
L-types for resource awareness: an implicit name approach

Silvia Ghilezan1, Jelena Ivetić1, Simona Kašterović1, and Pierre Lescanne2

1 Faculty of Technical Sciences, University of Novi Sad
Trg Dositeja Obradovića 6

Novi Sad, 21000, Serbia
gsilvia@uns.ac.rs, jelenaivetic@uns.ac.rs, simona.k@uns.ac.rs

2 École Normale Supérieure de Lyon,
LIP (UMR 5668 CNRS ENS Lyon UCBL),

46 allée d’Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

Abstract

Since the early work of Church on λI-calculus and Gentzen on structural rules, the
control of variable use has gained an important role in computation and logic emerging
different resource aware calculi and substructural logics with applications to programming
language and compiler design. This paper presents the first formalization of variable control
in calculi with implicit names based on de Bruijn indices. We design and implement three
calculi: first, a restricted calculus with implicit names; then, a restricted calculus with
implicit names and explicit substitution, and finally, an extended calculus with implicit
names and resource control. We propose a novel concept of L-types, which are used (a) to
define terms and (b) to characterize certain classes of terms in each of the presented calculi.
We have adopted to work simultaneously on the design and implementation in Haskell and
Agda. The benefit of this strategy is twofold: dependent types enable to express and check
properties of programs in the type system and constructive proofs of preservation enable
a constructive evaluator for terms (programs).
Keywords: language design, functional programming, lambda calculus, de Bruijn index,
type system, resource awareness, Agda, Haskell

1 Introduction

In computation, the control of variable use goes back to Church’s λI-calculus and restricted
terms [18]. Likewise, in logic, the control of formula use is present in Gentzen’s structural
rules [11] which enable a wide class of substructural logics [9]. In programming, the augmented
ability to control the use of operations and objects has a wide range of applications which
enable, among others, compiling functional languages without garbage collector and avoids
memory leaking [32, 31]; inline expansion in compiler optimisations [6]; safe memory man-
agement [36]; controlled type discipline as a framework for resource-sensitive compilation [12];
the interpretation of linear formulae as session types that provides a purely logical account of
session types [5]. At the core of all these phenomena is the Curry-Howard correspondence of
formulae-as-types and proofs-as-terms.

Control: by restriction vs by extension There are several restricted classes of lambda
terms, where the restrictions are due to the control of variable use. The best known among them
are: λI-terms, aka relevant terms, where variables occur at least once; BCKλ-terms, aka affine
terms, where variables occur at most once; BCIλ-terms, aka linear terms, where each variable
occurs exactly once [18, 14]. E.g. the combinator K is not a λI-term and the combinator S
is not a BCKλ-term. This “control by restriction” approach is widely present in substructural

L-types for resource awareness Ghilezan, et al.

logics [9], substructural type theory [36], linear logic [15, 27], among others. On the other hand,
the control of variable use can be achieved by extending the language by operators meant to
tightly encode the control. If a variable has to be reused, it will be explicitly duplicated, whereas
if the variable is not needed, it will be explicitly erased. These two resource control operators,
duplication and erasure, are extensions of the syntax of the λ-calculus which allow all λ-terms
to become: relevant (only erasure is used), affine (only duplication is used) and linear (both
erasure and duplication are used). The advantage of this “control by extension” approach is that
all λ-terms can be encoded in the extended calculus. Hence, the extended calculi are equivalent,
in computational power, to λ-calculus, which is not the case with the restricted calculi. This
approach has been developed in different theoretical [2, 19] and applicative [32, 6] settings. From
a proof theoretical perspective, such an simply typed extended λ-calculus has a Curry-Howard
correspondence with intuitionistic logic with Contraction and Thinning structural rules [34],
whereas a restricted λ-calculus corresponds to substructural logic [9, 30] such as relevant, affine
or linear logic [14].

Names: explicit vs implicit The well-known lambda calculus is a calculus with explicit use
of variables (names). On the other hand, the calculus with implicit names is de Bruijn notation
of lambda calculus that avoids the explicit naming of variables by employing de Bruijn indices [8,
7, 26]. Each variable is replaced by a natural number which is the number of λ’s crossed in
order to reach the binder of that variable. For instance in de Bruijn notation, the combinator
I ≡ λx.x is λ0, the combinator K ≡ λx.λy.x is λλ1 and the combinator S ≡ λx.λy.λz.xz(yz) is
λλλ 2 0(1 0). The profound advantage of de Bruijn notation is that α-conversion, the renaming
of bound variables, is not needed, which significantly facilitates implementation and also, in the
case of an extended λ-calculus, simplifies the rules.

Foundations In this paper, we introduce both restricted and extended control of variable
use in calculi with implicit names. This means that instead of (explicit) variables we use
either de Bruijn indices, or novel ®-indices. Inspired by de Bruijn indices, ®-indices provide
information about duplication of names. We design and implement three calculi. First, a
restricted calculus with implicit names λin; then, a restricted calculus with implicit names and
explicit substitution λinυ , and finally, λ®, an extended calculus with implicit names and explicit
duplication and erasure. In all introduced calculi, well-formed terms are defined as typeable
terms in systems we call L-types. The L-type of a term represents the list of its free indices
and is convenient for checking its well-formedness. In this paper, we characterize mostly closed
linear terms and we show that, in the L-type systems we proposed, typeability by the empty
list is equivalent to closedness and linearity.

Implementation We worked simultaneously on the development of the L-type calculi and
on their implementation, because the implementation (in Haskell and Agda) shapes the develop-
ment. Agda [21, 22] is a dependently typed programming language, which helps us to eliminate
all possible errors and shows to be appropriate for the implementations of our calculi, because,
thanks to its dependent types, it makes possible to express finely the features of λin, λinυ and
λ®. The obstacles we encountered during the implementation pointed to definitions which were
changed or adapted accordingly. Moreover implementation makes precise the side conditions
necessary to make the L-type systems deterministic.

The main contributions of this paper are:

2

L-types for resource awareness Ghilezan, et al.

Figure 1: Bourbaki assembly in [3]

λ λ λ 2 2 (2 2) λ λ 2

Figure 2: Bourbaki assembly of SK

- the use of de Bruijn indices (an old concept) and ®-indices (a new concept), because
they simplify and ease the formalization,

- the novel concept of L-types for characterizing resource awareness,

- a formal definition of linearity in a calculus with explicit substitution based on L-types,

- a proof of L-type preservation in variants of the λ-calculus,

- an implementation in Agda for a part of the formalism (see the GitHub repository1) and
in Haskell for the whole framework (see the GitHub repository2). This second repository
contains also a version of this paper where the programs are better presented.

The rest of this paper is organized as follows. We first review the background on de Bruijn
indices, lambda calculus with implicit names in Section 2. Next, we introduce a type system for
restricted terms with implicit names and its implementation in Agda in Section 3. In Section 4,
we introduce a type system for restricted terms with implicit names and explicit substitution
and prove type preservation. In Section 5, we design an extended calculus with implicit names
and resource control and implement it in Haskell and Agda. In Section 6, we discuss related
work. Section 7 concludes the paper.

2 Terms with implicit names Λ

Our development relies on the paradigm of implicit names in formal calculi. We recall the
notion of term with implicit names based on de Bruijn indices. Let us consider the (regular)
lambda term SK and its three contractions

(λx.λy.λz.xz(yz)) (λx.λy.x)→ λy.λz.(λx.λy.x)z(yz)→ λy.λz.(λy.z)(yz)→ λy.λz.z.

Assume that we want to represent those terms without using variables. Such a variable-free
representation is called sometimes Bourbaki assembly, because this variable-free two dimensional
representation of terms has been first used by Bourbaki [3] (see Figure 1) and has been called
“assembly” [4, 17]. It resembles the picture in Figure 2 (we use here an infix notation for the
binary operator “application” and Bourbaki uses prefix notations).

1https://github.com/PierreLescanne/Lambda-R
2https://github.com/PierreLescanne/LambdaCalculusWithDuplicationsAndErasures

3

https://books.google.fr/books?id=VDGifaOQogcC&pg=SA1-PA14&dq=Bourbaki+ensemble+signes+assemblages
https://github.com/PierreLescanne/Lambda-R
https://github.com/PierreLescanne/LambdaCalculusWithDuplicationsAndErasures
https://github.com/PierreLescanne/Lambda-R
https://github.com/PierreLescanne/LambdaCalculusWithDuplicationsAndErasures

L-types for resource awareness Ghilezan, et al.

Later and independently, de Bruijn proposed an one dimension variable-free representation
using natural numbers3, called since de Bruijn indices. Each variable is replaced by a natural
number which is the number of λ’s crossed in order to reach the binder of that variable. For
instance, λx.λy.λz.xz(yz) is replaced by λλλ 2 0(1 0). Indeed, x is replaced by 2 because one
crosses two λ’s to meet its binder, y is replaced by 1 because one crosses one λ to meet its
binder and z is replaced by 0 because one crosses no λ to meet its binder.

The abstract syntax of terms with de Bruijn notation is the following:

t ::= n | λt | t t

where n, associated with n ∈ N, is an index. The set of all terms with de Bruijn notation will
be denoted by Λ and it will be ranged over by t, s, We will call them terms or λ-terms
without mentioning de Bruijn indices if there is no place for confusion.

Terms with de Bruijn notation are also called terms with implicit names since variables are
implicit rather than explicit as in the regular λ-calculus. Using implicit names is convenient
because terms with be Bruijn indices represent classes of α-conversion of terms with explicit
variables. Moreover, β-reduction is easily described with de Bruijn indices because variable
capture is avoided. We will see that they also enable simple descriptions of features connected
with linearity, duplication and erasure that are otherwise described with cumbersome nota-
tions [19, 20, 13]. The formal definition of β-reduction will be given in the rest of the paper.

The above chain of contractions of the term SK is replaced by

(λλλ 2 0(1 0)) (λλ1)→ λλ((λλ1)0(1 0))→ λλ(λ1 (1 0))→ λλ0.

Figure 3 presents SK and its three contractions. It shows how de Bruijn indices are built from
variables (aka explicit names), indicates the links between names and their binders and presents
the chain of β-reductions in de Bruijn notation. Notice that in λλ(λ1 (1 0) the same variable z is
associated with two de Bruijn indices, 1 and 0 and that the same de Bruijn index 1 is associated
with two variables, y and z. In the de Bruijn notation the value of an index associated with a
variable depends on the context.

@

λ λ

λ λ

λ

jj

@

@ @

55

55

hh

kk

→

λ

λ

@

@ @

λ

55

gg

kk

λ

jj

→

λ

λ

@

λ @

33

hh

kk

→

λ

λ ll

Figure 3: The term SK and three contractions

3This has been popularised by Curien [7]. Notice that de Bruijn and Curien make the indices to start at 1,
but the last author proposed in [26] the indices to start at 0, a convention largely adopted since [29, 35].

4

L-types for resource awareness Ghilezan, et al.

The basic reduction considered here is

@

λ B

A

++ →
A

B

Three patterns are of interest in Figure 3:

λ // λ // λ oo

The first pattern corresponds to a λ that binds no index, the second pattern corresponds to
a λ that binds exactly one index and the third pattern corresponds to a λ that binds two
indices. This later pattern is representative, but clearly, there are patterns with more bound
indices (see Figure 8, page 27). We propose the control of variable by restricting the language
to Λin in Section 3 and Λinυ in Section 4, and by extending the language to Λ® in Section 5.
In the new language Λ®, extended with two new operators O (duplicator) and � (erasure),
terms are linearised, meaning that only patterns corresponding to a λ that binds exactly one
index are present in the Bourbaki representation (see Figure 4). This recalls Lamping’s optimal
calculus [23, 16, 1], but in Λ®, we have an atomic substitution, whereas in Lamping’s calculus
there is none; fans (a kind of duplicators) are propagated. However, the connection should be
deepened.

@

λ λ

λ λ �oo

λ

44

@

@ @

55

##

66

zz
O

99

→

λ

λ

@

@ @

λ

��

gg

zz
λ �oo

44

O

66

→

λ

λ

@

� // λ @

$$

hh

yy
O

55

→

λ �oo

λ ll

Figure 4: Terms with duplicators and erasures

3 Restricted terms Λin

In this section, we focus on restricted terms [18] with implicit names [8, 26]. We first define
the concept of L-types. Then we define a type system which assigns L-types to terms with

5

L-types for resource awareness Ghilezan, et al.

implicit names and prove how this type system singles out closed linear terms (BCIλ-terms)
with implicit names. The set of terms typeable with L-types will be denoted by Λin.

3.1 L-types for Λin

Lists of natural numbers are called L-types for Λin.

Definition 1 (L-types). The abstract syntax of L-types is given by

` ::= [] | i :: ` where i ∈ N

The empty list is [] and the cons operation, ::, puts an element in front of a list. We write4

the list made of 1 :: [3, 5] as [1, 3, 5]. A list is affine if its elements are not repeated. On lists,
we define two operations: a binary operation merge, ‡ , and a unary operation decrement, ↓.

Definition 2 (Merge). The binary operation ‡ which merges two lists is defined as follows:

[] ‡ ` = `

(i :: `) ‡ [] = i :: `

(i1 :: `1) ‡ (i2 :: `2) = if i1 < i2 then i1 :: (`1 ‡ (i2 :: `2))

if i1 > i2 then i2 :: ((i1 :: `1) ‡ `2)

Remark 1. Note that ‡ is not total. For instance if j occurs both in `1 and in `2 then `1 ‡ `2
is not defined. Note that if two sorted lists are merged, the result is a sorted list.

If all elements of a list are strictly positive, the list is said to be a strictly positive list. We
define a unary operation ↓ on empty and strictly positive lists. The result is either the empty
list or the list where all indices of the initial list are decremented. By List(N+) we will denote
the set which contains both the empty list and all strictly positive lists.

Definition 3 (Decrement). The unary operation ↓ is defined as follows:

↓ [] = []

↓ ((i+ 1) :: `) = i :: ↓ `

We assume that the list (i+ 1) :: ` is strictly positive, thus the list ` is also strictly positive and
↓ ` is defined.

The function ↓ fails if the list contains a 0.
The type system that defines the set of restricted terms Λin is given as follows.

Definition 4 (Terms Λin). Λin-terms are all λ-terms that can be typed by the following rules.�

�

�

�
(ind) i : [i] (abs)

t : 0 :: `

λt : ↓ `
(app)

t1 : `1 t2 : `2

t1 t2 : `1 ‡ `2

A L-type assigned to a term represents the list of natural numbers corresponding to its free
implicit names. For instance, λ 0 5 2 has L-type [1, 4] since the L- type of 0 5 2 is clearly [0, 2, 5]
and to obtain the L-type of λ 0 5 2 one removes the 0 which is bound and one decrements the
other indices. Moreover, it is a sorted list, as shown by the following Proposition 1.

4Beware ! The reader should not confuse lists as L-types and lists of references.

6

L-types for resource awareness Ghilezan, et al.

Why no side condition? The type system has no side condition. If the function ↓ fails the
rule (abs) fails as well. Likewise, if the operator ‡ fails the rule (app) fails as well. Thus the
non determinism of the type system lies in the failures of the functions it uses. The other types
systems of this paper have also no side condition for (abs) and (app).

The reader will notice that in the Agda code, such failures are not allowed because all
functions must terminate. Therefore something like side condition is implemented. Alas, this
makes the code more complex. For instance ↓ has two parameters, a list ` and a proof that `
is made of strictly positive naturals.

Proposition 1 (Sortedness of lists). If t : ` then ` is sorted.

Proof. [i] is sorted and ‡ and ↓ preserve sortedness.

Example 1 (Typing terms).

1 : [1] 0 : [0]

1 0 : [0, 1]

λ1 0 : [0]

λλ1 0 : []

2 : [2] 0 : [0]

2 0 : [0, 2]

1 : [1] 0 : [0]

1 0 : [0, 1]
!4

2 0 (1 0) :?

0 : [0]

λ0 : []
!4

λλ0 :?

Let us notice the following facts:

1. The term 2 0 (1 0) is not L-typeable since there are two free occurrences of index 0. We
cannot merge lists [0, 2] and [0, 1], thus 2 0 (1 0) does not belong to Λin.

2. The empty list [] does not start with 0, thus λλ0 is not L-typeable, i.e. it does not belong
to Λin.

The set of terms of type ` is denoted by Λin(`).

Proposition 2. If t : ` then t is affine.

Proof. Only in the rule app we merge two lists. In order to successfully apply ‡ , the two lists
of free indices must be disjoint and there cannot be more than one occurrence of an index in
the application. Hence, if t : ` then in the term t each index occurs at most once, thus t is
affine.

Notice that to be abstracted by λ, a term must contain once and only once the index 0 to
be bound, therefore, terms of Λin([]) are linear.

Proposition 3. t : [] iff t is closed and linear.

Proof. In a term of Λin([]), the unique membership of each index is checked when the index is
abstracted by λ.

⇒ If a term is of type [] there are no free indices, hence the term is closed. Furthermore, in a
closed term of type [], all the indices are abstracted, then the check for unique membership
is made for all of them. Therefore all the indices occur once and only once, hence a closed
term of type [] is linear.

⇐ Reciprocally, in a linear and closed term, since the term is closed the list of the free indices
is empty, i.e. t : [].

7

L-types for resource awareness Ghilezan, et al.

3.2 Reduction in Λin

Notice that we do not treat reduction in Λin or more precisely reduction using implicit substitu-
tion. We will treat fully reduction in the framework of explicit substitution in Λinυ (Section 4).
Consequently the reader will find no βin reduction and no statement of a theorem of type
preservation. For a discussion the reader is invited to look at the last paragraph of Section 4.

3.3 Implementation of Λin

We implemented Λin in Agda [28]. The code may be found on GitHub.

3.3.1 Plain Λ

To say how an Agda implementation looks like, consider the implementation of plain λ-terms.

data Λ : Set where

dB : (k : N) � Λ
¤ : Λ � Λ � Λ
λ : (t : Λ) � Λ

3.3.2 Empty list or Sequence

We implemented sorted lists. For that, we use a specific implementation which we call LIST.
In this, we make the empty list distinct from non empty lists, which are called Sequence’s. In
other words,

LIST : Set

LIST = >] Sequence

where] is the direct sum in Agda. We have chosen to distinguish non empty lists from empty
list, so that we can define hd as a total function. We define on LIST’s a predicate sortedL

derived from a similar predicate on Sequence’s. On both data structures, we define a binary
operator ‡ that merges two lists and we prove that ‡ preserves sortedness.

3.3.3 Decrement a list

We define _ as a function on proofs p. Such a proof p has type ` ∈-0::LIST-N+, which
means that p is a proof that ` starts with zero followed by strictly positive elements. Therefore
providing the parameter ` to _ is not necessary because it is a parameter of the type of p and
decrementing the items of the list ` is safe.

3.3.4 Λin

Here is the definition of Λin:

data Λin : (` : LIST) � Set where

dB : (k : N) � Λin [k]

λ : {` : LIST} � Λin ` � (p : ` ∈-0::LIST-N+) � Λin (_ p)

¤ : {`1 `2 : LIST} � Λin `1 � Λin `2 � Λin (`1 � `2)

8

https://github.com/PierreLescanne/Lambda-R

L-types for resource awareness Ghilezan, et al.

3.3.5 Checking linearity in Λ

A predicate is-lin checks whether a plain term is a linear term of the given L-type:

data is-lin : (t : Λ) � (` : LIST) � Set where

is-lin-dB : {k : N} � is-lin (dB k) [k]

is-lin-λ : {t : Λ} � {` : LIST} � is-lin t ` � (p : ` ∈-0::LIST-N+) �

is-lin (λ t) (_ p)

is-lin-¤ : {t1 t2 : Λ} � {`1 `2 : LIST} � is-lin t1 `1 � is-lin t2 `2 �

is-lin (t1 ¤ t2) (`1 � `2)

A function

is-lin? : (t : Λ) � (` : LIST) � Maybe (is-lin t `)

builds a proof that a given plain term is linear, if this is the case. This will be used in the
implementation of the β-reduction, described in the next section.

4 Restricted terms with explicit substitution Λin
υ

In this section, we focus on terms with implicit names and explicit substitution. First we modify
the syntax of λυ-calculus, a simple calculus with explicit substitution introduced by Lescanne
in [25]. Then we define restricted terms Λinυ by typeability with L-types and we prove L-type
preservation under reduction. The design of the language is inspired by [26].

The set of plain λυ-terms, denoted by Λυ, is given by the following syntax:

t ::= n | λt | tt | t[s]
s ::= t/| ⇑(s) | ↑

A term t can be a natural number n (i.e., a de Bruijn index), an abstraction, an application
or a substituted term, where a substitution can be one of the following three: a slash t/, a lift
⇑(s) or a shift ↑. The rewriting rules of λυ are given by the rules in Figure 5.

(λt1) t2
λυ // t1[t2/] (B)

(t1 t2)[s]
λυ // (t1[s]) (t2[s]) (App)

(λt)[s]
λυ // λ(t[⇑(s)]) (Lambda)

0[t/]
λυ // t (FVar)

n+ 1[t/]
λυ // n (RVar)

0[⇑(s)]
λυ // 0 (FVarLift)

n+ 1[⇑(s)]
λυ // n[s][↑] (RVarLift)

n[↑] λυ // n+ 1 (VarShift)

Figure 5: The rewriting system for λυ-calculus

In what follows
λυ + // is the transitive closure of the rewriting relation

λυ // . In order
to characterise linearity by a type system, we consider two kinds of objects: [⇑ i(↑)] is called
an updater and abbreviated as JiK, i = 0, 1, ..., whereas [⇑ i(t/)] is called simply a substitution

9

L-types for resource awareness Ghilezan, et al.

and abbreviated as {t, i}, i = 0, 1, According to the introduced abbreviations, we propose
an alternative syntax that will be used in the definition of terms Λinυ :

t ::= n | λt | tt | tJiK | t{t, i}

4.1 L-types for Λin
υ

Just like in the case of Λin, L-types for Λinυ provide information on free indices of a Λinυ -term.
In a declaration t : `, the type ` represents a sorted list of free indices of t. The operation “up”,
denoted by ↑, increments all elements of a list.

Predicates

In order to ease list manipulation, we introduce predicates. Given a predicate p on naturals
and a list `, then (p | `) is the list filtered by the predicate.

(p | []) = []

(p | i :: `) = if p(i) then i :: (p | `) else (p | `)

We will consider three predicates

< i =def λk . k < i

> i =def λk . k > i

≥ i =def λk . k ≥ i

We can modify a predicate p into p[i←e] which is p in which each free occurrence of i is
replaced by e. For instance, given a predicate p(i, j) (with two free variables i and j) and
an expression e (with two free variables k1 and k2), one gets p[i←e](k1, k2, j) if and only if
p(e(k1, k2), j). Assume that predicates are made of

� constants,

� free variables,

� basic predicates < i, > i, and ≥ i,

� connectors,

� functions on the naturals, like λk . k + 1

we define p[i←e] by structural induction as follows (we assume k is not the same variable as i):

� (< exp)[i←e] =def λk.k < exp[i←e]

� (> exp)[i←e] =def λk.k > exp[i←e]

� (≥ exp)[i←e] =def λk.k ≥ exp[i←e]

� (p ∨ q)[i←e] =def p[i←e] ∨ q[i←e]

� (p ∧ q)[i←e] =def p[i←e] ∧ q[i←e]

The substitution in expressions over the naturals is done as usual, as the substitution in universal
algebra.

10

L-types for resource awareness Ghilezan, et al.

Example 2 (Predicates).

� (< 3 | [0, 2, 3, 4]) = [0, 2]

� (≥ 3 | [0, 2, 3, 4]) = [3, 4]

� (> 3 | [0, 2, 3, 4]) = [4]

� ↑ (≥ 3 | [0, 2, 3, 4]) = ↑ [3, 4] = [4, 5]

� ↓ (≥ 3 | [0, 2, 3, 4]) = ↓ [3, 4] = [2, 3]

� (< (i+ 1))[i←j+1] = < ((j + 1) + 1) = < (j + 2)

� (≥ (i+ 1))[i←0] = ≥ 1

Now, we can prove the following auxiliary lemma, containing list related properties needed
in the proof of type preservation.

Lemma 1. Let `, `1, `2 and `3 be sorted lists. The following equations hold, if all lists that
appear in the equations are defined.

a) `1 ‡ `2 = `2 ‡ `1;

b) `1 ‡ (`2 ‡ `3) = (`1 ‡ `2) ‡ `3;

c) (p | `1) ‡ (p | `2) = (p | `1 ‡ `2);

d) ↑ `1 ‡ ↑ `2 = ↑ (`1 ‡ `2);

e) ↓ `1 ‡ ↓ `2 = ↓ (`1 ‡ `2);

f) ↑ (p | `) = (p[i←i+1] |↑ `);

g) ↓ (p[i←i+1] | `) = (p |↓ `). (by definition)

Proof. a) Case [] ‡ ` and ` ‡ [] are by definition. Consider the case (n1 :: `1) ‡ (n2 :: `2) with
n1 < n2:

(n1 :: `1) ‡ (n2 :: `2) = n1 :: (`1 ‡ (n2 :: `2)) (by definition)

= n1 :: ((n2 :: `2) ‡ `1) (by induction)

= (n2 :: `2) ‡ (n1 :: `1) (by definition).

Case n2 < n1 is symmetric.

b) Cases where one of `1, `2 or `3 is [] are easy. For the general case, consider n1 < n2 < n3.
The other cases are on the same pattern.

(n1 :: `1) ‡ ((n2 :: `2) ‡ (n3 :: `3)) = (n1 :: `1) ‡ (n2 :: (`2 ‡ (n3 :: `3)))

= n1 :: (`1 ‡ (n2 :: (`2 ‡ (n3 :: `3)))

= n1 :: (`1 ‡ ((n2 :: `2) ‡ (n3 :: `3)))

= n1 :: ((`1 ‡ (n2 :: `2)) ‡ (n3 :: `3))

= (n1 :: (`1 ‡ (n2 :: `2))) ‡ (n3 :: `3)

= ((n1 :: `1) ‡ (n2 :: `2)) ‡ (n3 :: `3)

11

L-types for resource awareness Ghilezan, et al.

c) By case and structural induction

(p | []) ‡ (p | `) = [] ‡ (p | `) = (p | `) = (p | [] ‡ `)

(p | i :: `) ‡ (p | []) = (p | i :: `) ‡ []

= (p | i :: `)

= (p | (i :: `) ‡ [])

General case and sub-case i1 < i2 and ¬p(i1):

(p | i1 :: `1) ‡ (p | i2 :: `2) = (p | `1) ‡ (p | i2 :: `2)

= (p | `1 ‡ (i2 :: `2)) = (p | i1 :: (`1 ‡ (i2 :: `2)))

= (p | (i1 :: `1) ‡ (i2 :: `2))

by induction. Sub-case i1 < i2 and p(i1):

(p | i1 :: `1) ‡ (p | i2 :: `2) = (i1 :: (p | `1)) ‡ (p | i2 :: `2)

= i1 :: ((p | `1) ‡ (p | i2 :: `2))

= i1 :: (p | `1 ‡ (i2 :: `2)) = (p | i1 :: (`1 ‡ (i2 :: `2)))

= (p | (i1 :: `1) ‡ (i2 :: `2)).

The sub-cases i2 < i1 (¬p(i2) and p(i2)) are similar.

d) Also by case and induction

(↑ []) ‡ (↑ `) = [] ‡ (↑ `) =↑ ` =↑ ([] ‡ `)

(↑ (i :: `)) ‡ (↑ []) = (↑ (i :: `)) ‡ [] =↑ (i :: `) =↑ ((i :: `) ‡ [])

case i1 < i2 (hence (i1 + 1) < (i2 + 1)):

(↑ (i1 :: `1)) ‡ (↑ (i2 :: `2)) = ((i1 + 1) ::↑ `1) ‡ ((i2 + 1) ::↑ `2)

= (i1 + 1) :: ((↑ `1) ‡ ((i2 + 1) ::↑ `2))

= (i1 + 1) :: ((↑ `1) ‡ (↑ (i2 :: `2)))

= (i1 + 1) ::↑ (`1 ‡ (i2 :: `2))

= ↑ (i1 :: (`1 ‡ (i2 :: `2))) = ↑ ((i1 :: `1) ‡ (i2 :: `2))

Case i2 < i1 is similar.

e) This proof is similar to the proof of d).

f) Also by case and induction

↑ (p | []) = ↑ [] = [] = (p[i←i+1] | []) = (p[i←i+1] |↑ [])

Sub-case ¬p(i), hence ¬p[i←i+1](i+ 1)

↑ (p | i :: `) = ↑ (p | `) = (p[i←i+1] |↑ `) = (p[i←i+1] |↑ (i :: `))

Sub-case p(i), hence p[i←i+1](i+ 1)

↑ (p | i :: `) = ↑ (i :: (p | `)) = (i+ 1) ::↑ (p | `)
= (i+ 1) :: (p[i←i+1] |↑ `) = (p[i←i+1] |↑ (i :: `))

12

L-types for resource awareness Ghilezan, et al.

g) Works like f).

Definition 5 (Terms Λinυ). Λinυ -terms are all plain λυ-terms that can be L-typed by the follow-
ing rules.'

&

$

%

(ind)
n : [n]

(abs)
t : 0 :: `

λt : ↓ `

(app)
t1 : `1 t2 : `2

t1t2 : `1 ‡ `2
(upd)

t : `

tJiK : (< i | `) ‡ ↑ (≥ i | `)

(sub∈)
t1 : `1 t2 : `2

i∈`1
t1{t2, i} : ((< i | `1) ‡ ↓ (> i | `1)) ‡ ↑i `2

(sub/∈)
t1 : `1 t2 : `2

i/∈`1
t1{t2, i} : ((< i | `1) ‡ ↓ (> i | `1))

About rule (sub/∈) we may notice that we assume t2 : `2 although this assumption in not
used in the consequence.5 This guarantees the well-formedness of t2.

Like for Λin, we notice that in the typing tree of a L-typed closed term, we meet only sorted
lists with unique occurrence of free indices. Since the notion of linearity of λυ-terms is not
easily formalised, we propose to use Λinυ -L-typeability as the definition of linearity of closed
λυ-terms.

Definition 6. A closed λυ-term t is linear if t : [].

4.2 Reduction of Λin
υ

The rewriting system for λinυ -calculus, derived from the computationally equivalent rewriting
system of λυ, is given by the rules in Figure 6.

Theorem 1 (L-type preservation). If t : ` and t
λinυ // t′, then t′ : `.

Proof. Assume that t matches the left-hand side of one of the rules of λinυ .

Bin : (λt1)t2
λinυ // t1{t2, 0}

Left-hand side and right-hand side of the rule can be typed as follows:

t1 : 0 :: `1

λt1 : ↓ `1 t2 : `2

(λt1) t2 : ↓ `1 ‡ `2

t1 : 0 :: `1 t2 : `2

t1{t2, 0} : (< 0 | `1) ‡ ↓ (> 0 | `1) ‡ ↑0 `2

Successfully typing the left-hand side means ↓ `1 ∩ `2 = []. If this is the case, then
((< 0 | `1) ‡ ↓ (> 0 | `1))∩ ↑0 `2 = [] holds, so the right-hand side can be successfully
typed.

The equality ↓ `1 ‡ `2 = (< 0 | `1) ‡ ↓ (> 0 | `1) ‡ ↑0 `2 comes from

5A similar situation occurs with intersection types for explicit substitution [24], with the rule (drop).

13

L-types for resource awareness Ghilezan, et al.

(λt1) t2
λinυ // t1{t2, 0} (Bin)

(t1 t2)JiK
λinυ // t1JiK t2JiK (AppJK)

(t1 t2){t3, i}
λinυ // t1{t3, i} t2{t3, i} (App{})

(λt)JiK
λinυ // λ(tJi+ 1K) (LambdaJK)

(λt1){t2, i}
λinυ // λ(t1{t2, i+ 1}) (Lambda{})

0{t, 0}
λinυ // t (FVar{})

n+ 1{t, 0}
λinυ // n (RVar{})

0{t, i+ 1}
λinυ // 0 (FVarLift{})

n+ 1{t, i+ 1}
λinυ // n{t, i}J0K (RVarLift{})

0Ji+ 1K
λinυ // 0 (FVarLiftJK)

n+ 1Ji+ 1K
λinυ // nJiKJ0K (RVarLiftJK)

nJ0K
λinυ // n+ 1 (VarShiftJK)

Figure 6: The rewriting system for λinυ -calculus

� (< 0 | `1) = []

� (> 0 | `1) = `1

� ↑0 `2 = `2

AppJK : (t1t2)JiK
λinυ // t1JiKt2JiK

For the left-hand side of the rule we get

t1 : `1 t2 : `2

t1 t2 : `1 ‡ `2
(t1 t2)JiK : (< i | `1 ‡ `2) ‡ ↑ (≥ i | `1 ‡ `2)

For the right-hand side we get

t1 : `1

t1JiK : (< i | `1) ‡ ↑ (≥ i | `1)

t2 : `2

t2JiK : (< i | `2) ‡ ↑ (≥ i | `2)

(t1JiK) (t2JiK) : ((< i | `1) ‡ ↑ (≥ i | `1)) ‡ ((< i | `2) ‡ (↑ (≥ i | `2))

Typing the left-hand side, means `1 ∩ `2 = []. As a consequence, ((< i | `1) ‡ ↑ (≥ i |
`1)) ∩ ((< i | `2) ‡ (↑ (≥ i | `2)) = [] holds, so the right-hand side can be successfully
typed. From Lemma 1, we conclude that

(< i | `1 ‡ `2) ‡ ↑ (≥ i | `1 ‡ `2) = ((< i | `1) ‡ (< i | `2)) ‡ (↑ (≥ i | `1) ‡ ↑ (≥ i | `2))

= ((< i | `1) ‡ ↑ (≥ i | `1)) ‡ ((< i | `2) ‡ (↑ (≥ i | `2))

14

L-types for resource awareness Ghilezan, et al.

App{} : (t1t2){t3, i}
λinυ // t1{t3, i}t2{t3, i}

For the left-hand side, with i ∈ `1 we get

t1 : `1 t2 : `2

t1 t2 : `1 ‡ `2 t3 : `3
i∈`1

(t1 t2){t3, i} : (< i | `1 ‡ `2) ‡ ↓ (> i | `1 ‡ `2) ‡ ↑i `3

If the right-hand side is successfully typed, then `1 ∩ `2 = [], and since i ∈ `1, then i /∈ `2.
For the right-hand side, we get

t1 : `1 t3 : `3
i∈`1

t1{t3, i} : (< i | `1) ‡ ↓ (> i | `1) ‡ ↑i `3

t2 : `2 t3 : `3
i/∈`2

t2{t3, i} : (< i | `2) ‡ ↓ (> i | `2)

(t1{t3, i}) (t2{t3, i}) : ((< i | `1) ‡ ↓ (> i | `1)) ‡ ↑i `3 ‡ ((< i | `2) ‡ ↓ (> i | `2))

Like the previous cases, it is straightforward to show that whenever the left-hand side is
typeable, the right-hand side is typeable as well.

Here also, from Lemma 1, we get

(< i | `1 ‡ `2) ‡ ↓ (> i | `1 ‡ `2) ‡ ↑i `3 = ((< i | `1) ‡ ↓ (> i | `1)) ‡ ↑i `3 ‡ ((< i |
`2) ‡ (↓ (> i | `2)).

The case i /∈ `1, i ∈ `2 is similar. Let us look now at case i /∈ `1 ‡ `2. For the left-hand
side we have

t1 : `1 t2 : `2

t1 t2 : `1 ‡ `2 t3 : `3
i/∈`1 ‡ `2

(t1 t2){t3, i} : (< i | `1 ‡ `2) ‡ ↓ (> i | `1 ‡ `2)

For the right-hand side we have

t1 : `1 t3 : `3
i/∈`1

t1{t3, i} : (< i | `1) ‡ ↓ (> i | `1)

t2 : `2 t3 : `3
i/∈`2

t2{t3, i} : (< i | `2) ‡ ↓ (> i | `2)

(t1{t3, i}) t2{t3, i} : ((< i | `1) ‡ ↓ (> i | `1)) ‡ ((< i | `2) ‡ (↓ (> i | `2))

Whenever `1 ∩ `2 = [] holds and we can type the left-hand side of the rule, ((< i | `1) ‡ ↓
(> i | `1)) ∩ ((< i | `2) ‡ (↓ (> i | `2)) = [] holds and the right-hand side of the rule can
be typed.

From Lemma 1 we conclude that we obtain equal types for both left-hand side and right-
hand side of the rule.

LambdaJK : (λt)JiK
λinυ // λ(tJi+ 1K)

Left-hand and right-hand sides of the rule can be typed as follows:

t : 0 :: `

λt : ↓ `

(λt)JiK : (< i |↓ `) ‡ ↑ (≥ i |↓ `)

t : 0 :: `

tJi+ 1K : 0 :: (< i+ 1 | `) ‡ ↑ (≥ i+ 1 | `)

λ(tJi+ 1K) : ↓ ((< i+ 1 | `) ‡ ↑ (≥ i+ 1 | `))

15

L-types for resource awareness Ghilezan, et al.

The equality (< i |↓ `) ‡ ↑ (≥ i |↓ `) = ↓ ((< i+ 1 | `) ‡ ↑ (≥ i+ 1 | `)) is a consequence
of Lemma 1 d) e) and g).

Lambda{} : (λt1){t2, i}
λinυ // λ(t1{t2, i+ 1})

First, we consider case i+ 1 /∈ `1 (with the same calculation as LambdaJK):

t1 : 0 :: `1

λt1 : ↓ `1 t2 : `2
i/∈↓`1

(λt1){t2, i} : (< i |↓ `1) ‡ ↓ (> i |↓ `1)

t1 : 0 :: `1 t2 : `2
i+1/∈`1

t1{t2, i+ 1} : 0 :: ((< i+ 1 | `1) ‡ ↓ (> i+ 1 | `1))

λ(t1{t2, i+ 1}) : ↓ ((< i+ 1 | `1) ‡ ↓ (> i+ 1 | `1))

From Lemma 1 we can conclude that the type of the term on the left-hand side of the
rule and the type of the term on the right hand-side of the rule are equal.

Next, let us look at the case i+ 1 ∈ `1

t1 : 0 :: `1

λt1 :↓ `1 t2 : `2
i∈(↓`1)

(λt1){t2, i} : (< i |↓ `1) ‡ ↓ (> i |↓ `1) ‡ ↑i `2

t1 : 0 :: `1 t2 : `2
i+1∈0::`1

t1{t2, i+ 1} : 0 :: (< i+ 1 | `1) ‡ ↓ (> i+ 1 | `1) ‡ ↑i+1 `2

λ(t1{t2, i+ 1}) : ↓ ((< i+ 1 | `1) ‡ ↓ (> i+ 1 | `1)) ‡ ↑i `2

FVar{} : 0{t, 0}
λinυ // t

0 : [0] t : `
0∈[0]

0{t, 0} : (< 0 | [0]) ‡ (> 0 | [0]) ‡ ↑0 `
t : `

The equality (< 0 | [0]) ‡ (> 0 | [0]) ‡ ↑0 ` = ` comes from the fact that : (< 0 | [0]) ‡ (>
0 | [0]) = [].

RVar{} : n+ 1{t, 0}
λinυ // n

n+ 1 : [n+ 1] t : `
0/∈[n+1]

n+ 1{t, 0} : (< 0 | [n+ 1]) ‡ ↓ (> 0 | [n+ 1])
n : [n]

The equality of the types comes from the fact that (< 0 | [n + 1]) = [] and ↓ (> 0 |
[n+ 1]) = [n].

16

L-types for resource awareness Ghilezan, et al.

FVarLift{} : 0{t, i+ 1}
λinυ // 0

0 : [0] t : `
i+1/∈[0]

0{t, i+ 1} : (< i+ 1 | [0]) ‡ ↓ (> i+ 1 | [0])
0 : [0]

The equality of the types comes from (< i+ 1 | [0]) = [0] and ↓ (> i+ 1 | [0]) = [].

RVarLift{} : n+ 1{t, i+ 1}
λinυ // n{t, i}J0K

We will consider three cases, depending on the numbers i and n. First, we consider the
case where i < n

n+ 1 : [n+ 1] t : `
i+1/∈[n+1]

n+ 1{t, i+ 1} : (< i+ 1 | [n+ 1]) ‡ ↓ (> i+ 1 | [n+ 1])

n : [n] t : `
i/∈[n]

n{t, i} : ↓ [n]

n{t, i}J0K : [n]

Since i < n, we have i + 1 < n + 1, and it holds that (< i + 1 | [n + 1]) = [] and
↓ (> i+ 1 | [n+ 1]) =↓ [n+ 1] = [n], so the types are equal.

Next, we consider the case where i = n.

n+ 1 : [n+ 1] t : `
i+1∈[n+1]

n+ 1{t, i+ 1} : ((< i+ 1 | [n+ 1]) ‡ ↓ (> i+ 1 | [n+ 1])) ‡ ↑i+1 `

n : [n] t : `
i∈[n]

n{t, i} : ↑i `

n{t, i}J0K : ↑i+1 `

From i = n, we obtain i+ 1 = n+ 1, and it follows that (< i+ 1 | [n+ 1]) ‡ ↓ (> i+ 1 |
[n+ 1]) = [], hence the types are equal.

Finally, we consider the case i > n.

n+ 1 : [n+ 1] t : `
i+1/∈[n+1]

n+ 1{t, i+ 1} : (< i+ 1 | [n+ 1]) ‡ ↓ (> i+ 1 | [n+ 1])

n : [n] t : `
i/∈[n]

n{t, i} : [n]

n{t, i}J0K : [n+ 1]

Since i > n, we have i + 1 > n + 1, and it follows that ↓ (> i + 1 | [n + 1]) = []. Hence,
the types are equal.

We see that in all three cases we have typed both the term on the left-hand side and the
term on the right-hand side of the rule with the same type.

17

L-types for resource awareness Ghilezan, et al.

FVarLiftJK : 0Ji+ 1K
λinυ // 0

Left-hand side and right-hand side of the rule can be typed as follows:

0 : [0]

0Ji+ 1K : (< i+ 1 | [0]) ‡ ↑ (≥ i+ 1 | [0])
0 : [0]

From Lemma 1 we have (≥ i+ 1 | [0]) = [], thus ↑ (≥ i+ 1 | [0]) = []. From the latter and
(< i+ 1 | [0]) = [0] we obtain ((< i+ 1 | [0]) ‡ ↑ (≥ i+ 1 | [0])) = [0].

RVarLiftJK : n+ 1Ji+ 1K
λinυ // nJiKJ0K

Left-hand side and right-hand side of the rule can be typed as follows:

n+ 1 : [n+ 1]

n+ 1Ji+ 1K : (< i+ 1 | [n+ 1]) ‡ ↑ (≥ i+ 1 | [n+ 1])

n : [n]

nJiK : (< i | [n]) ‡ ↑ (≥ i | [n])

nJiKJ0K :↑ ((< i | [n]) ‡ ↑ (≥ i | [n]))

From Lemma 1 we get
(< i+ 1 | [n+ 1]) ‡ ↑ (≥ i+ 1 | [n+ 1]) = ↑ ((< i | [n]) ‡ ↑ (≥ i | [n]))

VarShiftJK : nJ0K
λinυ // n+ 1

Left-hand side and right-hand side of the rule can be typed as follows:

n : [n]

nJ0K : (< 0 | [n]) ‡ ↑ (≥ 0 | [n])
n+ 1 : [n+ 1]

Since we have that

� (< 0 | [n]) = [],

� (≥ 0 | [n]) = [n], and

� ↑ [n] = [n+ 1],

it follows that ((< 0 | [n]) ‡ ↑ (≥ 0 | [n])) = [n+ 1].

Let us notice that this constructive proof of preservation enables a constructive evaluator
for terms in Λinυ . Indeed Theorem 1 and Definition 6 entail correctness of λinυ . Correctness
says that terms stay well-formed (linear) by reduction. In other words, reduction preserves
L-typeablity.

Corollary 1 (Preservation of linearity). If a λinυ -term t is linear and t
λinυ // t′ then t′ is

linear.

18

L-types for resource awareness Ghilezan, et al.

4.3 Toward an implementation of Λin
υ

Full implementation in Agda of the λinυ -calculus is in progress. In this, merge is a total function
as required by a Agda (See discussion in Section 5.6) and the quite involved L-type system of
Λinυ is not yet implemented.

For the Agda implementation of β-reduction in Λin we use the plain Λυ calculus of explicit
substitution, that is with no test of linearity, i.e., no test of a type resembling L-type:

data Λυ : Set

data Συ : Set

data Λυ where

dB : (k : N) � Λυ
¤ : Λυ � Λυ � Λυ
λ : Λυ � Λυ
_J_K : Λυ � Συ � Λυ

data Συ where

_/ : Λυ � Συ
⇑_ : Συ � Συ
^ : Συ

Therefore β-reduction uses a sequence of translations. The implementation works as follows.

1. We read a Λin-term as a plain λ-term Λin�Λ;

2. We translate a plain λ-term as a λυ-term Λ�Λυ;

3. We reduce the λυ-term to its normal form, which exists since the term is linear hence
strongly normalising normΛυ;

4. We translate the λυ-term as a plain term, which is simple since the normal form contains
no closure Λυ�Λ;

5. We read back by Λ�Maybe Λin the plain lambda term as a maybe Λin-term. This
function relies on is-lin?6. The term we obtain is a priori a linear lambda-term, but
since there is no guarantee of its linearity, we can produce only a term of type Maybe Λin.

normΛin : N � Λin [] � Maybe (Λin [])

normΛin k t with (Λυ�Λ (normΛυ k (Λ�Λυ (Λin�Λ t))))

... | just t' = Λ�MaybeΛin t'

... | nothing = nothing

To summarise, in the current Agda implementation, β-reduction requires five steps, namely:

Λin � Λ � Λυ
norm−→ Λυ � Λ � Maybe Λin.

This implementation may serve as the reference for the strong normalization in Λin, but is not
satisfactory since the normalization is not done fully on linear terms. When the implementation
of Λinυ in Agda will be completed, we will use a design with three steps Λin → Λinυ

norm−→Λinυ → Λin.

6A full is-lin? cannot be typed in Agda. Therefore we implemented only a restricted version which is
enough to treat most of examples.

19

https://github.com/PierreLescanne/Lambda-R/blob/master/Is-lin.agda

L-types for resource awareness Ghilezan, et al.

5 Extended terms with resource control Λ®

In this section, we obtain full resource control by extending the language with explicit operators
performing erasure and duplication on terms. The goal is to design a language capable to
linearise all λ-terms. We adapt L-types and use them to define terms Λ® and to characterise
linear terms in Λ®.

The abstract syntax of plain terms with resources and implicit names is generated by the
following grammar:

t, s ::= (n, α) | λt | t s | (n, α)� t | (n, α)Ot

where (n, α) is an ®-index, � denotes the erasure of index in a term, and O denotes the
duplication of index in a term.

®-indices

An ®-index is the pair (n, α), where n is a natural number and α is a string of booleans. For
convenience, we will use the following abbreviations: 0 ≡ false and 1 ≡ true. They are written
° and 1 in Agda because they avoid clashes and they are available on keyboards. Therefore α
will be a string of 0’s and 1’s. Whether 0 and 1 refer to natural numbers or to booleans will be
easily distinguished; so we consider that using those notations will introduce no confusion. In
(n, α) n corresponds to an index in Λ and α represents duplications of the index. The empty
string of booleans, corresponding to absence of duplications, is denoted by ε. For instance, if
(n, ε) is duplicated, it is represented by (n, 0) and (n, 1); if it is triplicated, it can be represented
by (n, 0), (n, 10) and (n, 11) (or by (n, 00), (n, 01) and (n, 1)).

In the following example and in Subsection 5.1 we introduce informally notions correspond-
ing to Λ®-terms, which will be formally defined in Subsection 5.2.

Example 3.

� The term λx.y is represented in Λ® by the term
λ(0, ε)� (1, ε).

� The term λx.(x(λy.xy)) is represented in Λ® by the term
λ((0, ε)O((0, 0) (λ(1, 1) (0, ε)))).

� The linear term λx.λy.x y is represented in Λ® by the term λλ(1, ε) (0, ε), that has neither
O non �, since it is linear and needs no resource control.

� Term λx.x xx is discussed in Example 6.

Several more examples of Λ®-terms will be elaborated in the following subsection.

5.1 A bestiary of Λ®-terms

In this section, we examine basic and well known terms.

The term I

I = λ(0, ε).

This corresponds to the term λx.x in the lambda-calculus with explicit names. (0, ε) means
that there is no λ between the ®-index (0, ε) and its binder and that there is no duplication.

20

L-types for resource awareness Ghilezan, et al.

The term K

K = λλ(0, ε)� (1, ε).

In lambda-calculus, K is written λx.λy.x. In Λ, K is written λλ1. The index 0 does not occur
in 1, but since we want Λ®-terms to be linear, we make it to occur anyway, thus we write
(0, ε) � (1, ε). Notice that ε is the second component of all the ®-indices since there is no
duplication. Recall that readback(λλ(0, ε) � (1, ε)) = λλ1. This term can be read back using
the notations of [13]

λx.λy.y � x

or using the notations of [19]
λx.λy.Wy(x).

The term S

S = λλλ(0, ε)O((2, ε)(0, 0)((1, ε)(0, 1)))

In lambda-calculus, S is written λx.λy.λz.xz(yz) and in Λ, S is written λλλ(2 0 (1 0)). We
notice the double occurrence of z in lambda-calculus and of 0 in Λ. Therefore a duplication is
necessary. From the ®-index (0, ε) it creates two indices (0, 0) and (0, 1). Where the second
component 0 is the string of length 1 made of 0 alone and the second component 1 is the string
of length 1 made of 1 alone. This term can be read back using the notations of [13]

λx.λy.λz.(z〈z0z1 x z0 (y z1))

or using the notations of [19]

λx.λy.λz.(Cz0|z1z (x z0 (y z1))).

The term 5

5 = λλ((1, ε)O(1, 0)O(1, 00)O(1, 000)O((1, 0000)((1, 0001)((1, 001)((1, 01)((1, 1)(0, ε)))))))

5 represents the Church numeral 5. Recall that in lambda-calculus, 5 is written λf.λx.(f(f(f(f(f x)))))
and in Λ, λλ(1(1(1(1(1 0))))). Since 1 is repeated five times, we need four duplications. If we
compute 5 other ways, we can get other forms. For instance, as the result of 3 + 2:

λλ(((1, ε)O(1, 0)O(1, 00)O((1, 000)((1, 001)((1, 01)(1, 1)O((1, 10)((1, 11)(0, ε))))))))

or as the result of 2 + 3:

λλ((1, ε)O(1, 0)O((1, 00)((1, 01)(1, 1)O(1, 10)O((1, 100)((1, 101)((1, 11)(0, ε)))))))

or as the result of 3 + 1 + 1:

λλ(1, ε)O(1, 0)O(1, 00)O((1, 000)(1, 001)O((1, 0010)((1, 0011)((1, 01)((1, 1)(0, ε))))))

The four above forms have the same readback, namely λλ(1(1(1(1(1 0))))). The translation
readback will be defined in Section 5.4.

The terms ff and tt

21

L-types for resource awareness Ghilezan, et al.

The ®-term ff (i.e., the boolean false) is λ((0, ε) � λ(0, ε)) and the ®-term tt (i.e., the
boolean true, that is also the combinator K) is λ(λ(0, ε)� (1, ε)).

The Curry fixpoint combinator
The Curry fixpoint combinator Y is:

Y = λ(0, ε)O((λ((1, 0) (0, ε)O((0, 0) (0, 1)))) (λ((1, 1) (0, ε)O((0, 0) (0, 1)))))

and in notations of [13]:

λx.(x〈x0
x1
λy.(x0 (y〈y0y1 y0 y1))λy.(x1 (y〈y0y1 y0 y1)))

or using the notations of [19]

λx.(Cx0|x1
x (λy.(x0 (Cy0|y1y (y0 y1)))λy.(x1 (Cy0|y1y (y0 y1)))))

5.2 L-types for Λ®

Lists of ®-indices are called L-types for Λ®.

Definition 7 (L-types for Λ®). The abstract syntax of L-types for Λ® is given by

` ::= [] | (n, α) :: `

where (n, α) is an ®-index.

Operations ‡ and ↓ are defined in Section 3 for lists on N. Here we apply ‡ to lists of
®-indices. For that, we have to define an order on the set of all ®-indices. We define first an
order on strings of booleans.

Definition 8 (Order on strings of booleans). An order <L on strings of booleans is defined as

0 :: ` <L 1 :: ` ε <L b :: `

`1 <L `2

b :: `1 <L b :: `2

In other words, <L is the lexicographic extension on lists of the order 0 < 1.

Definition 9 (Order on ®-indices). An order <r on ®-indices is defined as

n1 < n2

(n1, α1) <r (n2, α2)

α1 <L α2

(n, α1) <r (n, α2)

In other words, <r is the lexicographic product < × <L of the orders <, on the naturals
and <L on strings of booleans. By ≤r we denote the relation <r or = and the relation ≤r is
total.

Definition 10 (Merge). A binary operation which merges two lists of ®-indices is defined as
follows:

[] ‡ ` = `

((n, α) :: `) ‡ [] = (n, α) :: `

((n1, α1) :: `1) ‡ ((n2, α2) :: `2) = if (n1, α1) <r (n2, α2) then (n1, α1) :: (`1 ‡ ((n2, α2) :: `2))

if (n2, α2) <r (n1, α1) then (n2, α2) :: (((n1, α1) :: `1) ‡ `2)

22

L-types for resource awareness Ghilezan, et al.

Remark 2. The function ‡ is not total.

If a list ` is an empty list or it contains only indices with strictly positive first component,
we write ` ∈ List+.

Definition 11 (Decrement). Given a list `, assume that we have a proof that ` ∈ List+, we
can define operation ↓ on this list:

↓ [] = []

↓ ((n+ 1, α) :: `) = (n, α) ::↓ `

All properties proved in Lemma 1 hold also for the lists of ®-indices. We omit the proof,
due to the lack of space and the fact that it is analogous to the proof of Lemma 1.
By means of L-typeability, we single out meaningful (well-formed) plain terms with resources
and implicit names.

Definition 12 (Λ®). Λ®-terms are all plain terms with resources and implicit names that can
be L-typed by the following rules.'

&

$

%

(ind) (n, α) : [(n, α)] (abs)
t : (0, ε) :: `

λt : ↓ `
(app)

t1 : `1 t2 : `2

t1 t2 : `1 ‡ `2

(era)
t : `

(n, α)� t : [(n, α)] ‡ `
(dup)

t : ` ‡ [(n, α0), (n, α1)]

(n, α)Ot : [(n, α)] ‡ `

The following example illustrates the Definition 12 by L-typing the Λ®-term SK.

Example 4.

(2, ε) : [(2, ε)] (0, 0) : [(0, 0)]

(2, ε) (0, 0) : [(0, 0), (2, ε)]

(1, ε) : [(1, ε)] (0, 1) : [(0, 1)]

(1, ε) (0, 1) : [(0, 1), (1, ε)]

(2, ε) (0, 0) ((1, ε) (0, 1)) : [(0, 0), (0, 1), (1, ε), (2, ε)]

(0, ε)O((2, ε) (0, 0) ((1, ε) (0, 1))) : [(0, ε), (1, ε), (2, ε)]

λ((0, ε)O((2, ε) (0, 0) ((1, ε) (0, 1)))) : [(0, ε), (1, ε)]

λλ((0, ε)O((2, ε) (0, 0) ((1, ε) (0, 1)))) : [(0, ε)]

λλλ((0, ε)O((2, ε) (0, 0) ((1, ε) (0, 1)))) : []

(1, ε) : [(1, ε)]

(0, ε)� (1, ε) : [(0, ε), (1, ε)]

λ(0, ε)� (1, ε) : [(0, ε)]

λλ(0, ε)� (1, ε) : []

(λλλ((0, ε)O((2, ε) (0, 0) ((1, ε) (0, 1)))) (λλ(0, ε)� (1, ε)) : []

Notice that we abstract with λ (see Definition 12) only ®-index of the form (0, ε). Further,
the definition of ‡ ensures that in an L-typed term an index can occur at most once (Theorem 4).
The other binder, namely duplication, binds two indices of the form (n, α0) and (n, α1) and
produces a new index (n, α). Closed terms are terms in which each ®-index is bound. We are
mostly interested in linear and closed terms Λ®, i.e., terms in which all ®-indices are bound
and occur once and only once.

Proposition 4 (Affineness). If t : ` then t is affine.

23

L-types for resource awareness Ghilezan, et al.

Proof. There are three rules where we merge lists, app, era and dup. In all these rules there is
a function ‡ defined only if it is applied in disjoint lists, hence it can not happen that there
are two occurrences of an index in a typed term. As a consequence we have that if t : `, then
each index occurs at most once in the term t, that is term t is affine.

Proposition 5 (Closedness). If t : [] then t is closed.

Proof. If t : `, then ` is the set of free ®-indices in the term. Therefore, if ` is empty then t
has no free ®-index and t is closed.

Proposition 6 (Linearity). If t : [] then t is linear.

Proof. Actually there are two rules which eliminate ®-indices, namely abs and dup. But when
dup eliminates two indices (n, α0) and (n, α1), it introduces (n, α). Therefore if a term is closed,
all the ®-indices are checked for linearity when abstracted by λ. Therefore, if a term has no
free ®-index, it is linear.

5.3 Reduction in Λ®

We define rewriting rules for normal forms w.r.t. � and O and we prove type preservation.
Consequently, linearity is preserved. Those rules are inspired by [13]. Basically, we propagate
O in the term and pull � out of the term.

First, we define replacement of an index in a term. By t b(n, α)← (m,β)e we denote a term
obtained from term t by replacing recursively the index (n, α) by (m,β).

Definition 13 (Replacement). Let us call cond(α, δ, n, k) the condition

n 6= k ∨ ∀γ ∈ {0, 1}∗ δ 6= αγ.

Notice that this can be written also

n 6= k ∨ ¬(α prefix δ).

Replacement t b(n, α)← (m,β)e is defined as:

(n, αγ) b(n, α)← (m,β)e = (m,βγ)

(k, δ) b(n, α)← (m,β)e = (k, δ) if cond(α, δ, n, k)

(t1 t2) b(n, α)← (m,β)e = t1 b(n, α)← (m,β)e t2 b(n, α)← (m,β)e
λt b(n, α)← (m,β)e = λ(t b(n+ 1, α)← (m+ 1, β)e)

((k, δ) ∗ t) b(n, α)← (m,β)e = (k, δ) b(n, α)← (m,β)e ∗ t b(n, α)← (m,β)e, ∗ ∈ {�,O}

The rewriting system for λ®-calculus is given by the rules in Figure 7.

Theorem 2 (L-type preservation). If t : ` and t→ t′, then t′ : `.

Proof. Assume that t matches the left-hand side of one of the rules in Figure 7. We consider
the following two cases.

(λ−�) : λ(n+ 1, α)� t→ (n, α)� λt
Rule λ−� preserves type. Indeed

24

L-types for resource awareness Ghilezan, et al.

λ(n+ 1, α)� t → (n, α)� λt (λ−�)
(n, α)O(λt) → λ((n+ 1, α)Ot) (O− λ)

((n, α)� t1) t2 → (n, α)� (t1 t2) (AppL−�)
t1 ((n, α)� t2) → (n, α)� (t1 t2) (AppR−�)
(n, α)O(t1 t2) → ((n, α)Ot1) t2, if(n, α0) ∈ t1 ∧ (n, α1) ∈ t1 (AppL− O)
(n, α)O(t1 t2) → t1 ((n, α)Ot2), if(n, α0) ∈ t2 ∧ (n, α1) ∈ t2 (AppR− O)

(n, α)� (m,β)� t → (m,β)� (n, α)� t, n < m (�−�)
(n, α)O(n, α1)� t → t b(n, α0)← (n, α)e (�− O1)
(n, α)O(n, α0)� t → t b(n, α1)← (n, α)e (�− O0)
(n, α)O(m,β)� t → (m,β)� (n, α)O t, if n 6= m ∨ (β 6= α0 ∧ β 6= α1) (�− O)

(n, α)O((n, α1)Ot) → (n, α)O(n, α0)O(t b(n, α0)← (n, α00)e b(n, α10)← (n, α01)e b(n, α11)← (n, α1)e) (O− O1)
(n, α)O((m,β)Ot) → (m,β)O((n, α)Ot), if n < m (O− O2)

Figure 7: The rewriting system for λ®-calculus

t : (0, ε) :: `

(n+ 1, α)� t : [(n+ 1, α)] ‡ (0, ε) :: `

λ(n+ 1, α)� t : [(n, α)] ‡ (↓ `)

t : (0, ε) :: `

λt :↓ `

(n, α)� λt : [(n, α)] ‡ (↓ `)

Both the term on the left-hand side and the term on the right-hand side of the rule are
typed with the same type.

(O− λ) : (n, α)O(λt)→ λ((n+ 1, α)Ot)

Rule O− λ preserves type. Indeed

t : [(n+ 1, α0)), ((n+ 1, α1)] ‡ ((0, ε) :: `)

λt : [((n, α0)), ((n, α1))] ‡ ↓ `

(n, α)O(λt) : [(n, α)] ‡ (↓ `)

t : [(n+ 1, α0), (n+ 1, α1)] ‡ ((0, ε) :: `)

(n+ 1, α)Ot : [(n+ 1, α)] ‡ ((0, ε) :: `)

λ(n+ 1, α)Ot : [(n, α)] ‡ (↓ `)

Both the term on the left-hand side and the term on the right-hand side of the rule are
typed with the same type.

Proving that other rules preserve L-type is straightforward.

Example 5 (O− O).

λ((0, ε)O(0, 1)O((0, 0) (0, 10) (0, 11)))→ λ((0, ε)O(0, 0)O((0, 00) (0, 01) (0, 1)))

See Figure 8.

Corollary 2 (Preservation of linearity). If t is linear and t→ t′ then t′ is also linear.

25

L-types for resource awareness Ghilezan, et al.

5.4 Correspondence with Λ

In order to establish a correspondence between the introduced system Λ® and the well-known
system Λ, we follow the approach used in Section 4.3 and we define two translations: read :
Λ→ Λ® and readback : Λ® → Λ.

Definition 14 (read). read : Λ→ Λ®

� read n = (n, ε)

� read (λ t) = let u = read t
in if (0, ε) ∈ u then λu

else λ (0, ε)� u

� read(t1 t2) = 5
(k,γ)∈t?1∩t

?
2

(k, γ) (rename 0 (t?1 ∩ t?2)(read t1) rename 1 (t?1 ∩ t?2)(read t2)

where

− rename 0 ` replaces every ®-index of the form (n, α) in the list ` of ®-indices by the
corresponding ®-index of the form (n, α0) and similarly rename 1 ` replaces all ®-index
of the form (n, α) in a the list by the corresponding ®-index of the form (n, α1).

− t?1 ∩ t?2 is a short notation for the list of ®-indices that occur both in read(t1) and in
read(t2).

read is the formalization of the translations presented in Example 3.

Definition 15 (readback). readback : Λ® → Λ

� readback (n, α) = n

� readback (λt) = λ(readback t)

� readback (t1 t2) = (readback t1) (readback t2)

� readback ((n, α)� t) = readback t

� readback ((n, α)Ot) = readback t.

Proposition 7 (Correctness of read). λ t.readback (read t) : Λ → Λ is the identity on Λ. In
other words,

readback (read t) = t.

The function λ t.read (readback t) : Λ® → Λ® is an interesting function which associates
with a term t another term with a somewhat standard disposition of � and O, which we call
standardisation of the term.

Notice that the same non linear λ-term may correspond to several Λ®-term. For instance,
this is the case for term λ((0 0) 0) (a Λ® instance of λx.xxx) illustrated by the following example
and pictured in Figure 8.

Example 6. Consider the term λ(0, ε)O(0, 1)O((0, 0)(0, 10))(0, 11).

readback(λ(0, ε)O(0, 1)O((0, 0)(0, 10))(0, 11) = λ(0 0) 0

26

L-types for resource awareness Ghilezan, et al.

λ

@

@

rr..
YY

exemplifies // λ oodd

λ

@

@

��

$$ zz
O

##
O

;; λ

@

@

��

##

O

~~
O

99 λ

@

@

{{$$

��

O

##
O

;; λ

@

@

��

		��
O

##
O

;; λ

@

@

��

		��
O

��
O

;;

Figure 8: λ((0 0) 0) and antecedents by readback as terms with two duplications

but
read(λ(0 0) 0) = λ(0, ε)O(0, 0)O(((0, 00)(0, 01))(0, 1))

Hence

read ◦ readback(λ(0, ε)O(0, 1)O(0, 0)(0, 10)(0, 11))) = λ(0, ε)O(0, 0)O((0, 00)(0, 01))(0, 1)

The reader may notice that, in both terms, the first duplication is (0, ε)O . But the reader may
also notice that the second duplication is (0, 1)O in the first term and (0, 0)O in the second
term. So they are not the same. Choosing (0, 0)O over (0, 1)O is somewhat canonical. This
corresponds to choosing the leftmost diagram in Figure 8. The fourth diagram corresponds to

λ(0, ε)O(0, 0)O(0, 01)(0, 00)(0, 1)

and the fifth diagram corresponds to

λ(0, ε)O(0, 1)O(0, 11)(0, 10)(0, 0).

We let the reader write the Λ® term corresponding to the third diagram of Figure 8. There are
12 ways to write the term λ(0 0) 0 in Λ® and to draw corresponding diagrams. The reader may
devise the omitted cases.

5.5 Implementation of Λ® in Haskell

We implemented the whole λ® in Haskell, where the data type for Λ® is as follows:

data RTerm = App RTerm RTerm

| Abs RTerm

| Ind Int [Bool]

| Era Int [Bool] RTerm

| Dup Int [Bool] RTerm

27

L-types for resource awareness Ghilezan, et al.

We give here a flavor of the implementation. We have defined functions read and readback.
As presented in the previous section readback is relatively easy to define, by just forgetting
duplications and erasures. Function read, denoted by readLR, is defined in Haskell as follows:

-- Given a list of indices and a term,

-- dupTheIndices applies all the duplications of that list to that term

dupTheIndices :: [(Int,[Bool])] -> RTerm -> RTerm

dupTheIndices [] t = t

dupTheIndices ((i,alpha):l) t = Dup i alpha (dupTheIndices l t)

-- `consR` is a function used in `readLR`

-- given a boolean and an index, put the boolean (0 or 1)

-- in front of all the alpha parts associated with the index

consR :: Bool -> Int -> RTerm -> RTerm

consR b i (App t1 t2) = App (consR b i t1) (consR b i t2)

consR b i (Abs t) = Abs (consR b (i+1) t)

consR b i (Ind j beta) = if i==j

then Ind j (b:beta)

else Ind j beta

consR b i (Era j beta t) = if i==j

then Era j (b:beta) (consR b i t)

else Era j beta (consR b i t)

consR b i (Dup j beta t) = if i==j

then Dup j (b:beta) (consR b i t)

else Dup j beta (consR b i t)

indOf is a function that extracts the indices of a term; ? is an infix operator which returns a
boolean, i ? t returns True if and only if i occurs in t.

readLR :: Term -> RTerm

readLR (Ap t1 t2) =

let rt1 = readLR t1

rt2 = readLR t2

indToIndR i = (i,[])

commonInd = sort (indOf t1 `intersect` indOf t2)

pt1 = foldl (.) id (map (consR False) commonInd) rt1

pt2 = foldl (.) id (map (consR True) commonInd) rt2

in dupTheIndices (map indToIndR commonInd) (App pt1 pt2)

readLR (Ab t) = if 0 ? t then Abs (readLR t) else Abs (Era 0 [] (readLR t))

readLR (In i) = Ind i []

We also present the Haskell code for test of linearity and closedness:

-- (iL t) returns the list of free (R)-de Bruijn indices of t

-- if all the binders of the term binds one and only one (R)-index.

remove :: Eq a => a -> [a] -> Maybe [a]

remove _ [] = Nothing

remove x (y:l) = if x == y then Just l

else case (remove x l) of

Nothing -> Nothing

Just l' -> Just (y:l')

28

L-types for resource awareness Ghilezan, et al.

iL :: RTerm -> Maybe [(Int,[Bool])]

iL (Ind n alpha) = Just [(n,alpha)]

iL (Abs t) =

case iL t of

Nothing -> Nothing

Just u -> case remove (0,[]) u of

Nothing -> Nothing

Just u' -> case find (((==) 0).fst) u' of

Just _ -> Nothing

Nothing -> Just \$ map ((i,a)->(i-1,a)) u

iL (App t1 t2) =

case iL t1 of

Nothing -> Nothing

Just u1 -> case iL t2 of

Nothing -> Nothing

Just u2 -> if null (u1 `intersect` u2)

then Just(u1 ++ u2)

else Nothing

iL (Era n alpha t) = case iL t of

Nothing -> Nothing

Just u -> Just ((n,alpha):u)

iL (Dup n alpha t) =

case iL t of

Nothing -> Nothing

Just u -> if (n,alpha++[False]) `elem` u &&

(n,alpha++[True]) `elem` u

then Just ((n,alpha):(delete (n,alpha++[False]) (delete (n,alpha++[True]) u)))

else Nothing

-- is linear in the sense that all the binders bound one and only one index.

isLinearAndClosed t = case iL t of

Nothing -> False

Just u -> u == []

The β-reduction of λ®-terms is in GitHub.

5.6 Implementation of Λ® in Agda

When presenting a theory in a paper (i.e., in English) and in a dependent type functional pro-
gramming language (i.e., in Agda) the aims differ. Wherever in English one wants to minimise
the number of concepts and to rely on intuition, in Agda, one wants to minimise the size of the
description and overall the size of the proof of correctness that each term has to carry as part of
its code. See for instance, term S in Section 5.6.3. As mentioned in Section 3.1: in the English
text, typing rules are non deterministic, by using partial functions which may fail, wherever
in Agda, the implementation of the same rules is made deterministic and terminating by the
use of added parameters, which represent side conditions of the rules and which are proofs of
the applicability of the functions. More precisely, in the English text and in Agda, there are

29

https://github.com/PierreLescanne/LambdaCalculusWithDuplicationsAndErasures

L-types for resource awareness Ghilezan, et al.

two operators ↓ and ‡ . Wherever in the paper ↓ and ‡ are not total, i.e., ↓ is defined only
on list with strictly positive elements (Definition 3) and ‡ is defined on pair of disjoint lists
(Definition 2 and the following remark), Agda requires its functions to be total and therefore,
in Agda, ↓ and ‡ must be total. Therefore, despite the same language is defined, the presen-
tations in both approaches are largely different. Moreover since the implementation in Agda of
the reduction should translate the L-types of Λ® (Section 5.2), it should be rather elaborated
and as a matter of fact we are not able right now to provide in Agda an implementation for
the reduction as we have done in Haskell. However we attach more confidence to the Agda code
than to the Haskell code.

5.6.1 The data type Λ®

Let us now present the implementation in Agda of the syntax of what corresponds to Λ® fully.

data Λ® : List (N Ö List Bool) � Set where

®ind : (i : N) � (α : List Bool) � Λ® [(i , α)]

¤ : {`1 `2 : List (N Ö List Bool)} � Λ® `1 � Λ® `2 � Λ® (`1 � `2)
λ : {` : List (N Ö List Bool)} � Λ® ((0 , ε) :: `) � (p : �0 `) � Λ® (map-1�0 ` p)

� : {` : List (N Ö List Bool)} � (iα : N Ö List Bool) � Λ® ` � Λ® (iα ↘ `)
_for_O_ : (` : List (N Ö List Bool)) � (iα : N Ö List Bool) �

Λ® ((proj1 iα , proj2 iα ::r °) ↘ ((proj1 iα , proj2 iα ::r ¹) ↘ `)) �

Λ® (iα ↘ `)

5.6.2 The components of Λ®

Λ® requires operators on lists:

ε is the notation we have chosen for the empty list of Bool, for reason of simplicity.

� 0 tests whether a list contains only positive items (more precisely that the first components
of pairs (i, α) are positive). In the program p : �0 ` means that p is a proof that the
list ` contains only ®-indices whose first components are positive.

map-1�0 takes a list and a proof that this list contains only strictly positive elements and
decrements all the items of lists. Thus we know that decrementing the elements of a list
is safe, since it can only be be applied to a list of strictly positive elements.

↘ inserts, at the right place, an item in a sorted list.

Besides,

O has a third argument, occurring before the keyword for. This argument, which is a list of
®-indices, provides Agda a hint to deal with the constraint, that Agda would be otherwise
unable to solve. This hint is a list in which the ®-index will be inserted by ↘ to produce
the type of the result.

° and 1 are shorthands for Bool values, which will be otherwise cumbersome using 0 or 1 and
would clash.

The five constructors of Λ® tell how to build a term of type Λ® ` where ` is determined by
the context. If the parameter of Λ® is the empty list ε, this means that the term is closed, like
in the examples in the next section. The five constructors are:

30

L-types for resource awareness Ghilezan, et al.

®ind takes a natural i and a list α of booleans and produces a term which is the index (i ,

α). This term has the type Λ® with parameter the singleton [(i , α)], which means
that it has a unique free ®-index, that is (i , α).

¤ is the binary operator that builds an application of a term t1 to a term t2. If t1 has type
Λ® `1 and t2 has type Λ® `2, then t1 ¤ t2 has type Λ® (`1 � `2). Beware that ¤ does
not guarantee that t1 ¤ t2 is affine, linear or anything else. It just collects the ®-indices.
The test of “linearity” will be made by λ.

λ plays a key role. It takes a term t of type Λ® ((0 , ε) :: `), then a proof that all the
elements of ` are positive (i.e., non zero). This means that the ordered list of the ®-
indices of t starts with (0 , ε) and is followed by a list of elements which are not (0 ,

α). This way, one is sure that the ®-index which is abstracted by λ and which is by
definition (0 , ε) occurs only once and has no clone of the form (0 , α). Hence for
this ®-index the linearity is guaranteed, as will be the linearity of all the ®-indices in a
closed term (a term in which all the ®-indices are abstracted). Moreover, in the spirit of
de Bruijn indices, the definition insures that λt is of type Λ® (map-1�0 ` p). The proof
p makes map-1�0 to work properly.

� is the simplest operator of Λ®. It should not be seen as an eraser since we want it to work
the other way around: it takes a term in which the ®-index iα (a shorthand for (i ,

α)) does not occur possibly, and produces a term in which it occurs.

_for_O_ is a three places operator. Like O it takes a ®-index and a term. The term contains
the ®-index, but also other ®-indices in a list `. For the system, the list ` is hard to
guess, thus ` is provided to the system as a third argument, before the for. Therefore `
for (i , α) O t has type Λ® `’ where `’ is ` in which (i , α) is inserted at the right
place and t has type Λ® `’’ where `’’ is ` in which both (i , α°) and (i , α¹) are
inserted at the right place. α° is α followed by ° and α¹ is is α followed by ¹. One sees
the duplication of the ®-index (i , α) from ` for (i , α) O t to t.

5.6.3 Implementing the bestiary in Agda

Let us consider terms from Section 5.1 coded in our Agda implementation.

I is written:

I : Λ® ε
I = λ (®ind 0 ε) �0ε

The type declaration says that i is a closed term. �0ε is a proof defined elsewhere which
says that the empty list ε has all its elements strictly positive, which is more or less trivial
since ε has no element!

K is written

K : Λ® ε
K = λ (λ ((0 , ε) � (®ind 1 ε)) (�0:: z≺s �0ε)) �0ε

K is yet another closed term. z≺s is a proof that 0 ≺ 1 and �0:: z≺s �0ε is a proof
that the singleton [(1 , ε)] is made of ®-indices that are strictly positive. Indeed �0::
combines a proof that 1 is greater than 0 and a proof that the empty list contains only
positive elements to produce that proof.

31

L-types for resource awareness Ghilezan, et al.

S is written:

S : Λ® ε
S = λ (λ (λ (((1 , ε) :: [(2 , ε)]) for (0 , ε) O

(((®ind 2 ε) ¤ (®ind 0 [°])) ¤ ((®ind 1 ε) ¤ (®ind 0 [¹]))))

(�0:: z≺s (�0:: z≺s �0ε))) (�0:: z≺s �0ε)) �0ε

Term S uses proofs introduced previously and shows a usage of _for_O_ specifically with
the introduction of the list (1 , ε) :: [(2 , ε)] as a first argument.

two. In Section 5.1 we represented the term 5. Here let us be more modest and let us represent
the term 2:

two : Λ® ε
two = λ (λ ([(0 , ε)] for (1 , ε) O ((®ind 1 [°]) ¤ ((®ind 1 [¹]) ¤ (®ind 0 ε))))

(�0:: z≺s �0ε)) �0ε

One sees the same proofs �0ε and �0:: z≺s �0ε and that (1 , ε) is duplicated.

6 Discussion and Related work

Compared to languages with explicit names, like λlxr [19] or the language of [13], λ® is a much
simpler calculus, because, we can tell exactly how the ®-indices are duplicated, since we have a
tight control on the way those indices are built. As consequences, there are fewer basic rules and
a simple implementation is possible. For instance, if we consider a rough quantitative aspect,
the calculus of [19] has 19 rules and 6 congruences, the system of [13] has 18 rules (9 basic rules
and 8 rules for substitution) and 4 congruences, whereas our system λ® has 12 rules and no
congruences.

The L-types of our system address a notion of correctness which is somewhat orthogonal
to this of classic types (say simple types or higher order types). A term is well L-typed if it
is linear and we prove, thanks to L-type preservation, that linearity is preserved by reduction.
The two notions of types are orthogonal in the sense that classic types say something about the
result (the term is a natural or a boolean, for instance) whereas L-types say something about
the internal features of the terms (the term is linear). Since we do not characterize the “result”
of a computation, but only the structure of the term, there is no notion of “progress” associated
with L-types, there is only a notion of “preservation” (terms stay linear along their reduction,
i.e., L-type is preserved). However, it is possible to introduce other standard type systems, such
as simple types, intersection types or system F, to further characterize computational properties
of L-typed terms. As the continuation of the presented research, we intent to explore such a
hierarchy of type systems for the λ® calculus.

The calculus λ® has connection with the differential λ-calculus of Erhard and Regnier [10]
where the fan O is a non commutative differential operator (similar to their D) and the black-
hole � corresponds to an empty iteration of O (like D0). Therefore λ® can be considered as a
non commutative differential λ-calculus, where iterations are no more done on natural numbers,
but on lists of Bool. These observations merit to be deepened.

The concepts of this paper are implemented in Agda and cover topics not present in the
textbook Programming Language Foundations in Agda [35] that can be fitted into it. Especially
the use of explicit substitution (Section 4.3) is a nice and short way to implement strong
normalization in the λ-calculus.

32

L-types for resource awareness Ghilezan, et al.

The reader may have noticed that we focus on closed terms. This is not due to the fact
that open terms are, for us, of no interest but this is because if we would check linearity for
open terms as well, terms in Agda which are yet large, since they Carry their proofs of linearity
at each abstraction would be otherwise intractable. Paul Tarau and Valeria de Pavia address
a similar problem ([33] Section 4.3) in their attempt to generate closed linear lambda terms.
Anyway in functional programming, programs of interest are those with no free (undeclared)
variable.

7 Conclusion

This paper introduced three new calculi with implicit names dealing with linearity, i.e., the
property that bound variables occur once and only once. The first calculus is the most straight-
forward, since it is just the λ-calculus with unique occurrence of each variable (BCIλ-terms).
The second calculus addresses an abstract implementation of β-reduction through explicit sub-
stitution. The third calculus is a calculus of resource with explicit duplication and explicit
erasure. For each of those calculi, we introduce a specific L-type system, which is used (a) to
define terms and (b) to characterise linearity of closed terms. Those types represent lists of free
implicit names: de Bruin indices for the first two calculi, and new ®-indices for the calculus
with resource control.

Moreover for these three calculi, we propose an implementation in a language with dependent
types, namely Agda. The features of those calculi are not easily represented by dependent type
constraints. For instance, the L-type system for Λinυ is not trivial as is its Agda implementation
and for a plain λ-term, it is not easy to build its corresponding λ®-term in the calculus of
resource. For these reasons, the implementation of β reduction of Λ® is not done. However a
whole code in Haskell exists where constraints are not as deeply checked as they are in the Agda
code. Completing the Agda code is ongoing, but working on the Agda code played a main role
in the design of the calculi and of their L-types and thanks to those L-types, we were able to
describe and characterise λinυ -terms (linear terms of explicit substitution).

To summarize, we have introduced four concepts: L-types, implicit names (de Bruijn indices
and ®-indices), explicit duplication and explicit erasure, and three calculi: λin, λinυ and λ®.

References

[1] Andrea Asperti and Stefano Guerrini. The optimal implementation of functional programming
languages. Cambridge University Press, 1999.

[2] Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor, CONCUR
’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany, August 23-26,
1993, Proceedings, volume 715 of Lecture Notes in Computer Science, pages 1–6. Springer, 1993.
doi:10.1007/3-540-57208-2_1.

[3] Nicolas Bourbaki. Éléments de Mathématiques. Livre I. Théorie des ensembles. Fascicule de
résultats. Hermann & Cie, Paris, 1939. translation in [4].

[4] Nicolas Bourbaki. Theory of Sets. Springer, 1968.

[5] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Paul
Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, 21th International
Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, vol-
ume 6269 of Lecture Notes in Computer Science, pages 222–236. Springer, 2010. doi:10.1007/

978-3-642-15375-4_16.

33

https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16

L-types for resource awareness Ghilezan, et al.

[6] Peter Calvert and Alan Mycroft. Control flow analysis for the join calculus. In Antoine Miné and
David Schmidt, editors, Static Analysis - 19th International Symposium, SAS 2012, Deauville,
France, September 11-13, 2012. Proceedings, volume 7460 of Lecture Notes in Computer Science,
pages 181–197. Springer, 2012. doi:10.1007/978-3-642-33125-1_14.

[7] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms and Functional. Birkhaüser,
2nd edition, 1993.

[8] Nicolaas Govert de Bruijn. Lambda calculus with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Proc. Koninkl. Nederl. Akademie
van Wetenschappen, 75(5):381–392, 1972.

[9] Kosta Došen and Peter Schroeder-Heister eds. Substructural Logics. Perspectives in logic. Oxford
University Press, 1993.

[10] Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci., 403(2-3):347–372, 2008. doi:10.1016/j.tcs.2008.06.001.

[11] Gerhard Gentzen. Unterschungen über das logische Schliessen, Math Z. 39 (1935), 176–210. In
M.E. Szabo, editor, Collected papers of Gerhard Gentzen, pages 68–131. North-Holland, 1969.

[12] Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In Zhong Shao, ed-
itor, Programming Languages and Systems - 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Computer
Science, pages 331–350. Springer, 2014. doi:10.1007/978-3-642-54833-8_18.

[13] Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, and Silvia Likavec. Resource control and intersec-
tion types: an intrinsic connection. CoRR, abs/1412.2219, 2014. URL: http://arxiv.org/abs/
1412.2219, arXiv:1412.2219.

[14] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/

0304-3975(87)90045-4.

[15] Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In TAPSOFT’87, pages
52–66. Springer, 1987. doi:10.1007/BFb0014972.

[16] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The geometry of optimal lambda re-
duction. In POPL’92, pages 15–26. ACM Press, 1992. doi:10.1145/143165.143172.

[17] José Grimm. Implementation of Bourbaki’s Elements of Mathematics in Coq: Part One, Theory
of Sets. J. Formaliz. Reason., 3(1):79–126, 2010. doi:10.6092/issn.1972-5787/1899.

[18] J. Roger Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1997.

[19] Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Inf. Comput.,
205(4):419–473, 2007.

[20] Delia Kesner and Fabien Renaud. A prismoid framework for languages with resources. Theor.
Comput. Sci., 412(37):4867–4892, 2011. doi:10.1016/j.tcs.2011.01.026.

[21] Wen Kokke, Jeremy G. Siek, and Philip Wadler. Programming language foundations in agda. Sci.
Comput. Program., 194:102440, 2020. doi:10.1016/j.scico.2020.102440.

[22] Wen Kokke and Philip Wadler. Programming Language Foundations in Agda. Creative Commons,
2020. URL: http://plfa.inf.ed.ac.uk/.

[23] John Lamping. An algorithm for optimal lambda calculus reduction. In POPL’90, pages 16–30.
ACM Press, 1990. doi:10.1145/96709.96711.

[24] Stéphane Lengrand, Pierre Lescanne, Daniel J. Dougherty, Mariangiola Dezani-Ciancaglini, and
Steffen van Bakel. Intersection types for explicit substitutions. Inf. Comput., 189(1):17–42, 2004.
doi:10.1016/j.ic.2003.09.004.

[25] Pierre Lescanne. From λσ to λυ, a journey through calculi of explicit substitutions. In Hans
Boehm, editor, Proceedings of the 21st Annual ACM Symposium on Principles Of Programming
Languages, Portland (Or., USA), pages 60–69. ACM, ACM Press, 1994.

34

https://doi.org/10.1007/978-3-642-33125-1_14
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1007/978-3-642-54833-8_18
http://arxiv.org/abs/1412.2219
http://arxiv.org/abs/1412.2219
http://arxiv.org/abs/1412.2219
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/BFb0014972
https://doi.org/10.1145/143165.143172
https://doi.org/10.6092/issn.1972-5787/1899
https://doi.org/10.1016/j.tcs.2011.01.026
https://doi.org/10.1016/j.scico.2020.102440
http://plfa.inf.ed.ac.uk/
https://doi.org/10.1145/96709.96711
https://doi.org/10.1016/j.ic.2003.09.004

L-types for resource awareness Ghilezan, et al.

[26] Pierre Lescanne. The lambda calculus as an abstract data type. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editors, Recent Trends in Data Type Specification, volume 1130 of Lecture
Notes in Computer Science, pages 74–80. Springer Verlag, 1996.

[27] Patrick Lincoln and John C. Mitchell. Operational aspects of linear lambda calculus. In LICS’92,
pages 235–246. IEEE Computer Society, 1992. doi:10.1109/LICS.1992.185536.

[28] Ulf Norell. Dependently typed programming in Agda. In Andrew Kennedy and Amal Ahmed,
editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1–2. ACM,
2009. doi:10.1145/1481861.1481862.

[29] Benjamin Pierce. Types and Programming Language. The MIT Press, 2002.

[30] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[31] Kristoffer H. Rose. CRSX - Combinatory Reduction Systems with Extensions. In Manfred
Schmidt-Schauß, editor, 22nd International Conference on Rewriting Techniques and Applications,
RTA’11, volume 10 of Leibniz International Proceedings in Informatics (LIPIcs), pages 81–
90. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011. doi:http://dx.doi.org/10.4230/

LIPIcs.RTA.2011.81.

[32] Kristoffer H. Rose. Implementation Tricks That Make CRSX Tick. IFIP 1.6 workshop, 6th
International Conference on Rewriting, Deduction, and Programming, RDP ’11, 2011.

[33] Paul Tarau and Valeria de Paiva. Deriving theorems in implicational linear logic, declaratively.
In Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone, Alexander Artikis, Gerhard
Friedrich, Paul Fodor, Angelika Kimmig, Francesca A. Lisi, Marco Maratea, Alessandra Mileo,
and Fabrizio Riguzzi, editors, Proceedings 36th International Conference on Logic Programming
(Technical Communications), ICLP Technical Communications 2020, (Technical Communications)
UNICAL, Rende (CS), Italy, 18-24th September 2020, volume 325 of EPTCS, pages 110–123, 2020.
doi:10.4204/EPTCS.325.18.

[34] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory (2nd Ed.). Cambridge Uni-
versity Press, New York, NY, USA, 2000.

[35] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda.
July 2020. Available at http://plfa.inf.ed.ac.uk/20.07/.

[36] David Walker. Substructural type systems. In Benjamin Pierce, editor, Advanced Topics in Types
and Programming Languages, pages 3–44. MIT Press, Cambridge, 2005.

35

https://doi.org/10.1109/LICS.1992.185536
https://doi.org/10.1145/1481861.1481862
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.RTA.2011.81
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.RTA.2011.81
https://doi.org/10.4204/EPTCS.325.18
http://plfa.inf.ed.ac.uk/20.07/

	Introduction
	Terms with implicit names
	Restricted terms `Lin
	L-types for `Lin
	Reduction in `Lin
	Implementation of `Lin
	Plain
	Empty list or Sequence
	Decrement a list
	`Lin
	Checking linearity in

	Restricted terms with explicit substitution in
	L-types for in
	Reduction of in
	Toward an implementation of in

	Extended terms with resource control `L®
	A bestiary of `L®-terms
	L-types for `L®
	Reduction in `L®
	Correspondence with
	Implementation of `L® in Haskell
	Implementation of `L® in Agda
	The data type `L®
	The components of `L®
	Implementing the bestiary in Agda

	Discussion and Related work
	Conclusion

