
A Tale of Additives and Concurrency
in Game Semantics

Pierre Clairambault
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Abstract

Twenty years ago, Abramsky and Melliès published their famous paper, Concur-
rent Games and Full Completeness. In that paper, they advocated the switch to a
truly concurrent canvas to address the issue known as the Blass problem, diagnosed
as an excess of sequentiality. Their model, concurrent games, was the first of a family
of positional or causal game semantics which has since then shown merits far beyond
the full completeness problem for Linear Logic.

In this paper, we tell and revisit the story of models of MALL in game semantics,
in the modern clothes of concurrent games on event structures, from Blass games to
Melliès’ approach to fully complete models of Linear Logic.

1 Introduction

Game semantics in its modern form arose in the early 90s, driven by the problem of full
abstraction for PCF [55]. The idea to represent formulas as games and validity as the
existence of a winning strategy was not new, going back to at least the work of Lorenzen
and Lorenz in the 60s. But in the 80s and early 90s, the scientific landscape was rich in
developments hinting at a dynamic semantics for programs and proofs. In 1982, Berry and
Curien introduced sequential algorithms [11], attempting to capture higher-order sequen-
tiality by presenting programs as functions along with a specific order, or “algorithms” to
compute them, prefiguring strategies1. In 1989, Girard introduced the Geometry of Inter-
action (GoI) [37], a model of Linear Logic [36] representing proofs as operators on Hilbert
spaces with an interactive form of composition2. In 1991, Coquand gave a game semantics
of classical arithmetic, interpreting proofs as strategies with the ability to backtrack 3[31].
In 1992, Blass gave a games model for full propositional Linear Logic [13].

1It appeared later that sequential algorithms are indeed a game semantics, as they admit a linear
decomposition into the category of simple games via the Curien-Lamarche exponential.

2It appeared later that these operators represent a “history-free skeleton” in terms of Abramsky-
Jagadeesan games [2] or Abramsky-Jagadeesan-Malacaria (AJM) games [3], informing links between GoI
and game semantics [9].

3Backtracking prefigures the pointers of Hyland-Ong games, with a composition mechanism prefiguring
innocent interaction.

1

Perhaps the first paper on game semantics, taken with a modern understanding of the
term, is Abramsky and Jagadeesan’s 1992 paper on full completeness for Multiplicative
Linear Logic (MLL) with the MIX rule [2]. More than just novel techniques, the paper
introduces a change in perspective: while earlier games models were interested in capturing
validity as the existence of a winning strategy for a game, Abramsky and Jagadeesan aim
to capture proofs as strategies, such that all strategies correspond to proofs, making the
model a useful tool to reason on proof identity4. The Cut rule corresponds to composition
of strategies – and as we expect two proofs differing only with respect to associativity of
Cut to be the same, it becomes crucial for games and strategies to form a category5. In
contrast, Blass games, while interpreting full propositional Linear Logic, do not form a
category: composition of strategy fails to be associative, a phenomenon now known as the
Blass problem6, reviewed in Section 2.2.

Following this early history, the first decade of game semantics was intertwinned with
Linear Logic. Hyland and Ong extended the Abramsky-Jagadeesan model to get rid of
MIX [42]. Further fragments of Linear Logic were addressed: e.g. classical Linear Logic
by Baillot, Danos, Ehrhard and Regnier [10], the intuitionistic fragment was modeled
by Lamarche [46], McCusker [49] and Abramsky, Jagadeesan and Malacaria [3]. Despite
this, a proper treatment (the established “gold standard” now being full completeness) of
additives in classical Linear Logic remained long elusive. This finally came in the 1999
paper by Abramsky and Melliès, “Concurrent games and full completeness” [5].

To construct a game semantics of Multiplicative Additive Linear Logic (MALL), it
seems reasonable to start with Blass games, and attempt to understand and sidestep the
Blass problem. In [1], Abramsky diagnoses the non-associativity as caused by an excessive
sequentiality. In that view, and although it is not immediately clear in what sense MALL is
intrinsically concurrent, it makes sense to move to a concurrent framework for games.
Abramsky and Melliès introduce concurrent games [5] to that end. In this paper we shall
however argue – following intuitions by Melliès ultimately leading to his fully complete
model of full propositional linear logic [50] – that the reason why concurrent games manage
to achieve full completeness is not quite that they are concurrent, but rather that they are
causal, or positional. This will be discussed at length in the course of the paper.

This positional/causal (we shall see that the two notions are related) aspect is far from
anecdotal. In that respect, Abramsky and Melliès’ model is the first of a growing family of
game semantics questioning the premise that strategies should simply be the aggregation of
totally ordered, chronological execution traces. This family includes Melliès and Mimram’s
asynchronous games [53], Faggian and Piccolo’s strategies as partial orders [34], Rideau
and Winskel’s non-deterministic extension to concurrent games on event structures [59],
Sakayori and Tsukada’s framework [60] using DAG-like structures as plays. This family

4To our knowledge the first paper examining what should be a model for proofs is Girard’s [38]. This
change of focus is also in line with a wealth of developments at the same time on the Curry-Howard
correspondence, moving the focus from mere provability to proofs and their computational content.

5It seems that Joyal should be attributed the very first category of games and strategies (of Conway
games [30]), in a paper in French in the Gazette mathématique du Québec [45].

6Note however that Blass never claimed composition to be associative in his model.

2

of games is behind numerous recent developments in game semantics. While they are
typically not the best fit for full abstraction results (as the causal information they record
is unobservable), they offer numerous advantages with respect to traditional models: for
instance, they allow to extend conservatively traditional notions such as innocence to
parallel evaluation of programs [20]. They support elegant quantitative extensions, for
instance to probabilistic [18] or even quantum [26] effects. The causal analysis they provide
may be leveraged, for instance to keep track of execution time in a concurrent language
[7] or to collect witnesses for quantifier instantiations in first-order proofs [6]. They give
close connections with session types and process algebra [23]. Finally, they throw a new
light on the relationship between static and dynamic denotational models, including in the
presence of quantitative effects [18]. In many of these achievements, the same causality and
positionality that – as is our view – permitted Abramsky and Melliès’ full completeness
result for MALL come into play in a crucial way.

In this paper, the phrase concurrent games will refer to this entire family of games. We
will adopt more specific phrases to refer to precise technical frameworks. The purpose of
this paper is to give a modern account of fully complete games models for MALL, putting
the historical approach in perspective with recent developments in this family of concurrent
games. The paper has a few original contributions: most notably, the account given of the
link between concurrent games via event structures and via closure operators is new. But
mostly, the paper assembles and presents in a uniform technical setting results appearing in
various earlier papers, notably by Abramsky, Melliès, Mimram and Tabareau [5, 50, 53, 54]
– we nonetheless hope that it will be helpful in making more accessible a nice line of research
on which few researchers have a complete view.

The paper is organized as follows. In Section 2 we present the model of Abramsky
and Melliès [5] and its historical context. We describe MALL, Blass’ model and the Blass
problem, and introduce concurrent games via closure operators. In Section 3 we introduce
concurrent games on event structures, at first as an alternative way to formulate Abramsky
and Melliès’ interpretation. We detail the connection between the two concurrent games
framework. After a discussion on the quotient involved in Abramsky and Melliès’ construc-
tion, in Section 4 we construct a fully complete model for (a fragment of) MALL, following
Melliès’ methodology for his fully complete model of full propositional linear logic [50].

2 The Blass problem and concurrent games

In this section we introduce MALL, then review the Blass problem and concurrent games.

2.1 Multiplicative Additive Linear Logic

We consider here the multiplicative additive fragment of Linear Logic with units, but with-
out propositional atoms. Atoms are not a fundamental obstacle: all the results presented
here could be extended for instance as in [5] by representing formulas with atoms as func-
tors of mixed variance and proofs as dinatural transformations – Cuvillier has recently

3

` A⊥, A
Ax

` 1
1

` Γ

` Γ,⊥
⊥

` Γ,>
>

` Γ, A ` B,∆
` Γ, A⊗B,∆

⊗
` Γ, A,B

` Γ, A`B
`

` Γ, A ` Γ, B

` Γ, A&B
&

` Γ, A

` Γ, A⊕B
⊕l

` Γ, B

` Γ, A⊕B
⊕r

` Γ, A ` A⊥,∆
` Γ,∆

Cut

Figure 1: Rules of MALL

proposed an alternative relying on nominal sets [32]. We chose to omit them simply to
keep the paper as simple as possible.

Formulas of MALL are generated by the following grammar.

A,B ::= 1 | ⊥ | 0 | > | A⊗B | A`B | A⊕B | A&B

We call 1,⊥,⊗,` the multiplicative connectives, and 0,>,⊕ and & the additive
connectives. Each formula A has a dual A⊥, defined by De Morgan duality between 1 and
⊥, 0 and >, ⊗ and ` and ⊕ and &. We consider one-sided sequents, of the form ` Γ
where Γ = A1, . . . , An is a list of formulas. We give the rules in Figure 1. In addition to
these, we consider that there is an explicit exchange rule allowing us to reorder formulas
in a sequent, coping with the fact that sequents are lists rather than multisets. We will
however, keep applications of this rule silent throughout this paper.

The fragment with only multiplicative connectives is known as Multiplicative Linear
Logic (MLL). It is well-known that a (categorical) model of MLL is a ?-autonomous cate-
gory, i.e. symmetric monoidal closed category C with a dualizing object ⊥, such that for
all object A, the canonical map A → (A (⊥) (⊥ is an isomorphism. It follows from
this structure that C is self-dual: the negation (−) (⊥ : Cop → C is an equivalence;
so in particular it has products if and only if it has coproducts. A model of MALL is
a ?-autonomous category which is additionally cartesian – so in particular, it has both
products and coproducts.

2.2 The Blass problem

Constructing a games-based self-dual category with products and coproducts, is really dif-
ficult. It is well-known among game semanticists that the behaviour of additive connectives
strongly depends on the polarity of the games considered. All these notions will be made
precise later on, but say – for the moment informally – that a game is positive if Player
always start, and that a game is negative if Opponent always starts. It is part of the folk-
lore of game semantics that categories of negative games support products (and naturally
apply to model Call-By-Name languages), while categories of positive games support co-

4

products (and naturally apply to model Call-By-Value languages)7. This reading matches
the natural game-theoretic reading of the additive connectives of Linear Logic: in A ⊕ B
we have A or B but we, the proof, choose – which is positive; while in A & B we have A
or B but the environment chooses – which is negative.

But this follows the implicit premise that formulas should be interpreted into a single
model with fixed polarity, positive or negative. It would make sense instead to have some
formulas give positive games, and some others give negative games; and this is indeed how
Blass games proceed. We now recall Blass games and the Blass problem, following closely
the presentation of Abramsky in [1]. Formally, Blass games are trees

A ::=
∏
i∈I

Ai |
∐
j∈J

Aj

where I, J are finite sets. A game
∐

j∈J Aj is positive, and a game
∏

i∈I Ai is negative. A
strategy (for Player) on

∏
i∈I Ai is the data of a strategy (for Player) on Ai, for all i ∈ I.

Likewise, a strategy (for Player) on
∐

j∈J Aj is the data of some j0 ∈ J , and a strategy (for
Player) on Aj0 . For now, the only assumption the definition of Blass games makes is that
games should be sequential: at each point, it is one of the players’ turn to play. There is no
general assumption as to which player starts the game, and the two might not alternate.

Setting up the interpretation of MALL formulas into Blass games, it is clear from the
discussion that we should have JA & BK = JAK u JBK and JA ⊕ BK = JAK t JBK. But if
we are to form a category of Blass games and strategies, then it follows that ⊗, as a left
adjoint, should preserve coproducts, hence a ⊗ involving at least one positive game should
be positive. By duality, a ` involving at least one negative game should be negative. The
only case left is the ⊗ of two negative games, which is defined as

A⊗B =
∏
i∈I

(Ai ⊗B) u
∏
j∈J

(A⊗Bj)

for A =
∏

i∈I Ai and B =
∏

j∈J Bj, saying that if A and B are negative, Opponent first
picks a component of the tensor and makes a move in that component. So a tensor of
negative games is negative – in fact in exposing the Blass problem we will not refer to
this specific definition but only to the fact that the tensor of negative games is negative,
which is hard to avoid (as otherwise the tensor would only ever yield positive games). The
definition for the ` of two positive games is dual.

At this point it looks like there is no obstacle to form a category Blass, with Blass games
as objects and, as morphisms from A to B, strategies on A⊥ ` B. But here comes the
“Blass problem”. Assume we want to compose (with games annotated with their polarity):

σ : (A−)⊥ `B+ τ : (B+)⊥ ` C− δ : (C−)⊥ `D+

7It is possible to add the missing connective formally, for instance one can add coproducts freely via
Fam construction [4] in a category of negative games so as to have both products and coproducts, but this
does not provide a model of MALL as we still lack self-duality.

5

u

wwwwww
v

Ax
` ⊥, 1

⊕r
` 1⊕⊥, 1

$

` ⊥, 1 & 1
Cut

` 1⊕⊥, 1 & 1

Ax
` ⊥ ⊕⊥, 1 & 1

⊕r
` ⊥ ⊕⊥, 1⊕ (1 & 1)

Cut
` 1⊕⊥, 1⊕ (1 & 1)

}

������
~

6=

u

wwwwww
v

Ax
` ⊥, 1

⊕r
` 1⊕⊥, 1

$

` ⊥, 1 & 1

Ax
` ⊥ ⊕⊥, 1 & 1

⊕r
` ⊥ ⊕⊥, 1⊕ (1 & 1)

Cut
` ⊥, 1⊕ (1 & 1)

Cut
` 1⊕⊥, 1⊕ (1 & 1)

}

������
~

1⊕⊥, 1⊕ (1 & 1)
P��

1⊕⊥, 1 & 1

Oww O ''
1⊕⊥, 1

P��

1⊕⊥, 1
P��

⊥, 1
O��

⊥, 1
O��

1
P��

1
P��

Win Win

1⊕⊥, 1⊕ (1 & 1)
P��

⊥, 1⊕ (1 & 1)
O��

1⊕ (1 & 1)
P��

1 & 1
O

xx
O

&&
1
P��

1
P��

Win Win

Figure 2: The concrete impact on the Blass problem on the interpretation

where σ wants to play immediately on the left, and δ wants to play immediately on the
right. Both strategies want to perform immediately some visible action, so in principle
there is no reason to make them wait. Indeed (A−)⊥`D+ is positive: it is Player’s time to
play on either or A or D, and the moves offered by both σ and δ may apply; but since Blass
games are sequential, only one of them will be able to play immediately. The situation
being symmetric, it is clear that something is going to unfold differently between the two
associations. And indeed, imagine we first form τ ◦ σ : (A−)⊥ ` C−, and consider

τ ◦ σ : (A−)⊥ ` C− δ : (C−)⊥ `D+ .

The game (A−)⊥`C− is now negative, so σ is not able to play on the left, leaving δ to
win the race playing on D. Symmetrically, in (δ ◦ τ) ◦ σ, σ starts playing on the left.

This happens very concretely in the interpretation of proofs: in Figure 2 we show two
proofs differing only with the order of cuts, and the corresponding strategies, which differ
because of the Blass problem – the strategies perform the same actions, but not in the
same order. Here $ is the proof of ` ⊥, 1 & 1 obtained with a & rule followed by axioms.

The Blass problem is sometimes mistakenly quoted as expressing that composition is
not associative in a non-polarized setting, i.e. unless one fixes the ambient polarity of games
to be positive or negative. The author has heard some people explicitely avoiding non-
polarized settings, for “fear of the Blass problem”. But these people should rest in peace:
associativity of composition is actually quite robust and does not need at all polarization.
In fact the very first category of games and strategies, Joyal’s category of Conway games,
assumes no general polarization hypothesis – in a Conway game both players can have
available actions in the same state, and we will see further examples later on in this paper.
Instead, the Blass problem is a consequence of the very specific way in which we have set
up the traffic lights so that to always give priority to coproducts on tensors and products

6

on pars, which in turn was required to get the right behaviour for ⊕ and &.
Abramsky analyses the Blass problem as an excess of sequentiality [1]. And indeed,

if above we authorized both σ and δ to play concurrently, the non-associativity would be
resolved. We next review Abramsky and Melliès’ concurrent games via closure operators
[5], and observe how they resolve the non-associativity phenomenon.

2.3 Concurrent games

Concurrent games via closure operators [5] were motivated as a way around the Blass
problem. They depart from the sequential substrate of earlier games models. In particular,
concurrent strategies may play several moves simultaneously.

Firstly, games are replaced by domains with elements thought of as positions. More
specifically, we consider games to be dI-domains [12], i.e. directed-complete, bounded-
complete partial orders satisfying two further axioms “d” and “I” that we shall not need
to repeat here. If D is a dI-domain, D> denotes its extension with a top element > – it
then follows that D> is a complete lattice.

Secondly, strategies are continuous, stable closure operators8 – f : D → D′ between
dI-domains is stable [12] iff for x, y ∈ D, if x, y are bounded then f(x ∧ y) = f(x) ∧ f(y).

Definition 1. A closure-strategy on dI-domain D, written σ : D, is a continuous
stable closure operator on D>, i.e. a monotone and continuous function σ : D> → D>

which is (i) extensive (for all x ∈ D>, x ≤ σ(x)), (ii) idempotent (for all x ∈ D>,
σ(σ(x)) = σ(x)), and (iii) stable9 (there is a stable function f : D → D such that for all
x ∈ D such that σ(x) 6= >, σ(x) = x ∨ f(x)).

Intuitively, given a position x ∈ D, σ(x) is the new position obtained by adding all
moves that σ is prepared to play in position x. The first axiom, x ≤ σ(x), means intuitively
that σ may only add new moves to those already present. The second axiom, σ(σ(x)) =
σ(x), formalizes the idea that as applying σ saturates the current position with all moves
available with the current knowledge, any σ(x) must be a fixpoint. The > element is meant
to capture positions on which σ is undefined: σ(x) = > means that σ has no well-defined
behaviour on x. It has to be a top element by monotonicity.

One may wonder in what sense it is legitimate to call this a game semantics. There
are no polarities in the definition, no Player, no Opponent. In fact there are no moves,
only positions. Moves can be captured indirectly as pairs x, y ∈ D such that x < y with
no position in between (for which we write x−⊂y), but even then such a move has no
well-defined notion of polarity. Nevertheless, any Blass game A induces a dI-domain DA

by starting with the partial order of finite branches which is then completed, adding the
missing infinite branches. Any (sequential) strategy on A yields a closure-strategy which,
for any finite branch, extends it with the moves it is prepared to play.

8Some additional conditions appear in the course of [5], omitted here as they play no role.
9Condition (iii) implies condition (i), however we state conditions (i) and (ii) because together they

define a closure operator, a standard notion independently of stability.

7

Furthermore, domains and concurrent strategies may be organized as a category. If
D1, D2 are domains, then their tensor is defined simply as

D1 ⊗D2 = D1 ×D2

the cartesian product. A concurrent strategy from D1 to D2 is σ : D1 ⊗ D2, written
σ : D1 + //D2. To define composition, we first define closed interaction. If σ : D and τ : D
are two closure operators on the same domain, we may define, following [5]:

〈σ | τ〉 = Y (σ ◦ τ) = Y (τ ◦ σ) ∈ D
obtained by playing alternatively σ and τ until reaching a fixpoint. Given σ : D1 + //D2,
τ : D2 + //D3, and (x, z) ∈ D1 ⊗D3 we first compute y ∈ D2 that they agree to reach with

y = 〈π2 ◦ σ(x,−) | π1 ◦ τ(−, z)〉 ∈ D2

and define (τ � σ)(x, z) = (π1 ◦ σ(x, y), π2 ◦ τ(y, z)) ∈ D1 ⊗D3; this defines a concurrent
strategy. Composition is associative, and for any domain D, there is a strategy ccD : D + //D
defined as ccD(x, y) = (x ∨ y, x ∨ y) serving as identity. Moreover:

Proposition 2. There is a compact closed category Clos having as objects dI-domains and
as morphisms from D1 to D2 the closure-strategies σ : D1 + //D2.

Recall that a compact closed category is a degenerate model of MLL where ⊗ = ` [29].
Here, we furthermore have a trivial duality D∗ = D, similarly to the relational model.
Nevertheless, this lets us interpret the multiplicative connectives of MLL. We may extend
this to the additives as well by setting

JA&BK = JA⊕BK = (JAK + JBK)⊥
the lifted sum of JAK and JBK. There are associated constructions on strategies for the
introduction rules, omitted for now. Altogether this gives an interpretation of MALL in
Clos, which does “solve the Blass problem” in the sense that composition is associative:
so, for instance, the two proofs of Figure 2 have the same interpretation, a closure-strategy
which intuitively starts playing the two competing Player moves of Figure 2 in parallel.

We postpone for now the concrete description of this interpretation and of its prop-
erties. Indeed, before we do that, we will see that the interpretation of MALL in Clos
factors through the more concrete games formalism of concurrent games on event struc-
tures (where, for instance, the two proofs of Figure 2 will be both interpreted by the one
parallel strategy of Figure 3). In the next section we give an introduction to concurrent
games on event structures and a formal link with closure-strategies. Then we revisit the
interpretation above, and discuss its properties.

3 Games on event structures and closure operators

Concurrent games via closure operators are inherently positional : points in the dI-domain
interpreting a formula correspond to positions in the corresponding game. In contrast,
concurrent games on event structures are more fine-grained: games focus on individual
observable events rather than positions.

8

3.1 Games and domains

Games and constructions. To start our concrete reconstruction of the interpretation
of MALL of the previous section, we will first aim to represent the dI-domains interpreting
formulas as explicit domains of positions, i.e. to explicitly have points of the domains be
sets of moves. For that it is natural to start with the definition of event structures, in light
of the fact that their domains of configurations are exactly dI-domains [62]. For simplicity,
we will work here with event structures with binary conflict.

Definition 3. An event structure is a tuple E = 〈|E|,≤E,#E〉 where |E| is a set of
events, ≤E is a partial order called causality, and #E is an irreflexive symmetric binary
relation called conflict. These data must moreover satisfy the following additional axioms.

finite causes: for all e ∈ |E|, the set [e]E = {e′ ∈ E | e′ ≤E e} is finite,
conflict inheritance: if e1 #E e2 and e2 ≤E e′2, then e1 #E e

′
2.

If e1, e2 ∈ |E|, we say that e1 immediately causes e2, written e1 _E e2, iff e1 <E e2

and if e1 ≤E e ≤E e2, then e1 = e or e2 = e. Events e1 and e2 are in minimal conflict,
written e1 Ee2, if e1 #E e2, for all e′1 <E e1 we have ¬(e′1 #E e2), and symmetrically.

The configurations of E are those x ⊆ |E| that are down-closed for ≤E, and pairwise
compatible, i.e. for all e1, e2 ∈ x we have ¬(e1 #E e2). We write C (E) for the set of finite
configurations of an event structure E, and C∞(E) for possibly infinite configurations.

Proposition 4. For any event structure E, C∞(E), ordered by ⊆, forms a dI-domain.

Hence, in our attempt to recover concurrent games in the sense of the previous section
as explicit positions, i.e. sets of events/moves, it is sensible to define games simply as
event structures. But we also want moves to be explicitely Player or Opponent moves, so,
following [59], we define games as event structures with an additional polarity annotation.
From now on, in this paper, by game we will mean the following.

Definition 5. A game is a tuple 〈|A|,≤A,#A, polA〉 where 〈|A|,≤A,#A〉 is an event
structure, and polA : |A| → {−,+} provides, for each event a ∈ |A|, a polarity indicating
whether it is a Player move (polA(a) = +), or an Opponent move (polA(a) = −).

We additionally require that games are race-free, i.e. that for all a1, a2 ∈ |A|, if
a1 Aa2 then polA(a1) = polA(a2).

Games support a number of constructions. The empty game ∅ has no events. If
A is a game, its dual A⊥ is A with polarities reversed. If A and B are games, their
simple parallel composition A ‖ B is the game with events the tagged disjoint union
({1} × |A|) ∪ ({2} × |B|), with causal order, conflict, and polarities simply inherited from
A and B. Their sum A + B has same components as A ‖ B, with additional conflicts
all (1, a) #A+B(2, b) for a ∈ |A|, b ∈ |B|. If A is a game, its down-shift ↓A has events
|A|]{l} (where by] we mean |A|∪{l} with the implicit assumption that l 6∈ |A|), causal
order that of A plus l ≤↓A a for all a ∈ |↓A|, conflict the same as in A, and polarities those
of A plus pol↓A(l) = +. The up-shift ↑A is defined in the same way, with pol↑A(l) = −.

9

We introduce now some notations for configurations of these compound games. Config-
urations of A ‖ B have the form ({1}×xA)∪ ({2}×xB) where xA ∈ C (A) and xB ∈ C (B),
also written xA ‖ xB. Configurations of ↓A are either empty, or {l}∪ xA with xA ∈ C (A),
also written lxA. Configurations of A and A⊥ are the same: A and A⊥ have the same un-
derlying set of events. In particular, the polarity of an event is not an intrinsic property of
that event, but depends of the ambiant game within which that polarity is taken. Finally,
all of the above applies to both finite and possibly infinite configurations.

Interpretation of MALL formulas. All units (multiplicative and additive) are inter-
preted by the empty game ∅. For other constructors:

JA⊗BK = JAK ‖ JBK JA⊕BK = ↓JAK + ↓JBK
JA`BK = JAK ‖ JBK JA&BK = ↑JAK + ↑JBK .

Some expected laws from linear logic obviously do not hold under this interpretation.
For instance we have JA⊕0K 6= JAK – associativity of ⊕ and & also fail. This shows clearly
already at this point that some additional work will have to be done in order to get full
completeness. Notice that this is already true of the interpretation of the previous section,
of which this is a direct refinement, in the following sense:

Proposition 6. For any MALL formula A, we have JAKClos ∼= C∞(JAKGames), where J−KClos
is the interpretation of the previous section, while J−KGames is the one introduced just above.

Proof. For units, C∞(∅) is the singleton domain, which matches the interpretation of units
in [5]. It is direct from the definition that for the other constructors we have

C∞(A ‖ B) ∼= C∞(A)× C∞(B)
C∞(↓A+ ↓B) = C∞(↑A+ ↑B) ∼= (C∞(A) + C∞(B))⊥

from which the property announced follows by induction.

The interpretation of multiplicatives remains degenerate. The interpretation of ad-
ditives ⊕ and & yields events of distinct polarity, a distinction that is forgotten when
considering the associated domain of configurations.

As an example, we show below the interpretation as a game of the sequent ` 1⊕1⊥, 1⊕2

(1 & 1) of Figure 2, where the two occurrences of ⊕ have been labeled for disambiguation.
In this diagram and others to come, we take the convention that we label with ◦ moves of
negative polarity, and with • moves with positive polarity.

•⊕1
l •⊕1

r •⊕2
l •⊕2

r

=yy� � ��%
◦&
l ◦&

r

Each event corresponds to selecting one component of an additive connective. Occur-
rences of ⊕ correspond to positive/Player events, occurrences of & to negative/Opponent

10

events, and causal dependency corresponds to the nesting of additive connectives. Mul-
tiplicative connectives, being interpreted as juxtaposition, do not contribute events. By
Proposition 6, the domain of configurations of the sequent matches its interpretation in
Clos. The closure operator interpreting either of the proofs of Figure 2, when applied to
any configuration containing •⊕1

l or •⊕2
l , returns >. Applied to any other configuration, it

adds both •⊕1
r and •⊕2

r , effectively playing them simultaneously, illustrating the resolution
of the the Blass problem.

We shall now give a corresponding notion of strategy.

3.2 Deterministic concurrent strategies

In the past two decades, besides closure-strategies, multiple alternative ways to set up
concurrent strategies have appeared. Melliès and Mimram [53] define concurrent strategies
as certain sets of plays subject to stability conditions. Faggian and Piccolo [34] define
them as partial orders enriching the causality of the game. Rideau and Winskel [59] define
them as event structures labeled by the game. Castellan and Clairambault [17] define
them as rigid families, i.e. prefix-closed sets of partial orders [58]. Finally, Castellan,
Clairambault and Winskel [21] define them simply as certain sets of configurations of the
game. These settings differ in expressivity, but for causally deterministic strategies such
as those obtained by interpreting MALL, those are all equivalent.

In this paper we will exploit these last two presentations of concurrent strategies.

3.2.1 Strategies as rigid families

Whereas closure-strategies are inherently positional, strategies as rigid families offer a
causal presentation of concurrent strategies. Following [17], we first recall:

Definition 7. If A is a game, a courteous augmentation on A is a finite event structure
q = 〈|q|,≤q, ∅〉 with no conflict such that C (q) ⊆ C (A), and satisfying courtesy: if
a1 _q a2, then either polA(a1) = − and polA(a2) = +, or a1 _A a2.

We write aug(A) the set of courteous augmentations on A.

Courteous augmentations on A will provide the notion of state for our strategies, which
includes the causal history behind the actions. Courtesy expresses that a strategy may
only condition the appearance of Player moves to the prior appearance of certain Opponent
moves. A strategy can obviously not delay an Opponent move until after a Player move if
that is not already forced by the game, but neither can it force an order between its own
moves if that order is not forced by the game. This may be understood as expressing a deep
asynchrony property: a program sending two packets on the network has no guarantee that
they will arrive in the same order if that is not controled by the protocol, so it makes no
sense to impose that order in the first place. Courtesy is necessary in order for strategies
to behave well with respect to the asynchronous copycat [59].

There is a natural ordering on courteous augmentations. We say that q ∈ aug(A)
rigidly embeds into q′ ∈ aug(A), or is a prefix of q′, if C (q) ⊆ C (q′), and the inclusion

11

1 ⊕ ⊥ , 1 ⊕ (1 & 1)

• •
G}}�◦

1 ⊕ ⊥ , 1 ⊕ (1 & 1)

• •
w��!◦

Figure 3: One strategy on J` 1⊕⊥, 1⊕ (1 & 1)K for the two proofs of Figure 2

preserves causality: if a1 ≤q a2, then a1 ≤q′ a2 as well. We write q ↪→ q′. It follows that
for a1, a2 ∈ |q|, we have a1 ≤q a2 iff a1 ≤q′ a2. A courteous rigid family on A is a
non-empty subset of aug(A) closed under prefix. We can finally define:

Definition 8. A strategy σ : A is a courteous rigid family on A which is additionally:

(i) Receptive: if q ∈ σ and a− 6∈ |q| such that |q| ∪ {a−} ∈ C (A), then there is a
(necessarily unique) q ↪→ q′ such that |q′| = |q| ∪ {a−}.

(ii) Deterministic: if X ⊆ σ is a finite set of augmentations such that ∪{|q|− | q ∈ X}
is compatible, then X has a supremum ∨X in σ with respect to ↪→.

Here, |q|− comprises the events of q of negative polarity. Without determinism, this is
exactly the notion of strategy from [17]. For finite games, strategies are entirely charac-
terized by their maximal augmentations. For instance, Figure 3 displays the two maximal
augmentations of the strategy arising as the interpretation of the two proofs of Figure 2 –
they are augmentations of the game for ` 1⊕⊥, 1⊕(1&1) presented in the previous section.
Instead of annotating events to point out which syntactic construct they correspond to,
we adopt the usual convention in game semantics and picture this association by drawing
events below the corresponding component of the formula.

Observe that the two augmentations both admit as prefix the two Player moves that
both proofs of Figure 2 are prepared to make unconditionally. They only differ with respect
to the two incompatible resolutions of the & that Opponent may make. There are only two
Player moves, whereas there are three in Figure 2; this is because unlike in Blass games,
we have interpreted units as the empty game, following [5].

Let us see how to compose strategies. Composition relies on a (partial) composition of
courteous augmentations. If q ∈ aug(A⊥ ‖ B) and q′ ∈ aug(B⊥ ‖ C), they are causally
compatible if |q| = xA ‖ xB, |q′| = xB ‖ xC , and q, q′ induce no causal loop, i.e.

(≤q‖≤C) ∪ (≤A‖≤q′) is acyclic,

where ≤q‖≤C and ≤A‖≤q′ denote partial orders on xA ‖ xB ‖ xC in the obvious way.
If two augmentations do induce a causal loop, that means that their interaction dead-

locks : they impose incompatible constraints as to the order following which moves should
be played. In contrast, if q and q′ are causally compatible, then the transitive closure

≤q′~q = ((≤q‖≤C) ∪ (≤A‖≤q′))
∗

12

 B⊥ ‖ C

◦2
/ss{ !!*•1 •

�
 ∅⊥ ‖ B

◦1

 ��)•2

 =

 ∅⊥ ‖ C

Figure 4: Composition of deadlocking strategies

is a partial order, and q′~ q = 〈xA ‖ xB ‖ xC ,≤q′~q〉 is the interaction of q and q′. Their
composition is then q′� q = 〈xA ‖ xC ,≤q′�q〉 where ≤q′�q is ≤q′~q restricted to xA ‖ xC ;
then we have q′ � q ∈ aug(A⊥ ‖ C). From this, we can compose strategies via

τ � σ = {q′ � q | q ∈ σ, q′ ∈ τ are causally compatible}

for σ : A⊥ ‖ B and τ : B⊥ ‖ C – it is a strategy on A⊥ ‖ C as required.
It is worth emphasizing and illustrating the causal compatibility condition in the defi-

nition of q′ ~ q. Consider a game B with two incomparable but compatible events ◦1 and
•2, with pol(◦1) = − and pol(•2) = +; and a game C with unique event •, of positive
polarity. Consider two strategies σ : ∅⊥ ‖ B and τ : B⊥ ‖ C, generated each by one max-
imal augmentation, represented in Figure 4. Although these two maximal augmentations
play the same events on B, they are not causally compatible: the order on B induced by
their union is cyclic, with ◦1 ≤ ◦2 ≤ ◦1. In fact, the only compatible augmentation of σ
and τ is empty, which entails that, as in Figure 4, their composition will be restricted to
the empty augmentation on A⊥ ‖ C. Their composition deadlocks, as they impose incom-
patible constraints on the order of events. This deadlocking mechanism is a fundamental
aspect present, implicitely or explicitely, in almost all games models.

With respect to this notion of composition, we have:

Proposition 9. There is a compact closed category Games with games as objects, and as
morphisms from A to B the strategies σ : A⊥ ‖ B.

To prove this proposition we must define a number of other constructions on strategies,
including e.g. copycat strategies and the functorial action of ‖. Those may be defined
directly on strategies as rigid families, as is done e.g. in [17]. Instead we will describe them
in an alternative description of strategies as sets of configurations in the next subsection.

3.2.2 Strategies as sets of configurations

We now give a different, positional, presentation of the same deterministic concurrent
strategies. We are aware that it is a lot to ask to the reader to digest not only one, but two
definitions for a games model. But it is a distinctive feature of deterministic concurrent
strategies that they may be described in these different ways. Each representation has
distinct advantages: the causal description above relates to the inductive structure of
terms. It highlights the causal flavour of traditional game semantical notions such as P-
views [41], and accordingly supports a simple notion of innocence (see Section 4.3.1). In

13

contrast, the positional presentation of strategies as sets of configurations that we are about
to present emphasises their relationship with relational-like models. This connection will
be extensively used in the remainder of the paper.

If X is a set of sets x, y ∈ X, and y = x ∪ {a} for a 6∈ x, we write x
a
−−⊂, or x−⊂y. In

that case we say that x extends to y within X. We write X↑− if X is negatively compatible,
meaning that {a ∈ ∪X | pol(a) = −} is compatible. Finally, if σ : A is a strategy on A,
we write C (σ) = {C (q) | q ∈ σ} for its configurations.

Proposition 10. For any game A, there is a 1-to-1 correspondence between strategies
σ : A and sets of finite configurations S ⊆ C (A) satisfying:

(i) for any X ⊆ S, if X↑− then ∪X ∈ S and ∩X ∈ S,
(ii) if a1, a2 ∈ x ∈ S, there exists y ⊆ x such that y ∈ S and a1 ∈ y ⇔ ¬(a2 ∈ y),

(iii) if x
a1
−−⊂

a2
−−⊂ in S with x

a2
−−⊂ in C (A) but not in S, pol(a1) = − and pol(a2) = +,

(iv) if x ∈ S and x
a−

−−⊂ in C (A), then x
a−

−−⊂ in S.

Proof. Let σ : A be a strategy. First, conditions (i)-(iv) may be directly verified on C (σ).
Reciprocally, for each x ∈ S we construct a partial order qx ∈ aug(A) as (x,≤x) where

a1 ≤x a2 iff for all y ⊆ x in S, if a2 ∈ y then a1 ∈ y also. We refer the reader to [61]
for properties of this partial order, which is used to link prime event structures and stable
families. In particular, we have C (qx) ⊆ S, and if x ⊆ y, then qx ↪→ qy. Moreover, by (iii)
it follows that qx is courteous, and by (iv) it follows that {qx | x ∈ S} is receptive.

It is direct to verify that these constructions are inverses of each other.

In particular, strategies are determined by their configurations: if σ, τ : A are such that
C (σ) = C (τ), then σ = τ . But this also lets us define deterministic strategies simply via
sets of configurations. Indeed, for instance, we may define the copycat strategy via

C (cc A) = {xA ‖ yA ∈ C (A⊥ ‖ A) | yA ⊇− xA ∩ yA ⊆+ xA}

where ⊆+,⊆− mean inclusion where the elements added have the polarity indicated, and
polarity is always taken to be in A (not A⊥). In other words, those are identity pairs
xA ‖ xA ∈ C (A⊥ ‖ A) closed under receptivity on both sides. Likewise, it is convenient to
define the functorial action of ‖ on strategies via its action on sets of configurations, as

C (σ1 ‖ σ2) = {(xA1 ‖ xA2) ‖ (xB1 ‖ xB2) | xA1 ‖ xB1 ∈ C (σ1) ∧ xA2 ‖ xB2 ∈ C (σ2)}

for σ1 : A⊥1 ‖ B1 and σ2 : A⊥2 ‖ B2. Other structural components of the compact closed
structure of Games may be defined similarly. Observe that these definitions are very close to
those of the corresponding constructions in the relational model. Accordingly, composition
of strategies viewed as sets of configurations is fairly close to relational composition:

Proposition 11. Let σ : A⊥ ‖ B and τ : B⊥ ‖ C be two strategies. Then, C (τ � σ)
comprises exactly the pairs xA ‖ xC ∈ C (A⊥ ‖ C) such that there exists xA ‖ xB ‖ xC such
that xA ‖ xB ∈ C (σ) and xB ‖ xC ∈ C (τ) which is additionally reachable, i.e. there is

x0
A ‖ x0

B ‖ x0
C −⊂ x1

A ‖ x1
B ‖ x1

C −⊂ . . . −⊂ xnA ‖ xnB ‖ xnC

14

such that x0
A, x

0
B, x

0
C are empty, xnA = xA, x

n
B = xB and xnC = xC, and for all 0 ≤ i ≤ n, we

have xiA ‖ xiB ∈ C (σ) and xiB ‖ xiC ∈ C (τ).

Proof. If x ∈ C (τ � σ), then there are q ∈ σ, q′ ∈ τ such that x = |q′ � q|. By definition,
q′ � q is the restriction on A,C of q′ ~ q with |q′ ~ q| = xA ‖ xB ‖ xC . But then, any
linearization of the partial order ≤q′~q on xA ‖ xB ‖ xC yields a chain as required.

Reciprocally, if xA ‖ xB ‖ xC is such that xA ‖ xB ∈ C (σ), xB ‖ xC ∈ C (τ) with a
chain as above, then that chain is a linearization of the transitive closure of

(≤qxA‖xB
‖ ≤C) ∪ (≤A ‖ ≤qxB‖xC

)

which is therefore acyclic, making qxA‖xB ∈ σ and qxB‖xC ∈ τ causally compatible. We
then have |qxB‖xC � qxA‖xB | = xA ‖ xC by construction.

The reachability condition corresponds to the causal compatibility requirement in the
definition of interaction of augmentations. Coming back to Figure 4, we have C (σ) =
{∅, {◦1}, {◦1, •2}} and C (τ) = {∅, {◦2}, {◦2, •1}, {◦2, •}, {◦2, •1, •}}. Then, the set

∅ ‖ {◦1, ◦2} ‖ {◦} ∈ C (∅ ‖ B ‖ C)

is a candidate to be a configuration of the interaction as ∅ ‖ {◦1, •2} ∈ C (σ) and {•1, ◦2} ‖
{•} ∈ C (τ). However, it is rejected by the reachability condition, although it would be
present in a purely relational composition of the strategies.

This presentation of composition highlights the proximity of deterministic concurrent
strategies with relational semantics, but also the fundamental difference between the two
models: namely, reachability, and the ability of the composition of strategies to deadlock.

3.3 Strategies and closure operators

Now, we link deterministic concurrent strategies and strategies as closure operators.

3.3.1 From strategies to closure operators

For σ : A, the developments in the previous section yield a set of finite configurations
C (σ). From this, we may define the (potentially) infinite configurations C∞(σ) of σ as
the unions of directed sets of finite configurations. Potentially infinite configurations are
partially ordered by inclusion, and we write x ⊆+ y or x ⊆− y as for finite configurations.

In defining a closure operator, we will use that any compatible set of negative events
enables a unique +-maximal possibly-infinite configuration in C∞(σ). In the sequel, for
x ∈ C∞(A) we write x− for its set of negative events and x+ for its set of positive events.

Lemma 12. Let σ : A be a strategy, and x ∈ C∞(A). Then, defining the set

xσ = ∪{y ∈ C (σ) | y− ⊆ x−},

we have xσ ∈ C∞(σ).

15

Proof. All finite subsets of Y = {y ∈ C (σ) | y− ⊆ x−} are negatively compatible, hence by
(1) of Proposition 10, have a union in C (σ). Therefore, ∪Y ∈ C∞(σ); we set xσ = ∪Y .

If x ∈ C∞(A), xσ is obtained by playing all moves that σ is prepared to play with the
negative moves already present in x. It is not necessarily the case that x ⊆ xσ; indeed x
might contain positive moves that σ is not prepared to play with the negative moves in x.
In fact, it is not necessarily the case that x ∪ xσ ∈ C∞(A).

Proposition 13. Let σ : A be a strategy. Then, the function

C(σ) : C∞(A) → C∞(A)>

x 7→
{
x ∪ xσ if x ∪ xσ is compatible
> otherwise,

extended to C(σ) : C∞(A)> → C∞(A)> with C(σ)(>) = >, is a closure-strategy.

Proof. By construction, C(σ) : C∞(A)> → C∞(A)> is extensive, monotone, and idempo-
tent. Continuity is longer but essentially direct, exploiting the axiom of finite causes for
A. Stability is simply stability of (−)

σ
, which is obvious from the definition.

When applied to some x ∈ C∞(A), the closure operator associated to σ will add to x
all the positive moves whose causal dependencies in σ appear in x. This is done regardless
of the fact that there may be moves in x that σ will never play, but if the effect of adding
these events yields an incompatible set, then the result is > instead. This differs from the
two other transformations from concurrent strategies to closure-strategies appearing in the
literature that we are aware of: in writing this paper we observed that they both suffer
from some pathologies (for instance they both fail continuity), see Appendix A.

3.3.2 On the functoriality of the transformation

We now investigate whether the transformation from concurrent strategy to closure-strategy
is functorial. We first make a key observation on closure-strategies: their composition may
be presented relationally. Although this fact does not appear in [5], it was known by Melliès
in the 00s when working on asynchronous games. To our knowledge its only appearance
in a published source is in Mimram’s PhD thesis [56].

If σ : D is a closure-strategy, write fix(σ) for its set of fixpoints, i.e. those x ∈ D such
that σ(x) = x. Closure operators on complete lattices are determined by their fixpoints;
in particular from X = fix(σ) one can recover σ as σ(x) = ∧{y ∈ X | x ≤D y} for x ∈ D.
Perhaps surprisingly in view of the interactive definition of composition, we have:

Proposition 14. Let σ : D1 + //D2 and τ : D2 + //D3 be closure-strategies. Then:

fix(τ � σ) = fix(τ) ◦ fix(σ)

where ◦ is relational composition.

16

Proof. ⊆. If (x, z) ∈ fix(τ �σ) then by definition there is y ∈ D2 such that y = π2(σ(x, y))
and y = π1(τ(y, z)), and with x = π1(σ(x, y)) and z = π2(τ(y, z)). In particular, (x, y) ∈
fix(σ) and (y, z) ∈ fix(τ), so (x, z) ∈ fix(τ) ◦ fix(σ).
⊇. If (x, y) ∈ fix(σ) and (y, z) ∈ fix(τ), then compute

y′ = 〈π2 ◦ σ(x,−) | π1 ◦ τ(−, z)〉 =
∨
n∈N

((π2 ◦ σ(x,−)) ◦ (π1 ◦ τ(−, z)))n(⊥) ∈ D2 .

Since σ(x, y) = (x, y) and τ(y, z) = (y, z) with both monotone, it follows by induction
on n that for all n ∈ N the n-th approximant yn ∈ D2 is below y; hence y′ ≤ y. But then
we have π1(σ(x, y′)) = x since σ is monotone and increasing, and likewise π2(τ(y′, z)) = z;
therefore (τ � σ)(x, z) = (x, z) as required.

Hence composition of closure-strategies can be presented purely relationally – one can
observe notably the absence of a reachability condition as in Proposition 11. This seems in
stark contrast with the original interactive flavour of composition of closure-strategies. In
light of our previous discussion on reachability, this gives the impression that composition
of closure-strategies fails to take deadlocks into account and eliminate causal loops.

To put some light on this issue, it is informative to look at the deadlocking composition
of Figure 4 through the lens of closure-strategies. We first fix some notations. If σ : A⊥ ‖ B
is a strategy from A to B, C(σ) is a closure-strategy on C∞(A⊥ ‖ B) ∼= C∞(A)× C∞(B)
– we still write C(σ) for the corresponding closure-strategy on the latter domain.

Considering the closure-strategies coming from the strategies of Figure 4, we have
C(τ)(∅ ‖ {•}) = (∅ ‖ {•}) so ∅ ‖ {•} is a fixpoint of C(τ) even though τ will never play
• on its own. Likewise, ∅ ‖ ∅ ∈ fix(C(σ)); hence ∅ ‖ {•} ∈ fix(C(τ) � C(σ)). Although
this seems to vindicate the view that deadlocks are not satisfactorily taken into account by
composition, this is misleading. Instead, we argue that it is inaccurate to think of fixpoints
as stopping states of a strategy: not because they are not stopping, but because they might
not be states, in the sense that they may not be reachable through a normal interactive
computation. Indeed, in this example we also have ∅ ‖ ∅ ∈ fix(C(τ)�C(σ)) – in particular
applying C(τ)� C(σ) on ∅ ‖ ∅ does not add •; so the deadlock is accurately represented.
The configuration ∅ ‖ {•} is a fixpoint for C(τ)� C(σ), but not a reachable one.

In fact, we have:

Proposition 15. For any two strategies σ : A⊥ ‖ B and τ : B⊥ ‖ C, we have

C(τ � σ) = C(τ)� C(σ) .

Proof. To save space we only detail the right-to-left inclusion, which is the most surprising
in light of the relational nature of composition of closure-strategies. Take (x, z) ∈ fix(C(τ)�
C(σ)). By Proposition 14, there are (x, y) ∈ fix(C(σ)) and (y, z) ∈ fix(C(τ)). Take x′ ‖ z′ ∈
C (τ � σ) such that (x′ ‖ z′)− ⊆ x ‖ z. There is some y′ ∈ C (B) such that x′ ‖ y′ ∈ C (σ)
and y′ ‖ z′ ∈ C (τ), and which is reachable in the sense that there is a covering chain

x′0 ‖ y′0 ‖ z′0 −⊂ . . . −⊂ x′n ‖ y′n ‖ z′n

17

such that x′0 ‖ y′0 ‖ z′0 = ∅, x′n ‖ y′n ‖ z′n = x′ ‖ y′ ‖ z′, and for all 0 ≤ i ≤ n we
have x′i ‖ y′i ∈ C (σ) and y′i ‖ z′i ∈ C (τ). By induction on i, using x ‖ y ∈ fix(C(σ))
and y ‖ z ∈ fix(C(τ)), we have y′i ⊆ y, hence y′ ⊆ y. Hence, (x′ ‖ y′)− ⊆ x ‖ y, so
x′ ‖ y′ ⊆ x ‖ y since x ‖ y ∈ fix(C(σ)). Likewise, y′ ‖ z′ ⊆ y ‖ z. Therefore, x′ ‖ z′ ⊆ x ‖ z
and (x, z) ∈ fix(C(τ � σ)) as required.

However, for a game A it almost never holds that C(cc A) = cc C∞(A). For instance,
consider the game A having only one positive move •. Then A⊥ ‖ A has two moves, one
negative move written ◦ and one positive still written •. Then, cc C∞(A)(∅, {•}) = ({◦}, {•}),
whereas C(cc A)(∅, {•}) = (∅, {•}). The identity in Clos adds missing negative dependencies
(as it must, because it must be defined on arbitrary domains, with therefore no access
to polarity information). In contrast, applying closure operators imported from strategies
only adds positive moves. For this reason, it is tempting, instead of the transformation
from strategies to closure-strategies presented above, to adopt one adding the missing
negative dependencies to reachable positive events, as does the identity in Clos. But as
presented in Appendix A.1 this leads to issues, notably non-stability and non-continuity of
the corresponding closure operators – besides, then, C(−) would not give a functor either:
identities would be preserved, but not composition.

Instead, we moderate this mismatch on identities by remarking that although C(cc A) and
cc C∞(A) do not coincide, they have the same reachable configurations. The set of reachable
fixpoints of a closure-strategy σ : C∞(A) is the smallest subset of C∞(A) containing σ(∅),
and such that if x ∈ fix(σ) is reachable and x ⊆− y, then σ(y) is reachable. Write reach(σ)
for the set of reachable fixpoints of σ. Then, σ, σ′ : C∞(A) are reachable-equivalent if
reach(σ) = reach(σ′), written σ ≈ σ′. Then, it is direct to prove that C(cc A) ≈ cc C∞(A).

Computing reachable configurations of compositions only uses reachable configurations:

Lemma 16. Let σ : C∞(A⊥ ‖ B) and τ : C∞(B⊥ ‖ C) be two closure-strategies. Us-
ing silently the order-isomorphism C∞(A⊥ ‖ B) ∼= C∞(A) × C∞(B), we regard them as
morphisms from A to B and from B to C respectively.

Then, for any xA ‖ xC ∈ fix(τ � σ), we have xA ‖ xC ∈ reach(τ � σ) iff there is a chain

x0
A ‖ x0

B ‖ x0
C ⊆ . . . ⊆ xnA ‖ xnB ‖ xnC

where x0
A ‖ x0

B ‖ x0
C = ∅, xnA ‖ xnC = xA ‖ xC, and where each xiA ‖ xiB ‖ xiC −⊂ xi+1

A ‖
xi+1
B ‖ xi+1

C is obtained by (1) xiA ‖ xiB ∈ reach(σ), xiB ‖ xiC ∈ reach(τ), xiB = xi+1
B and

xiA ‖ xiC ⊆− xi+1
A ‖ xi+1

C ; or (2) xiC = xi+1
C and xi+1

A ‖ xi+1
B = σ(xiA ‖ xiB); or (3) xiA = xi+1

A

and xi+1
B ‖ xi+1

C = τ(xiB ‖ xiC). It follows that xA ‖ xB ∈ reach(σ) and xB ‖ xC ∈ reach(τ).

Proof. Direct verification.

In particular, a direct consequence of this lemma is that reach(τ � σ) ⊆ reach(τ) ◦
reach(σ) where ◦ is relational composition. But unlike the case for all fixpoints in Propo-
sition 14, the converse does not hold for reachable fixpoints.

Finally, we deduce:

18

Proposition 17. Consider σ, σ′ : C∞(A⊥ ‖ B) and τ, τ ′ : C∞(B⊥ ‖ C) satisfying σ ≈ σ′

and τ ≈ τ ′, regarded as morphisms from A to B and from B to C in Clos. Then, we have

τ � σ ≈ τ ′ � σ′ .

Proof. Straightforward from Lemma 16 as reachable fixpoints of τ�σ and τ ′�σ′ are reduced
to chains formed from reachable fixpoints of σ/σ′ and τ/τ ′, which are the same.

From all the developments above, we may conclude:

Theorem 18. There is a strong compact closed functor

C(−) : Games→ Clos/≈

where Clos/≈ has as morphisms closure operators up to ≈.

It might seem that the quotient ≈ may create a mismatch between the two, but it is
in fact much milder than the extensional collapse used in [5] to obtain full completeness –
we will introduce it in the next subsection.

3.4 Extensional collapse

The interpretation of MALL formulas as games was given in Section 3.1. A context Γ =
A1, . . . , An is interpreted as a tensor JΓK = ⊗1≤i≤nJAiK and a proof of ` Γ as a strategy on
JΓK. The interpretation of MLL rules proceeds as is standard in a compact closed category.
A proof starting with an introduction rule for ⊕ will have the corresponding positive move
as minimal, otherwise playing as the sub-proof – for σ : A, we write inl(σ) : A⊕B. A proof
starting with an introduction rule for & will delay positive moves until it receives one of
the Opponent moves coming from the &; it then proceeds as the corresponding sub-proof
– for σA : A and σB : B, we write 〈σA, σB〉 : A & B. We have not been able to formally
verify that this interpretation is compatible (through C(−)) with that of [5] up to ≈, as
the details of the interpretation do not appear in [5]. Nevertheless we believe this to be the
case, and our interpretation seems compatible with informal descriptions in [5]. Thus it is
informative to look at the interpretation of some proofs in our model as representations of
their interpretation with closure-strategies.

In Figure 5, we display two proofs, along with one typical maximal augmentation
in their respective interpretations in Games. In the proofs, we omit the ` symbol and
we color the units to track the specific rules used. For each proof we only display one
maximal augmentation, corresponding to the one complete branch of the proof where the
left component of & is always selected. The two proofs are convertible using standard
commuting conversions. Despite this, they are distinguished by the semantics in Games
and Clos. The maximal augmentations pictured show the phenomenon: if Opponent always
selects the left component of & then the two proofs perform the same actions, but not in
the same order. This phenomenon was of course noticed in [5], where the authors say:

19

u

wwwwwwwwwww
v

Ax
⊥, 1

⊕l
⊥, 1⊕ 1

Ax
⊥, 1

⊕r
⊥, 1⊕ 1

&
⊥&⊥, 1⊕ 1

⊥
⊥,⊥&⊥, 1⊕ 1

⊕r
⊥,⊥⊕ (⊥&⊥), 1⊕ 1

Ax
⊥, 1

⊕l
⊥, 1⊕ 1

Ax
⊥, 1

⊕r
⊥, 1⊕ 1

&
⊥&⊥, 1⊕ 1

⊥
⊥,⊥&⊥, 1⊕ 1

⊕r
⊥,⊥⊕ (⊥&⊥), 1⊕ 1

&
⊥&⊥,⊥⊕ (⊥&⊥), 1⊕ 1

}

�����������
~

6=

u

wwwwwwwwwww
v

Ax
⊥, 1

⊕l
⊥, 1⊕ 1

Ax
⊥, 1

⊕r
⊥, 1⊕ 1

&
⊥&⊥, 1⊕ 1

⊥
⊥,⊥&⊥, 1⊕ 1

Ax
⊥, 1

⊕l
⊥, 1⊕ 1

Ax
⊥, 1

⊕r
⊥, 1⊕ 1

&
⊥&⊥, 1⊕ 1

⊥
⊥,⊥&⊥, 1⊕ 1

&
⊥&⊥,⊥&⊥, 1⊕ 1

⊕r
⊥&⊥,⊥⊕ (⊥&⊥), 1⊕ 1

}

�����������
~

⊥ & ⊥ , ⊥ ⊕ (⊥ & ⊥) , 1 ⊕ 1

◦l
�))0•r?zz�◦l

� ''.•l

⊥ & ⊥ , ⊥ ⊕ (⊥ & ⊥) , 1 ⊕ 1

◦l

� &&-

•r?zz�◦l

� ##+•l

Figure 5: Two distinct strategies for two equivalent proofs

“To motivate the passage to the extensional category, note that Clos only has
weak products and coproducts. Indeed, the lifted sum which we used to model
the additives is non-associative, and we need to quotient out the behaviour at
the partial elements in order to obtain the required structure.”

Indeed, they quotient the model using partial equivalence relations (pers, satisfying
transitivity and symmetry but not reflexivity), a standard methodology to construct models
of linear logic [44]. Concretely, for every formula A they build (by induction on A) a per
∼A on strategies on A. It has two effects: firstly, it identifies strategies with the same
extensional behaviour, even though they might be intensionally distinct. With respect to
the interpretation of MALL above, this quotients out the intensional behaviour caused by
the lifts in the interpretation of additive connectives. In particular, the two proofs of Figure
5 are identified. Secondly, it cuts out those strategies that can taste intensional information:
the new model restricts to strategies that are self-equivalent, which for morphisms from A
to B essentially amounts to sending ∼A-equivalent strategies to ∼B-equivalent strategies.

Sometimes, a miracle occurs after this “cutting out” process: only definable elements
remain and the new model is fully complete – and indeed Abramsky and Melliès show that
this is the case for closure-strategies. This is by all means not a general fact: for instance,
the same construction applied to the relational model does not yield full completeness10.
Performing this construction on an intensional canvas such as game semantics helps, in that
morphisms in the new model are equivalence classes of concrete strategies. Representatives
have intensional behaviour that can be tracked down to reconstruct a proof.

However, something remains puzzling. There seems to be a tension between definability,

10A similar construction applied on hypercoherences, which build on the relational model, does yield full
completeness [14] – note that there are links between hypercoherences and game semantics [51].

20

(B(B (B) (B (B (B
q

q
q
tt

q
tt

b1
q
b2

q
b3

f(b1, b2, b3)

(B(B (B) (B (B (B
q

q
q
tt

q
tt

b1
q
b3

q
b2

f(b1, b2, b3)

Figure 6: Example of extensionally correct yet undefinable behaviour

which is facilitated by more intensionality ; and validating all required equations, which is
facilitated by more extensionality. The solution of [5] is to first build an interpretation
failing some equations but with a tractable intensional description of proofs, and then
quotient and cut it down by extensional collapse. But then, why did we need concurrent
games to do that? After all, there are plenty of simpler intensional not-quite-models
around, the obvious one being Blass games. Composition is not associative in Blass games,
which was the original motivation for concurrent games. But that cannot be the end of the
story: non-associativity means that the two equivalent proofs of Figure 2 are interpreted
by two strategies “doing the same actions but not in the same order”. Moving to Clos and
Games solved the Blass problem and made those two equivalent, but with the cost that the
two proofs of Figure 5 now give rise to two strategies “doing the same actions but not in
the same order” – but those two were interpreted with the same strategy in Blass games!
So have we just moved the problem around?

As it turns out, the conceptual advance offered by concurrent games is much greater
than merely solving the Blass problem. While the extensional collapse may be applied to
a sequential games substrate (such as Blass games) in order to get a model of MALL, this
will usually land us far from full completeness. Figure 6 illustrates this in a basic game
semantics setting (e.g. simple games [43]), though we do not see why the phenomenon
would not occur as well in Blass games. The strategy pictured with its two maximal plays
acts like λgxy. f(g tt tt, x, y), except it calls x and y in the same order than the argument g
used to call its arguments. This strategy is undefinable (it is not innocent), yet it survives
the extensional collapse. Such a behaviour cannot be expressed with closure-strategies,
because it is not positional : after the first 7 moves, the strategy acts differently in the
two plays, although the set of moves that have been played is the same. So it appears
that the ability of concurrent games to give a fully complete model to MALL is not due
to concurrency per se11. Instead, and as investigated in depth by Melliès in asynchronous
games, the key conceptual advance of concurrent games is that they are positional / causal.

11Indeed the Blass problem could easily be solved by a non-polarized version of Ghica and Murawski’s
concurrent games [35], but there is no reason why it would not suffer from phenomena as in Figure 6.

21

4 Full Completeness via MALLP

We have seen that Abramsky and Melliès’ full completeness result rests on two ingredients:
(1) an unsound intensional model, whose dynamics can be tracked down to guide defin-
ability; and (2) a quotient which restores the necessary equations between proofs. The
definability process of [5] is challenging, as strategies are far from sequential. Rather than
a sequent proof, the argument reconstructs from the action of the strategy an MALL proof
structure in the sense of Girard [40], which is proved correct.

In this paper we do not review this argument. Instead we adopt a different route,
following later work by Melliès [50]. Since it seems a quotient is required anyway, why
not add much more intensional information, with enough dynamic content as to make
definability straightforward, yielding directly a sequent proof by induction? This will
mechanically break more of the expected MALL laws, but those will be reinstated by
quotient anyway. Likewise, this added sequentiality should not prevent us from quotienting,
provided the model is phrased in a positional setting.

In the remainder of this paper we build a fully complete model of MALL following
that route. Rather than directly giving a sequential interpretation of MALL, we first
interpret a polarized variant. It is obtained by annotating formulas with new constructors
marking additional observable computation steps, and constraining proofs making their
dynamic sequential (MALL formulas will later on be interpreted by first polarizing them,
then interpreting the obtained formula). We will first build a fully complete model of
polarized MALL, then perform the quotient and deduce full completeness for MALL.

The first fully complete games model for a polarized version of MALL was by Girard,
in the framework of Ludics [39]. In his thesis, Laurent introduced a more symmetric
presentation of Girard’s system, called MALLP [48], which we adopt in this paper. The de-
velopments in this section and the next are strongly inspired from Melliès’ in asynchronous
games, rephrased in the game semantics language presented in Section 3.

4.1 Polarized Multiplicative Additive Linear Logic

Linear Logic is inherently non-polarized : (1 ⊕ 1) ⊗ (1 & 1) is interpreted (following the
previous section) by the game •1 ∼ •2 ◦1 ∼ ◦2 with both players having available events,
reflecting the fact that the formula does not carry explicit information as to which side
of the tensor is to be resolved first, if any. Polarized Multiplicative Additive Linear Logic
(MALLP), introduced by Laurent [48], starts with the same connectives, but restricts for-
mulas so as to follow a strict polarity discipline ensuring among other things that execution
is sequential. New unary connectives, shifts, are used to transport between polarities.

The formulas of MALLP are as follows

P,Q ::= 0 | 1 | P ⊗Q | P ⊕Q | ↓M
M,N ::= > | ⊥ |M `N |M &N | ↑P

where P,Q are called positive and M,N are called negative. There is a clear duality
between the two, defined as 0⊥ = >, 1⊥ = ⊥, (↓M)⊥ = ↑M⊥, (P ⊗ Q)⊥ = P⊥ ` Q⊥,

22

` Γ, P ` ∆, Q

` Γ,∆, P ⊗Q
⊗

` Γ,M,N, [P]

` Γ,M `N, [P]
`

` 1
1

` Γ, [P]

` Γ,⊥, [P]
⊥

` Γ,M

` Γ, ↓M
↓

` Γ, P

` Γ, ↑P
↑

` P⊥, P
Ax

` Γ, P ` ∆, P⊥, [Q]

` Γ,∆, [Q]
Cut

` Γ, P

` Γ, P ⊕Q
⊕l

` Γ, Q

` Γ, P ⊕Q
⊕r

` Γ,M, [P] ` Γ, N, [P]

` Γ,M &N, [P]
&

` Γ,>, [P]
>

Figure 7: Rules of MALLP

and (P ⊕ Q)⊥ = P⊥ & Q⊥; and vice versa. There are two kinds of sequents: those of the
form ` Γ and those of the form ` Γ, P , where in both cases all formulas in Γ are assumed
negative. Following [54] we write ` Γ, [P] any of the two cases. We show the rules in
Figure 7. As before we consider exchange rules present, though not written explicitely.

MALLP is a refinement of MALL, in the sense that given a MALLP proof, erasing the
shifts and the corresponding deduction rules yields an MALL proof. In fact MALL proofs
obtained from MALLP are focused12 proofs: indeed, in a focused proof, at any given time
in proof construction we focus on at most one positive formula. The only positive rules
used must apply to this positive formula, until we reach a negative formula. This process
is faithfully reflected by the presence of at most one positive formula in a MALLP sequent.
In fact, the focusing property of Linear Logic, first noticed by Andreoli [8], can be proved
through a translation of MALL in MALLP.

4.2 Interpretation of MALLP

The polarity of formulas is directly reflected in the accompanying games. A game A is
positive (resp. negative) if all its minimal events are positive (resp. negative). In
general games may be neither negative nor positive, as in the example above interpreting
(1⊕ 1)⊗ (1 & 1). In contrast, games interpreting MALLP formulas will always have a clear
polarity. As a matter of fact, their shape will be even more restricted.

Definition 19. A finite game A is an arena if: (1) all its minimal events share the same
polarity and conflict with each other; (2) causal dependency is alternating (if a1 _A a2 then
polA(a1) 6= polA(a2)) and tree-shaped (if a1, a

′
1 ≤A a2 then either a1 ≤A a′1 or a′1 ≤A a1);

and (3) conflict is local in the sense that if a1 a2, then either they are both minimal or
they share the same (necessarily unique) immediate predecessor.

12More precisely, weakly focused in the sense of [47].

23

By definition, an arena is either negative or positive. We denote negative arenas by
M,N and positive arenas by P,Q. Every positive arena may be written as

P =
∑
i∈I

↓Ni

with I finite, and where each Ni is a negative game (which might not be an arena). This
lets us define the tensor of positive arenas as

P ⊗Q =
∑

(i,j)∈I×J

↓(Ni ‖Mj)

where P =
∑

i∈I ↓Ni and Q =
∑

j∈J ↓Mj. We also define their sum P ⊕Q simply as P +Q
(note that this use of the notation P ⊕Q is incompatible with that in Section 3.1 – from
now on, all uses of ⊕ refer to the present definition). The arena 1 consists of only one
move, which is positive; and 0 is the empty arena. Negative arenas and their constructions
are defined dually. Altogether, this gives us an interpretation J−K of formulas as arenas.

To interpret proofs, we flesh out the categorical structure relative to these constructions.
We preface this with a few remarks. Firstly, MALLP may be presented as a 2-sided sequent
calculus with at most one formula on the right: ` N1, . . . , Nn, [P] is represented simply
as N⊥1 , . . . , N

⊥
n ` P . All formulas involved are then positive. Positive MALLP formulas

are uniquely written with the positive connectives 0, 1,⊗ and ⊕; along with negation ¬
defined as ¬P = ↓(P⊥). The resulting system is known as Multiplicative Additive Tensorial
Logic [54]. To interpret MALLP we construct a dialogue category with coproducts [54] which
matches the Tensorial Logic presentation of MALLP, but the two are completely equivalent.

We start with the category Arenas, whose objects are positive arenas, and morphisms
from P to Q are strategies σ : P⊥ ‖ Q which are negative, in the sense that each
x ∈ C (σ) must contain at least one negative event, and thunkable, in the sense that for
each x ∈ C (σ), if x contains one positive event, then it contains one in Q. So morphisms
in Arenas first wait for an Opponent input on the left; then immediately play on the right.
Let us write σ : P Ar

+ //Q to denote that σ is a morphism from P to Q in Arenas.

The construction ⊕ yields a coproduct in Arenas, let us write inl : P Ar
+ //P ⊕ Q and

inr : Q Ar
+ //P ⊕ Q for the two injections, and [σ1, σ2] : P1 ⊕ P2

Ar
+ //Q for the co-pairing

of σ1 : P1
Ar
+ //Q and σ2 : P2

Ar
+ //Q. We use similar notations for the corresponding n-ary

construction. This lets us decompose any σ : P Ar
+ //Q as

σ = [infσ(i) � ↓(σi) | i ∈ I] :
∑
i∈I

↓Mi
Ar
+ //
∑
j∈J

↓Nj

where fσ : I → J is a function, σi : Mi
Ga
+ //Nfσ(i) is a (necessarily) negative strategy in

Games; and ↓(−) is the functorial action of ↓ in Games defined in the obvious way. This

also lets us define the functorial action of ⊗: if σ : P Ar
+ //Q and σ′ : P ′ Ar

+ //Q
′,

σ ⊗ σ′ : [in(fσ(i),fσ′ (i
′)) � ↓(σi ‖ σ′i′) | (i, i′) ∈ I × I ′] : P ⊗ P ′ Ar

+ //Q⊗Q′

24

$ =

1
1
⊕l

1⊕ 1
↑

↑(1⊕ 1)
⊥

⊥, ↑(1⊕ 1)

. . .

⊥, ↑(1⊕ 1)
&

⊥&⊥, ↑(1⊕ 1)
↓

↓(⊥&⊥), ↑(1⊕ 1)
⊕r

↓⊥ ⊕ ↓(⊥&⊥), ↑(1⊕ 1)
⊥

⊥, ↓⊥ ⊕ ↓(⊥&⊥), ↑(1⊕ 1)

. . .

⊥, ↓⊥ ⊕ ↓(⊥&⊥), ↑(1⊕ 1)
&

⊥&⊥, ↓⊥ ⊕ ↓(⊥&⊥), ↑(1⊕ 1)

J⊥1 &⊥2, ↓3⊥4 ⊕ ↓5(⊥6 &⊥7), ↑8(19 ⊕ 110)K =

(◦1, ◦8)
;xx� � ��'

(◦2, ◦8)
;xx� � ��'

•3

_���

•5

J��	 t���•9 •10 •9 •10 ◦4 ◦6 ◦7

(◦1, ◦8) _ •5 _ ◦6 _ •9 ∈ J$K

Figure 8: A proof in MALLP and its interpretation

making Arenas a symmetric monoidal category with coproducts, where ⊗ distributes over
coproducts in the sense that the canonical morphisms (P⊗Q1)⊕(P⊗Q2) Ar

+ //P⊗(Q1⊕Q2)

and 0 Ar
+ //P⊗0 are isomorphisms – Arenas may be regarded as the free coproduct completion

of a category of negative games and strategies.
Finally, Arenas has a tensorial negation, i.e. a (necessarily self-adjoint) functor

¬ : Arenas→ Arenasop together with a family of bijections

ϕP,Q,R : Arenas[P ⊗Q,¬R] ∼= Arenas[P,¬(Q⊗R)]

natural in P , Q and R and subject to a coherence condition. On arenas, we define
¬P = ↓P⊥, extended to strategies in the obvious way with the functorial action of ↓
and the compact closed structure of Games. Altogether we get a dialogue category with
coproducts [54] hence a model of Multiplicative Additive Tensorial Logic, or equivalently
MALLP. A proof $ of ` N1, . . . Nn, P with a positive formula is interpreted as a morphism

J$K :
⊗

1≤i≤n

JNiK⊥ Ar
+ // JP K

while a proof $ of a sequent ` N1, . . . , Nn is interpreted as J$K :
⊗

1≤i≤nJNiK⊥ Ar
+ // ¬1.

The categorical structure should make it plain how the rules are interpreted; we only
comment the introduction rules for shifts: the introduction of ↓ directly matches the natural
isomorphism ϕΓ⊥,M⊥,1; while the introduction rule for ↑ first composes J$K : JΓK⊥ Ar

+ //P

with the unit of the continuation monad P Ar
+ //¬¬P , before applying ϕ−1

Γ,¬P,1.
We display in Figure 8 a branch of a proof and its corresponding interpretation. As in

Figure 5, we omit the ` symbol and color units to disambiguate the rules. On the right
hand side, we first show the game interpreting the sequent, and the maximal augmentation
of the strategy J$K corresponding to the branch of the proof displayed on the left hand
side. We observe that this branch is completely linear – in fact, we will see that this is
true of all strategies obtained as the interpretation of proofs in tensorial logic, a property
that in the next subsection we will call sequential innocence.

25

4.3 Full completeness for MALLP[

Now, we refine the interpretation in order to obtain full completeness. From now on and for
the remainder of this paper, we will restrict to the fragments MALL[and MALLP[, respec-
tively of MALL and MALLP, without the additive units 0 and >. While the methodology
we present here does extend in their presence, they come with technical complications that
are a significant obstacle to our objective of keeping this paper as simple as possible and
focused on the conceptual ideas. The reader will find in Appendix B a generalization of
the constructions for full MALL and MALLP.

Strategies coming from proofs satisfy constraints of two different natures. The first two
conditions, totality and sequential innocence, are causal : they capture the causal patterns
of strategies arising from MALLP proofs. The third condition, exhaustivity, is positional
and expresses that complete positions of strategies should validate the linearity constraints
by exhausting all resources in their complete positions.

4.3.1 Totality and Sequential Innocence

Our first two conditions, totality and sequential innocence, are intrinsic to strategies, mean-
ing that they restrict their causal shapes without enriching the interpretation of types.

Totality. In game semantics, proofs (as opposed to programs) are traditionally inter-
preted as strategies that are total, in the sense that they always have a response to any
move by the environment. Game semantics for proofs makes formal a debate between two
players, arguing about the validity of a formula: Player aims to establish the truth of the
formula, while Opponent attempts to falsify it. In this view, a proof should yield a strategy
that never gives up, and has a valid counter-argument to any attack by Opponent.

In our games, totality may be formulated as follows.

Definition 20. A strategy σ : A is total if for any q ∈ σ maximal in σ (for rigid embed-
ding), the maximal events (for ≤q) of q have positive polarity.

Regarding strategies as descriptions of normal forms, totality is a normalization prop-
erty – any exploration of the normal form by Opponent will uncover new parts of the term
and will not trigger divergence. Just as terms with a normal form are not usually closed
under composition (considering e.g. δ δ in the pure λ-calculus), total strategies are not
in general stable under composition as two total strategies may enter in a livelock, never
producing an observable result. Getting total strategies to compose often requires some
technology [28]; but here as our games are finite, compositionality of totality is easy.

Sequential Innocence. In Hyland-Ong games, innocent strategies are those whose be-
haviour only depends on a partial sub-history of the play called the P-view. Causal game
semantics reveal that, in fact, P-views are simply the underlying causal structure. In tradi-
tional game semantics this causal structure is derived: strategies are defined and composed
as sets of general plays, and appear a posteriori to be representable as sets of P-views. In

26

contrast, in our strategies the causal structure is primitive – we get to see the elephant
directly. This makes innocence appear very differently from its presentation in traditional
game semantics: we must simply restrict the causal shapes to those that follow the tree-like
inductive structure of proofs.

Definition 21. A strategy σ : A is sequential innocent iff any q ∈ σ is forest-shaped,
and O-branching: if a _q a1 and a _q a2 with a1, a2 ∈ |q| distinct, pol(a1) = pol(a2) = −.

If A is an arena, then this means that for any q ∈ σ and a ∈ |q|, the causal history of
a in q is a linearly ordered causal chain, which is alternating:

a−0 _q a
+
1 _q a

−
2 _q a

+
3 _q . . . _q a .

Note that because arenas are forest-shaped, each move that is not minimal in A has
a unique antecedent in A. From the conditions imposed on augmentations, if ai appears
in a causal chain as above, then its antecedent must also appear before. Let us call the
antecedent of ai its justifier. Then by courtesy, in a chain as above the justifier of a−2n+2

must be a+
2n+1; and the justifier of a+

2n+1 must be one of the earlier negative events. So,
this is exactly a P-view ; making more concrete the intuitions suggested above. Globally, σ
may then be regarded as a prefix-closed set of linearly ordered causal chains (P-views) as
above branching only at Opponent moves. Two branching chains (P-views) may be either
compatible (if they are both prefixes of a common augmentation), or conflicting (if not).

This link with more traditional structures of innocence in game semantics is a strength
of the presentation of strategies as sets of augmentations rather than as sets of configura-
tions, sets of plays [53] or closure operators [5]. As in Hyland-Ong games, this also means
that strategies have a simple inductive structure, aiding definability.

In traditional game semantics, proving that innocence is stable under composition is
tricky. In contrast here, stability of sequential innocence under composition is very easy:

Proposition 22. If σ : A Ar
+ //B and τ : B Ar

+ //C are sequential innocent, then so is τ � σ.

Proof. It suffices to show that if q ∈ σ and p ∈ τ are causally compatible, then every event
e in p~q has at most one immediate antecedent. Looking for a contradiction, assume that

e1 _p~q e e2 _p~q e .

If e is an external Opponent move, by courtesy e1, e2 _A⊥‖C e, so e1 = e2 since arenas
are forest-shaped. Otherwise e is positive for either σ or τ , say w.l.o.g. σ. Then, by an
analysis of immediate causality in an interaction (essentially Lemma 2.10 of [19]) along
with courtesy of τ , we have e1, e2 _σ e, so e1 = e2 since σ is sequential innocent.

In other words, no causal join can emerge in an interaction between strategies that
do not perform causal joins. Structural morphisms are sequential innocent, and all other
constructions on strategies are easily shown to preserve sequential innocence. One can
wonder why stability of innocence is so easy here, compared to traditional games. It seems

27

that in traditional games, the complexity comes from the back and forth between P-views
(the causal structure) and plays, which we completely avoid here.

Finally, an observation on the name sequential innocence: in concurrent games, the
notion above appears as a sequential specialization of a more general notion of parallel
innocence [20]. Parallel innocent strategies have no side-effect but may perform computa-
tions in parallel – they include strategies for parallel-or [21], or strategies arising from the
parallel evaluation of purely functional programming languages [20].

4.3.2 Exhaustive Strategies

For the simply-typed λ-calculus, totality and innocence suffice to obtain definability; but
not here: indeed, totality allows affine behaviour 13 whereas we want strict linearity.

Several existing mechanisms could be used here to ensure strict linearity. Our choice
of name, exhaustive strategies, reminds one of the exhausting strategies of Murawski and
Ong [57], in which one asserts that all moves of the game should be somehow reachable
by strategies. Unlike what our name suggests, we opt instead for a simple and elegant
construction due to Melliès [50] and then refined by Melliès and Tabareau [54]. The
construction works by enriching arenas with a notion of payoff.

Definition 23. An arena with payoff is an arena A with κA : C (A)→ {−1, 0,+1} such
that for A non-empty, A is positive (resp. negative) iff κA(∅) = −1 (resp. κA(∅) = +1).

Configurations x ∈ C (A) such that κA(x) = 0 are called exhaustive – for games
coming from MALLP[, we will see that those are exactly the maximal configurations. For
non-maximal configurations, κ assigns the responsibility of non-exhaustivity, i.e. points out
which of the two players is stalling. Configurations x ∈ C (A) such that κA(x) = +1 are
called winning: the responsibility of non-exhaustivity is assigned to Opponent. Dually,
configurations x ∈ C (A) such that κA(x) = −1 are called losing.

Here, we make three observations. Firstly, the reader can observe the proximity with
the winning conditions of [27]: the main difference is the existence of neutral positions, or
draws, with null payoff. Secondly, unlike e.g. [63], the objective of strategies will be to
at least ensure a draw, i.e. either reach an exhaustive configuration, or a state where the
responsibility of non-exhaustivity may be assigned to Opponent.

Constructions. Let us show how the constructions on arenas extend in the presence of
payoff functions. For units, κ1(∅) = −1 and κ1({l}) = 0 – the payoff on ⊥ is defined
dually, with κA⊥ = −κA. For lifts, we set κ↓N(∅) = −1, and κ↓N({•} ∪ xN) = κN(xN).

For positive P =
∑

i∈I ↓Ni and Q =
∑

j∈J ↓Mj, we set κP⊕Q(xP) = κP (xP) if xP ∈
C (P) and symmetrically for Q. For the tensor, we first set κP⊗Q(∅) = −1. Non-empty
configurations of P ⊗ Q necessarily have the form {l(i,j)} ∪ (xNi ‖ xMj

), written xP ⊗ xQ
13In fact, the proof of Theorem 27 shows that without exhaustivity, the model is fully complete for

Polarized Multiplicative Additive Affine Logic (MAALP) [48].

28

where xP = {li} ∪ xNi and xQ = {lj} ∪ xMj
. We then set

κP⊗Q(xP ⊗ xQ) = κP (xP)⊗ κQ(xQ) ,

where, for α, β ∈ {−1, 0, 1}, we set α ⊗ β = 0 iff α = β = 0, α ⊗ β = −1 if α = −1
or β = −1, and α ⊗ β = 1 otherwise. Finally, κN`M is defined dually. A non-maximal
configuration of P ⊗ Q is winning if it is winning or exhaustive on both sides, whereas a
non-maximal configuration of M `N must be winning on at least one side.

For each MALLP[formula A we may build by induction on A, following the definitions
above, an arena with payoff JAK. We mention in passing the following straightforward
lemma, where we say that x ∈ C (A) is +-maximal in C (A) iff for any y ∈ C (σ) such
that x ⊆+ y we have x = y; and symmetrically for −-maximal configurations.

Lemma 24. For any MALLP[formula A, (1) if x is +-maximal in C (JAK), then κJAK(x) ≥
0; (2) if x is −-maximal in C (JAK), then κJAK(x) ≤ 0; and (3) x is maximal iff κJAK(x) = 0.

If we were to interpret all units, 0 would yield the empty arena with κ0(∅) = −1, failing
the lemma above – this is the reason why the proof of definability we present here does
not directly apply to additive units, which require more elaborate constructions.

Exhaustive strategies. We may now define exhaustive strategies. If σ : A is a strategy
and x ∈ C (σ), we say that it is +-maximal if σ has no further move to play, i.e. for any
y ∈ C (σ) such that x ⊆+ y we have x = y.

Definition 25. Let P,Q be positive arenas with payoff. A strategy σ : P Ar
+ // Q is ex-

haustive if for any xP ‖ xQ ∈ C (σ) +-maximal we have κP⊥(xP) ` κQ(xQ) ≥ 0.

The proof that exhaustive strategies are stable under composition is exactly as in the
proof of stability of winning strategies in [27]; other constructions on strategies are direct.
From now on, we consider all arenas to be equipped with a payoff function, and all strategies
to be total, sequential innocent and exhaustive. Altogether we get a dialogue category with
coproducts, that we will keep referring to as Arenas.

The reader may wonder why we call those strategies exhaustive rather than winning. For
us, the use of winning in game semantics usually conveys the idea that winning strategies
witness logical validity. But here, exhaustivity does not ensure logical validity. It is
perfectly conceivable, for instance, to have a programming language with recursion and
divergence but with a strict linearity discipline that will ensure exhaustivity but where
two definable exhaustive σ : A and τ : A⊥ simultaneously exist. Then, the exhaustivity
mechanism only ensures that their interaction yields an exhaustive configuration of A.

4.4 Full Completeness

To obtain full completeness for MALLP[it remains to prove definability.

29

To any sequent ` N1, . . . , Nn, [P] of MALLP[and strategy

σ :
⊗

1≤i≤n

JNiK⊥ Ar
+ // J[P]K ,

where J[P]K means ¬1 if there is no P , we associate a proof of ` N1, . . . , Nn, [P] whose
interpretation yields σ. This is done, as expected, by induction on the number of events
in σ and the size (number of symbols) in the sequent.

We start by taking care of a few easy cases. If one of the Ni is ⊥ or starts with `, then
we apply directly the corresponding rule, not changing the game and strategy up to iso. If
one of the Ni – say Nn is a product N1

n &N2
n, then the interpretation of the context is, up

to isomorphism, a product, so that σ can be regarded as inhabiting:

σ : (JN1K⊥ ⊗ . . .⊗ JNn−1K⊥ ⊗ JN1
nK
⊥)⊕ (JN1K⊥ ⊗ . . .⊗ JNn−1K⊥ ⊗ JN2

nK
⊥) Ar

+ // J[P]K

hence σ is a co-pair [σ1, σ2]. By induction hypothesis, each σi is defined with a proof, and
hence σ may be defined via the introduction rule for &.

Hence, we can assume that all arenas for Ni have the form ↑Pi, so that the game for

σ :
⊗

1≤i≤n

↓JPiK⊥ Ar
+ // J[P]K

has a unique negative minimal move corresponding to the shifts on the left hand side (this
also holds in the case where the tensor is empty, as its unit 1 has exactly one event). We
now distinguish several cases, depending on the shape of [P]. Of these, the crucial case –
by far the most subtle – is that where there is one positive formula, of the form Q1 ⊗Q2.

Lemma 26. Let (Pk)1≤k≤n, Q1, Q2 be arenas, and consider a strategy

σ :
⊗

1≤i≤n

↓P⊥k
Ar
+ //Q1 ⊗Q2 .

Then, up to reordering of the context there are strategies

σ1 :
⊗

1≤k≤p

↓P⊥k
Ar
+ //Q1 σ2 :

⊗
p+1≤k≤n

↓P⊥k
Ar
+ //Q2

such that σ = σ1 ⊗ σ2.

Proof. W.l.o.g. we can assume that neither Q1 nor Q2 is 1. Then, the game has the shape

σ : ↓(‖1≤k≤n
∑
i∈Ik

↑M⊥
k,i)

Ar
+ //

∑
(l1,l2)∈L1×L2

↓(Nl1 ‖ Nl2) .

where Qi =
∑

l∈Li ↓Nli and P⊥k = Mk = ‖1≤k≤n
∑

i∈Ik ↑M
⊥
k,i. After the unique minimal

negative move, σ starts by playing some (l1, l2), and then resumes as a negative strategy

σ′ : ‖1≤k≤n
∑
i∈Ik

↑M⊥
k,i

Ga
+ // Nl1 ‖ Nl2 .

30

But then, there is a partition of the components of the parallel composition on the left
hand side into those that may be accessed through Nl1 , through Nl2 , and those (in prin-
ciple) that will not be accessed. Indeed, recall that augmentations in σ′ are forest-shaped
(because σ is sequential innocent). Two augmentations q1 and q2 visiting one component
Mk =

∑
i∈Ik ↑M

⊥
k,i cannot be compatible, so they contain respectively conflicting Opponent

events. But since conflict is local in arenas, this is only possible if q1 and q2 either share
the same minimal event, or if their minimal events are conflicting. In both cases, they
start in the same component, Nl1 or Nl2 . So for each 1 ≤ k ≤ n, Mk may be accessed only
via Nl1 , or via Nl2 . Reordering the context we can rewrite the game for σ′ as

σ′ : Γ1 ‖ Γ2 ‖ Γ3
Ga
+ // Nl1 ‖ Nl2 .

where all components of Γ1 = ‖1≤k≤p
∑

i∈Ik ↑M
⊥
k,i (resp. Γ2 = ‖p≤n

∑
i∈Ik ↑M

⊥
k,i) are ac-

cessed through Nl1 (resp. Nl2) and only, and components of Γ3 = ‖n2≤k≤n ↑Mk,i are not
accessed. But then Γ3 must be empty. Indeed taking x ∈ C (σ) is maximal, then it is
−-maximal in the game so κ(x) ≤ 0 by Lemma 24 and κ(x) ≥ 0 since σ is exhaustive,
so κ(x) = 0. But then it follows that x is maximal in the game, so Γ3 must indeed be

accessed if non-empty. Then, σ′ decomposes as σ′1 : Γ1
Ga
+ //Nl1 and σ′2 : Γ2

Ga
+ //Nl2 , yielding

σ1 = inl1 � (↓σ′1) : ∆1
Ar
+ //Q1 σ2 = inl2 � (↓σ′2) : ∆2

Ar
+ //Q2

(where ∆1 = ⊗1≤k≤p↓Mk = ↓Γ1 and ∆2 = ⊗p≤k≤n↓Mk = ↓Γ2) such that σ = σ1⊗σ2. From
the fact that σ is exhaustive, along with Lemma 24 and the fact that any configuration of
σ may be extended to a −-maximal one, it follows that σ1 and σ2 are exhaustive.

With that, we can finally wrap up and conclude:

Theorem 27. Arenas is fully complete for MALLP[.

Proof. We resume the proof where it was before Lemma 26, i.e. we must define

σ :
⊗

1≤i≤n

↓JPiK⊥ Ar
+ // J[P]K .

If P = 1 then a +-maximal configuration must be neutral on both sides, which is only
possible if κ({l}) = 0 on the left. Because the context contains no ⊥, this in turn is only
possible if n = 0, but then ` 1 is provable. If P = Q1 ⊕ Q2 is a coproduct; then after
the initial move on the left, σ must either play on Q1 or on Q2 (say e.g. on Q1) hence

σ = inl ◦σ′ with σ′ :
⊗

1≤i≤n ↓JPiK⊥
Ar
+ // JQ1K. By induction hypothesis σ′ may be defined,

and we define σ using the introduction rule for ⊕. If P = Q1 ⊗Q2, we apply Lemma 26.
There are two cases left, which have to do with shifts. First, we consider the case where

the positive formula is a down-shift, so that we have

σ :
⊗

1≤i≤n

↓Mi
Ar
+ // ↓N .

31

Then, σ is obtained via ϕΓ⊥,N⊥,1 from σ′ : (
⊗

1≤i≤n ↓Mi)⊗N⊥ Ar
+ // ¬1, which is definable

by induction hypothesis. Finally, the last remaining case is that where

σ :
⊗

1≤i≤n

↓Mi
Ar
+ // ¬1 .

Necessarily, after the initial negative move on the left σ immediatly plays on the right,
and after the subsequent move on 1, by totality it plays on the left again, say w.l.o.g. on
Mn. Then, removing from (all augmentations in) σ the two moves in ¬1, we get

σ′ :
⊗

1≤i≤n−1

↓Mi
Ar
+ // ↓Mn

which is definable by induction hypothesis. It follows then that σ is definable as well,
obtained via the introduction rule for ↑. At each step of the definability procedure, the
number of connectives in the sequent decreases, ensuring termination.

Behind the details of this definability procedure lies a very direct geometric correspon-
dence between derivations in MALLP[(up to natural commutations between rules) and
sequential innocent total strategies, akin to the usual correspondence between Böhm trees
and innocent strategies in the traditional sense for the simply-typed λ-calculus. This full
completeness result makes it appropriate to think of strategies as normal forms for proofs
modulo bureaucratic commutations between proof rules. This is also related to Melliès’
result that innocent strategies (for a different but related notion of innocence) in asyn-
chronous games form the free dialogue category [52].

The reader will find in Appendix B an extension of this result to MALLP with all units.

4.5 Relational Collapse and Full Completeness for MALL[

Finally we show how to interpret unpolarized MALL in Arenas, describe the relational
collapse, and deduce full completeness. Additive units cause no further difficulty here,
so we formulate our constructions in their presence even though we will only be able to
conclude full completeness for MALL[.

4.5.1 Interpretation of MALL and polarized translation

We first give an interpretation of MALL which, as in Section 3.1, will not be quite sound
since it will fail some required equations between proofs.

Remember that the positive connectives of MALL are defined as 0, 1,⊗ and ⊕; while
the negative connectives are the others. The polarity of an MALL formula is defined as
the polarity of its outermost connective. As for MALLP, below we denote positive formulas
of MALL as P,Q and negative formulas as M,N . To any formula A of MALL we associate

32

two arenas, LAM− negative and LAM+ positive, mutually inductively with

L1M+ = 1 LA⊗BM+ = LAM+ ⊗ LBM+

L0M+ = 0 LA⊕BM+ = LAM+ ⊕ LBM+

L⊥M− = ⊥ LA`BM− = LAM− ` LBM−
L>M− = > LA&BM− = LAM− & LBM−

along with LP M− = ↑LP M+ and LNM+ = ↓LNM− to insert the shifts when polarities do not
match. This interpretation corresponds to translations (−)− of MALL formulas as negative
MALLP formulas, and (−)+ of MALL formulas as positive MALLP formulas, followed by
the interpretation of MALLP formulas as arenas J−K defined in the previous section.

This interpretation can easily be extended to MALL proofs: any proof $ of a sequent
` A1, . . . , An is interpreted as a negative, sequential innocent, exhaustive and total strategy:

L$M : LA1M⊥− ⊗ . . .⊗ LAnM⊥−
Ar
+ // ¬1 .

It is straightforward to extend this interpretation to all rules of MALL. Altogether,
this exactly amounts to the translation of MALL proofs into MALLP proofs described in
[54] (along with other Linear Logic connectives). Overall this gives an interpretation of
MALL which, however, will not validate all the expected equations between MALL proofs.

4.5.2 Relational Collapse

To restore these missing equations, the final step is to quotient out from the interpretation
all the additional behaviour corresponding to the shifts. For that purpose, Melliès’ idea in
[50] was to quotient the strategies coinciding on certain stopping positions, ignoring that
they might have taken different routes to reach those positions. The same idea may also
be simply presented as a functorial collapse to the relational model.

The relational model. The category Rel has as objects sets, and as morphisms from
A to B relations R ⊆ A × B from A to B. The cartesian product of sets extends to
a symmetric monoidal closed structure on Rel. Furthermore Rel is compact closed, with
duality being the identity. It has biproducts, given by the disjoint union of sets. Altogether
this yields an interpretation of MALL into Rel, defined on formulas with

J0KRel = J>KRel = ∅
J1KRel = J⊥KRel = {?}

JA⊗BKRel = JA`BKRel = JAKRel × JBKRel
JA⊕BKRel = JA&BKRel = JAKRel + JBKRel

and extended to proofs following the categorical structure. See e.g. [33] for details.

33

The collapse of games. Now, we have argued earlier in the paper that games being
positional meant that they have a clean connection with relational semantics. Intuitively,
the relational semantics of a proof records positions reached by completed executions. In
contrast, concurrent games record all positions reached by a proof, including intermediary
ones matching partial executions14. Thus, in principle, it would seem that the correspon-
dence between concurrent games and relational semantics should be rather straightforward:
simply forget the intermediary steps, and keep only complete positions.

Following this intuition, to any arena A we associate the set

∫ A = {x ∈ C (A) | κA(x) = 0}

of exhaustive configurations. Crucially, this operation is compatible with all constructions
used to interpret formulas in Arenas and Rel. For instance, for two positive arenas P,Q, we
have seen that configurations with null payoff are exactly those of the form xP ⊗ xQ with
xP and xQ of null payoff in P and Q respectively; so ∫(P⊗Q) is isomorphic to the cartesian
product (∫ P)× (∫ Q) – observe also that shifts leave the set of exhaustive configurations
invariant, up to isomorphism. Going through all formula constructors, we establish:

Lemma 28. For any MALL formula A, there is an isomorphism ∫LAM ∼= JAKRel.

It remains then to extend this collapse operation to strategies.

The collapse of strategies. For σ : A Ar
+ //B, the appropriate definition seems obvious:

∫ σ = {(xA, xB) ∈ ∫ A× ∫ B | xA ‖ xB is +-maximal in C (σ)} ∈ Rel(∫ A, ∫ B) .

It is immediate that ∫(−) preserves identities, and almost all constructions on strategies
used in the interpretation up to the isomorphism of Lemma 28.

One central property, however, requires some care: functoriality. Indeed, to show that
∫(−) preserves composition there is a significant obstacle, at least conceptually: compo-
sition in Arenas is not pure relational composition. As made explicit in Proposition 11,
composition of strategies is relational composition augmented with an additional reach-
ability assumption, eliminating synchronized states resulting in deadlocks. So we have
∫(τ � σ) ⊆ ∫ τ ◦ ∫ σ, but it is not clear that the converse equality also holds.

In fact, for general strategies this functoriality property fails – it is easy to construct
a situation like that of Figure 4 on arenas arising from the interpretation of formulas
of MALL or MALLP. But on that respect, (sequential) innocent strategies are special in
that their composition causes no deadlocks – this phenomenon, which seems to have been
noticed independently by Boudes [15] and Melliès [50], entails the following:

Lemma 29. For σ : P Ar
+ //Q, τ : Q Ar

+ //R sequential innocent exhaustive strategies,

∫(τ � σ) = ∫ τ ◦ ∫ σ
14This is in contrast with traditional game semantics, that record all paths rather than positions.

34

Using the causal presentation of games, this may be established by analysing cycles
arising when computing interactions between sequential innocent strategies, as in Section
3.2.1. By iteratively simplifying such hypothetical cycles, one may prove that they do not
exist. The proof does not actually depend on sequential innocence, but on the much weaker
property we call visibility [20]. This development is too lenghty to appear here, but the
interested reader may find a detailed statement and proof as Lemma 5.32 in [16].

Finally, we conclude:

Theorem 30. There is a functor ∫(−) : Arenas→ Rel preserving interpretation up to iso.

4.5.3 Full completeness for MALL[

The functor ∫(−) induces an equivalence relation on strategies in Arenas, defined as σ ≡ σ′

iff ∫ σ = ∫ σ′. Because ∫(−) preserves the structure used in the interpretation, it follows
that ≡ is a congruence, so we may quotient homsets in Arenas. It remains then to conclude:

Theorem 31. The interpretation L−M : MALL[→ Arenas/≡ is fully complete.

Proof. Although the interpretation L−M into Arenas fails soundness in general, the inter-
pretation in Arenas/≡ is sound. Moreover, if ` A1, . . . , An is an MALL[sequent and

σ : LA1M⊥− ⊗ . . .⊗ LAnM⊥−
Ar
+ // ¬1 ,

then by Theorem 27, there is a proof $ in MALLP[of the sequent ` A−1 , . . . , A−n such that
J$K = σ. Removing shifts in $ yields a proof $′ of ` A1, . . . , An in MALL[. Finally, the
interpretation of MALL[into Arenas preserves the relational interpretation, i.e. ∫L$′M =
J$′KRel, hence J$′KRel ≡ σ as required.

It is worth noting that as the MALL[proofs coming from definability are obtained by
erasing the shifts from MALLP[proofs, they are focused proofs.

5 Conclusion

We hope that this paper will help in making more accessible the work on games models
of MALL, starting with Abramsky and Melliès’ paper on concurrent games via closure
operators. In writing this paper we have attempted to make it as pedagogical and self-
contained as possible so that besides telling the story of concurrency and additives, it may
also be used as an introduction to concurrent games.

Positionality and causality. As a take-home message, we emphasize once more the
causal and positional nature of deterministic concurrent strategies under their various
forms. The positional presentation reveals a clear understanding of the similarities – and
differences – between game and relational semantics. The causal presentation endows
strategies with a concrete nature that may be leveraged to capture innocence.

35

In this paper, we have used the word causal to describe the model construction in
Section 3.2.1 and positional to describe that in Section 3.2.2. It is in our opinion a funda-
mental, deep property of deterministic concurrent strategies that they enjoy such sharply
different presentations. But as in this paper the qualifiers causal and positional accom-
pany the same model, the reader may wonder to what extent these two are intrinsically
related. One element of answer if that beyond the deterministic case, concurrent strategies
are defined causally but the purely positional presentation given here does not survive: for
a non-deterministic strategy σ on A, the behaviour of σ in a configuration x ∈ C (A) may
depend on the path used to reach x, as this path might constrain the current augmentation
(i.e. the non-deterministic slice) more than the configuration does.

Nevertheless, one can push the causal presentation way further than the deterministic
case. Some constructions of this paper survive, in particular we have recent generalizations
of the relational collapse to the probabilistic [18] and quantum [25] cases.

On sequentiality. In the end, it appears that the ability to express concurrency is not
per se what allows us to get full completeness: in fact, the interpretation of MALLP that
leads to full completeness for MALL is completely sequential. We hope to have convinced
the reader that beyond concurrency, the true conceptual advance offered by Abramsky
and Melliès’ closure-strategies was positionality, and that despite their names, the family
of concurrent games have a lot to offer to the study of sequential languages.

Nevertheless, even to study proof systems it is compelling to explore the use of the
concurrency offered by the model. For instance, in light of multifocusing [24] it would
seem natural to seek canonical representations of MALL proofs exploiting the parallelism
inherent to concurrent games. The recent work of Castellan and Yoshida [22] goes in
that direction, representing dependencies between logical rules in MALL as a disjunctive
deterministic strategy [21], but precise connections remain to be explored.

Acknowledgments. The author would like to thank Olivier Laurent and Simon Castel-
lan for numerous discussions on the contents of this paper, and insightful comments on
earlier versions of this paper.

This work was supported by ANR project DyVerSe (ANR-19-CE48-0010-01) and Labex
MiLyon (ANR-10-LABX-0070) of Universit de Lyon, within the program Investissements
dAvenir (ANR-11-IDEX-0007), operated by the French National Research Agency (ANR).

References

[1] Samson Abramsky. Sequentiality vs. concurrency in games and logic. Mathematical
Structures in Computer Science, 13(4):531–565, 2003.

[2] Samson Abramsky and Radha Jagadeesan. Games and full completeness for multi-
plicative linear logic (extended abstract). In Foundations of Software Technology and

36

Theoretical Computer Science, 12th Conference, New Delhi, India, December 18-20,
1992, Proceedings, pages 291–301, 1992.

[3] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for
PCF. Inf. Comput., 163(2):409–470, 2000.

[4] Samson Abramsky and Guy McCusker. Call-by-value games. In Computer Science
Logic, 11th International Workshop, CSL ’97, Annual Conference of the EACSL,
Aarhus, Denmark, August 23-29, 1997, Selected Papers, pages 1–17, 1997.

[5] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness.
In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July
2-5, 1999, pages 431–442, 1999.

[6] Aurore Alcolei, Pierre Clairambault, Martin Hyland, and Glynn Winskel. The true
concurrency of herbrand’s theorem. In 27th EACSL Annual Conference on Computer
Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, pages 5:1–5:22,
2018.

[7] Aurore Alcolei, Pierre Clairambault, and Olivier Laurent. Resource-tracking concur-
rent games. In Foundations of Software Science and Computation Structures - 22nd
International Conference, FOSSACS 2019, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic,
April 6-11, 2019, Proceedings, pages 27–44, 2019.

[8] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log.
Comput., 2(3):297–347, 1992.

[9] Patrick Baillot. Approches dynamiques de la logique linéaire: jeux et géométrie de
linteraction. PhD thesis, PhD thesis, Aix-Marseille 2 University, 1999.

[10] Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier. Believe it
or not, ajm’s games model is a model of classical linear logic. In Proceedings, 12th
Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 -
July 2, 1997, pages 68–75, 1997.

[11] G. Berry and Pierre-Louis Curien. Sequential algorithms on concrete data structures.
Theor. Comput. Sci., 20:265–321, 1982.

[12] Gérard Berry. Modèles complètement adéquats et stables des λ-calculs typés. PhD
thesis, PhD thesis, Paris 7, 1979.

[13] Andreas Blass. A game semantics for linear logic. Ann. Pure Appl. Logic, 56(1-3):183–
220, 1992.

[14] Richard Blute, Masahiro Hamano, and Philip J. Scott. Softness of hypercoherences
and MALL full completeness. Ann. Pure Appl. Logic, 131(1-3):1–63, 2005.

37

[15] Pierre Boudes. Projecting games on hypercoherences. In Automata, Languages and
Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-
16, 2004. Proceedings, pages 257–268, 2004.

[16] Simon Castellan. Concurrent structures in game semantics. (Structures concurrentes
en sémantique des jeux). PhD thesis, University of Lyon, France, 2017.

[17] Simon Castellan and Pierre Clairambault. Causality vs. interleavings in concurrent
game semantics. In 27th International Conference on Concurrency Theory, CONCUR
2016, August 23-26, 2016, Québec City, Canada, pages 32:1–32:14, 2016.

[18] Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. The con-
current game semantics of probabilistic PCF. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, pages 215–224, 2018.

[19] Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. Games
and strategies as event structures. Logical Methods in Computer Science, 13(3), 2017.

[20] Simon Castellan, Pierre Clairambault, and Glynn Winskel. The parallel intensionally
fully abstract games model of PCF. In 30th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 232–243, 2015.

[21] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Observably deterministic
concurrent strategies and intensional full abstraction for parallel-or. In 2nd Interna-
tional Conference on Formal Structures for Computation and Deduction, FSCD 2017,
September 3-9, 2017, Oxford, UK, pages 12:1–12:16, 2017.

[22] Simon Castellan and Nobuko Yoshida. Causality in linear logic - full completeness
and injectivity (unit-free multiplicative-additive fragment). In Foundations of Soft-
ware Science and Computation Structures - 22nd International Conference, FOSSACS
2019, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, pages
150–168, 2019.

[23] Simon Castellan and Nobuko Yoshida. Two sides of the same coin: session types
and game semantics: a synchronous side and an asynchronous side. PACMPL,
3(POPL):27:1–27:29, 2019.

[24] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via
multi-focusing. In Fifth IFIP International Conference On Theoretical Computer
Science - TCS 2008, IFIP 20th World Computer Congress, TC 1, Foundations of
Computer Science, September 7-10, 2008, Milano, Italy, pages 383–396, 2008.

[25] Pierre Clairambault and Marc de Visme. Full abstraction for the quantum λ-calculus.
PACMPL, 4(POPL), 2020.

38

[26] Pierre Clairambault, Marc de Visme, and Glynn Winskel. Game semantics for quan-
tum programming. PACMPL, 3(POPL):32:1–32:29, 2019.

[27] Pierre Clairambault, Julian Gutierrez, and Glynn Winskel. The winning ways of
concurrent games. In Proceedings of the 27th Annual IEEE Symposium on Logic in
Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 235–244,
2012.

[28] Pierre Clairambault and Russ Harmer. Totality in arena games. Ann. Pure Appl.
Logic, 161(5):673–689, 2010.

[29] J Robin B Cockett and Robert AG Seely. Weakly distributive categories. Journal of
Pure and Applied Algebra, 114(2):133–173, 1997.

[30] John H. Conway. On numbers and games, Second Edition. A K Peters, 2001.

[31] Thierry Coquand. A semantics of evidence for classical arithmetic. J. Symb. Log.,
60(1):325–337, 1995.

[32] Thomas David Cuvillier. Nominal Models of Linear Logic. PhD thesis, Queen Mary
University of London.

[33] Thomas Ehrhard. The Scott model of linear logic is the extensional collapse of its
relational model. Theor. Comput. Sci., 424:20–45, 2012.

[34] Claudia Faggian and Mauro Piccolo. Partial orders, event structures and linear strate-
gies. In Typed Lambda Calculi and Applications, 9th International Conference, TLCA
2009, Brasilia, Brazil, July 1-3, 2009. Proceedings, pages 95–111, 2009.

[35] Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency.
Ann. Pure Appl. Logic, 151(2-3):89–114, 2008.

[36] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[37] Jean-Yves Girard. Geometry of interaction 1: Interpretation of system F. In Studies
in Logic and the Foundations of Mathematics, volume 127, pages 221–260. Elsevier,
1989.

[38] Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical Structures
in Computer Science, 1(3):255–296, 1991.

[39] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules. Mathe-
matical Structures in Computer Science, 11(3):301–506, 2001.

[40] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Logic and
Algebra, pages 97–124. Routledge, 2017.

39

[41] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf.
Comput., 163(2):285–408, 2000.

[42] J Martin E Hyland and C-H Luke Ong. Fair games and full completeness for multi-
plicative linear logic without the mix-rule. 1993.

[43] Martin Hyland. Game semantics. Semantics and logics of computation, 14:131, 1997.

[44] Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear
logic. Theor. Comput. Sci., 294(1/2):183–231, 2003.

[45] André Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette des sciences
mathématiques du Québec, 1(4):46–52, 1977.

[46] François Lamarche. Sequentiality, games and linear logic, 1992.

[47] Olivier Laurent. A proof of the focusing property of linear logic. Available at https:
//perso.ens-lyon.fr/olivier.laurent/llfoc2.pdf.

[48] Olivier Laurent. Étude de la polarisation en logique, Université Aix-Marseille II. PhD
thesis, Thèse de Doctorat, 2002.

[49] Guy McCusker. Games and full abstraction for a functional metalanguage with recur-
sive types. CPHC/BCS distinguished dissertations. Springer, 1998.

[50] Paul-André Melliès. Asynchronous games 4: A fully complete model of propositional
linear logic. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
26-29 June 2005, Chicago, IL, USA, Proceedings, pages 386–395, 2005.

[51] Paul-André Melliès. Sequential algorithms and strongly stable functions. Theor.
Comput. Sci., 343(1-2):237–281, 2005.

[52] Paul-André Melliès. Game semantics in string diagrams. In Proceedings of the 27th An-
nual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia,
June 25-28, 2012, pages 481–490, 2012.

[53] Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence without
alternation. In CONCUR 2007 - Concurrency Theory, 18th International Conference,
CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, pages 395–411,
2007.

[54] Paul-André Melliès and Nicolas Tabareau. Resource modalities in tensor logic. Ann.
Pure Appl. Logic, 161(5):632–653, 2010.

[55] Robin Milner. Fully abstract models of typed λ-calculi. Theor. Comput. Sci., 4(1):1–
22, 1977.

40

https://perso.ens-lyon.fr/olivier.laurent/llfoc2.pdf
https://perso.ens-lyon.fr/olivier.laurent/llfoc2.pdf

[56] Samuel Mimram. Sémantique des jeux asynchrones et réécriture 2-dimensionnelle.
(Asynchronous Game Semantics and 2-dimensional Rewriting Systems). PhD thesis,
Paris Diderot University, France, 2008.

[57] Andrzej S. Murawski and C.-H. Luke Ong. Exhausting strategies, joker games and
full completeness for IMLL with unit. Theor. Comput. Sci., 294(1/2):269–305, 2003.

[58] Arend Rensink. Posets for configurations! In CONCUR ’92, Third International
Conference on Concurrency Theory, Stony Brook, NY, USA, August 24-27, 1992,
Proceedings, pages 269–285, 1992.

[59] Silvain Rideau and Glynn Winskel. Concurrent strategies. In Proceedings of the 26th
Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada, pages 409–418, 2011.

[60] Ken Sakayori and Takeshi Tsukada. A truly concurrent game model of the asyn-
chronous π-calculus. In Foundations of Software Science and Computation Structures
- 20th International Conference, FOSSACS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, pages 389–406, 2017.

[61] Glynn Winskel. Event structures. In Petri Nets: Central Models and Their Proper-
ties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad
Honnef, Germany, 8-19 September 1986, pages 325–392, 1986.

[62] Glynn Winskel. Prime algebraicity. Theor. Comput. Sci., 410(41):4160–4168, 2009.

[63] Glynn Winskel. Winning, losing and drawing in concurrent games with perfect or
imperfect information. In Logic and Program Semantics - Essays Dedicated to Dexter
Kozen on the Occasion of His 60th Birthday, pages 298–317, 2012.

41

A Other Closure Operators From Strategies

In Section 3.3, we have studied the transformation of deterministic concurrent strategies
into closure-strategies. As pointed out in the introduction, this tranformation is new.
In this first appendix we review some tempting alternative definitions, that have been
considered in the literature [53, 59].

A.1 Intersection of +-maximal configurations

Firstly, recall from Section 2.3 that for a domain D, the identity ccD : D + //D is defined
as ccD(x, y) = (x ∨ y, x ∨ y). As already pointed out in Section 3.3.2, if D is the domain
of configurations of a game, this has the puzzling consequence that ccD may actually play
Opponent moves and not just Player moves. For instance, if A is the game with just one
Player move •, then as observed in Section 3.3.2, we have cc C∞(A)(∅, {•}) = ({◦}, {•}) – in
other words, applying cc C∞(A) has the effect of adding the missing Opponent dependency
to an already present Player move •. This invites the following definition [53]15:

Definition 32. If σ : A is a strategy and x ∈ C∞(A), then we set

C′(σ)(x) =
∧
{y ∈ C∞(σ) | y is +-maximal ∧ x ⊆ y} ∈ C∞(A)>

Given x ∈ C∞(A), if there is no +-maximal y ∈ C∞(σ) such that x ⊆ y, then this
definition yields C′(σ)(x) = >, otherwise it is their intersection. In other words, applied
to a (possibly infinite) configuration x ∈ C∞(A), C′(σ) adds all moves that are known to
appear in all +-maximal configurations containing x. This includes of course the Player
events enabled by Opponent events in x, but also all Opponent events that are necessary
requirements for the Player events already present in x.

This definition is tempting, because it is analogous to the copycat closure-strategy: for
any game A, it is apparent that C′(cc A) = cc C∞(A). However, unfortunately it does not in
general give a closure-strategy. We give below counter-examples to stability and continuity.

Example 33 (Non-stability). Consider the game

A = 	1 	2 	3 	4 ⊕1 ⊕2 ⊕3

and the deterministic concurrent strategy σ : A having maximal augmentations

	1

_��� � ��&

	2

_���⊕1 ⊕2

	2

_���

	3

;xx� _���⊕2 ⊕3

	2 	4

_���⊕2

15The formal setting differs superficially and a detailed proof of equivalence is out of scope of this paper,
but we have checked that the problem described here also occurs in [53].

42

yielding, by Definition 32,

C′(σ)({⊕1,⊕2}) = {⊕1,⊕2} ∪ {	1,	2}
C′(σ)({⊕2,⊕3}) = {⊕2,⊕3} ∪ {	2,	3} .

But {⊕1,⊕2} and {⊕2,⊕3} are compatible, since {⊕1,⊕2,⊕3} ∈ C (A). Therefore, the
stability condition of closure-strategies entails that we should have

C′(σ)({⊕2}) = {⊕2} ∪ {	2} .

However, this is false: instead we have C′(σ)({⊕2}) = {⊕2} since there is a +-maximal
configuration of σ, namely {	4,⊕2} which does not contain 	2.

Note that [53] did not claim stability. We now also give a counter-example to continuity.

Example 34 (Non-continuity). Consider the game A having as events

{	i | i ≥ 0} ∪ {	′j ≥ j ≥ 1} ∪ {⊕} .

Causality is trivial, comprising only reflexive pairs. Minimal conflicts are described by
	i 	j for all i 6= j, and 	i 	′i for all i ≥ 1. We then consider σ : A the deterministic
concurrent strategy defined with maximal augmentations of the form

	i

_���

	′j

⊕

for i 6= j. Then, for all n ≥ 1, we have

C′(σ)({⊕,	′1, . . . ,	′n}) = {⊕,	′1, . . . ,	′n} :

no new event is added, because there are still many mutually inconsistent possible causal
histories for ⊕. By continuity, we should therefore also have C′(σ)({⊕} ∪ {	′j | j ≥ 1}) =
{⊕} ∪ {	′j | j ≥ 1}. However, instead we have

C′(σ)({⊕} ∪ {	′j | j ≥ 1}) = {⊕} ∪ {	′j | j ≥ 1} ∪ {	0} .

Indeed, any +-maximal configuration of σ which includes {	′j | j ≥ 1}must also contain
	0: it is the only possible cause left for ⊕, and is therefore included by the definition.

Both of these pathologies boil down to the fact that the configurations of a deterministic
concurrent strategy σ : A are not in general closed under intersection; unless we assume
that there is no conflict between Opponent events in the game. It is noteworthy that
despite these, the reachable fixpoints of C′(σ) are always the same as those of C(σ).

43

A.2 Least +-maximal configuration

Finally, we mention a variation of Definition 32 that also appears in the literature [59].

Definition 35. If σ : A is a deterministic concurrent strategy and x ∈ C∞(A), we set
C′′(σ)(x) as the least +-maximal y ∈ C∞(σ) s.t. x ⊆ y, if such exists, and > otherwise.

The difference with respect to Definition 32 is that we consider the least +-maximal
configuration containing x rather than their intersection. This may be tempting, because
it ensures that for all x ∈ C∞(σ), we always have C′′(σ)(x) ∈ C∞(σ) unless C′′(σ)(x) = >
– this natural property is satisfied by neither in the definition of Proposition 13 not in
Definition 32. However, this definition unfortunately fails monotonicity.

Example 36 (Non-monotonicity). Consider the game A = 	1 	2 ⊕ and σ : A with
maximal augmentations 	1 _ ⊕ and 	2 _ ⊕. Then,

C′′(σ)({⊕}) = >
C′′(σ)({⊕,	1}) = {⊕,	1} ,

failing monotonicity of C′′(σ). Indeed, there are two incomparable +-maximal y1, y2 ∈
C∞(σ) such that {⊕} ⊆ y1, y2, so there is no least one, leading to >.

Although it does not give a closure-strategy in general, it is noteworthy that C′′(σ) also
has the same reachable fixpoints as C(σ) and C′(σ).

B Full Completeness For MALLP

In this final section, we show how to refine the fully complete model for MALLP[of Sec-
tion 4.3 into a fully complete model for MALLP. This comes with significant technical
complications in order to deal adequately with the additive units.

First, payoff is extended to additive units by setting κ0(∅) = −1, and dually, κ>(∅) = 1.
As pointed out in the text, this breaks Lemma 24 which was useful to prove definability
for MALLP[, but the interpretation itself still works out, yielding for every proof a total,
sequential innocent, and exhaustive strategy. We will shortly see, however, that those
conditions are not enough for definability in the presence of additive units.

B.1 Locally winning strategies

Unlike multiplicative units, additive units allow a proof to leave parts of the arena un-
explored. Indeed, any sequent ` Γ,> is provable by the > rule, yielding a strategy that
will never visit Γ – garbage-collects it. This is captured by the notion of exhaustivity in
the presence of additive units: an exhaustive strategy σ may garbage-collect part of the
context, provided σ is able to uncover a unit > ensuring that the global payoff is 1.

However, for definability we must ensure that the uncovered > belongs to a compo-
nent that will “stay with” the garbage-collected context during the inductive definability

44

↑112 , ↓3 (⊥4 & ↑516) ⊗ ↓3 >

◦1

� **0•3
&oov

3uu~◦4
(ppw

◦5
_���•2 •6

Figure 9: A winning, non-decomposable strategy

process. Unfortunately, this is not ensured by exhaustivity: we show in Figure 9 a total,
sequential innocent and exhaustive strategy failing definability. The figure displays a strat-
egy (call it σ) playing on the game for ↑1, ↓(⊥&↑1)⊗↓> – indices are added to emphasize
the correspondence between moves and formula components. The strategy satisfies all of
our conditions, even though the sequent is not provable in MALLP. Attempting to apply
the definability process, one must decompose σ as a tensor of two strategies. The only way
forward is defining σ′ with the same moves as σ, but on sequent ↑1, ↓(⊥ & ↑1). But σ′ is
not exhaustive anymore – the configuration {◦1, •3, ◦5, •6}, which had payoff 1 in σ thanks
to the presence of the > allowing us to leave part of the context unexplored, is now losing.

Definability arguments in game semantics require “good” (i.e. satisfying all the imposed
conditions) strategies to be stable under decomposition, in the sense that strategies obtained
by decomposing good strategies should be good. This property, which is usually for free,
fails here due to the non-local behaviour of additive units. It is precisely to deal with
this issue that Melliès considers in [50] a payoff for walks on strategies rather than simply
positions. Rather than reproduce Melliès’ construction, we give a variant of the mechanism,
which we believe to be more explicit. Our condition, called local exhaustivity, expresses
that “σ is exhaustive on all sub-games”. To express it, we first need to enrich payoffs so
that they also assign valuations to configurations on sub-games.

Definition 37. If A is an arena and x ∈ C (A), a sub-arena of A is a subset X ⊆ A
which is up-closed for ≤A, and such that there is x ∈ C (A) such that all minimal events
of X are enabled in x. A local payoff on A consists in functions

κXA : C (X)→ {−1, 0, 1}

for any sub-arena X, where X inherits from A the components of an event structure.
Furthermore, those satisfy the additional properties that (1) if X = ∅, then κ∅A(∅) = 0; and
(2) if X 6= ∅ and its minimal events are minimal in A, then κXA (y) = κA(y).

For instance, in Figure 9, the set {•2, ◦4, ◦5, •6} is a sub-arena.
Besides being exhaustive globally, strategies must also be exhaustive locally in the

sub-arenas they reach. If σ : A is a strategy, x ∈ C (σ) is +-maximal, and we have
x ⊆ x1, . . . , xn ∈ C (σ) distinct configurations that are also +-maximal, then we write

dx1, . . . , xnex = {a ∈ A | ∃a′ ∈ x1 ∪ · · · ∪ xn, a′ ≤A a} \ x

45

for the up-closure of x1, . . . , xn with x removed. By construction, it is a sub-arena of A.
We then ask that each xi is then exhaustive, localized to this sub-arena.

Definition 38. A strategy σ : A is locally exhaustive iff for all x, x1, . . . , xn ∈ C (σ)
which are all +-maximal and such that x ⊆ x1, . . . , xn, for all 1 ≤ i ≤ n, we have

κ
dx1,...,xnex
A (xi \ x) ≥ 0 .

We extend arena constructions with local payoff. For units, the local payoff is forced
by the conditions. For A ⊕ B, if a sub-arena X is entirely included in A and y ∈ C (X),
we set κXA⊕B(y) = κXA (y) and likewise for B. If X has components in A and B, then its
minimal events are necessarily minimal in A and B. We then set κXA⊕B(y) = κA⊕B(y).
For A ⊗ B, if X is empty then κXA⊗B is forced by condition (1). If its minimal events are
minimal in A ⊗ B then κXA⊗B is forced by condition (2). Otherwise, X decomposes into
XA a sub-arena of A and XB a sub-arena of B. Likewise, if y ∈ C (X), it decomposes into
yA ∈ C (XA) and yB ∈ C (XB). We then set κXA⊗B(y) = κXAA (yA)⊗κXBB (yB). For ↓N , either
X = ↓N in which case κX↓N = κ↓N by condition (2), or X is a sub-arena of N , and we set
κX↓N(y) = κXN(y). Other cases follow by duality, with κX

A⊥(y) = −κXA (y).

Example 39. The strategy of Figure 9 is not locally exhaustive: we have +-maximal

{◦1, •3} ⊆ {◦1, •3, ◦4, •2}, {◦1, •3, ◦5, •6}

inducing the reachable sub-game {◦4, •2, ◦5, •6}, which corresponds to the part of Figure 9
which is not grayed out. But then, the configuration {◦5, •6} fails to be exhaustive:

κ
{◦4,•2,◦5,•6}
(↑112)`(↓3(⊥4&↑516)⊗(↓3>))({◦5, •6}) = κ

{•2}
↑112

(∅) ` (κ
{◦4,◦5,•6}
⊥4&↑516

({◦5, •6})⊗ κ∅↓3>(∅))

= κ
{•2}
12

(∅) ` (κ↑516({◦5, •6})⊗ κ∅↓3>(∅))
= κ12(∅) ` (κ↑516({◦5, •6})⊗ κ∅↓3>(∅))
= −1 ` (0⊗ 0)

= −1 .

There is a category LocExAr having as objects arenas with local payoff, and as mor-
phisms total, sequential innocent strategies that are both exhaustive and locally exhaus-
tive. Furthermore, LocExAr inherits from Arenas the structure of a dialogue category with
coproducts, supporting the interpretation of MALLP.

B.2 Definability and Full Completeness

We now prove full completeness. From now on, strategies are always assumed to satisfy
sequential innocence, totality, exhaustivity and locally exhaustivity.

With respect to the proof of definability of Section 4.4, the only difference is the de-
composition of a tensor, which requires local exhaustivity in the presence of additive units.

46

Lemma 40. Let (Pk)1≤k≤n, Q1, Q2 be arenas, and consider

σ :
⊗

1≤i≤n

↓P⊥k
Ar
+ //Q1 ⊗Q2

a morphism in LocExAr. Then, up to reordering of the context there are strategies

σ1 :
⊗

1≤k≤p

↓P⊥k
Ar
+ //Q1 σ2 :

⊗
p+1≤k≤n

↓P⊥k
Ar
+ //Q2

such that σ = σ1 ⊗ σ2.

Proof. At first the proof proceeds as in Lemma 26. We first extract

σ1 : ∆1
Ar
+ //Q1 σ2 : ∆2

Ar
+ //Q2

as in the proof of Lemma 26, using the same notations. It follows easily that σ1 and σ2

are locally exhaustive from the fact that σ is locally exhaustive. We first consider the case
where Γ3 is empty in the construction of σ1 and σ2, i.e. ∆1 ⊗∆2 = ∆ =

⊗
1≤i≤n ↓P⊥k .

The main novelty is that exploiting local exhaustivity, we may show that σ1 and σ2

are exhaustive as well. Indeed, take x ∈ C (σ1) +-maximal, and consider X the set of
non-empty +-maximal configurations of σ1 – necessarily, x ∈ X. Leaving the renaming
implicit, we regard X as a set of +-maximal configurations of σ. Moreover, for all y ∈ X
we have x0 = {◦, •(l1,l2)} ⊆ y where ◦ and •(l1,l2) are the initial two moves of σ. We may
then use that σ is locally exhaustive, and obtain

κ
dXex0
(∆1⊗∆2)⊥`(Q1⊗Q2)

(x \ x0) ≥ 0

where dXex0 is a sub-arena of (∆1 ⊗ ∆2)⊥ ` (Q1 ⊗ Q2). But by construction of X, this
sub-arena contains no move in ∆2 and Q2, so it is a sub-arena Xl ‖ Xr of ∆⊥1 `Q1, where
Xl is a sub-arena of ∆1 and Xr is a sub-arena of Q1. We compute:

κ
dXex0
(∆1⊗∆2)⊥`(Q1⊗Q2)

(x \ x0) = κ
Xl‖Xr
(∆1⊗∆2)⊥`(Q1⊗Q2)

(xl ‖ xr)

= κXl
(∆1⊗∆2)⊥

(xl) ` κXr(Q1⊗Q2)(xr)

= (κXl
∆⊥1

(xl) ` 0) ` (κXrQ1
(xr)⊗ 0)

= κXl
∆⊥1

(xl) ` κXrQ1
(xr)

where we have used that Xl is entirely in ∆1 and Xr in Q1, so the local payoffs in ∆2 and
Q2 are null by condition (1) of Definition 37. But now, recall that:

∆1 =
⊗

1≤k≤p

↓Mk Q1 =
∑
l1∈L1

↓Nl1 .

Since σ is total, after ◦, •(l1,l2) it has a response to any of the minimal events of Nl1 .
So, each minimal event of Nl1 appears in at least one +-maximal configuration of σ1, thus

47

Xr = Nl1 . Likewise, recall that for each 1 ≤ k ≤ p, we have Mk =
∑

i∈Ik ↑M
⊥
k,i. Recall

that ∆1 was constructed by selecting those components Mk that were accessed by an
augmentation with minimal negative event (after ◦, •(l1,l2)) in Nl1 . Therefore, Xl comprises
at least one of the ↑M⊥

k,i for each 1 ≤ k ≤ p. From these two observations, it follows directly

by induction on ∆1 and Q1 and condition (2) of Definition 37 that κXl
∆⊥1

(xl) = κ∆⊥1
({◦}∪xl)

and κXrQ1
(xr) = κQ1({•l1} ∪ xr) so

κ
dXex0
(∆1⊗∆2)⊥`(Q1⊗Q2)

(x \ x0) = κ∆⊥1 `Q1
(x)

which is therefore positive, as required. Likewise, σ2 is exhaustive as well.
In the proof of Lemma 26, we proved that Γ3 must always be empty. In the presence

of additive units, that is of course no longer true. We prove that in this case as well, σ1

and σ2 are still exhaustive. Consider x ∈ C (σ) non-empty and +-maximal, and write x =
{◦}∪xl ‖ {•(l1,l2)}∪(xl1 ‖ xl2). Because Γ3 is not explored, we have κ∆⊥({◦}∪xl) = −1, so
we must have κQ1⊗Q2({•(l1,l2)}∪ (xl1 ‖ xl2)) = 1 to compensate, so that κQ1({•l1}∪xl1) = 1
or κQ2({•l2} ∪ xl2) = 1. But in fact there must be a side, Q1 or Q2, that always has payoff
1 independently of x. Indeed say we have κQ1(xl1) = 0 and κQ2(x

′
l2

) = 0 where

{◦} ∪ xl ‖ {•(l1,l2)} ∪ (xl1 ‖ xl2) ∈ C (σ) {◦} ∪ x′l ‖ {•(l1,l2)} ∪ (x′l1 ‖ x
′
l2

) ∈ C (σ)

These configurations are images of a unique augmentation, so each move in xl depends
either on xl1 or on xl2 , and likewise for x′. So the two configurations above admit as subsets
+-maximal configurations

{◦} ∪ y1
l ‖ {•(l1,l2)} ∪ (xl1 ‖ ∅) ∈ C (σ) {◦} ∪ y2

l ‖ {•(l1,l2)} ∪ (∅ ‖ xl2) ∈ C (σ) .

By determinism, we may now take their union

{◦} ∪ (y1
l ∪ y2

l) ‖ {•(l1,l2)} ∪ (xl1 ‖ x′l2) ∈ C (σ)

which by construction has payoff −1. So, there is i ∈ {1, 2} so that for all x ∈ C (σ)
non-empty +-maximal, we have κQi(xli) = 1. Say w.l.o.g. that it is i = 2. Then, we form

σ1 : ∆⊥1
Ar
+ //Q1 σ2 : (∆2 ⊗∆3)⊥ Ar

+ //Q2

as previously, but with a larger domain for σ2. By construction we have σ = σ1 ⊗ σ2,
and σ2 is exhaustive by construction. The proof that σ1 and σ2 satisfy all the required
conditions is as in the case above with Γ3 empty.

With that, we can now complete the proof of:

Theorem 41. LocExAr is fully complete for MALLP.

Proof. The rest of the proof is as in Theorem 27.

From there, the exact same construction as in Section 4.5 can be applied in order to get
a fully complete model for MALL with all units. We omit the details, which are unchanged.

48

	Introduction
	The Blass problem and concurrent games
	Multiplicative Additive Linear Logic
	The Blass problem
	Concurrent games

	Games on event structures and closure operators
	Games and domains
	Deterministic concurrent strategies
	Strategies as rigid families
	Strategies as sets of configurations

	Strategies and closure operators
	From strategies to closure operators
	On the functoriality of the transformation

	Extensional collapse

	Full Completeness via MALLP
	Polarized Multiplicative Additive Linear Logic
	Interpretation of MALLP
	Full completeness for MALLP
	Totality and Sequential Innocence
	Exhaustive Strategies

	Full Completeness
	Relational Collapse and Full Completeness for MALL
	Interpretation of MALL and polarized translation
	Relational Collapse
	Full completeness for MALL

	Conclusion
	Other Closure Operators From Strategies
	Intersection of +-maximal configurations
	Least +-maximal configuration

	Full Completeness For MALLP
	Locally winning strategies
	Definability and Full Completeness

