have to be
re-aligned with the target data. Because the goal is to align the distributions,
there is no one-to-one correspondence between source and target points to be
found; instead, here, a rotation and a translation are used to align them.

One way to solve DA problems is to use Optimal Transport [16, 42] (OT),
as presented earlier in Section 1.3. As illustrated in Figure 1.9, OT provides
a natural geometry for comparing and aligning two distributions in the space
of probability measures. In the discrete case, when dealing with point clouds,

21

4.2. Hyper-parameter · selection of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

61

The Diffusion Wasserstein Distances for Attributed Graphs

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Graph Di↵usion Wasserstein Distances 7

so that exp(�⌧L) is a matrix characterizing the graph at some scale ⌧ . Then,
to compare two graphs of the same size (m nodes), given their Laplacian L1

and L2, the authors of [9] propose to consider || exp(�⌧L1)� exp(�⌧L2)||F and
keep the minimum value of this quantity over all the possible ⌧ ’s. While they
show that it is a distance, and that it captures well structural (dis)similarities
between graphs, its shortcoming is that (i) it can only be used with graphs of
the same size, (ii) it forgets about existing features on these graphs and (iii) it
cannot be directly used in an OT setting.

To introduce our proposed Di↵usion Wasserstein distance, we leverage the
closed-form solution of the heat equation applied now to r features X 2 Rm⇥r

on the graph: exp(�⌧L)X. Each such term describes now the smoothing of all
the features on the graph structure, at a specific characteristic scale ⌧ , as seen in
Fig. 2(b). Because it combines features and structure, this solution will be central
in the following definition of our new distance between graphs with features.

Definition 1. Consider a source graph G
s
, a target graph G

t
represented through

two discrete probability measures µ and ⌫ (cf (2)) with weights vectors a 2 Rm
,

b 2 Rn
and Laplacian matrices Ls

2 Rm⇥m
and Lt

2 Rn⇥n
. Let X 2 Rm⇥r

,

Y 2 Rn⇥r
represent the sample sets associated to the features on their vertices.

Given parameters 0  ⌧ s, ⌧ t < 1, consider the di↵used sample sets X̃, Ỹ
represented by the matrices X̃ = exp(�⌧ sLs)X 2 Rm⇥r

, Ỹ = exp(�⌧ tLt)Y 2

Rn⇥r
and define M̃(⌧ s, ⌧ t) := M(X̃, Ỹ) 2 Rm⇥n

, a cost matrix between features

that takes into account the structure of the graphs through di↵usion operators.

We define the Di↵usion Wasserstein distance (DW) between µ and ⌫ as:

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) = min

�2⇧(a,b)
h�, M̃p

i. (4)

Here again M̃p
is the entrywise p-th power of M̃ . The underlying distance is

implicit in M(·, ·). For the sake of concision, the dependency on ⌧ s and ⌧ t will

be omitted from the notation DW
p
p(µ, ⌫) if not specifically required.

3.2 Role of the di↵usion parameters on DW

Denote Ds = exp(�⌧ sLs) 2 Rm⇥m, Dt = exp(�⌧ tLt) 2 Rn⇥n the di↵usion
matrices, which depend on the (symmetric) Laplacians Ls

2 Rm⇥m, Lt
2 Rn⇥n

and the di↵usion parameters 0  ⌧ s, ⌧ t < 1. Given 1  i  m, 1  j  n
let xi, yj 2 Rr be the features on nodes i on G

s and j on G
t, i.e. respectively

the i-th row of X 2 Rm⇥r and the j-th row of Y 2 Rn⇥r, and similarly for
x̃i, ỹj 2 Rr built from X̃ = Ds

X and Ỹ = Dt
Y. Observe that M̃(⌧ s, ⌧ t) and

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) depend on the di↵usion parameters ⌧ s, ⌧ t. When ⌧ s = ⌧ t = 0,

since Ds = Im and Dt = In we have M̃(0, 0) = M hence

DW
p
p(µ, ⌫ | 0, 0) = W

p
p(µ, ⌫), (5)

i.e., DW generalizes the Wasserstein distance W.

• Experimentally, it works well: the task for comparison is Domain Adaptation

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

4.2. Hyper-parameter · selection of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

61

12 A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat and R. Gribonval

(a) (b)

[⌘t]dB 6 3 0 -3 -6 -9 -12

↵ (FGW) 0.4 0.6 0.6 0.6 0.7 0.7 0.6
↵ (DFGW) 0.4 0.6 0.6 0.7 0.7 0.6 0.7

f 1 2 3 4 6

↵ (FGW) 0.63 0.63 0.45 0.39 0.54
↵ (DFGW) 0.64 0.56 0.66 0.62 0.46

(c) (d)

Fig. 4: Comparison of OT methods in a domain adaptation task between graphs. We

consider attributed graphs whose structures follow a contextual stochastic block model

and attributes a mixture Gaussian model. Y -axes of plots (a)–(b) represent the clas-

sification accuracies. Hyper-parameters and mean performance are determined from

two distinct sets of 50 i.i.d. realisations each. (a) Structures of Gs and Gt are identical

(p11 = p22 = 0.4, p12 = p21 = 0.05, n = m = 250). SNR of the source features is fixed

([⌘s]dB = 20 log10(⌘
s)=6 dB) and �t of features Yj ⇠ l(j)+�tN (0, 1) varies according

to [⌘t]dB along the X-axis. (b) Features SNR [⌘s]dB=[⌘t]dB=6dB. The target graph

follows a SBM with symmetric connectivity matrix pt12=ps12=0.05, pt11=ps11=0.4 and

pt22 = ps22/f with ps22 =0.4 and f variable on the X-axis. Tables beneath the plots give

the tuned hyper-parameters values for each case. (c) Performance when uncertainty

bears on the features and on the structures simultaneously ([⌘t]dB=0dB, f=3).

(d) Computing times wrt the size of the graphs n=m ([⌘s]dB=[⌘t]dB=0dB, f=1).

from [Barbe et al.,
ECML-PKDD 2020]

The Diffusion Wasserstein Distances for Attributed Graphs, in action

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

• How to set diffusion parameters ? For unsupervised DA !

• Use an ER random graph and features as Wasserstein barycenter

as an impostor:

• And a triplet loss to be optimized for :

• Avoid the use of Circular Validation for DA

τ

III. OPTIMIZATION OF THE DIFFUSION TIME ⌧

In this section, we present the main contribution of this
paper. Unlike the circular validation [9] that aims at tuning
hyper-parameters in unsupervised DA by benefiting from
pseudo-target labels, we suggest here to directly optimize the
diffusion time ⌧ in a self-supervised way.

A. Circular validation

One peculiarity of unsupervised domain adaptation comes
from the absence of target labels. In such a setting, a standard
method to tune hyper-parameters is the circular validation [9].
The “circular” aspect is due to the fact that the labels go back-
and-forth between the source and the target data. Let us detail
the underlying principle in the context of an OT-based graph
domain adaptation task. Given a transport map � and a set of
labels l

s
2 C for the source graph, one can define pseudo-

labels l̂
t for the target graph by choosing, for each node, the

label from which the maximum weight comes from:

l̂
t
j = argmax

l2C

8
<

:
X

1im

�ij�lsi=l

9
=

; . (6)

Like-wise, pseudo-labels for the source graph can be re-
inferred in a similar fashion:

l̂
s
i = argmax

l2C

8
<

:
X

1jn

�ij�l̂tj=l

9
=

; . (7)

It is now possible to define an unsupervised score for rank-
ing the transport maps obtained by different sets of hyper-
parameters. This score measures the level of agreement be-
tween the original and pseudo source labels:

s(�) =
1

m

mX

i=1

�lsi=l̂si
. (8)

It is important to note that while a low score of s(�) is
an evidence that the considered hyper-parameter does not
lead to a good model, a high score would not allow us to
definitely conclude. Indeed, for two graphs of the same size,
any permutation matrix � would produce a perfect score of 1,
that can make the circular validation unstable.

B. A triplet-based loss function to learn ⌧

To address the limitation of the circular validation, we
propose in the following to learn the diffusion time by min-
imizing a loss function that considers an impostor attributed
graph. Inspired from the triplet-based constraints used, e.g., in
metric learning [10], the impostor facilitates the choice of the
diffusion time ⌧ that brings G

s and G
t close together without

suffering from degenerate phenomena.

Definition III.1. Let G
s and G

t be two source and target
graphs of size m and n respectively with their associated
probability distributions µ and ⌫ over the nodes. The impostor
G
0 with respect to G

s and G
t is a graph with i = d

m+n
2 e

Fig. 3: Illustration of the construction of the impostor (in grey)
of two graphs (in red and blue). Features correspond to the 2D
coordinates of the nodes. Impostor nodes are supported on the
Wasserstein barycenter (eq. 9) of the original graphs’ features.
Impostor edges are drawn uniformly with probability equal to
the average connection probability of the two original graphs.

nodes whose features X
0 are defined as the minimizer of the

following Wasserstein barycenter problem:

X
0 = argmin

X2Ri⇥r

⇢
1

2

�
W(Xs

, X) + W(Xt
, X)

��
. (9)

The adjacency matrix A
0 of G

0 is sampled according to an
Erdös-Rényi model [15], with connection probability p

0 =
ps+pt

2 the average connection probability of the two graphs.

The solution of the Wasserstein barycenter problem is
difficult in practice and is the subject of a rich literature (see
[16]). Our problem is a free-support barycenter problem where
the main obstacle is that we have to optimize on the support
X of the barycenter [17], [18]. It has been recently proved
that this problem can be solved in polynomial time when the
number of points of each measure is fixed [1]. In our case,
we chose to rely on the heuristic proposed in [16] which is
reasonable as there are only 2 distributions involved and the
weights of the barycenter are considered as fixed (uniform in
our case). Overall it boils down to iterating over 1) solving
two linear OT problems W(Xs

, X) and W(Xt
, X) 2) finding

the support X which can be done in closed-form as detailed in
[17] (Equation 8). The procedure for generating the impostor
is illustrated in Figure 3 for two toy graphs with 2D features.

The diffusion parameter can be now defined as the solution
of the following optimization problem:

⌧
⇤ = argmin

⌧�0
{L(⌧)} , with (10)

L(⌧) = DWp(G
s
,G

t
| ⌧)�

�
DWp(G

s
,G

0
| ⌧) + DWp(G

t
,G

0
| ⌧)

�
.

(11)
Intuitively, like in metric learning, the idea is to learn the

parameters of a model (here, a unique diffusion time ⌧) that
(i) constrains G

s and G
t to get closer while (ii) preventing a

scenario facilitating the bringing together of Gs and G
t with a

τ

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

III. OPTIMIZATION OF THE DIFFUSION TIME ⌧

In this section, we present the main contribution of this
paper. Unlike the circular validation [9] that aims at tuning
hyper-parameters in unsupervised DA by benefiting from
pseudo-target labels, we suggest here to directly optimize the
diffusion time ⌧ in a self-supervised way.

A. Circular validation

One peculiarity of unsupervised domain adaptation comes
from the absence of target labels. In such a setting, a standard
method to tune hyper-parameters is the circular validation [9].
The “circular” aspect is due to the fact that the labels go back-
and-forth between the source and the target data. Let us detail
the underlying principle in the context of an OT-based graph
domain adaptation task. Given a transport map � and a set of
labels l

s
2 C for the source graph, one can define pseudo-

labels l̂
t for the target graph by choosing, for each node, the

label from which the maximum weight comes from:

l̂
t
j = argmax

l2C

8
<

:
X

1im

�ij�lsi=l

9
=

; . (6)

Like-wise, pseudo-labels for the source graph can be re-
inferred in a similar fashion:

l̂
s
i = argmax

l2C

8
<

:
X

1jn

�ij�l̂tj=l

9
=

; . (7)

It is now possible to define an unsupervised score for rank-
ing the transport maps obtained by different sets of hyper-
parameters. This score measures the level of agreement be-
tween the original and pseudo source labels:

s(�) =
1

m

mX

i=1

�lsi=l̂si
. (8)

It is important to note that while a low score of s(�) is
an evidence that the considered hyper-parameter does not
lead to a good model, a high score would not allow us to
definitely conclude. Indeed, for two graphs of the same size,
any permutation matrix � would produce a perfect score of 1,
that can make the circular validation unstable.

B. A triplet-based loss function to learn ⌧

To address the limitation of the circular validation, we
propose in the following to learn the diffusion time by min-
imizing a loss function that considers an impostor attributed
graph. Inspired from the triplet-based constraints used, e.g., in
metric learning [10], the impostor facilitates the choice of the
diffusion time ⌧ that brings G

s and G
t close together without

suffering from degenerate phenomena.

Definition III.1. Let G
s and G

t be two source and target
graphs of size m and n respectively with their associated
probability distributions µ and ⌫ over the nodes. The impostor
G
0 with respect to G

s and G
t is a graph with i = d

m+n
2 e

Fig. 3: Illustration of the construction of the impostor (in grey)
of two graphs (in red and blue). Features correspond to the 2D
coordinates of the nodes. Impostor nodes are supported on the
Wasserstein barycenter (eq. 9) of the original graphs’ features.
Impostor edges are drawn uniformly with probability equal to
the average connection probability of the two original graphs.

nodes whose features X
0 are defined as the minimizer of the

following Wasserstein barycenter problem:

X
0 = argmin

X2Ri⇥r

⇢
1

2

�
W(Xs

, X) + W(Xt
, X)

��
. (9)

The adjacency matrix A
0 of G

0 is sampled according to an
Erdös-Rényi model [15], with connection probability p

0 =
ps+pt

2 the average connection probability of the two graphs.

The solution of the Wasserstein barycenter problem is
difficult in practice and is the subject of a rich literature (see
[16]). Our problem is a free-support barycenter problem where
the main obstacle is that we have to optimize on the support
X of the barycenter [17], [18]. It has been recently proved
that this problem can be solved in polynomial time when the
number of points of each measure is fixed [1]. In our case,
we chose to rely on the heuristic proposed in [16] which is
reasonable as there are only 2 distributions involved and the
weights of the barycenter are considered as fixed (uniform in
our case). Overall it boils down to iterating over 1) solving
two linear OT problems W(Xs

, X) and W(Xt
, X) 2) finding

the support X which can be done in closed-form as detailed in
[17] (Equation 8). The procedure for generating the impostor
is illustrated in Figure 3 for two toy graphs with 2D features.

The diffusion parameter can be now defined as the solution
of the following optimization problem:

⌧
⇤ = argmin

⌧�0
{L(⌧)} , with (10)

L(⌧) = DWp(G
s
,G

t
| ⌧)�

�
DWp(G

s
,G

0
| ⌧) + DWp(G

t
,G

0
| ⌧)

�
.

(11)
Intuitively, like in metric learning, the idea is to learn the

parameters of a model (here, a unique diffusion time ⌧) that
(i) constrains G

s and G
t to get closer while (ii) preventing a

scenario facilitating the bringing together of Gs and G
t with a

III. OPTIMIZATION OF THE DIFFUSION TIME ⌧

In this section, we present the main contribution of this
paper. Unlike the circular validation [9] that aims at tuning
hyper-parameters in unsupervised DA by benefiting from
pseudo-target labels, we suggest here to directly optimize the
diffusion time ⌧ in a self-supervised way.

A. Circular validation

One peculiarity of unsupervised domain adaptation comes
from the absence of target labels. In such a setting, a standard
method to tune hyper-parameters is the circular validation [9].
The “circular” aspect is due to the fact that the labels go back-
and-forth between the source and the target data. Let us detail
the underlying principle in the context of an OT-based graph
domain adaptation task. Given a transport map � and a set of
labels l

s
2 C for the source graph, one can define pseudo-

labels l̂
t for the target graph by choosing, for each node, the

label from which the maximum weight comes from:

l̂
t
j = argmax

l2C

8
<

:
X

1im

�ij�lsi=l

9
=

; . (6)

Like-wise, pseudo-labels for the source graph can be re-
inferred in a similar fashion:

l̂
s
i = argmax

l2C

8
<

:
X

1jn

�ij�l̂tj=l

9
=

; . (7)

It is now possible to define an unsupervised score for rank-
ing the transport maps obtained by different sets of hyper-
parameters. This score measures the level of agreement be-
tween the original and pseudo source labels:

s(�) =
1

m

mX

i=1

�lsi=l̂si
. (8)

It is important to note that while a low score of s(�) is
an evidence that the considered hyper-parameter does not
lead to a good model, a high score would not allow us to
definitely conclude. Indeed, for two graphs of the same size,
any permutation matrix � would produce a perfect score of 1,
that can make the circular validation unstable.

B. A triplet-based loss function to learn ⌧

To address the limitation of the circular validation, we
propose in the following to learn the diffusion time by min-
imizing a loss function that considers an impostor attributed
graph. Inspired from the triplet-based constraints used, e.g., in
metric learning [10], the impostor facilitates the choice of the
diffusion time ⌧ that brings G

s and G
t close together without

suffering from degenerate phenomena.

Definition III.1. Let G
s and G

t be two source and target
graphs of size m and n respectively with their associated
probability distributions µ and ⌫ over the nodes. The impostor
G
0 with respect to G

s and G
t is a graph with i = d

m+n
2 e

Fig. 3: Illustration of the construction of the impostor (in grey)
of two graphs (in red and blue). Features correspond to the 2D
coordinates of the nodes. Impostor nodes are supported on the
Wasserstein barycenter (eq. 9) of the original graphs’ features.
Impostor edges are drawn uniformly with probability equal to
the average connection probability of the two original graphs.

nodes whose features X
0 are defined as the minimizer of the

following Wasserstein barycenter problem:

X
0 = argmin

X2Ri⇥r

⇢
1

2

�
W(Xs

, X) + W(Xt
, X)

��
. (9)

The adjacency matrix A
0 of G

0 is sampled according to an
Erdös-Rényi model [15], with connection probability p

0 =
ps+pt

2 the average connection probability of the two graphs.

The solution of the Wasserstein barycenter problem is
difficult in practice and is the subject of a rich literature (see
[16]). Our problem is a free-support barycenter problem where
the main obstacle is that we have to optimize on the support
X of the barycenter [17], [18]. It has been recently proved
that this problem can be solved in polynomial time when the
number of points of each measure is fixed [1]. In our case,
we chose to rely on the heuristic proposed in [16] which is
reasonable as there are only 2 distributions involved and the
weights of the barycenter are considered as fixed (uniform in
our case). Overall it boils down to iterating over 1) solving
two linear OT problems W(Xs

, X) and W(Xt
, X) 2) finding

the support X which can be done in closed-form as detailed in
[17] (Equation 8). The procedure for generating the impostor
is illustrated in Figure 3 for two toy graphs with 2D features.

The diffusion parameter can be now defined as the solution
of the following optimization problem:

⌧
⇤ = argmin

⌧�0
{L(⌧)} , with (10)

L(⌧) = DWp(G
s
,G

t
| ⌧)�

�
DWp(G

s
,G

0
| ⌧) + DWp(G

t
,G

0
| ⌧)

�
.

(11)
Intuitively, like in metric learning, the idea is to learn the

parameters of a model (here, a unique diffusion time ⌧) that
(i) constrains G

s and G
t to get closer while (ii) preventing a

scenario facilitating the bringing together of Gs and G
t with a

from [Barbe et al.,
ICTAI 2021]

The Diffusion Wasserstein Distances for Attributed Graphs, in action

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Graph Di↵usion Wasserstein Distances 7

so that exp(�⌧L) is a matrix characterizing the graph at some scale ⌧ . Then,
to compare two graphs of the same size (m nodes), given their Laplacian L1

and L2, the authors of [9] propose to consider || exp(�⌧L1)� exp(�⌧L2)||F and
keep the minimum value of this quantity over all the possible ⌧ ’s. While they
show that it is a distance, and that it captures well structural (dis)similarities
between graphs, its shortcoming is that (i) it can only be used with graphs of
the same size, (ii) it forgets about existing features on these graphs and (iii) it
cannot be directly used in an OT setting.

To introduce our proposed Di↵usion Wasserstein distance, we leverage the
closed-form solution of the heat equation applied now to r features X 2 Rm⇥r

on the graph: exp(�⌧L)X. Each such term describes now the smoothing of all
the features on the graph structure, at a specific characteristic scale ⌧ , as seen in
Fig. 2(b). Because it combines features and structure, this solution will be central
in the following definition of our new distance between graphs with features.

Definition 1. Consider a source graph G
s
, a target graph G

t
represented through

two discrete probability measures µ and ⌫ (cf (2)) with weights vectors a 2 Rm
,

b 2 Rn
and Laplacian matrices Ls

2 Rm⇥m
and Lt

2 Rn⇥n
. Let X 2 Rm⇥r

,

Y 2 Rn⇥r
represent the sample sets associated to the features on their vertices.

Given parameters 0  ⌧ s, ⌧ t < 1, consider the di↵used sample sets X̃, Ỹ
represented by the matrices X̃ = exp(�⌧ sLs)X 2 Rm⇥r

, Ỹ = exp(�⌧ tLt)Y 2

Rn⇥r
and define M̃(⌧ s, ⌧ t) := M(X̃, Ỹ) 2 Rm⇥n

, a cost matrix between features

that takes into account the structure of the graphs through di↵usion operators.

We define the Di↵usion Wasserstein distance (DW) between µ and ⌫ as:

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) = min

�2⇧(a,b)
h�, M̃p

i. (4)

Here again M̃p
is the entrywise p-th power of M̃ . The underlying distance is

implicit in M(·, ·). For the sake of concision, the dependency on ⌧ s and ⌧ t will

be omitted from the notation DW
p
p(µ, ⌫) if not specifically required.

3.2 Role of the di↵usion parameters on DW

Denote Ds = exp(�⌧ sLs) 2 Rm⇥m, Dt = exp(�⌧ tLt) 2 Rn⇥n the di↵usion
matrices, which depend on the (symmetric) Laplacians Ls

2 Rm⇥m, Lt
2 Rn⇥n

and the di↵usion parameters 0  ⌧ s, ⌧ t < 1. Given 1  i  m, 1  j  n
let xi, yj 2 Rr be the features on nodes i on G

s and j on G
t, i.e. respectively

the i-th row of X 2 Rm⇥r and the j-th row of Y 2 Rn⇥r, and similarly for
x̃i, ỹj 2 Rr built from X̃ = Ds

X and Ỹ = Dt
Y. Observe that M̃(⌧ s, ⌧ t) and

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) depend on the di↵usion parameters ⌧ s, ⌧ t. When ⌧ s = ⌧ t = 0,

since Ds = Im and Dt = In we have M̃(0, 0) = M hence

DW
p
p(µ, ⌫ | 0, 0) = W

p
p(µ, ⌫), (5)

i.e., DW generalizes the Wasserstein distance W.

• Impostor + Triplet loss = set the diffusion parameter !

• No Circular Validation => more stability, better perf.

• Take-Home message : GSP + OT works very well

• or even : GSP + ML rocks for graphs learning!

τ

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

III. OPTIMIZATION OF THE DIFFUSION TIME ⌧

In this section, we present the main contribution of this
paper. Unlike the circular validation [9] that aims at tuning
hyper-parameters in unsupervised DA by benefiting from
pseudo-target labels, we suggest here to directly optimize the
diffusion time ⌧ in a self-supervised way.

A. Circular validation

One peculiarity of unsupervised domain adaptation comes
from the absence of target labels. In such a setting, a standard
method to tune hyper-parameters is the circular validation [9].
The “circular” aspect is due to the fact that the labels go back-
and-forth between the source and the target data. Let us detail
the underlying principle in the context of an OT-based graph
domain adaptation task. Given a transport map � and a set of
labels l

s
2 C for the source graph, one can define pseudo-

labels l̂
t for the target graph by choosing, for each node, the

label from which the maximum weight comes from:

l̂
t
j = argmax

l2C

8
<

:
X

1im

�ij�lsi=l

9
=

; . (6)

Like-wise, pseudo-labels for the source graph can be re-
inferred in a similar fashion:

l̂
s
i = argmax

l2C

8
<

:
X

1jn

�ij�l̂tj=l

9
=

; . (7)

It is now possible to define an unsupervised score for rank-
ing the transport maps obtained by different sets of hyper-
parameters. This score measures the level of agreement be-
tween the original and pseudo source labels:

s(�) =
1

m

mX

i=1

�lsi=l̂si
. (8)

It is important to note that while a low score of s(�) is
an evidence that the considered hyper-parameter does not
lead to a good model, a high score would not allow us to
definitely conclude. Indeed, for two graphs of the same size,
any permutation matrix � would produce a perfect score of 1,
that can make the circular validation unstable.

B. A triplet-based loss function to learn ⌧

To address the limitation of the circular validation, we
propose in the following to learn the diffusion time by min-
imizing a loss function that considers an impostor attributed
graph. Inspired from the triplet-based constraints used, e.g., in
metric learning [10], the impostor facilitates the choice of the
diffusion time ⌧ that brings G

s and G
t close together without

suffering from degenerate phenomena.

Definition III.1. Let G
s and G

t be two source and target
graphs of size m and n respectively with their associated
probability distributions µ and ⌫ over the nodes. The impostor
G
0 with respect to G

s and G
t is a graph with i = d

m+n
2 e

Fig. 3: Illustration of the construction of the impostor (in grey)
of two graphs (in red and blue). Features correspond to the 2D
coordinates of the nodes. Impostor nodes are supported on the
Wasserstein barycenter (eq. 9) of the original graphs’ features.
Impostor edges are drawn uniformly with probability equal to
the average connection probability of the two original graphs.

nodes whose features X
0 are defined as the minimizer of the

following Wasserstein barycenter problem:

X
0 = argmin

X2Ri⇥r

⇢
1

2

�
W(Xs

, X) + W(Xt
, X)

��
. (9)

The adjacency matrix A
0 of G

0 is sampled according to an
Erdös-Rényi model [15], with connection probability p

0 =
ps+pt

2 the average connection probability of the two graphs.

The solution of the Wasserstein barycenter problem is
difficult in practice and is the subject of a rich literature (see
[16]). Our problem is a free-support barycenter problem where
the main obstacle is that we have to optimize on the support
X of the barycenter [17], [18]. It has been recently proved
that this problem can be solved in polynomial time when the
number of points of each measure is fixed [1]. In our case,
we chose to rely on the heuristic proposed in [16] which is
reasonable as there are only 2 distributions involved and the
weights of the barycenter are considered as fixed (uniform in
our case). Overall it boils down to iterating over 1) solving
two linear OT problems W(Xs

, X) and W(Xt
, X) 2) finding

the support X which can be done in closed-form as detailed in
[17] (Equation 8). The procedure for generating the impostor
is illustrated in Figure 3 for two toy graphs with 2D features.

The diffusion parameter can be now defined as the solution
of the following optimization problem:

⌧
⇤ = argmin

⌧�0
{L(⌧)} , with (10)

L(⌧) = DWp(G
s
,G

t
| ⌧)�

�
DWp(G

s
,G

0
| ⌧) + DWp(G

t
,G

0
| ⌧)

�
.

(11)
Intuitively, like in metric learning, the idea is to learn the

parameters of a model (here, a unique diffusion time ⌧) that
(i) constrains G

s and G
t to get closer while (ii) preventing a

scenario facilitating the bringing together of Gs and G
t with a

the N nodes, a label +1 or �1 is chosen randomly with
equal probability. For each node, a 1D feature is generated
randomly by sampling a Gaussian distribution N (l,�), where
l is the node’s label and � is considered as a hyper-parameter.
Links between nodes are sampled according to a Bernoulli
distribution of probability pl,l0/N where l and l

0 are the
node’s labels. Therefore, a graph is described by its size N ,
its labels l 2 {+1,�1}N , its attributes X 2 RN and its
adjacency matrix A 2 {0, 1}N⇥N . We will add super-scripts
s or t to designate either source or target quantities. The
hyper-parameters are the sizes m and n of G

s and G
t,

the bandwidths �
s and �

t, and the connectivity matrices✓
p
s
+1,+1 p

s
�1,+1

p
s
+1,�1 p

s
�1,�1

◆
and

✓
p
t
+1,+1 p

t
�1,+1

p
t
+1,�1 p

t
�1,�1

◆
.

b) OT methods compared: We compare the following OT
methods that can take advantage of the features and structure
of both graphs, and only the source labels:

• The Wasserstein distance (W) [3] using only the features.
• The Gromov Wasserstein distance (GW) [6] taking only

into account the structure of the graphs.
• The Fused Gromov-Wasserstein distance (FGW) [7] using

both the feature and the structural information.
• The DA method based on the Wasserstein distance with

Laplacian regularisation OT_LAPLACE [26].
• The DA method based on the Wasserstein distance with

a group-lasso regularizer for the labels (L1L2_GL) [5].
• The Diffusion-Wasserstein distance (DW CV) [8], where

⌧ is tuned using a circular validation criterion.
• The Diffusion-Wasserstein distance, where ⌧ is the mini-

mizer of our loss function L(⌧), with (DWL") and without
(DWL) entropic regularization.

c) Experimental setup and results: 50 source/target
graphs pairs are generated using the CSBM model described
above. A transport map � is learned for each method. Then the
labels are transported according to the rule defined in (6). Us-
ing the ground truth labels, the accuracy is computed for each
method. Each method is given 20 trials to find its best hyper-
parameters, using random search and a circular validation
criterion. For FGW, ↵ is linearly sampled in [10�6

, 1� 10�6].
For DW, ⌧ is logarithmically sampled in [10�3

, 10�0.5], and
for all regularization based methods, the corresponding hyper-
parameters range logarithmically in the interval [10�2

, 10�0.5].
The synthetic data parameters are n = m = 960, �s = 2 and

�
t = 4, source and target connectivity matrices

✓
96 12
12 96

◆

and
✓
96 12
12 32

◆
respectively.

The results are reported in Figure 6. The accuracy scores of
each method over the 50 graph pairs are plotted as a boxplot,
displaying the median performance, the quartiles and the 10th
and 90th percentiles as well as the outliers (i.e. out of the 10th
and 90th percentiles). We can make the following comments.
First, we can note that the Gromov Wasserstein distance is
worse than random guessing. This behavior can probably be
explained by a coupling matrix that permutes the classes.

Fig. 6: Median, quartile and decile accuracy of various OT
methods on the task of transferring the labels of Gs to G

t.

Second, the approaches that take into account both the feature
and the structural information (i.e. FGW and DW-based methods)
outperform the competitors. Third, DWL" and DWL are better
than any other method with a more stable behavior for the
regularized version of our loss function. Finally, as expected,
learning ⌧ yields a significant improvement compared to
DW CV based on the circular validation.

B. Domain Adaptation on real data
This second series of experiments concerns the real

ogbn-arxiv graph [23]. Although originally designed for
node classification, we cast the problem as a Domain Adapta-
tion task and we address it using the same methods as in the
previous section. Each node of the graph represents a paper
published in Arxiv. A link from one node to another indicates
that this later is cited by the former. The feature of a node
is an embedding of the paper’s title and abstract, and it lies
in R128. Nodes are labelled according to their corresponding
subject area among 40 possible labels. Finally, each node is
associated with a publication year.

In our setting, the source graph corresponds to the papers
published before 2004. Its size is m = 1279. The target graph
contains the articles published before 2005 (n = 1666 nodes).
This makes the source graph a sub-graph of the target one and
therefore, the DA accuracy is measured only on nodes of year
2005:

acc(�) =
1

387

1666X

j=1280

�l̂tj=ltj
. (20)

For GW, the source and target cost matrices are built from
the shortest-distances in the graph. Because the graph is
not connected and the solver cannot handle infinite costs
between two nodes, infinite values are replaced by twice the

from [Barbe et al.,
ICTAI 2021]

Another take at the low-level task: compute distances
• Why ? Distances are at the input of many (many!) methods

 “Real“ distances between graphs are often hard to compute (G. Edit Distance),

 or can ignore some aspects (e.g. spectral distances),

 and usually forget about attributes

• What for ? Parametric distances allow for Metric Learning

• cf. Tutorial on Metric Learning (A. Bellet), 2013 & https://arxiv.org/abs/1306.6709
A Survey on Metric Learning for Feature Vectors and Structured Data

Metric Learning

Figure 1: Illustration of metric learning applied to a face recognition task. For simplicity,
images are represented as points in 2 dimensions. Pairwise constraints, shown
in the left pane, are composed of images representing the same person (must-
link, shown in green) or different persons (cannot-link, shown in red). We wish
to adapt the metric so that there are fewer constraint violations (right pane).
Images are taken from the Caltech Faces dataset.8

Underlying
distribution

Metric learning
algorithm

Metric-based
algorithm

Data
sample

Learned
metric

Learned
predictor

Prediction

Figure 2: The common process in metric learning. A metric is learned from training data
and plugged into an algorithm that outputs a predictor (e.g., a classifier, a regres-
sor, a recommender system...) which hopefully performs better than a predictor
induced by a standard (non-learned) metric.

λ ≥ 0 is the regularization parameter. As we will see in this survey, state-of-the-art metric
learning formulations essentially differ by their choice of metric, constraints, loss function
and regularizer.

After the metric learning phase, the resulting function is used to improve the perfor-
mance of a metric-based algorithm, which is most often k-Nearest Neighbors (k-NN), but
may also be a clustering algorithm such as K-Means, a ranking algorithm, etc. The common
process in metric learning is summarized in Figure 2.

1.2 Applications

Metric learning can potentially be beneficial whenever the notion of metric between in-
stances plays an important role. Recently, it has been applied to problems as diverse as
link prediction in networks (Shaw et al., 2011), state representation in reinforcement learn-
ing (Taylor et al., 2011), music recommendation (McFee et al., 2012), partitioning problems

8. http://www.vision.caltech.edu/html-files/archive.html

3

https://arxiv.org/abs/1306.6709

Metric Learning for Attributed Graphs = Leveraging the structure

• The main objective is to jointly code for topologies & attributes

• Some Existing Solutions :

❖ In ML: low scalability when methods rely of GED (Graph Edit Distance)

❖ In ML with kernels: usually nonparametric (exception multiple kernel learning)

❖ in ML: the fruitful change of point-of-view: use Optimal Transport between distributions
representing graphs so as to compare graphs+ attributes => Fused Gromov-Wasserstein

❖ In GSP, as quoted, works using OT where signals on G allows comparisons / alignements of
graphs

❖ In GSP, notions of distances between graphs

❖ In ML+GSP : ways to propose distances between Attributed Graphs, and parametric them

A Review of some existing works to compare attributed graphs

A Simple Way to Learn Metrics
Between Attributed Graphs

/5011/5011Modèles se basant sur des avancées en traitement du signal : Graph Convolutional Neural Networks

Travaux de cette thèse

Représentation de graphes hiérarchiques : Hierarchical Graph2Vec (HG2CV)

Représentation de nœuds de multi-attribués : Multiview Graph Canonical Correlation Analysis (MVGCCA)

Apprentissage de métrique : Simple Graph Metric Learning (SGML)

Transport Optimal

Variational auto-encoder

Mutual Information Maximization : negative sampling

distance

From Yacouba Kaloga PhD thesis (12/2021) ; LoG 2022 ; arXiv:2209.12727 (2022)

Joint work with Amaury Habrard (LabHC; Saint-Etienne)

Optimal Transport for Graphs or Attributed Graphs

• One can combine Attributes and Gromov-Wasserstein characterisation of graphs

“Fused Gromov-Wasserstein distance“ [Vayer et al., ICML 2019]

• If you have followed up to now: The Diffusion Wasserstein distance
[Barbe et al., ECML 2020; ICTAI 2021]

Optimal Transport for structured data
with application on graphs

Titouan Vayer
Joint work with Laetitia Chapel, Remi Flamary, Romain Tavenard and Nicolas Courty

A novel distance between labeled graphs
based on optimal transport

Chapter 3. The Di�usion-Wasserstein Distance DW

Y

X

X̃

Ỹ

M̃(· s
, ·

t) DW
p
p(µ, ‹)

exp(≠·
sLs)·

exp(≠·
tLt)·

min
“œ�(a,b)

{È“, ·Í}

Figure 3.1: Diagram of the steps involved in computing DW.

attributes di�er from the original ones in a way unique to each graph, that
hopefully successfully merges the two modalities in a way OT can exploit. We
introduce in the following the Di�usion-Wasserstein distance:

Definition 9. Consider a source graph Gs, a target graph Gt represented
through two discrete probability measures µ and ‹ with weights vectors a œ Rm,
b œ Rn and Laplacian matrices Ls œ Rm◊m and Lt œ Rn◊n. Let X œ Rm◊r,
Y œ Rn◊r represent the sample sets associated to the features on the vertices
of the two graphs. Note that features for both graphs live in the same space Rr.

Given parameters 0 Æ ·
s
, ·

t
< Œ, consider the di�used sample sets X̃, Ỹ

represented by the matrices X̃ = exp(≠·
sLs)X œ Rm◊r, Ỹ = exp(≠·

tLt)Y œ
Rn◊r and define M̃(· s

, ·
t) := M(X̃, Ỹ) œ Rm◊n, a cost matrix between features

that takes into account the structure of the graphs through di�usion operators.
We define the Di�usion Wasserstein distance (DW) between µ and ‹ as:

DW
p
p(µ, ‹ | ·

s
, ·

t) = min
“œ�(a,b)

Ó
È“, M̃

pÍ
Ô

. (3.1)

Here again M̃
p is the entrywise p-th power of M̃ . The underlying distance is

implicit in M(·, ·). For the sake of concision, the dependency on ·
s and ·

t will
be omitted from the notation DW

p
p(µ, ‹) if not specifically required.

Note that the DW distance can be broken down in two parts. A pre-
processing step, in which the graph features are allowed to di�use for some
time · , and a distance computation step, which uses the Wasserstein distance
between two distributions supported on those di�used attributes. A diagram
of the computation of DW

p
p(µ, ‹) is given in Figure 3.1.

3.2 Properties
3.2.1 DW limits and bounds
We first study the asymptotic behaviour of DW with respect to the di�usion
times ·

s/t.
Denote D

s = exp(≠·
sLs) œ Rm◊m, D

t = exp(≠·
tLt) œ Rn◊n the di�usion

matrices, which depend on the (symmetric) Laplacians Ls œ Rm◊m, Lt œ Rn◊n

and the di�usion parameters 0 Æ ·
s
, ·

t
< Œ. Given 1 Æ i Æ m, 1 Æ j Æ n

let xi, yj œ Rr be the features on nodes i on Gs and j on Gt, i.e. respectively
the i-th row of X œ Rm◊r and the j-th row of Y œ Rn◊r, and similarly for

32

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Optimal Transport for Attributed Graphs, with Metric Learning

• Our proposition: 1) parametrize the (graphs+attributes) representation through a GCN

 2) compute distance between them by optimal transport

3) (semi-)supervised training of the distance using

positive (close) and negative (far) sets of examples

Small
Small

Large

• Our constraints :

• Be able to deal with graphs of different sizes, attributes of various natures

• Keep a reasonable number of parameters (to avoid overfitting)

• Keep the computational load acceptable, as the training will call the distance
function many times

• Focus on the scalability of the method

• Focus on a method which has not be trained anew if one is given new instances of
data

• Motivation : frugal Machine Learning!

Optimal Transport for Attributed Graphs, with Metric Learning
=> The Simple (& Scalable) Graph Metric Learning model

1) Trainable Learning and Graphs: Graph Neural Networks

• From ~2015 on: an ever growing interest to adapt Deep Learning to Graph Structures

then Stack them => multilayer (or deep) neural network

use Convolutions for W => CNN

ℱ(x)layer (l) = σ(W(l)x+b(l))
weighted average of
input + bias/offset

non-linear activation function

• For Graphs: One needs to combine information from irregular neighbourhoods.

• Thanks to Graph Signal Processing, one knows about convolutions in graphs.

•
/503/503

Historique
Machine de Turing

Neurones artificiels
& Perceptron

Approches formelles
& Systèmes experts

Approches
« sub-symbolic »

GPU & Données

Aujourd’hui1936

1943
1957

1960 - 1980 2010

1990 2021
1 0 0 11 1

Neurone artificiel (1943)
Warren McCulloh et Walter Pitts

Frank Rosenblatt
Perceptron multicouche (1957)

Alan Turing (1912 – 1954)
Mathématicien britannique

Introduction GSP - basics GSP ex.ples Multiscale Community Mining GSP - clustering GSP - filterbanks Ccl

Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]

• Classical translation (continuous world)

(T⌧ g) (t) = g(t � ⌧) =

Z

R
ĝ(⇠)e�i2⇡⌧⇠e�i2⇡t⇠d⇠

• Graph translations by fundamental analogy:

(Tnf) (a) =
N�1X

i=0

f̂ (i)�⇤
i (n)�i(a)

• Example on the Minnesota road networks

(a) (b) (c)

Figure 7: The translated signals (a) T200f , (b) T1000f , and (c) T2000f , where f , the signal shown in Figure 1(c), is a normalized

heat kernel satisfying f̂(��) = Ce�5�� . The component of the translated signal at the center vertex is highlighted in magenta.

4.3. Properties of the Generalized Translation Operator
Some expected properties of the generalized translation operator follow immediately from the generalized

convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},
1. Ti(f � g) = (Tif) � g = f � (Tig).

2. TiTjf = TjTif .

3.
PN

n=1(Tif)(n) =
p

Nf̂(0) =
PN

n=1 f(n).

However, the niceties end there, and we should also point out some properties that are true for the
classical translation operator, but not for the generalized translation operator for signals on graphs. First,
unlike the classical case, the set of translation operators {Ti}i�{1,2,...,N} do not form a mathematical group;
i.e., TiTj 6= Ti+j . In the very special case of shift-invariant graphs [24, p. 158], which are graphs for which
the DFT basis vectors (9) are graph Laplacian eigenvectors (the unweighted ring graph shown in Figure 5(c)
is one such graph), we have

TiTj = T��
(i�1)+(j�1)

�
mod N

�
+1

, 8i, j 2 {1, 2, . . . , N}. (26)

However, (26) is not true in general for arbitrary graphs. Moreover, while the idea of successive translations
TiTj carries a clear meaning in the classical case, it is not a particularly meaningful concept in the graph
setting due to our definition of generalized translation as a kernelized operator.

Second, unlike the classical translation operator, the generalized translation operator is not an isometric
operator; i.e., kTifk2 6= kfk2 for all indices i and signals f . Rather, we have

Lemma 1: For any f 2 RN ,

|f̂(0)|  kTifk2 
p

N�ikfk2 
p

Nµkfk2. (27)

Proof.

kTifk2
2 =

NX

n=1

�
p

N
N�1X

�=0

f̂(��)�
�
� (i)��(n)

�2

= N
N�1X

�=0

N�1X

��=0

f̂(��)f̂(���)��
� (i)�

�
��(i)

NX

n=1

��(n)���(n)

= N
N�1X

�=0

|f̂(��)|2 |��
� (i)|

2 (28)

 N�2
i kfk2

2. (29)

10

p. 20 [See Shuman et al., SP Mag 2013]

• What we will not do: propose a new GNN architecture

• Many exist, with various limits associated to GNNs /GCNs, and well studied
• S. Luan et al., “Break the ceiling: Stronger multi-scale deep graph convolutional networks.“ NeurIPS 2019

• K. Xu et al. “How powerful are Graph Neural Networks », ICLR 2019

• A. Loukas et al. “What graph neural networks cannot learn: deepth vs. width“ ICLR 2020

• Z. We et al. "A comprehensive survey on graph neural networks.“ IEEE Trans. NNL 2020

and still counting…

• Convolutional GNNs: convolutions are defined in the Spectral domain (= Laplacian)L

Convolutional GNNs

8

First truly scalable GNNs

Generate GNNs that parameterised spectral graph filters
<latexit sha1_base64="Q5PzvnRvG9F4TB5tcJuEJvKonQg=">AAAGVHicnZRBb9MwFMe9jZYRYGzjyMWimjTQVDU9AJdJk8YkTqOb1m1SUyrHfUm9xU6wncGU5UNw4ch1fBY+ABLiq3DAyYpY6vQyS62e/v6957+fHftJxJTudH4tLC7dazTvLz9wHj56vPJkdW39WMWppNCncRTLU58oiJiAvmY6gtNEAuF+BCf++W4xf3IBUrFYHOnLBIachIIFjBJtpNHq+gnexn38duQdTUAT3P9wNFptddqdcmA7cKdBa6d58PvH1y/XvdFa46U3jmnKQWgaEaUGbifRw4xIzWgEueOlChJCz0kIAxMKwkENs9J8jjeMMsZBLM1PaFyqtzMywpW65L4hOdETNTtXiHVzg1QHb4YZE0mqQdCbhYI0wjrGRSfwmEmgOro0AaGSGa+YTogkVJt+Oc4G3r7DMGnvE5BEx1JtYRFLvoVB0/ady3kCPtGYcyLGmSchgI/5wB1mm0Wctdz8RY4dpwLt+n6eeSBUKqHoSuYV/76f7ea5gSvs4Tz20Gb357H7hq2ie/PQPQvtzUN7BeqYbd6mI7P9Km0UFRGhi7pVNrTY8D9bNaFokg+6w9nKgfYMHkaAW+4WbnWxJ1k40Z4sxdmdkPFZzEzxSpXMMxJISiJr50xclEdZWTQw9y9z8+JkLZfFbbIzSptXxuHU3JXly1f1WUXSdEtX1mKc2EnlNxZMvc10+wKoneDzf/Bt1Hxv4WyXJMelbB8N6HojpqW1XRrHvK64Ua2rJ+OzGrRngYqFogYsZYtNiKiFjV7A5nV1Z99SOzjutt1XbffAPLNddDOW0TP0HG0iF71GO+gd6qE+ougz+oau0ffGz8af5lKzcYMuLkxznqLKaK78BQt4O14=</latexit>

W = UD⇥U
T #nodes shared free parameters Θ

U = eigenvectors of shift operator

<latexit sha1_base64="B2ioZ5BdFyBpXQRjNbYVOiebH/g=">AAAGXnicnZTPb9MwFMe9wcoIjP3gggQHi2pSh6aq6QG4TJo0TXBAo0zrNqkuleM4qbfYCbYzVKW58A/wb3CFP4H/ghv/BHecrIilTi+zlOjp6897fu/5h5dETOlO59fS8p27K417q/edBw/XHq1vbG6dqjiVhPZJHMXy3MOKRkzQvmY6oueJpJh7ET3zLg+K+bMrKhWLxYmeJHTIcShYwAjWRhptPDuDe7AP34zQyZhqDFvonXH28Q7sfzwZbTQ77U45oG24M6O5v4Vaf35+Rb3R5soL5Mck5VRoEmGlBm4n0cMMS81IRHMHpYommFzikA6MKTCnapiVZeRw2yg+DGJpPqFhqd70yDBXasI9Q3Ksx2p+rhDr5gapDl4PMyaSVFNBrhcK0gjqGBY9gT6TlOhoYgxMJDO5QjLGEhNtOuc423DvFsO4vU+oxDqWaheKWPJdSDVp3zocEvQziTnHws+QpAH9lA/cYdYq7Kzp5js5dJwKdOB5eYaoUKmkRVcyVPw9LzvIcwNX2ONF7LHNHi1ijwxbRQ8XoYcW2luE9grUMWXepCNTfpU2ioqw0EXcKhtabPifrSahSJIPusP5yIFGBg8jCpvuLmx2IZIsHGskS3G+EuxfxMwEr0TJkJGoJDiyKmfiqtzKyqKBOX+Zmxc7a2VZnCbbo0xzajKcJTe18vJUvVfhNCtpai3Gse1U3rFglttct68osR08/g++iZr7Fs53SXJYyvbWUF2fiGlpbZf8mNcFN6p19GR8UYP2LFCxUNSApWyxCRa1sNEL2Lyu7vxbahun3bb7su1+MM9sF1yPVfAUPAct4IJXYB+8BT3QBwR8Ad/Ad/Bj5Xej0VhrrF+jy0szn8egMhpP/gKGRj1C</latexit>

W = UG⇥(⇤)U
T

<latexit sha1_base64="PEzpaxmAq8RkIAsOkaKdXSgOmxQ=">AAAGUnicnZTPb9MwFMe9jZYRBnTjyMWimtShqWp6AC6TJk2TOKBRpv2Smqpy3JfUW+wE2ymasvwN/ANc4Q/hb+DCH8KFE05WxFKnl1lq9fT15z1//ezYTyKmdK/3a2V17UGj+XD9kfN448nTZ63NrTMVp5LCKY2jWF74REHEBJxqpiO4SCQQ7kdw7l8dFPPnM5CKxeJEXycw4iQULGCUaCONW61zvIcHY+9kCprgzvudcavd6/bKge3AnQft/S2v8/vHF28w3my88iYxTTkITSOi1NDtJXqUEakZjSB3vFRBQugVCWFoQkE4qFFWWs/xtlEmOIil+QmNS/VuRka4UtfcNyQneqoW5wqxbm6Y6uDtKGMiSTUIertQkEZYx7joA54wCVRH1yYgVDLjFdMpkYRq0y3H2cZ79xgm7UMCkuhYql0sYsl3MWjavXc5T8BnGnNOxCTzJATwKR+6o6xTxFnbzXdy7DgV6MD388wDoVIJRVcyr/j3/ewgzw1cYY+Xscc2e7SMPTJsFT1chh5a6GAZOihQx2zzLh2Z7Vdpo6iICF3UrbKhxYb/2aoJRZN82B8tVg60Z/AwAtx2d3G7jz3Jwqn2ZCku7oRMLmNmileqZJ6RQFISWTtnYlYeZWXRwNy/zM2Lk7VcFrfJziht3hiHc3M3li9f1WcVSfMt3ViLcWInld9YMPe20O0ZUDvB5//gu6j53sLFLkmOS9k+GtD1RkxLa7s0iXldcaNaV0/GlzXowAIVC0UNWMoWmxBRCxu9gM3r6i6+pXZw1u+6r7vuR/PM9tHtWEcv0EvUQS56g/bROzRAp4iiGfqKvqHvjZ+NP82V5toturoyz3mOKqO58RecwTnl</latexit>

W = P⇥(L)

<latexit sha1_base64="d8R8+HaxbYZtPG/eawXt7QD5P1Y=">AAAGpHicnZTNbhMxEMfdQkMbvlo4crGIilKoomwOfBwqVaqKOKASStNWyqaR1+vduF17F9vbD7l+Dl6JV+DKA3AFccK7TUU3Ti61tNLo79+MZ8beCbKEStVu/5ibv3N3oXZvcal+/8HDR4+XV57syzQXmPRwmqTiMECSJJSTnqIqIYeZIIgFCTkITraK/YNTIiRN+Z66yMiAoZjTiGKkrDRcDnyG1AijRL83Q02PfEXOlWBajcy1CXkaEmNg83wNbkBf0pgh2NR+ebgOkpyYsyE1R3vwWhMkNOcGvoLBkK7B4XKj3WqXC7qGNzYam42/P7+9Y0vd4crCSz9Mcc4IVzhBUva9dqYGGglFcUJM3c8lyRA+QTHpW5MjRuRAl2cbuGqVEEapsB9XsFRvemjEpLxggSWL0uXkXiFO2+vnKno70JRnuSIcXx0U5QlUKSw6C0MqCFbJhTUQFtTmCvEICYSV7X+9vgo3brGs26eMCKRSIdftTQi2DonCrVuH8zk5wyljiIfaFyQiX03fG+hmYeuGZ9YMrNcr0FYQGO0TLnNBiq7o8skEgd4y9lVU2d1Z7K7L7sxidyxbRbdnodsO2p2Fdgu0bsu8SSe2/CptFZkgroq4VTZ22Pg/W01C4sz0O4PJyJHyLR4nBDa8ddjoQF/QeKR8UYqTlaDwOKU2eCWK9q1EhP1hncopPy2vsnJoZN+f9kxxs06WxWtyPco0L22G4+QunbwCOd2rcBqXdOkcxpDrVP5j0Ti3iW6fEuw6BOwavona/y2e7JJgsJTdqyFqeiLFDJzWpTBl04Jb1Xl6Ij2egnYd0I5QPgUsZYfNEJ8KW72A7XT1Jmepa+x3Wt7rlvfZjtkOuFqL4Bl4DprAA2/AJvgAuqAHMPgOfoHf4E/tRe1j7Uutd4XOz419noLKqh39A4ukW/U=</latexit>

Fith node(x) = �(wi
Tx+ bi)

<latexit sha1_base64="lxdU3wi8mS4G67vELcDt+/pIg74=">AAAGcHicnZTdatswFMfVbs0676PtxmCwi2kLhbaUEOdi202hUAq7GF1a+gVxCLJy7KiVZU+SW4rrt9jTDHq1sXfYawx2P9nJWB05NxXYHP76naNzjj78hDOl2+1fc/P37i80Hiw+dB49fvJ0aXnl2bGKU0nhiMY8lqc+UcCZgCPNNIfTRAKJfA4n/vlOMX9yAVKxWBzqqwT6EQkFCxgl2kiD5ZZXxsh8nkJ+OWB4C3scAt3rDrzDEWiC1z6te5KFI903s4PlZrvVLge2DXdiNLdf/LnZb/286Q5WFja8YUzTCISmnCjVc9uJ7mdEakY55I6XKkgIPSch9IwpSASqn5VJ5XjVKEMcxNJ8QuNSve2RkUipq8g3ZET0SE3PFWLdXC/VwYd+xkSSahB0vFCQcqxjXHQJD5kEqvmVMQiVzOSK6YhIQrXppeOs4q07DOP2OQFJdCzVJhaxjDYxaNq6czhPwCWNo4iIYeZJCOBL3nP72VphZ003X8+x41SgHd/PMw+ESiUUXcm84u/72U6eG7jCHsxiD2x2bxa7Z9gqujsL3bXQ7iy0W6COKfM2zU35VdooihOhi7hVNrTY8D9bTULRJO91+tORA+0ZPOSAm+4mbnbw+JJ4shSnKyHDs5iZ4JUomWckkJRwq3ImLsqtrCwamPOXuXmxs1aWxWmyPco0r02Gk+Surbx8Ve9VOE1KurYWi4jtVN6xYJLbVLcvgNoOfvQPvo2a+xZOd0lGuJTtrQFdn4hpaW2XhnFUF9yo1tGT8VkN2rVAxUJRA5ayxSZE1MJGL2DzurrTb6ltHHda7ruWu2+e2Q4aj0X0Cr1Fa8hF79E2+oi66AhR9BV9Q9/Rj4XfjZeN1403Y3R+buLzHFVGY+MvKvlGxw==</latexit>

wi = [P⇥(L)]i
same parameters for all nodes

Special form, polynomial of shift operator

Parametric form with O(1) parameters Θ

[Defferrard et al., 2016]

GCN [Kipf & Welling, 2017]

1) Trainable Learning and Graphs: Graph Neural Networks

Learning and Graphs: Graph Neural Networks

• GNN = Gives a trend to powerful methods:

• Whatever the flavor (filters ; attention-based ; message passing)

• Strong applications :

• Drug Discovery ChemProp [Cell 2020];

• Drug repurposing [see S. Chepuri, 2020: Dr-COVID: graph neural networks for SARS-CoV-2 drug
repurposing]

• OpenCatalyst: discover new molecules that are catalysts for Chemistry (e.g., for fuel conversion)

•Alphafold2 and Transformers use graphs

• Some smart (and nice) people working on the subject

• Insights from Graph Signal Processing are useful for GCN/GNN/…

• Extract Features for Attributed Graphs: we use Simple GCN [2019]
- Amounts to Graph Filtering (Feature Propagation) then standard Non-Linear Activation fct

Initial attributes ; Modified Adjacency matrix:

Features are generated as

X ∈ ℝn×q Ã = A + In

Y ∈ ℝn×p

Y = ReLU(Ã r X Θ)

• What we will do: think of GNNs/GCNs as a way to obtain a Graph Representation

• Trainable Parameters: with hyper-parameters p and r Θ ∈ ℝq×p

• Graph Representation: 𝒟Θ(𝒢, X) =
n

∑
i=1

1
n

δY(i,:)

1) Trainable Learning and Graphs: Graph Neural Networks

• For Optimal Transport: Use the Sliced methods
- [N. Bonneel et al., “Sliced and Radon Wasserstein barycenters of measures“, JMIV 2015]

- One projects the distribution (in) onto various 1-D directions , then average

• The main advantage is that 1D optimal transport is easily computed by sorting

• Property: one can show that it is a metric (excepted specific conditions)

ℝp θ74 Chapter 4. The Gromov-Wasserstein problem in Euclidean spaces

y1

y2

y3

y4

x1x4

x2 x3

P◊#‹

P◊#(�#µ)

for ◊ œ Sq≠1

y◊
1 y◊

2 y◊
3 y◊

4

x◊
1 x◊

2 x◊
3 x◊

4

Figure 4.1: Example in dimension p = 2 and q = 3 (left) that are projected on the line (right). The solution for
this projection is the anti-diagonal coupling.

We propose to minimize SGW� with respect to � in the Stiefel manifold Vp(Rq) [Absil 2009] which
is defined as Vp(Rq) = {� œ Rq◊p|�T � = Ip}. It can be seen as finding an optimal projector of the
measure µ [Paty 2019,Deshpande 2019]. This formulation comes at the cost of an additional optimization
step but allows recovering one key property of GW. When p = q this encompasses for e.g. all rotations of
the space, making RISGW invariant by rotation.

Interestingly enough, SGW holds various properties of the GW distance as summarized in the following
theorem:

Theorem 4.1.3 (Properties of SGW).

• For all �, SGW� and RISGW are translation invariant. RISGW is also rotational invari-
ant when p = q, more precisely if Q œ O(p) is an orthogonal matrix, RISGW (Q#µ, ‹) =
RISGW (µ, ‹) (same for any QÕ œ O(q) applied on ‹).

• SGW and RISGW are pseudo-distances on P(Rp), i.e. they are symmetric, satisfy the triangle
inequality and SGW (µ, µ) = RISGW (µ, µ) = 0 .

• Let µ, ‹ œ P(Rp) ◊ P(Rp) be probability distribution with compact supports. If SGW (µ, ‹) = 0
then µ and ‹ are isomorphic for the distance induced by the ¸1 norm on Rp, i.e. d(x, xÕ) =
qp

i=1 |xi ≠ xÕ

i| for (x, xÕ) œ Rp ◊ Rp. In particular this implies:

SGW (µ, ‹) = 0 =∆ GW2(d, d, µ, ‹) = 0 (4.7)

(with a slight abuse of notation we identify the matrix Q by its linear application). A proof of this
theorem can be found in Section 6.2.4. This theorem states that if SGW vanishes then measures must be
isomorphic, as it is the case for GW . It states also that RISGW holds most of the properties of GW in
term of invariants.

Remark 4.1.1. The � map can also be used in the context of the Sliced Wasserstein distance so as to
define SW�(µ, ‹), RISW (µ, ‹) for µ, ‹ œ P(Rp) ◊ P(Rq) with p ”= q. Please note that from a purely
computational point of view, complexities of these discrepancies are the same as SGW and RISGW

when µ and ‹ are discrete measures with the same number of atoms n = m, and uniform weights. Also,
unlike SGW and RISGW , these discrepancies are not translation invariant. This approach was studied
in [Lai 2014] for the case p = q in the context of point cloud registration. More details are given in Section
6.2.5.

Figure: T. Vayer

2) Optimal Transport with a Reduced Computational Load

• Thee candidates for fast OT:

- Sliced Wasserstein Distance with directions sampled at random, and

- Projected Sliced Wasserstein Distance , when , computing the distance in the original domain

[Rowland et al. AISTATS 2019]

- Our proposition: Restricted Projected Sliced-Wasserstein : One limits the integral to a spanning set fo vectors,

conveniently chosen as the canonical basis vectors , hence:

• Property: is a metric.

𝒮𝒲2 𝒮𝒲2(μ, ν)2 = ∫𝕊q−1

𝒲2(μθ, νθ)2dθ

𝒫𝒲2 n = n′

𝒫𝒲2(μ, ν)2 = ∫𝕊q−1

n,n′

∑
i,j=1

πθ,*
i,j ||xi − x′ j ||

2
2 dθ

ℛ𝒫𝒲2

{uk}p
k=1 ℛ𝒫𝒲2(μ, ν)2 =

1
p

p

∑
k=1

n,n′

∑
i,j=1

πuk,*
i,j ||xi − x′ j ||

2
2

ℛ𝒫𝒲2

𝒲2(μ, ν) = inf
πi, j∈Πa,b

(
n,n′

∑
i,j=1

πi,jc(xi, x′ j)2)
1
2

dℛ𝒫𝒲2
Θ (𝒢, 𝒢′) = ℛ𝒫𝒲2(𝒟Θ(𝒢, X), 𝒟Θ(𝒢′ , X′))

2) Optimal Transport with a Reduced Computational Load

• Objective function ?

- Go back to tutorial of Bellet et al.

- Here: a variant of NCA,

- => Nearest Class Cloud Metric Learning

- Designed to boost k-NN classification

(remind : no retraining is what we look for)

3) Loss for training the distance:
the Nearest Class Cloud Metric Learning Loss function

Attributed graph label

Probability for the graphs G to have label e

Maximize the probability for each graph to have is own label

• Training of the SGML model in a nutshell:

A simple way to learn metrics between attributed graphs

p⇥(Gi,Gj) =
exp

⇣
�d

RPW2
⇥ (Gj ,Gi)2

⌘

P
k,k0 exp

⇣
�d

RPW2
⇥ (Gk,Gk0)2

⌘ (22)

Given this form of probability, it tries to maximize them for all elements which have effectively the524

same labels:525

max
⇥

X

Gi2G

X

Gj2G
E(Gi)=E(Gj)

p⇥(Gi,Gj) (23)

However, as one can see from Eq. (23), the probability of having the same labels is a softmax, so526

distant elements do not contribute a lot to these probability. It contains mostly local information. We527

believe that one could obtain better results by considering a more global criterion. Moreover, using a528

batch would be now advantageous since it will help the model to build good metric, even for k-NN529

(which requires a local fine metric) since the batch training will act as a regularization and will help530

to generalize.531

An inspiration for that comes from NCMML [38] which proposes a loss function specifically built532

to increase performance of nearest mean classifier. This model also relies on a probabilistic model533

where the probability to belong on a class is given by a softmax which considers the distance to the534

mean of different classes. Obviously NCMML is not well suited for our tasks using kNN. Plus, it535

would require an additional layer of computation for computing barycenter with OT.536

We took a compromise between NCA and the NCMML loss. The probability to be part of a class is537

given by a softmax which depends on the relative distance to different same label element (Eq. (11)).538

It has the advantage that the loss on a batch will be representative of the loss over the whole dataset,539

because the relative distance to different labels should remain the same also on subsamples of the540

dataset. Moreover it benefits from the batch training which acts as a regularizer. That finally leads541

to a better metric learned compared to NCA for k-NN as proven on our ablative study (Table. 3).542

Anyway, in a regular setting where we could use all datasets to build and train theses losses, NCCML543

would certainly shows worse results than LMNN and NCA.544

The specific settings that is studied here, due to the requirement of scalability, forces to propose a545

loss different from the literature, that indeed brongs some improvement when compared to NCA.546

Algorithm 1 SGML: High-level algorithm to build d
RPW2
⇥⇤ .

Require: A dataset of attributed graphs G and their labeling function E .
for each epoch e 2 {1, . . . , E} do

Build a partition: [kBk = G such that Bk \Bk0 = ;.
for each batch Bk do

for each graph pair (G,G0) 2 Bk ⇥Bk do

Compute distance d
RPW2
⇥ (G,G0) (Eq. (9))

Compute �FBk
⇥ (Eq. (11)) and apply an iteration of Adam descent algorithm.

return all pairwise distance d
RPW2
⇥⇤ in G.

A.3 Implementation details547

Sequential implementation. A priori, it is necessary to compute all the transport costs between two548

distributions so as to calculate the optimal transport and this operation has a quadratic complexity. For549

most OT distance such as W2, since the complexity is dominated by the computation of the optimal550

transport plan, this was of no consequence. However for RPW2 (as well as for SW2) it becomes551

a critical aspect. Hopefully, there is no need to compute all the costs to find the optimal transport552

and the transport cost has no more than n+m (given that the distributions have sizes n and m) non553

zero coefficients. This is why their complexity remains quasi-linear in O(n log n). The algorithm554

of the implementation referred to as "sequential implementation" in the core text can be found on555

Algorithm 2. The experiment on Section 5.2 assessed the quasi-linear complexity of this algorithm.556

14

• Hyper-Parameters: p and r for the SimpleGCN

• Complexity of the method:

• Time complexity in

• Space complexity in

O(|𝔾 | ñ(p2 + ñrp) + |𝔾 |2 p2ñ log ñ)

O(ñ2p)

Some elements on this Simple Graph Metric Learning model

• Graph Datasets

• Task of Supervised Classification

- either k-NN classifier

- or SVM with induced kernel

SGML model
Numerical Experiments

A simple way to learn metrics between attributed graphs

Table 4: Graph datasets used in our experiments. #Graphs: number of graphs. #Nodes: average
number of nodes. cont.: attributes have continuous values; lab.: attributes are labels. deg.: the
featurattributes are degrees of nodes. q is the feature dimension.

Datasets BZR COX2 PROTEINS ENZYMES MUTAG NCI1 IMDB-B IMDB-M CUNEIFORM

#Graphs 405 467 1113 600 188 4110 1000 1500 267
#Nodes 35.75 41.22 39.06 32.63 17.93 29.97 19.77 13 21.27

Node attributes cont. cont. cont. / lab. cont. / lab. deg. lab. deg. deg. cont. / lab.
q 3 3 1 / 3 18 /3 4 38 135 88 3 / 3

Quadratic implementation. In this second implementation, we compute all possible transport557

costs using a library of matrix multiplication, and then we multiply these costs by the optimal558

transport matrix. These operations allow us to benefit from the advantages of vectorization and to559

gain time compared to the sequential implementation, when n is not too large. This result is assessed560

experimentally in Section 5.2.561

Both implementation can be found with this supplementary material.562

Note: In the reported experiments, we have seen that for n < 1000, it’s better to use the quadratic563

implementation. Anyway this result strongly depends on the hardware used, and also on the dimension564

of the distribution support p. The scaling behavior of the two implementations is an interesting565

characteristic, showing than the proposed method can be implemented in a quasi-linear way. The566

second comment is also that the method can be made rapid enough (and very competitive) with567

optimizations.568

Algorithm 2 RPW2 - Sequential

Ensure: Build the distance between two discrete distributions µ and ⌫ in P(Rp).
Require: µ =

Pn
i=1 ai�xi and ⌫ =

Pm
j=1 bi�yj .

Set c = 0.
for each epoch k 2 {1, . . . , p} do

Get �k
µ, �k

⌫ sort permutation of supports vectors k-th components.
i.e x�k

µ(0)
(k)  · · ·  x�k

µ(n�1)(k) and y�k
⌫ (0)

(k)  · · ·  y�k
⌫ (m�1)(k).

Set T = true. Set i, j = 0, 0.
Set wµ, w⌫ = a�k

µ(0)
, b�k

⌫ (0)
.

while T == True do

if wµ < w⌫ then

c = c+ wµ ⇤ ||x�k
µ(i)

� y�k
⌫ (j)

||22
i = i+ 1
if i == n then

T = false
w⌫ = w⌫ � wµ

wµ = a�k
µ(i)

else

c = c+ w⌫ ⇤ ||x�k
µ(i)

� y�k
⌫ (j)

||22
j = j + 1
if j == m then

T = false
wµ = wµ � w⌫

w⌫ = b�k
⌫ (j)

return

q
c
q

A.4 Datasets569

The characteristics of the datasets used are summarized in Table 4.570

15

A simple way to learn metrics between attributed graphs

Table 1: Results of the main experiments for datasets of graphs with discrete attributes. Features
are node labels for NCI1, PROTEINS and ENZYMES; and degrees for others. Accuracy is in bold
green when it is the best of its block. For FGW-WL (resp. PSCN), depth is set to 4 (resp. 10).

Method MUTAG NCI1 PROTEINS ENZYMES IMDB-M IMDB-B

k-NN

RPW2 90.00± 7.60 72.12± 1.65 70.18± 4.01 49.00± 8.17 45.00± 5.46 68.90± 5.45
Net-LSD-h 84.90 65.89 64.89 31.99 40.51 68.04
FGSD 86.47 75.77 65.30 41.58 41.14 69.54
NetSimile 84.09 66.56 62.45 33.23 40.97 69.20

SVM & GCN

RPW2 88.95± 7.61 74.84± 1.81 74.55± 4.19 54.00± 7.07 51.00± 5.44 72.00± 3.16
WWL 87.27± 1.50 85.75± 0.25 74.28± 0.56 59.13± 0.80 7 7
FGW 83.26± 10.30 72.82± 1.46 7 7 48.00± 3.22 63.80± 3.49
FGW-WL 88.42± 5.67 86.42± 1.63 7 7 7 7
WL-OA 87.15± 1.82 86.08± 0.27 76.37± 0.30 58.97± 0.82 7 7
PSCN 83.47± 10.26 70.65± 2.58 58.34± 7.71 7 7 7

Table 2: Results of the main experiments for datasets of graphs with continuous attributes

graphs datasets. The best accuracy are in bold green. Note that for PROTEINS, ENZYMES and
CUNEIFORM we concatenate continuous attributes with discrete attributes to build an extended
continuous attributes (see Appendix A.7 for more details).

Method BZR COX2 PROTEINS ENZYMES CUNEIFORM

RPW2 (kNN) 85.61± 2.98 79.79± 2.18 71.79± 4.47 51.66± 5.16 54.81± 12.26

SVM & GCN

RPW2 84.39± 3.81 78.51± 0.01 74.29± 4.11 48.83± 4.78 64.44± 10.50
WWL 84.42± 2.03 78.29± 0.47 77.91± 0.80 73.25± 0.87 7
FGW 85.12± 4.15 77.23± 4.86 74.55± 2.74 71.00± 6.76 76.67± 7.04
PROPAK 79.51± 5.02 77.66± 3.95 61.34± 4.38 71.67± 5.63 12.59± 6.67
HGK-SP 76.42± 0.72 72.57± 1.18 75.78± 0.17 66.36± 0.37 7
PSCN [K = 10] (GCN) 80.00± 4.47 71.70± 3.57 67.95± 11.28 26.67± 4.77 25.19± 7.73

The learning metric framework combined with k-NN allows us to obtain good performance in317

classification tasks, in particular for datasets of graphs with continuous attributes. The exception318

is ENZYMES where we can see a lower net performance. For discrete attributes, SGML performs319

slightly below the state-of-the-art, yet it outperforms the existing distances classically combined with320

k-NN. Experiments show that our graph ML distance framework is efficient.321

Note: This procedure is very similar to the one used by WWL, except that the parameter k is replaced322

by the corresponding parameters of their kernel (see next section).323

SVM. To compare to graph kernel methods, the experiment described in the previous section is324

reproduced using a SVM for classification. The kernel KRPW2 = exp(��d
RPW2
⇥⇤) is built from325

the constructed distance. In this experiment, kernel hyperparameter � and SVM hyperparameter C326

are tuned similarly as the parameter k above. The set of possible � (resp. C) values are 6 (resp. 12)327

regularly spaced values between 10�4 and 101 (resp. 10�4 and 105 including 1). The results are328

provided in Table 1 (bottom part).329

In this part of the table, one can see that the distance learned with our model performs as well as other330

OT distances when used as a kernel, on the majority of the datasets. We reach or are slightly above331

state of the art results on 5 datasets over 6 but are still below on NCI1. We recall that our method is332

specifically designed for the k-nearest neighbors method and that its computational complexity is333

much lower than many of the best methods on these datasets (notably WWL and FGW).334

8

• Graph Datasets

• Task of Supervised Classification

- either k-NN classifier

- or SVM with induced kernel

SGML model
Numerical Experiments

A simple way to learn metrics between attributed graphs

Table 4: Graph datasets used in our experiments. #Graphs: number of graphs. #Nodes: average
number of nodes. cont.: attributes have continuous values; lab.: attributes are labels. deg.: the
featurattributes are degrees of nodes. q is the feature dimension.

Datasets BZR COX2 PROTEINS ENZYMES MUTAG NCI1 IMDB-B IMDB-M CUNEIFORM

#Graphs 405 467 1113 600 188 4110 1000 1500 267
#Nodes 35.75 41.22 39.06 32.63 17.93 29.97 19.77 13 21.27

Node attributes cont. cont. cont. / lab. cont. / lab. deg. lab. deg. deg. cont. / lab.
q 3 3 1 / 3 18 /3 4 38 135 88 3 / 3

Quadratic implementation. In this second implementation, we compute all possible transport557

costs using a library of matrix multiplication, and then we multiply these costs by the optimal558

transport matrix. These operations allow us to benefit from the advantages of vectorization and to559

gain time compared to the sequential implementation, when n is not too large. This result is assessed560

experimentally in Section 5.2.561

Both implementation can be found with this supplementary material.562

Note: In the reported experiments, we have seen that for n < 1000, it’s better to use the quadratic563

implementation. Anyway this result strongly depends on the hardware used, and also on the dimension564

of the distribution support p. The scaling behavior of the two implementations is an interesting565

characteristic, showing than the proposed method can be implemented in a quasi-linear way. The566

second comment is also that the method can be made rapid enough (and very competitive) with567

optimizations.568

Algorithm 2 RPW2 - Sequential

Ensure: Build the distance between two discrete distributions µ and ⌫ in P(Rp).
Require: µ =

Pn
i=1 ai�xi and ⌫ =

Pm
j=1 bi�yj .

Set c = 0.
for each epoch k 2 {1, . . . , p} do

Get �k
µ, �k

⌫ sort permutation of supports vectors k-th components.
i.e x�k

µ(0)
(k)  · · ·  x�k

µ(n�1)(k) and y�k
⌫ (0)

(k)  · · ·  y�k
⌫ (m�1)(k).

Set T = true. Set i, j = 0, 0.
Set wµ, w⌫ = a�k

µ(0)
, b�k

⌫ (0)
.

while T == True do

if wµ < w⌫ then

c = c+ wµ ⇤ ||x�k
µ(i)

� y�k
⌫ (j)

||22
i = i+ 1
if i == n then

T = false
w⌫ = w⌫ � wµ

wµ = a�k
µ(i)

else

c = c+ w⌫ ⇤ ||x�k
µ(i)

� y�k
⌫ (j)

||22
j = j + 1
if j == m then

T = false
wµ = wµ � w⌫

w⌫ = b�k
⌫ (j)

return

q
c
q

A.4 Datasets569

The characteristics of the datasets used are summarized in Table 4.570

15

A simple way to learn metrics between attributed graphs

Table 1: Results of the main experiments for datasets of graphs with discrete attributes. Features
are node labels for NCI1, PROTEINS and ENZYMES; and degrees for others. Accuracy is in bold
green when it is the best of its block. For FGW-WL (resp. PSCN), depth is set to 4 (resp. 10).

Method MUTAG NCI1 PROTEINS ENZYMES IMDB-M IMDB-B

k-NN

RPW2 90.00± 7.60 72.12± 1.65 70.18± 4.01 49.00± 8.17 45.00± 5.46 68.90± 5.45
Net-LSD-h 84.90 65.89 64.89 31.99 40.51 68.04
FGSD 86.47 75.77 65.30 41.58 41.14 69.54
NetSimile 84.09 66.56 62.45 33.23 40.97 69.20

SVM & GCN

RPW2 88.95± 7.61 74.84± 1.81 74.55± 4.19 54.00± 7.07 51.00± 5.44 72.00± 3.16
WWL 87.27± 1.50 85.75± 0.25 74.28± 0.56 59.13± 0.80 7 7
FGW 83.26± 10.30 72.82± 1.46 7 7 48.00± 3.22 63.80± 3.49
FGW-WL 88.42± 5.67 86.42± 1.63 7 7 7 7
WL-OA 87.15± 1.82 86.08± 0.27 76.37± 0.30 58.97± 0.82 7 7
PSCN 83.47± 10.26 70.65± 2.58 58.34± 7.71 7 7 7

Table 2: Results of the main experiments for datasets of graphs with continuous attributes

graphs datasets. The best accuracy are in bold green. Note that for PROTEINS, ENZYMES and
CUNEIFORM we concatenate continuous attributes with discrete attributes to build an extended
continuous attributes (see Appendix A.7 for more details).

Method BZR COX2 PROTEINS ENZYMES CUNEIFORM

RPW2 (kNN) 85.61± 2.98 79.79± 2.18 71.79± 4.47 51.66± 5.16 54.81± 12.26

SVM & GCN

RPW2 84.39± 3.81 78.51± 0.01 74.29± 4.11 48.83± 4.78 64.44± 10.50
WWL 84.42± 2.03 78.29± 0.47 77.91± 0.80 73.25± 0.87 7
FGW 85.12± 4.15 77.23± 4.86 74.55± 2.74 71.00± 6.76 76.67± 7.04
PROPAK 79.51± 5.02 77.66± 3.95 61.34± 4.38 71.67± 5.63 12.59± 6.67
HGK-SP 76.42± 0.72 72.57± 1.18 75.78± 0.17 66.36± 0.37 7
PSCN [K = 10] (GCN) 80.00± 4.47 71.70± 3.57 67.95± 11.28 26.67± 4.77 25.19± 7.73

The learning metric framework combined with k-NN allows us to obtain good performance in317

classification tasks, in particular for datasets of graphs with continuous attributes. The exception318

is ENZYMES where we can see a lower net performance. For discrete attributes, SGML performs319

slightly below the state-of-the-art, yet it outperforms the existing distances classically combined with320

k-NN. Experiments show that our graph ML distance framework is efficient.321

Note: This procedure is very similar to the one used by WWL, except that the parameter k is replaced322

by the corresponding parameters of their kernel (see next section).323

SVM. To compare to graph kernel methods, the experiment described in the previous section is324

reproduced using a SVM for classification. The kernel KRPW2 = exp(��d
RPW2
⇥⇤) is built from325

the constructed distance. In this experiment, kernel hyperparameter � and SVM hyperparameter C326

are tuned similarly as the parameter k above. The set of possible � (resp. C) values are 6 (resp. 12)327

regularly spaced values between 10�4 and 101 (resp. 10�4 and 105 including 1). The results are328

provided in Table 1 (bottom part).329

In this part of the table, one can see that the distance learned with our model performs as well as other330

OT distances when used as a kernel, on the majority of the datasets. We reach or are slightly above331

state of the art results on 5 datasets over 6 but are still below on NCI1. We recall that our method is332

specifically designed for the k-nearest neighbors method and that its computational complexity is333

much lower than many of the best methods on these datasets (notably WWL and FGW).334

8

• For MUTAG Dataset

SGML model
 Visualisation of a Numerical Experiment

Experiments

Embedding in 2D with t-SNE, comparing WWL and SGML

• Scalability in running time

SGML model
Scalability and Ablation study

• Ablative study
A simple way to learn metrics between attributed graphs

Figure 2: Run time comparisons 2.

Table 6: Ablative experiment with FGW . Acc. is the accuracy. � is the difference in accuracy
between the model of the column and the proposed one SGML whose results are on Table. 1. Red
negative (resp. Green positive) number means that our model perform better (resp. worse). 7 symbol
means that we had infinite distance values with the default settings of FGW solver.

Dataset FGW
Method Acc. �

BZR 81.70 - 3.91
COX2 78.51 - 1.28
MUTAG 83.16 - 6.84
NCI1 7 7
PROTEINS 7 7
IMDB-B 80.80 11.9
IMDB-M 7 7
ENZYMES 70.83 19.33

A.8 FGW with k-NN611

In the ablative study, we evaluated WWL with a k-NN to justify the design choice. Here, as a612

complement, we reproduced this experiment with FGW . FGW has a parameter denoted ↵ 2 [0, 1]613

which sets the trade-off between the structure and the characteristics of the nodes in the distance614

computation. We performed a small grid search over this parameter ↵ = [0.25, 0.5, 0.75]. Except615

for IMDB datsaets where ↵ = 1 as in original paper. The results can be found in Table 6. One can616

see that the results are mitigated, FGW performs very well on some datasets and much less well on617

others. Moreover one could probably get even better results by doing a much larger hyperparameters618

tuning, as in the FGW original paper. Still, the present comparison is fair since, first, the grid search619

on the proposed method was also relatively small. Second, these results must be analyzed keeping620

in mind the significant difference in calculation time between the two methods (see Table 5). This621

illustrates also that doing a fine hyperparameter tuning with such expensive methods is not often622

feasible on very large data sets.623

A.9 Limitations of this work624

We discuss some of the limitations of the model and give some suggestions for improvements.625

17

A simple way to learn metrics between attributed graphs

Table 3: Ablative study results. Acc. is the accuracy. � is the difference in accuracy between the
model of the column and the proposed one SGML whose results are on Table. 1. Red negative (resp.
Green positive) number means that our model performs better (resp. worse).

Dataset WWL SGML - SW2 SGML - NCA SGML - PW2

Method Acc. � Acc. � Acc. � Acc. �

BZR 78.05 - 7.56 82.93 - 2.68 83.41 - 2.20 84.39 - 1.22
COX2 78.51 -1.26 78.30 - 1.49 77.66 - 2.13 78.94 - 0.85
MUTAG 83.68 - 6.32 86.84 - 3.16 87.37 - 2.63 90.00 0.00
NCI1 80.43 5.31 69.03 - 3.09 69.66 - 2.46 72.90 0.78
PROTEINS 71.60 1.42 71.34 1.16 71.70 1.52 70.54 0.36
IMDB-B 68.20 - 0.7 68.20 -0.70 67.40 -1.5 68.80 - 0.10
IMDB-M 48.73 3.73 42.33 -2.67 42.73 -2.27 44.13 - 0.87
ENZYMES 56.00 7.00 44.33 - 4.67 55.33 6.33 44.83 -4.17

5.4 Ablative study335

We perform experiments to justify the design choice of our model. Specifically we show that these336

choices effectively help to improve k-NN performance by reproducing the experiments above (with337

k-NN) on different versions of the method without some (or all) of our propositions.338

Raw model. Without any of our novel propositions, the method would be equivalent to WWL, which339

corresponds to use the Wasserstein distance between distributions of Eq. (7), where Y is generated340

with GIN [5], a non trainable GCN. This specific case corresponds to the first column denoted WWL341

of Table 3. We see that even if there are datasets where there is a loss of performance, others benefit342

from the learned metrics. Moreover we remind that our distance is much less expensive to use than343

W2 on which WWL is based.344

SGML with SW2. This second ablative study is in the second column, denoted SGML-SW2, of345

Table 3, and is related to replacing RPW2 by SW2. The result clearly validates our choice to use346

RPW2 instead of SW2. Our model is the best one except on one dataset.347

SGML with NCA. For this experiment we replaced the loss NCCML by the NCA loss. The result348

is in the third column, SGML - NCA of Table 3. It appears that NCCML is often more appropriate349

than NCA in our specific ML framework.350

SGML with PW2. For this final experiment we used PW2 instead of RPW2. This experiments351

show that PW2 and RPW2 have equivalent results. This suggests that projecting only on the352

canonical basis is sufficiently informative while still being less costly.353

Globally, the ablative study is in favor of the choices proposed for SGML. Note that the driving idea354

of choosing simple and scalable methods over more complex ones, leads to competitive performance355

while allowing scalability.356

6 Conclusion357

In this article, we proposed a metric learning method for attributed graphs, specifically to increase the358

performance of k-NN. We have shown experimentally that it can indeed achieve performance similar359

or even superior to the state of the art. However, a theoretical work on the properties of RPW2 will360

be useful to allow us to better understand when it does not perform well. Appendix A.9 presents some361

additional elements on the limits of the work. In addition, further work may easily adapt SGML to362

perform other tasks like graph clustering or regression, with an appropriate (and probably different)363

ML loss.364

9

• Message: it’s scalable, perf are ok,
with some theoretical insights!

Now is the time to conclude
• 2) A scalable & simple model to Learn Distances between Attributed Graphs
• -> SGML: a simple, motivated, scalable and efficient, method for (semi-supervised) metric learning between

attributed graphs
• 1) A novel way to combine structure and attributes by Diffusion + OT
• -> Diffusion Wasserstein distance: a powerful method, for unsupervised graph domain adaptation tasks

• We favor simple methods, with a specific objectives and reduced computational costs (& waste)

• Our way forward:

• 1) improve feature extraction thanks to insights from GSP

• 2) more explainability for these graph-based ML methods (see our GraphNEx project)

Contact: Pierre BORGNAT, CNRS, LP ENS de Lyon
perso.ens-lyon.fr/pierre.borgnat

SiSyPh Topics Wrap-Up

SiSyPh: Signals, Systems and Physics.

CNRS, Physics Lab., Ecole Normale Supérieure, Lyon, France

Évolution du système Vélo’v Modèle statistique Prédiction à l’heure Conclusion

Première approche :

Analyse du nombre de locations de Vélo’v

Pierre BORGNAT

CNRS – ENS Lyon, Laboratoire de Physique (UMR 5672), Université de Lyon
IXXI (Institut des Systèmes Complexes de Lyon)

23 octobre 2009

ECOLE NORMALE SUPERIEURE DE LYON

Signaux, Systèmes et Physique, laboratoire de Physique - ENS de Lyon - Juillet 2019 - 1 / 17

