Introduction
[e]e]

Syntax and Operational Semantics Slice Categories Semantics
0000 00000000 000000

Semantics for first-order affine inductive datatypes via slice
categories

Vladimir Zamdzhiev

Inria/LORIA
Nancy, France

Concurrent Games Cafe
02.04.2021

3Lorio &,z P

INVENTEURS DU MONDE NUMERIQUE

0/20

Introduction
®0

Introduction

Inductive datatypes are an important programming concept.
® Data structures such as natural numbers, lists, etc.; manipulate variable-sized data.

Affine types: non-linear variables may be copied; all variables may be discarded.
® How to interpret an affine type system with inductive datatypes?

® Standard approach: Find a subcategory in which to interpret the values of the
language and where the tensor unit is terminal.
® Problem: What if we cannot find such a subcategory?

This talk: a new semantic technique for the construction of discarding maps for
first-order inductive datatypes.

® Paper presented at CMCS 2020 (Coalgebraic Methods in Computer Science).

1/20

Introduction
oe

Overview

Let C be a categorical model with sufficient structure to interpret inductive types.

Open types are interpreted as w-cocontinuous functors [© F A] : clel - c.
Closed types are interpreted as objects [A] € Ob(C).

Consider the slice category C//.

C/! inherits sufficient structure from C to interpret inductive types.

Open types can also be interpreted as w-cocontinuous functors

[©F A]:(C/Hel = /.

The affine interpretation || — || satisfies some coherence properties w.r.t [—].
It follows [JA] = ([A],¢a : [A] = 1).

One can also show that the interpretations of values are discardable.

2/20

Type Variables
Term Variables
Atomic Types
Types

Terms

Type contexts

Variable contexts
Type Judgements
Term Judgements

Syntax and Operational Semantics
€000

Syntax

X, Y, Z
Xx,y,b,u
AcA
A B, C = X|I|A|A+B|A®B|uX.A
M, N ‘= new unit v | discard x | M; N | skip |
while b do M | x = lefty gM | x = righta gM |
case y of {left x; — M | right xo — N} |
x = (x1,x) | (x1,x2) =x | y = fold x | y = unfold x
© L= Xl,Xz,...,Xn
rx = oxy AL, X D Ap
OFA
F({) M)

3/20

Introduction Syntax and Operational Semantics Slice Categories Semantics
[e]e] [e] le]e} 00000000 000000

Type Formation Rules

Fo Fo Fo OFA OrB
OF O orl OFA OFAxB

O,XFA
OF uX.A "’

* € {+,®}

where A ranges over a set of atomic types.

4/20

Introduction Syntax and Operational Semantics Slice Categories
fele} 0000 00000000

Syntax : discarding

(', x : A) discard x (I') (discard)

e Term formation rules are standard (omitted here).

Semantics
000000

5/20

Syntax and Operational Semantics
oooe

Operational Semantics

® A configuration is a tuple (M, V), where:
® M is a well-formed term M= (I') M (X).
® V is a value assignment, such that each input variable of M is assigned a value.
® This data is subject to some well-formedness conditions (omitted).

® Program execution is modelled as a reduction relation on configurations
(M, V) ~ (M'; V).
® This is pretty standard.

6/20

Slice Categories
©0000000

Slice categories for affine types

Let C be a category and | € Ob(C).
Consider C//, the slice category of C with the fixed object /.
Objects of C/I are pairs (A, 04 : A—1).

Morphisms f : (A,oa) — (B,<g) are the morphisms f : A — B of C, s.t.
ogof =o,.

Forgetful functor U : C/I — C.
Proposition: The functor U : C/I — C reflects small colimits.

7/20

Introduction Syntax and Operational Semantics Slice Categories Semantics
[e]e] 0000 0e000000 000000

Slice categories for affine types (monoidal structure)

Proposition
The category C/I inherits a (symmetric) monoidal structure from (C,®, 1).

(A,OA) X (B,OB) = (A® B,)\/ ¢ (<>A ®<>B))
Xg=f®g

U: C/I — C is a strict monoidal functor and:

®o(UxU)=UoK:C/I xC/l = C.

8/20

Introduction Syntax and Operational Semantics Slice Categories Semantics
[e]e] 0000 00@00000 000000

Slice categories for affine types (coproducts)

Proposition
The category C/I inherits finite coproducts from C.

(A,OA) II (B,OB) = (A + B, [<>A,<>B])

Moreover:

+o(Ux U)=Uoll:C/I xC/I — C.

9/20

Slice Categories
00080000

Parameterised Initial Algebras

To interpret mutual type induction, we need parameterised initial algebras.

Let T : A x B — B a functor. A parameterised initial algebra for T is a pair
(TT,7), such that:

e Tt.A — Bis a functor;

® 7:To(ld, TT) = TT: A — B is a natural transformation;

® For every A € Ob(A), the pair (TTA,74) is an initial T(A, —)-algebra.
When A = 1 we recover the usual notion of initial algebra.

Proposition: If B has an initial object and all w-colimits, then any
w-cocontinuous functor T : A x B — B has a parameterised initial algebra
(T, 7). Moreover, TT is also w-cocontinuous.

10/20

Introduction Syntax and Operational Semantics Slice Categories Semantics
00008000 000000

Slice categories for affine types (initial algebras)

Proposition
C/! inherits an initial object and all w-colimits from C. Moreover, the forgetful functor
U: C/I — C preserves and reflects them.

Theorem
Let H: (C/I)" — C/I be a functor and T : C" — C an w-cocontinuous functor, such
that the diagram:

(C/I)nL} Cn
H T
/i - C

commutes. Then, H is also w-cocontinuous. 1120

Introduction Syntax and Operational Semantics Slice Categories
00 0000 00000e00

Slice categories for affine types (initial algebras)

Theorem
Let H and T be w-cocontinuous functors, such that (1) commutes.

Ux(n+1) uxn

(C/Hrt ———— ¢! c/I" cr
Hl (1) T Hfl (2) Tt
c/l ; C c/l ; C

Then (2) also commutes, where (T',$) and (HT,1)) are the respective parameterised
initial algebras.

12/20

Introduction Syntax and Operational Semantics Slice Categories Semantics

00000000

Slice categories for affine types (initial algebras)

Theorem
Let H and T be w-cocontinuous functors, such that (1) commutes.

U><n

o (c/1yr c’
(C/nrtt U e
Hl (1) T Ho (Id, H) i Ht (2) To(dTHh =¢> Tt
C/| ——C
U
c/l U C

Then the 2-categorical diagram (2) also commutes, where (T, ¢) and (H',)) are the
respective parameterised initial algebras.

13/20

Introduction Syntax and Operational Semantics Slice Categories Semantics

0000000@

Slice categories for affine types (summary)

C/! inherits a monoidal structure from C.

C/I inherits coproducts from C.

C/I inherits w-colimits from C.

® Parameterised initial algebras in C// are constructed in the same way as in C for
functors that may be lifted to C//.

Therefore, C/I has sufficient structure to interpret inductive datatypes.

14/20

Semantics
©00000

Categorical Model

A categorical model of our language (with recursion) is given by the following data:
1. A symmetric monoidal category (C,®, /) with finite coproducts (C, +, @).
2. The tensor product ® distributes over +.

3. For each atomic type A € A, an object A € Ob(C) together with a discarding
map op - A — [,

4. C has all w-colimits and ® is an w-cocontinuous functor.
(5.) (The above data is DCPO | j-enriched.)

Proposition
The induced functors ¥ : C/I x C/I — C/I and 11 : C/I x C/l — C/I are both

w-cocontinuous.

15/20

Introduction Svntﬁx and Operational Semantics

Semantics
0®0000

Interpretation of Types

[oFA]:C® > C

[ere]=n;
[OFI] =K
[OFA] = Ka
[OFA+B]=+0([®F A][0OF B])
[OFA®B]=®o([®F A],[OF+ B])
[©F uX.Al = [0, X+ A]'
Proposition

ﬂ@FAﬂ(/ﬂ@ﬁCﬂ

[OF6;,]=n

ﬂ@km:K,m

[0+ A] = Kaon
[OFA+B] =10 ([©F A[, [OF B])
[0+ A®B] =Ko (]OF A], O+ B[)
[OF uX.Al =[]0, X+ A]'

[©F A] and [© - A| are both (well-defined) w-cocontinuous functors.

16/ 20

Introduction Syntax and Operational Semantics Slice Categories

(e]e]

Semantics
0000 00000000 008000

Relationship between type interpretations

Theorem
For any type © - A, the following diagram

(C/,)\e| &

|]@|—Aﬂ‘ [OF Al

c/l— ¢

U
commutes. Therefore, for any closed type - = A, we have [A] = U[A].

Remark
This shows that [JA| gives us both [A] and a discarding map oa : [A] — 1.

17/20

Semantics
000800

Folding/Unfolding of Types

e Easy to prove type substitution lemma:
e [OF A[B/X]] =[0©,X F A] o (ld,[© I B]).
e [0F AB/X]] =]©,X Ao (id,]© + B]).
® Now, we can define folding/unfolding maps:
o fold,x.a : [A[X.A/X]] = [X - A][uX.A] = [1X.A] : unfold,x.a
o fold,xa: [AX.A/X]] = [X F AJ[uX.A] 2 [uX.A] : unfold,x 4

Theorem
Given a closed type - - uX.A, then the following diagram

UDA[X.A/X]] YR ypux Al

[AlXA/X]] —poqg— [#XAl

commutes. Therefore, folding/unfolding is a discardable isomorphism. 1820

Semantics
000000

Soundness and Adequacy

® Values, terms and configurations may be interpreted in the standard way.
® Remark: we have to show values are discardable. Hard part is folding/unfolding.

¢ Soundness: If C ~» D, then [C] = [D].
¢ Adequacy: In any adequate categorical model (id; #.1), for any closed term M:

[M] #L iff M| .

19/20

Introduction Syntax and Operational Semantics Slice Categories Semantics
[e]e] 0000 00000000 00000e

Thank you for your attention!

20/20

	Introduction
	Syntax and Operational Semantics
	Slice Categories
	Semantics

