
Introduction Syntax and Operational Semantics Slice Categories Semantics

Semantics for first-order affine inductive datatypes via slice
categories

Vladimir Zamdzhiev

Inria/LORIA
Nancy, France

Concurrent Games Cafe
02.04.2021

0 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Introduction

• Inductive datatypes are an important programming concept.
• Data structures such as natural numbers, lists, etc.; manipulate variable-sized data.

• Affine types: non-linear variables may be copied; all variables may be discarded.
• How to interpret an affine type system with inductive datatypes?

• Standard approach: Find a subcategory in which to interpret the values of the
language and where the tensor unit is terminal.

• Problem: What if we cannot find such a subcategory?

• This talk: a new semantic technique for the construction of discarding maps for
first-order inductive datatypes.
• Paper presented at CMCS 2020 (Coalgebraic Methods in Computer Science).

1 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Overview

• Let C be a categorical model with sufficient structure to interpret inductive types.
• Open types are interpreted as ω-cocontinuous functors JΘ ` AK : C|Θ| → C.
• Closed types are interpreted as objects JAK ∈ Ob(C).

• Consider the slice category C/I .
• C/I inherits sufficient structure from C to interpret inductive types.
• Open types can also be interpreted as ω-cocontinuous functors

8Θ ` A8 : (C/I)|Θ| → C/I .
• The affine interpretation 8− 8 satisfies some coherence properties w.r.t J−K.
• It follows 8A8 = (JAK, �A : JAK→ I).

• One can also show that the interpretations of values are discardable.

2 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Syntax

Type Variables X ,Y ,Z
Term Variables x , y , b, u
Atomic Types A ∈ A
Types A,B,C ::= X | I | A | A + B | A⊗ B | µX .A
Terms M,N ::= new unit u | discard x | M;N | skip |

while b do M | x = leftA,BM | x = rightA,BM |
case y of {left x1 → M | right x2 → N} |
x = (x1, x2) | (x1, x2) = x | y = fold x | y = unfold x

Type contexts Θ ::= X1,X2, . . . ,Xn

Variable contexts Γ,Σ ::= x1 : A1, . . . , xn : An

Type Judgements Θ ` A
Term Judgements ` 〈Γ〉 M 〈Σ〉

3 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Type Formation Rules

` Θ
Θ ` Θi

` Θ
Θ ` I

` Θ
Θ ` A

Θ ` A Θ ` B ? ∈ {+,⊗}
Θ ` A ? B

Θ,X ` A

Θ ` µX .A
,

where A ranges over a set of atomic types.

4 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Syntax : discarding

(discard)
` 〈Γ, x : A〉 discard x 〈Γ〉

• Term formation rules are standard (omitted here).

5 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Operational Semantics

• A configuration is a tuple (M,V), where:
• M is a well-formed term Π ` 〈Γ〉 M 〈Σ〉.
• V is a value assignment, such that each input variable of M is assigned a value.
• This data is subject to some well-formedness conditions (omitted).

• Program execution is modelled as a reduction relation on configurations
(M,V) (M ′,V ′).

• This is pretty standard.

6 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Slice categories for affine types

• Let C be a category and I ∈ Ob(C).
• Consider C/I , the slice category of C with the fixed object I .
• Objects of C/I are pairs (A, �A : A→ I).
• Morphisms f : (A, �A)→ (B, �B) are the morphisms f : A→ B of C, s.t.
�B ◦ f = �A.
• Forgetful functor U : C/I → C.
• Proposition: The functor U : C/I → C reflects small colimits.

7 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Slice categories for affine types (monoidal structure)

Proposition
The category C/I inherits a (symmetric) monoidal structure from (C,⊗, I).

(A, �A)� (B, �B) := (A⊗ B, λI ◦ (�A ⊗ �B))

f � g := f ⊗ g

U : C/I → C is a strict monoidal functor and:

⊗ ◦ (U × U) = U ◦� : C/I × C/I → C.

8 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Slice categories for affine types (coproducts)

Proposition
The category C/I inherits finite coproducts from C.

(A, �A)q (B, �B) := (A + B, [�A, �B])

Moreover:
+ ◦ (U × U) = U ◦ q : C/I × C/I → C.

9 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Parameterised Initial Algebras

• To interpret mutual type induction, we need parameterised initial algebras.
• Let T : A× B→ B a functor. A parameterised initial algebra for T is a pair

(T †, τ), such that:
• T † : A→ B is a functor;
• τ : T ◦ 〈Id,T †〉 ⇒ T † : A→ B is a natural transformation;
• For every A ∈ Ob(A), the pair (T †A, τA) is an initial T (A,−)-algebra.

• When A = 1 we recover the usual notion of initial algebra.
• Proposition: If B has an initial object and all ω-colimits, then any
ω-cocontinuous functor T : A× B→ B has a parameterised initial algebra
(T †, τ). Moreover, T † is also ω-cocontinuous.

10 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Slice categories for affine types (initial algebras)
Proposition
C/I inherits an initial object and all ω-colimits from C. Moreover, the forgetful functor
U : C/I → C preserves and reflects them.

Theorem
Let H : (C/I)n → C/I be a functor and T : Cn → C an ω-cocontinuous functor, such
that the diagram:

Cn(C/I)n

CC/I

T

U

U×n

H

commutes. Then, H is also ω-cocontinuous. 11 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Slice categories for affine types (initial algebras)

Theorem
Let H and T be ω-cocontinuous functors, such that (1) commutes.

Cn+1(C/I)n+1

CC/I

T

U

U×(n+1)

H (1)

CnC/I n

CC/I

T †

U

U×n

H† (2)

Then (2) also commutes, where (T †, φ) and (H†, ψ) are the respective parameterised
initial algebras.

12 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Slice categories for affine types (initial algebras)

Theorem
Let H and T be ω-cocontinuous functors, such that (1) commutes.

Cn

C

T ◦ 〈Id,T †〉 T †
φ

(C/I)n

C/I

H ◦ 〈Id,H†〉 H†
ψ

U

U×n

Cn+1(C/I)n+1

CC/I

T

U

U×(n+1)

H (1) (2)

Then the 2-categorical diagram (2) also commutes, where (T †, φ) and (H†, ψ) are the
respective parameterised initial algebras.

13 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Slice categories for affine types (summary)

• C/I inherits a monoidal structure from C.
• C/I inherits coproducts from C.
• C/I inherits ω-colimits from C.
• Parameterised initial algebras in C/I are constructed in the same way as in C for

functors that may be lifted to C/I .
• Therefore, C/I has sufficient structure to interpret inductive datatypes.

14 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Categorical Model

A categorical model of our language (with recursion) is given by the following data:
1. A symmetric monoidal category (C,⊗, I) with finite coproducts (C,+,∅).
2. The tensor product ⊗ distributes over +.
3. For each atomic type A ∈ A, an object A ∈ Ob(C) together with a discarding

map �A : A→ I .

4. C has all ω-colimits and ⊗ is an ω-cocontinuous functor.
(5.) (The above data is DCPO⊥!-enriched.)

Proposition
The induced functors � : C/I × C/I → C/I and q : C/I × C/I → C/I are both
ω-cocontinuous.

15 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Interpretation of Types

JΘ ` AK : C|Θ| → C
JΘ ` ΘiK = Πi

JΘ ` I K = KI

JΘ ` AK = KA

JΘ ` A + BK = + ◦ 〈JΘ ` AK, JΘ ` BK〉
JΘ ` A⊗ BK = ⊗ ◦ 〈JΘ ` AK, JΘ ` BK〉

JΘ ` µX .AK = JΘ,X ` AK†

8Θ ` A8 : (C/I)|Θ| → C/I
8Θ ` Θi8 = Πi

8Θ ` I8 = K(I ,idI)

8Θ ` A8 = K(A,�A)

8Θ ` A + B8 = q ◦ 〈8Θ ` A8, 8Θ ` B8〉
8Θ ` A⊗ B8 = � ◦ 〈8Θ ` A8, 8Θ ` B8〉

8Θ ` µX .A8 = 8Θ,X ` A8†

Proposition
JΘ ` AK and 8Θ ` A8 are both (well-defined) ω-cocontinuous functors.

16 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Relationship between type interpretations

Theorem
For any type Θ ` A, the following diagram

8Θ ` A8

U×|Θ|

CC/I

C|Θ|

JΘ ` AK

U

(C/I)|Θ|

commutes. Therefore, for any closed type · ` A, we have JAK = U8A8.

Remark
This shows that 8A8 gives us both JAK and a discarding map �A : JAK→ I .

17 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Folding/Unfolding of Types
• Easy to prove type substitution lemma:

• JΘ ` A[B/X]K = JΘ,X ` AK ◦ 〈Id, JΘ ` BK〉.
• 8Θ ` A[B/X]8 = 8Θ,X ` A8 ◦ 〈Id, 8Θ ` B8〉.

• Now, we can define folding/unfolding maps:
• foldµX .A : JA[µX .A/X]K = JX ` AKJµX .AK ∼= JµX .AK : unfoldµX .A
• foldµX .A : 8A[µX .A/X]8 = 8X ` A88µX .A8 ∼= 8µX .A8 : unfoldµX .A

Theorem
Given a closed type · ` µX .A, then the following diagram

Ufold

JA[µX .A/X]K JµX .AK

U8A[µX .A/X]8

fold

U8µX .A8

commutes. Therefore, folding/unfolding is a discardable isomorphism.

Proof.
This follows immediately by Theorem 2 (2).
In other words, folding/unfolding of types is a discardable isomorphism.

18 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Soundness and Adequacy

• Values, terms and configurations may be interpreted in the standard way.
• Remark: we have to show values are discardable. Hard part is folding/unfolding.

• Soundness: If C D, then JCK = JDK.
• Adequacy: In any adequate categorical model (idI 6=⊥), for any closed term M:

JMK 6=⊥ iff M ⇓ .

19 / 20

Introduction Syntax and Operational Semantics Slice Categories Semantics

Thank you for your attention!

20 / 20

	Introduction
	Syntax and Operational Semantics
	Slice Categories
	Semantics

