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Motivation:
Compositional reasoning on higher-order programs

with shared ressources, that is modular w.r.t. effects
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Realizability/Logical Relations?!

Advantages:

provides models of type systems and program logics;

defined directly using operational semantics;

captures abstraction properties likes parametricity;

provides Kripke-style reasoning (a.k.a forcing/presheaves
construction) on shared ressources

modular wrt observation (biorthogonality).

Drawbacks:

complex inductive definition (step-indexing);

extensional (no clear distinction between programs and environments);

full-abstraction only via biorthogonality;

hard to automate.
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We Want Game Semantics!

Models built on representations of the interactions between the program
and its environment...

... but with some specific features:

defined from operationnal semantics

provide coinductive and Kripke-stype reasoning

handle asymmetric settings (Programs and Environments written in
different languages)

Operational Game Semantics!
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What’s in this talk ?

Fully-abstract operational game models
I For simply-typed call-by-value λ-calculus with higher-order references

and call/cc
I Modular reasoning on the power of Opponent based on a asymmetric

& uniform presentation of visibility and well-bracketing.

Kripke normal-form bisimulations
I Complete & tractable technique for proving contextual equivalence
I Compositional reasoning on shared ressource (i.e. references)
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Effectful fragments of ML

Simply-typed call-by-value λ-calculus

with references: ground (can store integers or locations) or
higher-order (can also store functions)

with or without call/cc control operator

HOS
(higher-order store)

GOS
(ground store)

HOSC
(higher-order store+call/cc)

GOSC
(ground store+call/cc)
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Semantic studies

HOS
(higher-order store)

GOS
(ground store)

HOSC
(higher-order store+call/cc)

GOSC
(ground store+call/cc)

For these four languages we design:

a fully-abstract model using operational game semantics

a complete operational technique for proving contextual equivalence
using Kripke open bisimulations
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1 Operational Semantics

2 Operational Game Semantics

3 Kripke Normal-Form Bisimulations
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Operational Semantics

We use reduction semantics:

reduction relation M → M ′ between terms

closed by evaluation contexts:

M → M ′

K [M]→ K [M ′]

In call-by-value:

Values V , x | λx .M
Terms M , V | MN

Evaluation Contexts K , • | VK | KM

Reduction relation
(λx .M)V → M{V /x}
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Contextual equivalence

Definition

Two programs M1,M2 are contextually equivalent when for all context C ,
C [M1] and C [M2] are observationally indistinguishable.

This definition depends on:

The language the contexts are written in

 in general the same as the one of M1,M2;
 In our CBV λ-calculus : C , • | λx .C | MC | CM

the observation that is used

 termination: reduces to a value
 error: reduces to K [err()] with err a distinguished, free variable.

Talcott’s CIU-equivalence:

only consider evaluation contexts;

substitute free variables with values;

CIU and contextual equivalence are equal (in a symmetric setting) !
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Operational Semantics for references

We consider heaps: partial maps from locations ` to values.

Evaluation reduction works on pairs (M, h):

(refV , h) → (`, h · [` 7→ V ])
(` := V , h) → ((), h[` 7→ V ])
(!`, h) → (h(`), h)

New evaluation contexts:

K , . . . | refK | K := M | ` := K |!K
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Operational Semantics for call/cc

We embed evaluation contexts into terms using cont K construct.

(K [call/cc(x .M)], h) → (K [M{cont K/x}], h)
(K [throw V to cont K ′], h) → (K ′[V ], h)
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1 Operational Semantics

2 Operational Game Semantics

3 Kripke Normal-Form Bisimulations
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Introducing Operational Game Semantics

Interactions between the program and the context are represented by
traces generated by a bipartite labelled transition system.

Bipartite: Program=Player; Context=Opponent

Player behavior is fully determined by the program;

Opponent behavior represents all possible contexts.

Functional values and continuations are represented using free
variables called names;

Configurations of the LTS have a dynamic environment (”inventory”)
γ that keeps track of the functional values and continuations
associated to these names.
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Exchanging Values

Player and Opponent exchanges abstract values:

A,B , () | tt | ff | n | f | 〈A,B〉

avoid being too intentional

negative values are represented by names: they are opaque
I functional names f

similar to Levy’s ultimate patterns.

In this talk: no exchange of locations or continuations !

Abstracting values:

(A, γ) ∈ AValσ(V ) when A : σ and A{γ} = V
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Actions

Four kind of actions

Player Answer c̄(A): an abstract value A is sent through a
continuation name c.

Player Question f̄ (A, c): an abstract value A and a continuation
name c are sent through a function name f .

Opponent Answer (OA) c(A): an abstract value A is received from
the environment via the continuation name c.

Opponent Question (OQ) f (A, c): an abstract value A and a
continuation name c are received from the environment through a
function name f .
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Traces

Traces are sequence of actions alternating between Player and Opponent

similar to traces generated by the (Internal) π-calculus;

justification pointer used in game semantics can be reconstructed
from the binding structure of actions;

removing continuation names in traces for HOS: back to direct style.
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Configurations

The state of the bipartite LTS are:

Player (active) configurations 〈M, c , γ, ξ, h〉;
Opponent (passive) configurations 〈γ, ξ, h〉.

They are formed by:

a term M;

a continuation name c ;

an dynamic environment γ:
a map from names to functional values or evaluation contexts;

a continuation structure ξ:
a map from continuation names to continuation names;

a heap h.
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LTS for HOSC

(Pτ) 〈M, c, γ, ξ, h〉 τ−−→ 〈N, c ′, γ, ξ, h′〉
when (M, c , h)→ (N, c ′, h′)

(PA) 〈V , c , γ, ξ, h〉 c̄(A)−−−→ 〈γ · γ′, ξ, h〉
when c : σ and (A, γ′) ∈ AValσ(V )

(PQ) 〈K [fV ], c , γ, ξ, h〉 f̄ (A,c ′)−−−−→ 〈γ · γ′ · [c ′ 7→ K ], ξ · [c ′ 7→ c], h〉
when c ′ : σ′, f : σ → σ′ and (A, γ′) ∈ AValσ(V ),

(OA) 〈γ, ξ, h〉 c(A)−−−→ 〈K [A], c ′, γ, ξ, h〉
when c : σ, A : σ and γ(c) = K , ξ(c) = c ′

(OQ) 〈γ, ξ, h〉 f (A,c)−−−−→ 〈VA, c , γ, ξ, h〉
when f : σ → σ′, A : σ, c : σ′ and γ(f ) = V
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We consider the following program M:

let x = ref 0 in λf.x :=!x− 1; f(); x :=!x + 1; !x

〈M, c0〉
τ−→ 〈

V︷ ︸︸ ︷
λf.` :=!`− 1; f(); ` :=!`+ 1; !`, c0, [` 7→ 0]〉

c̄0(g)−−−→ 〈[g 7→ V ]︸ ︷︷ ︸
γ

, [` 7→ 0]〉

g(f ,c1)−−−−→ 〈V f , c1, γ, [` 7→ 0]〉
τ−→ 〈K [f ()], c1, γ, [` 7→ −1]〉 with K = •; ` :=!`+ 1; !`

f̄ ((),c2)−−−−→ 〈
γ′︷ ︸︸ ︷

γ · [c2 7→ K ],

ξ︷ ︸︸ ︷
[c2 7→ c1], [` 7→ −1]〉

here Opponent can either answer to c2

or interrogate g again (nested call)
c2(())−−−→ 〈K [()], c2, γ

′, ξ, [` 7→ −1]〉
. . .

c2 can still be used afterwards, meaning that we can use the evaluation
context K many times to increment `.
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Operational Game Semantics for HOS contexts

Opponent cannot use call/cc anymore
I but Player still can (asymmetric situation).

Opponent behaviour is then restricted:
I Opponent Answers must follow the O-bracketing discipline
I enforced in the OA rule of the LTS by keeping track of the

continuation structure for Opponent too.

Well-bracketing when Player cannot use call/cc neither: the
continuation structure used in the LTS is then a stack, getting back
the model of [Laird 2007].

21 / 38



LTS for HOS

(Pτ) 〈M, c , γ, ξ, h〉 τ−−→ 〈N, c ′, γ, ξ, h′〉
when (M, c , h)→ (N, c ′, h′)

(PA) 〈V , c , γ, ξ, h〉 c̄(A)−−−→ 〈γ · γ′, ξ, h, c ′〉
when c : σ, (A, γ′) ∈ AValσ(V ), ξ(c) = c ′

(PQ) 〈K [fV ], c , γ, ξ, h〉 f̄ (A,c ′)−−−−→ 〈γ · γ′ · [c ′ 7→ K ], ξ · [c ′ 7→ c], h, c ′〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V ), c ′ : σ′

(OA) 〈γ, ξ, h, c ′′〉 c(A)−−−→ 〈K [A], c ′, γ, ξ, h〉
when c = c ′′, c : σ, A : σ, γ(c) = K , ξ(c) = c ′

(OQ) 〈γ, ξ, h, c ′′〉 f (A,c)−−−−→ 〈VA, c , γ, ξ·[c 7→ c ′′], h〉
when f : σ → σ′, A : σ, c : σ′, γ(f ) = V
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M , let x = ref 0 in λf.x :=!x− 1; f(); x :=!x + 1; !x

〈M, c0,

ξ0︷ ︸︸ ︷
[c0 7→ ⊥]〉 τ−→ 〈

V︷ ︸︸ ︷
λf.` :=!`− 1; f(); ` :=!`+ 1; !`, c0, ξ0, [` 7→ 0]〉

c̄0(g)−−−→ 〈[g 7→ V ]︸ ︷︷ ︸
γ

, ξ0, [` 7→ 0],⊥〉

g(f ,c1)−−−−→ 〈V f , c1,

ξ1︷ ︸︸ ︷
ξ0 · [c1 7→ ⊥], γ, [` 7→ 0]〉

τ−→ 〈K [f ()], c1, γ, ξ1, [` 7→ −1]〉 with K = •; ` :=!`+ 1; !`

f̄ ((),c2)−−−−→ 〈

γ′︷ ︸︸ ︷
γ · [c2 7→ K ],

ξ2︷ ︸︸ ︷
ξ1 · [c2 7→ c1], [` 7→ −1], c2〉

g(f ′,c3)−−−−→ 〈V f ′, c3, γ
′,

ξ3︷ ︸︸ ︷
ξ2 · [c3 7→ c2], [` 7→ −1]〉

τ−→ 〈K [f ′()], c3, γ
′, ξ3, [` 7→ −2]〉

f̄ ′((),c4)−−−−−→ 〈

γ′︷ ︸︸ ︷
γ · [c4 7→ K ],

ξ4︷ ︸︸ ︷
ξ3 · [c4 7→ c3], [` 7→ −2], c4〉

Then Opponent answers should be first on c4, then on c2.
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Operational Game Semantics for GOSC contexts

Opponent cannot store functional values nor continuations produced
by call/cc

I but Player still can (asymmetric situation).

Both Opponent Questions and Answers are restricted: O-visibility
I to control the functional names used in Opponent Questions and the

continuation names used in Opponent Answers to be in the scope,
called the O-view;

I enforced in the Opponent rules of the LTS by keeping track of the
O-views at each interaction points.
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Modularity

Operational Game Semantics for GOS contexts

Opponent cannot store functional values and cannot use call/cc.

Combine both O-bracketing and O-visibility

On Opponent Answer, O-bracketing implies O-visibility.

More generally, a common LTS for the four fragments:

enforcing O-bracketing and O-visibility is based on the trace already
played;

uniform treatment by incorporating in configurations a notion of
history of available names used;

condition on Opponent moves depending if we want to capture
HOSC, HOS, GOSC, or GOS contexts.
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Theorem (Full Abstraction)

For each fragment GOS,GOSC,HOS,HOSC, the set of traces, generated by
the corresponding LTS, for two programs M1,M2, are equal iff M1,M2 are
contextually equivalent.

For HOS and GOS: error observation rather than termination in the
definition of contextual equivalence

I to avoid the restriction to complete traces.

Proofs of these full-abstraction results use ciu-equivalence and
definability theorems.

Asymmetric case: M1,M2 are in HOSC, while contexts are taken
either in HOS, GOS or GOSC;

I Player is more powerful than Opponent;
I soundness wrt ciu-equivalence only...
I equivalence is not a congruence anymore !
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Can we prove contextual equivalence of two programs
using these fully-abstract models ?

Prove trace equality of the LTS corresponding to the two programs using
bisimulations.

Eager normal-form bisimulations for ∼HOSC [Støvring & Lassen
2007]

extended to HOS in [Biernacki, Lenglet & Polesiuk, 2019]

main difficulty: the dynamic environment γ of LTS configurations
keeps growing
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1 Operational Semantics

2 Operational Game Semantics

3 Kripke Normal-Form Bisimulations
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We would like to relate each corresponding components of
the environments independently

Problem: this is unsound in presence of references

let c = ref0 in

let inc () = c := !c + 1 in

let get () =!c in

〈inc, get〉

let c = ref0 in

let dec () = c := !c − 1 in

let get () =!c in

〈dec, get〉

 Related to the unsoundness of applicative bisimulations in a similar
setting [Koutavas,Levy, Sumii 2015] ?

29 / 38



A Solution:

Use worlds w as memory invariants to specify the heap resources shared by
all the components of the two programs.

 as introduced with Kripke Logical Relations [Pitts & Stark 1998;
Dreyer, Neis, Birkedal 2010]

Adaptation to Bisimulations over Operational Game Semantics LTS:

Kripke Normal-Form Bisimulations
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Kripke reasoning

Definition

A world transition system (WTS) A is a triple (Worlds,vOQ,vOA, I),
where:

Worlds is a set of states,

vOQ,vOA are binary reflexive relations on Worlds,

I : Worlds→ P(Heap×Heap) is the invariant assignment.

For example:

Relational invariants: I(w) = {(h1, h2) | h1(`1) = −h2(`2)}
Transition systems of invariants:

` 7→ 0 ` 7→ 1

31 / 38



Decomposing configurations
Partial configurations D,D ′: remove the shared resources

I heap h;
I available name history components used to restrict Opponent

behaviour.

Product of partial configurations D ⊗ D ′:
I concatenate the dynamic environments γ, γ′ of D,D ′;
I at most one Player (i.e. active) configuration among D,D ′;
I Opponent names can be shared between D,D ′.

Prime configurations:
I partial configurations that are irreducible w.r.t. ⊗;
I either Player (active) configuration with empty dynamic environment γ;
I or Opponent (passive) configurations with singleton γ.

Normal-Form bisimulations/Bohm trees corresponds to
LTS over prime configurations !
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LTS over prime configurations !
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Kripke Normal-Form Bisimulations for HOSC

Kripke Normal-Form Bisimulations are relations over triples
R = (RV ,RK,RE) which are post-fixpoint of (VA,KA, EA), i.e.
R ⊆ (VA(R),KA(R), EA(R)), where:

VA(RV ,RK,RE) , { (β,V ,V ,w) | V : β ∧ β ∈ Int,Bool,Unit} ∪
{ (σ → σ′,V1,V2,w) | ∀w ′ w∗OQ w . ∀A : σ. ∀c : τ.

(σ′,V1A, c ,V2A, c ,w
′) ∈ RE }

KA(RV ,RK,RE) , { (σ, σ′,K1, c1,K2, c2,w) | ∀w ′ w∗OA w . ∀A : σ.
(σ′,K1[A], c1,K2[A], c2,w

′) ∈ RE }

EA(RV ,RK,RE) , { (σ,M1, c1,M2, c2,w) | ∀(h1, h2) ∈ I(w).
PDiv ∨ PPA ∨ PPQ }
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Kripke Normal-Form Bisimulations for HOSC

PDiv , (M1, c1, h1) ⇑ ∧ (M2, c2, h2) ⇑

PPA , ∃V1,V2, c . ∃w ′ wc w . ∃(h′1, h
′
2) ∈ I(w ′). (σ,V1,V2,w

′) ∈ RV ∧
(M1, c1, h1)→∗ (V1, c , h

′
1) ∧ (M2, c2, h2)→∗ (V2, c , h

′
2)

PPQ , ∃K1,V1,K2,V2. ∃c ′1, c ′2 : τ. ∃σ1, σ2. ∃f : σ1 → σ2. ∃w ′ wf (w).
∃(h′1, h

′
2) ∈ I(w ′). (σ1,V1,V2,w

′,H) ∈ RV
∧ (σ2, σ,K1, c

′
1,K2, c

′
2,w

′,H) ∈ RK
∧ (M1, c1, h1)→∗ (K1[fV1], c ′1, h

′
1) ∧ (M2, c2, h2)→∗ (K2[fV2], c ′2, h

′
2)

34 / 38



Modular Kripke Normal-Form Bisimulations

Extending the definition to restricted Opponent (GOS,GOSC,HOS):

by index the definition of KNFB with a world-history H that
associates worlds to continuation and functional names;

related to the available-name history of the uniform OGS LTS.

Theorem (Soundness & Completeness)

For each fragment x ∈ {GOS ,GOSC ,HOS ,HOSC}, considering for two
programs M1,M2 of these fragments, there exists a world transition system
A and an A, x-Kripke normal-form bisimulation that contains M1,M2 iff
M1,M2 are contextually equivalent in x.

Soundness: prime decomposition of the LTS.

Completeness: transformation of the OGS LTS into a WTS A.
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Relating Semantic Squares

Relate semantic characterizations of effects
coming from game semantics and Kripke logical relations

HOS
well-bracketing

public transitions

GOS
well-bracketing+visibility

public transitions+backtracking

HOSC

GOSC
visibility

backtracking

[Abramsky & McCusker 1997], [Laird 1997]

[Dreyer, Neis & Birkedal 2010]
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In the future:

Construction from normal-form bisimulations to Kripke normal-form
bisimulations as an up-to/abstraction technique ?

Assymetric reasoning on effects between the program and contexts
and fully-abstract interopability.

Extension to parametric polymorphism, following [Lassen, Levy 2008],
[Jaber, Tzevelekos 2016, 2018].

Automation of contextual equivalence for these fragments, following
[Jaber 2020].
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