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Some motivations from implicit complexity (1)

At the beginning of this enterprise I wanted to prove “concrete” statements like this:

Typical theorem in implicit computational complexity
A function can be computed by some program of type T in a language P
if and only if it belongs to the complexity class C.

There is (was?) a whole industry doing this with P = something involving linear types

An example dear to my heart: P = simply typed λ-calculus, C = regular languages

Theorem (Hillebrand & Kanellakis 1996)
For any type A and any simply typed λ-term t : StrΣ[A] → Bool (using Church encodings), the
language {w ∈ Σ∗ | t w =β true} is regular. Conversely, every regular language can be defined this way.

(see also my Implicit automata in typed λ-calculi paper series with Pradic)

Proof idea: compute Jt wK in the cartesian closed category of finite sets
−→ semantic evaluation technique, makes denotational models relevant!
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Some motivations from implicit complexity (2)

Typical theorem in implicit computational complexity
A function can be computed by some program of type T in a language P
if and only if it belongs to the complexity class C.

N. & Pradic, From normal functors to logarithmic space queries (sorry for the clickbait), 2019:

• P = something involving linear types (more or less Elementary Linear Logic)
• T = somewhat less conventional choice (doesn’t matter here)
• partial results: L ⊆ C ⊆ NL, upper bound obtained using coherence spaces

conjecture: C = L

This talk: sketch of a few ideas to make a tiny bit of progress on this conjecture,
involving hypercoherences, with some intuitions from game semantics

First I have to recall hypercoherences + their connection with games from:
Ehrhard, Parallel and serial hypercoherences, 2000
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Hypercoherences in a nutshell

A hypercoherence X := a set |X| + choice of coherent subsets Γ(X) ⊂ Pfin(|X|) \ {∅},
containing all singletons (Pfin(S) = finite subsets of S)

strictly coherent := coherent & non-singleton, strictly incoherent := Pfin(|X|) \ (Γ(X) ∪ {∅})

• linear negation: |X⊥| = |X|, exchange coherence and incoherence
• |X ⊸ Y| = |X| × |Y| and Γ(X ⊸ Y) to be defined later

Cliques c ⊏ X (semantic inhabitants): c ⊆ |X| and Pfin(c) \ {∅} ⊆ Γ(X)
Morphism X → Y := clique of X ⊸ Y, composed by relational composition (thm: it works)

For simplicity we will consider mostly finite hypercoherences (Card(|X|) < ∞)
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The iteration problem

In our implicit complexity stuff, the bottleneck for the semantic evaluation argument is:

Decision problem
Inputs: a finite hypercoherence X, 2 points x, y ∈ |X|, a list of endormophisms c1, . . . , cn ⊏ X ⊸ X.
Output: are x and y related by cn ◦ · · · ◦ c1? (yes/no)

So what’s the complexity of this?

• NL: guess x = z0, z1, . . . , zn = y such that (zi−1, zi) ∈ ci
• UL: the non-determinism is unambiguous since this sequence is unique if it exists, thanks to:

Elementary property (related to Berry’s stability)

Let X be a hypercoherence. For c ⊏ X and d ⊏ X⊥, we have Card(c ∩ d) ≤ 1.

Proof. Pfin(c ∩ d) \ {∅} ⊆ Γ(X) ∩ Γ(X⊥) = {singletons of |X|}.

We want to use games to do better (L) for restricted versions of the problem.
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Hypercoherences as games (1)

Elementary property
Let X be a hypercoherence. For c ⊏ X and d ⊏ X⊥, we have Card(c ∩ d) ≤ 1.

Morally the final position resulting from an interaction: strategy c vs counter-strategy d.

Intuition: coherent = ⊖, incoherent = ⊕. Assume |X| /∈ Γ(X) i.e. c plays first.

• Take S1 ∈ Γ(X) such that c ⊆ S1. Let d1 = d ∩ S1.
• Take S2 ∈ Γ(X⊥) such that d1 ⊆ S2 ⊆ S1. Let c2 = c ∩ S2.
• Take S3 ∈ Γ(X) such that c2 ⊆ S3 ⊆ S2. Let d3 = d1 ∩ S3.
• etc.

For n large enough, this fails (c ∩ d = ∅) or is equal to c ∩ d.
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Hypercoherences as games (2)

Ehrhard calls a tower of X any sequence of alternating polarities (coh/incoh)

|X| = S0 ⊋ S1 ⊋ · · · ⊋ Sn

where each Si is a maximal subset of the right polarity of Si−1.
Towers are plays, and their elements are positions. Depth of X := maximum possible n.

Conjecture (which would suffice for our implicit complexity purposes)
The iteration problem becomes easier for finite hypercoherences of bounded depth.

But wait, we didn’t define implication yet… as usual X ⊸ Y = X⊥ ` Y
Definition: S ⊆ |X| × |Y| strictly coherent in X` Y ⇐⇒ ∃i ∈ {1, 2} : πi(S) strictly coherent
Explanation: Opponent to play in X` Y ⇐⇒ Opponent to play in either X or Y

Concurrency? For |X| and |Y| incoh

|X| × |Y| ⊋ S1 × |Y| ⊋ S2 × |Y| ⊋ S2 × S′
1 ⊋ S2 × S′

2

|X| × |Y| ⊋ |X| × S′
1 ⊋ |X| × S′

2 ⊋ |X| ⊋ S1 × S′
2 ⊋ S2 × S′

2
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The iteration problem at depth 1

Conjecture (with more details)
For all k ∈ N≥1, there is a deterministic algorithm that, given X of depth ≤ k, x, y ∈ |X| and
c1, . . . , cn ⊏ X ⊸ X, runs in space O(log(Card(|X|)) + log(n) + log(number of positions of X))
and decides whether x, y ∈ cn ◦ · · · ◦ c1.

(using a sparse representation of Γ(X) by the set of positions)

Theorem: this holds for k = 3 (maybe k = 4).

What is a depth 1 hypercoherence? Assume w.l.o.g. |X| /∈ Γ(X)

, then Γ(X) = {singletons}

For any S ∈ Γ(X), the tower |X| ⊋ S is already maximal −→ S is a singleton

Cliques of X ⊸ X = partial functions f : |X| ⇀ |X|
Logspace algorithm: compute z1 = f(x), z2 = f(z1), … and check that zn = y
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The iteration problem at depth 2

Assume now that X has depth 2 (and w.l.o.g. |X| /∈ Γ(X)), let x ∈ |X| and c1, . . . , cn ⊏ X ⊸ X

• π2(c1 ∩ ({x} × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P1 ∈ Γ(X) be a position that contains it.
(We can store positions in O(log(number of positions of X)) space, but not π2(. . . ))

• π2(c2 ∩ (P1 × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P2 ∈ Γ(X) be a position that contains it.
Morally: once a move has been played on the left of X ⊸ X, the strategy c2 has enough
information to play on the right

• Let P3 ⊇ π2(c2 ∩ (P1 × |X|)) such that P3 ∈ Γ(X) (assuming non-emptiness). Etc.

Important: if there exist x = z0, . . . , zn = y with (zi−1, zi) ∈ ci, then zi ∈ Pi

in particular if π2(. . . ) = ∅ at some point then (x, y) /∈ cn ◦ · · · ◦ c1
This reduces the problem to the depth 1 case

c′n ⊏ X⊥
↾Pn ⊸ X⊥

↾Pn−1 , . . . , c
′
1 ⊏ X⊥

↾P1 ⊸ X⊥
↾{x}

(indeed the sequence P1, . . . ,Pn can be recomputed on the fly in logspace)

9/11



The iteration problem at depth 2

Assume now that X has depth 2 (and w.l.o.g. |X| /∈ Γ(X)), let x ∈ |X| and c1, . . . , cn ⊏ X ⊸ X

• π2(c1 ∩ ({x} × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P1 ∈ Γ(X) be a position that contains it.
(We can store positions in O(log(number of positions of X)) space, but not π2(. . . ))

• π2(c2 ∩ (P1 × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P2 ∈ Γ(X) be a position that contains it.
Morally: once a move has been played on the left of X ⊸ X, the strategy c2 has enough
information to play on the right

• Let P3 ⊇ π2(c2 ∩ (P1 × |X|)) such that P3 ∈ Γ(X) (assuming non-emptiness). Etc.

Important: if there exist x = z0, . . . , zn = y with (zi−1, zi) ∈ ci, then zi ∈ Pi

in particular if π2(. . . ) = ∅ at some point then (x, y) /∈ cn ◦ · · · ◦ c1
This reduces the problem to the depth 1 case

c′n ⊏ X⊥
↾Pn ⊸ X⊥

↾Pn−1 , . . . , c
′
1 ⊏ X⊥

↾P1 ⊸ X⊥
↾{x}

(indeed the sequence P1, . . . ,Pn can be recomputed on the fly in logspace)

9/11



The iteration problem at depth 2

Assume now that X has depth 2 (and w.l.o.g. |X| /∈ Γ(X)), let x ∈ |X| and c1, . . . , cn ⊏ X ⊸ X

• π2(c1 ∩ ({x} × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P1 ∈ Γ(X) be a position that contains it.
(We can store positions in O(log(number of positions of X)) space, but not π2(. . . ))

• π2(c2 ∩ (P1 × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P2 ∈ Γ(X) be a position that contains it.
Morally: once a move has been played on the left of X ⊸ X, the strategy c2 has enough
information to play on the right

• Let P3 ⊇ π2(c2 ∩ (P1 × |X|)) such that P3 ∈ Γ(X) (assuming non-emptiness). Etc.

Important: if there exist x = z0, . . . , zn = y with (zi−1, zi) ∈ ci, then zi ∈ Pi

in particular if π2(. . . ) = ∅ at some point then (x, y) /∈ cn ◦ · · · ◦ c1
This reduces the problem to the depth 1 case

c′n ⊏ X⊥
↾Pn ⊸ X⊥

↾Pn−1 , . . . , c
′
1 ⊏ X⊥

↾P1 ⊸ X⊥
↾{x}

(indeed the sequence P1, . . . ,Pn can be recomputed on the fly in logspace)

9/11



The iteration problem at depth 2

Assume now that X has depth 2 (and w.l.o.g. |X| /∈ Γ(X)), let x ∈ |X| and c1, . . . , cn ⊏ X ⊸ X

• π2(c1 ∩ ({x} × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P1 ∈ Γ(X) be a position that contains it.
(We can store positions in O(log(number of positions of X)) space, but not π2(. . . ))

• π2(c2 ∩ (P1 × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P2 ∈ Γ(X) be a position that contains it.
Morally: once a move has been played on the left of X ⊸ X, the strategy c2 has enough
information to play on the right

• Let P3 ⊇ π2(c2 ∩ (P1 × |X|)) such that P3 ∈ Γ(X) (assuming non-emptiness). Etc.

Important: if there exist x = z0, . . . , zn = y with (zi−1, zi) ∈ ci, then zi ∈ Pi

in particular if π2(. . . ) = ∅ at some point then (x, y) /∈ cn ◦ · · · ◦ c1

This reduces the problem to the depth 1 case

c′n ⊏ X⊥
↾Pn ⊸ X⊥

↾Pn−1 , . . . , c
′
1 ⊏ X⊥

↾P1 ⊸ X⊥
↾{x}

(indeed the sequence P1, . . . ,Pn can be recomputed on the fly in logspace)

9/11



The iteration problem at depth 2

Assume now that X has depth 2 (and w.l.o.g. |X| /∈ Γ(X)), let x ∈ |X| and c1, . . . , cn ⊏ X ⊸ X

• π2(c1 ∩ ({x} × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P1 ∈ Γ(X) be a position that contains it.
(We can store positions in O(log(number of positions of X)) space, but not π2(. . . ))

• π2(c2 ∩ (P1 × |X|)) ∈ Γ(X) ∪ {∅}. If non-empty, let P2 ∈ Γ(X) be a position that contains it.
Morally: once a move has been played on the left of X ⊸ X, the strategy c2 has enough
information to play on the right

• Let P3 ⊇ π2(c2 ∩ (P1 × |X|)) such that P3 ∈ Γ(X) (assuming non-emptiness). Etc.

Important: if there exist x = z0, . . . , zn = y with (zi−1, zi) ∈ ci, then zi ∈ Pi

in particular if π2(. . . ) = ∅ at some point then (x, y) /∈ cn ◦ · · · ◦ c1
This reduces the problem to the depth 1 case

c′n ⊏ X⊥
↾Pn ⊸ X⊥

↾Pn−1 , . . . , c
′
1 ⊏ X⊥

↾P1 ⊸ X⊥
↾{x}

(indeed the sequence P1, . . . ,Pn can be recomputed on the fly in logspace)

9/11



The iteration problem at depth 3

• depth 1: forward propagation of information zi = f(zi−1) with f : |X| ⇀ |X|
• depth 2: forward pass followed by (depth 1) backwards pass
• depth 3 is trickier

In general, for |X| /∈ Γ(X), given a position P ∈ Γ(X) and c ⊏ X ⊸ X,

π2(c ∩ (P× |X|)) ∈ Γ(X) ∪ {∅} or π1(c ∩ (P× |X|)) ∈ Γ(X⊥) ∪ {∅}

That is, when Opponent plays a move on the left of X ⊸ X, the strategy c can react:

• either by playing on the right,
• or by answering on the left.

−→ need to handle back-and-forth movement of information
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Conclusion

• We saw that intuitions from game semantics could be read into hypercoherences (Ehrhard 2000)
• The “game depth” seems to be a relevant parameter for computational complexity

• As shown through an algorithm for the iteration problem at low depth
• This might help us with our ultimate goal in implicit complexity (conjecture from N. & Pradic 2019)

So why use hypercoherences instead of some other game model? In my case:

• finitary semantics of 2nd order MALL / affine system F
• simple combinatorial description =⇒ helpful for algorithmics

Anyway all this is still rather speculative…

Thanks for your attention! Any questions?
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