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1 INTRODUCTION

The λ-calculus [1] is a well known formal system designed by Alonzo Church [9] for studying the concept of function.
It has three kinds of basic operations: variables, application and abstraction (with an operator λ which is a binder of
variables).1

In this paper we are interested in terms in which bound variables occur once. A closed λ-term is a λ-term in which
there are no free variables, i.e., only bound variables. An affine λ-term (or BCK term) is a λ-term in which bound
variables occur at most once. A linear λ-term (or BCI term) is a λ-term in which bound variables occur once and only
once.

In this paper we propose a method for counting and generating (including random generation) linear and affine
closed λ-terms based on a data structure which we call SwissCheese because of its holes. Actually we count those
λ-terms up to α-conversion. Therefore it is adequate to use de Bruijn indices [12], because a term with de Bruijn indices
represents an α-equivalence class. An interesting aspect of these terms is the fact that they are simply typed as shown
by Hindley [18, 19]. For instance, generated by the program of Section 9, here are the 16 linear terms of natural size 8:

(λ0 (λ0 λ0)) (λ0 λ (λ0 0)) (λ0 λ (0 λ0)) ((λ0 λ0) λ0) (λ (λ0 0) λ0) (λ (0 λ0) λ0) λ (λ0 (λ0 0)) λ (λ0 (0 λ0))

λ ((λ0 λ0) 0) λ (λ (λ0 0) 0) λ (λ (0 λ0) 0) λ (0 (λ0 λ0)) λ (0 λ (λ0 0)) λ (0 λ (0 λ0)) λ ((λ0 0) λ0) λ ((0 λ0) λ0)

written with explicit variables
λx .x (λx .x λx .x ) λx .x λy .(λx .x y ) λx .x λy .(y λx .x ) (λx .x λx .x ) λx .x

1If the reader is not familiar with the λ-calculus, we advise her (him) to read the introduction of [16], for instance.
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λy .(λx .x y ) λx .x λy .(y λx .x ) λx .x λy .(λx .x (λx .x y )) λy .(λx .x (y λx .x ))

λy .((λx .x λx .x ) y ) λy .(λz .(λx .x z ) y ) λy .(λz .(z λx .x ) y ) λy .(y (λx .x λx .x ))

λy .(y λz .(λx .x z )) λy .(y λz .(z λx .x )) λy .((λx .x y ) λx .x ) λy .((y λx .x ) λx .x ).

There are 25 affine terms of natural size 7:
(λ0 λλ1) (λ0 λλλ0) (λλ0 λλ0) (λλ1 λ0) (λλλ0 λ0) λ (λλ1 0) λ (λλλ0 0) λ (0 λλ1)

λ (0 λλλ0) λ (λ0 λ1) λ (λ1 λ0) λλ (λ0 1) λλ (1 λ0) λ (λ0 λλ0) λ (λλ0 λ0) λλ (λλ0 0)

λλ (0 λλ0) λλλ (0 1) λλλ (1 0) λλλλ2 λλ (λ0 λ0) λλλ (λ0 0) λλλ (0 λ0) λλλλλ1 λλλλλλ0

The Haskell programs of this development are on GitHub:
https://github.com/PierreLescanne/CountingGeneratingAfffineLinearClosedLambdaterms.

2 RELATEDWORKS

The idea of counting structures in logic started from works of Marek Zaionc and his co-authors who studied quantitative
aspects of propositions in several logics [20, 24, 25]. For instance, they got the amazing result that asymptotically
almost all classical propositions are actually intuitionistic. In other words, at the limit the proportion of truly classical
propositions among all the propositions is negligible. Since counting propositions yields interesting results, this
suggested that proofs (i.e., λ-terms in the perspective of Curry-Howard correspondence) should also be considered
quantitatively and this led David, Raffalli, Theyssier, Grygiel, Kozik and Zaionc [11] to address asymptotic behaviour
using variable size 0 measure (see below), where only the tree structure of the λ-terms (abstractions and applications)
matters for the size. Gittenberger et al. [5] proposed variable size 1 measure where also variables are counted for
one, with no consideration on how far they are bound. For this, they count 1-2-trees (Motzkin trees) enriched by
adding directed edges (pointers). The idea that terms should be counted using de Bruijn indices was proposed by
the author in [21] in the same variable size 1 framework. Then counting with de Bruijn indices in the variable size 0
framework was considered by Grygiel and Lescanne in [15]. Actually, despite they seemed to fit well with affine and
linear terms, it appeared that variable size 0 and variable size 1 measures loose interesting features of the λ-terms
in general, especially they do not account for the distance between the bound variables and their binder. Too many
terms are not discriminated by their size and have the same size. For this reason, the asymptotic growth of the number
of terms w.r.t. their size is super-exponential and the nice theory of analytic function cannot apply and the efficient
method of random generation, called Boltzmann sampler as well, see Lescanne [22] and Bendkowski, Grygiel and
Tarau [4]. The first approach departing from variable size 0 and variable size 1 was an idea of John Tromp [23] based on
a representation of λ-terms as bit strings, the so called binary λ-calculus of Grygiel and Lescanne [16]. Then it appears
that the measure can be simplified and made more natural, yielding the so called natural size of Bendkowski et al. [2, 3].
See Gittenberger and Gołȩbiewski [14] for a synthetic view of both natural size and binary size. Unlike counting linear
and affine closed λ-terms, counting general closed λ-terms is rather complex and indirect. Closed general λ-terms are
the p = 0 case of p-open terms, where p-open terms are λ-terms that require p λ’s to be closed. The equation defining
generating function for counting the p-open terms uses the generating function for counting the p + 1-open terms
which is an unusual induction. Therefore specific techniques of analytic combinatorics have been devised by Bodini,
Gittenberger and Gołȩbiewski [8].

Meanwhile, works started on counting, with variable size 1 or variable size 0, linear closed λ-terms (called BCI)
by Bodini et al. [7], and affine closed λ-terms (called BCK) by Zeilberger [26–28]. Bodini, Gardy, and Jacquot [6] and
Grygiel et al. [17] study both closed and affine λ-terms. To express the integer sequences of numbers counting terms of
Manuscript submitted to ACM
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the same size, those approaches use generating functions computer algebra software computations and none proposes
explicit inductive formulas on the coefficients. Moreover, the natural size is not addressed.

Notice that, from the results of this paper, new sequences A287141, A281270 and A287045 have been entered in the
On-line Encyclopedia of Integer Sequences.

3 NOTATIONS

In this paper we use specific notations.
Given a predicate p, the Iverson notation written [p (x )] is the function taking natural values which is 1 if p (x ) is

true and which is 0 if p (x ) is false.
Letm ∈ Np be the p-tuple (m0, ...,mp−1). In Section 7, we consider also infinite tuples. Thusm ∈ Nω is the sequence

(m0,m1, ...). Notice in the case of infinite tuples, we are only interested in infinite tuples equal to 0 after some index.

• p is the length of m, which we write also length m.
• The p-tuple (0, ...,0) is written 0p . 0ω is the infinite tuple made of 0’s.
• The increment of a p-tuple at i is:

m↑i = n ∈ Np where nj =mj if j , i and ni =mi + 1

• Putting an element x as head of a tuple is written

x : m = x : (m0, ...) = (x ,m0, ...)

tail removes the head of a tuple:
tail(x : m) = m.

• � is the componentwise addition on tuples.

4 SWISSCHEESE

The basic concept is that of m-SwissCheese or Swisscheese of characteristic m or simply SwissCheese if there is
no ambiguity on m. An m-SwissCheese or a SwissCheese of characteristic m, where m is of length p, is a λ-term with
holes at p levels, which are all counted, using m. Holes at level i are written □i . An m-SwissCheese contains holes
□0,... □p−1. A hole □i is meant to be a location for a variable at level i , that is under i λ’s. Beside holes a SwissCheese
contains variables, represented by de Bruijn indices. De Bruijn indices are written n (a now traditional notation) or Sn0.
In this paper, we prefer the notation Sn0 because it shows all the symbols (S and 0) which may contribute to the size, as
it is the case for the natural size. The variables (or the de Bruijn indices) are bound and each binder binds at most one
variable, like in closed and affine λ-terms. A Swisscheese can be seen as an affine or a linear closed λ-terms to which
holes have been added. According to the way bound variables are inserted when creating abstractions (see below), we
create linear or affine SwissCheeses. The holes have size 0. An m-SwissCheese or a SwissCheese of characteristic m has
m0 holes at level 0,m1 holes at level 1, ...mp−1 holes at level p − 1. Let ln,m (resp. an,m) count the linear (resp. the affine)
m-SwissCheese of size n. ln,m = ln,m′ and an,m = an,m′ if m is finite, length m ≤ length m′,mi =m

′
i for i ≤ length m,

andm′i = 0 for i > length m. This statement holds also for m′ ∈ Nω . ln,0n (resp. an,0n ) counts the linear closed (resp.
the closed affine) λ-terms of size n, since it counts SwissCheeses with no hole.
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Fig. 1. Building a SwissCheese by application
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Fig. 2. Abstracting a SwissCheese with no binding

4.1 Growing a SwissCheese

Given two SwissCheeses, we can build a SwissCheese by application like in Figure 1. In Figure 1, c1 is a (0,1,0,0,0)-
SwissCheese, c2 is a (1,1,0,0,0)-SwissCheese and c1@c2 is a (1,2,0,0,0)-SwissCheese. Said otherwise, c1 has character-
istic (0,1,0,0,0), c2 has characteristic (1,1,0,0,0) and c1@c2 has characteristic (1,2,0,0,0). According to what we said,
c1@c2 has characteristic (1,2) as well as characteristic (1,2,0,0, ...) (a tuple starting with 1, followed by 2, followed
by infinitely many 0’s). We could also say that c1 has characteristic (0,1) and c2 has characteristic (1,1) making@ a
binary operation on SwissCheeses of length 2 whereas previously we have made@ a binary operation on SwissCheeses
of length 5. In other words, when counting SwissCheeses of characteristic m, the trailing 0’s are irrelevant. In actual
computations, we make the lengths of characteristics consistent by adding trailing 0’s to too short ones.

Given a SwissCheese, there are two ways to grow a SwissCheese to make another SwissCheese by abstraction.

(1) We put a λ on the top of a m-SwissCheese c . This increases the levels of the holes: a hole □i becomes a hole
□i+1. λc is a (0 : m)-SwissCheese. See Figure 2. This way, no index is bound by the top λ, therefore this does
not preserve linearity (it preserves affinity however). Therefore this construction is only for building affine
SwissCheeses, not for building linear SwissCheeses. In Figure 2, we colour the added λ in blue and we call it
abstraction with no binding.

(2) In the second method for growing a SwissCheese by abstraction, we select first a hole □i , we top the SwissCheese
by a λ, we increment the levels of the other holes and we replace the chosen hole by Si0, i.e., by the de Bruijn
index i . In Figure 3 we colour the added λ in green and we call it abstraction with binding.

4.2 Measuring SwissCheese

We consider several ways of measuring the size of a SwissCheese derived from what is done on λ-terms. In all these
sizes, applications@ and abstractions λ have size 1 and holes have size 0. The differences are in the way variables are
measured.

• Variables have size 0, we call this variable size 0.
Manuscript submitted to ACM



Quantitative aspects of linear and affine closed lambda terms 5

λ

@
c1 c2

mm = λ

@

λ @

@ λ □1

□2 0 □1

kk = λ

@

λ @

@ λ □1

□2 0 S

0

Fig. 3. Abstracting a SwissCheese with binding

• Variables have size 1, we call this variable size 1 .
• Variables (or de Bruijn indices) Si0 have size i + 1, we call this natural size.

5 COUNTING LINEAR CLOSED TERMS

We start with counting linear terms since they are slightly simpler. We will give recursive formulas first for the numbers
lνn,m of linear SwissCheeses of natural size n with holes set by m, then for the numbers l0n,m of linear SwissCheeses
of size n, for variable size 0, with holes set by m, eventually for the numbers l1n,m of linear SwissCheeses of size n,
for variable size 1, with holes set by m. When we do not want to specify a chosen size, we write only ln,m without
superscript. This is for specific cases when the part of the formula we describe does not depend of the measure of the
size.

5.1 Natural size

First let us count linear SwissCheeses with natural size. This is given by the coefficient lν which has two arguments:
the size n of the SwissCheese and a tuple m which specifies the number of holes of each level, i.e, which specifies the
characteristics of the SwissCheese. In other words we are interested in the quantity lνn,m. We assume that the length of
m is p, greater than n.

Size is 0 Whatever size is considered, there is only one SwissCheese of size 0 namely □0. This means that the
number of SwissCheeses of size 0 is 1 if and only if m = (1,0,0, ...):

lν0,m = l
0
0,m = l

1
0,m = [m0 = 1 ∧

p−1∧
j=1

mj = 0]

Size is n + 1 and application If a SwissCheese of size n + 1 has holes set by m and is an application, then it is
obtained from a SwissCheese of size k with holes set by q and a SwissCheese of size n − k with holes set by r,
with m = q � r: ∑

q�r=m

n∑
k=0

lk,q ln−k,r.

Size is n + 1 and abstraction with binding Consider a level i , that is a level of hole □i . If one wants to get a
SwissCheese of size n + 1 by abstraction with binding, first this SwissCheese must be a 0:m-SwissCheese (there
is no hole at level 0 in this SwissCheese), second the SwissCheese in which one chooses the hole □i is a m↑i -
SwissCheese, since one removes a hole □i . Therefore, there aremi + 1 ways to choose a hole □i . In this hole
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6 Pierre Lescanne

we put a term Si−1 0 of size i . Hence, among lνn,0:m SwissCheeses, there are (mi + 1) lνn−i,m↑i 0:m-SwissCheeses
which are abstractions with binding in which a □i has been replaced by the de Bruijn index Si−1 0. Hence by
summing over i , the part of abstraction with binding contributes to lνn+1,0:m as:

p−1∑
i=0

(mi + 1) lνn−i,m↑i .

The subtle case of abstraction with binding is pictured in Figure 3. It works as follows. Consider the case where
the (0,1,1)-SwissCheese λ(λ(□2 0) ((λS0) □1)) is obtained from the (1,2)-SwissCheese λ(□1 0) ((λ□1) □0) of Figure 1
(right) by abstraction with binding. Notice that (0,1,1) = 0 : (1,1) and that (1,2) = (1,1)↑1. Focus on level 1 in
λ(□1 0) ((λ□1) □0). There are 2 holes at level 1, then 2 ways to choose a hole □1 at level 1, because 2 is the second index
of (1,2), which corresponds to level 1. Assume we choose the second hole from the left, the one in red. Put a (green)
lambda on the top. Because of this lambda on the top, raise the levels of the other holes (the leftmost one becomes □2,
the rightmost one becomes □1). Then replace the chosen hole □1 by S 0. We get λ(λ(□2 0) ((λS0) □1)).

We have the following recursive definitions of lνn+1,m:

lνn+1,0:m =
∑

q�r= 0:m

n∑
k=0

lνk,q l
ν
n−k,r +

p−1∑
i=0

(mi + 1) lνn−i,m↑i

lνn+1, (h+1):m =
∑

q�r=(h+1):m

n∑
k=0

lνk,q l
ν
n−k,r

Numbers of linear closed λ-terms with natural size are given in Figure 4.

5.2 Variable size 0

The only difference is that the inserted de Bruijn index has size 0. Therefore we have (mi + 1) l0n,m↑i where we had
(mi + 1) lνn−i,m↑i for natural size. Hence the formulas:

l0n+1,0:m =
∑

q�r= 0:m

n∑
k=0

l0k,q l
0
n−k,r +

p−1∑
i=0

(mi + 1) l0n,m↑i

l0n+1, (h+1):m =
∑

q�r=(h+1):m

n∑
k=0

l0k,q l
0
n−k,r

The sequence l0n,0n of the numbers of linear closed λterms is 0,1,0,5,0,60,0,1105,0,27120,0,828250,which is sequence
A062980 in the On-line Encyclopedia of Integer Sequences with 0’s at even indices.

5.3 Variable size 1

The inserted de Bruijn index has size 1. We have (mi + 1) l1n−1,m where we had (mi + 1) lνn−i,m for natural size.

l1n+1,0:m =
∑

q�r= 0:m

n∑
k=0

l1k,q l
1
n−k,r +

p−1∑
i=0

(mi + 1) l1n−1,m↑i

l1n+1, (h+1):m =
∑

q�r=(h+1):m

n∑
k=0

l1k,q l
1
n−k,r

Manuscript submitted to ACM
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As noticed by Grygiel et al. [17] (Section 6.1), there are no linear closed λ-terms of size 3k and 3k + 1. However for the
values 3k + 2 we get the sequence: 1,5,60,1105,27120, ... which is again sequence A062980 of the On-line Encyclopedia
of Integer Sequences.

6 COUNTING AFFINE CLOSED TERMS

We have just to add the case n , 0 and abstraction without binding. Since no index is added, the size increases by 1. The
numbers are written aνn,m, a0n,m and a1n,m, and an,m when the size does not matter. There are an,m (0 : m)-SwissCheeses
of size n that are abstractions with no binding. We get the recursive formulas:

6.1 Natural size

aνn+1,0:m =
∑

q�r= 0:m

n∑
k=0

aνk,q a
ν
n−k,r +

p−1∑
i=0

(mi + 1) aνn−i,m↑i + a
ν
n,m

aνn+1, (h+1):m =
∑

q�r=(h+1):m

n∑
k=0

aνk,q a
ν
n−k,r

The numbers of affine closed size with natural size are given in Figure 5. Since the sequence was unknown in the
On-line Encyclopedia of Integer Sequences we entered it under the number A287141.

6.2 Variable size 0

a0n+1,0:m =
∑

q�r= 0:m

n∑
k=0

a0k,q a
0
n−k,r +

p−1∑
i=0

(mi + 1) a0n,m↑i + a
0
n,m

a0n+1, (h+1):m =
∑

q�r=(h+1):m

n∑
k=0

a0k,q a
0
n−k,r

The sequence a0n,0ω of the numbers of affine closed terms for variable size 0 is

0,1,2,8,29,140,661,3622,19993,120909,744890,4887401,32795272, ...

From our work, the sequence as been entered by Gheorghe Coserea as A287045 in the On-line Encyclopedia of Integer
Sequences. It corresponds to the coefficients of the generating function A (z,0) where

A (z,u) = u + z (A (z,u))2 + z
∂A (z,u)

∂u
+ zA (z,u).

6.3 Variable size 1

a1n+1,0:m =
∑

q�r= 0:m

n−1∑
k=0

a1k,q a
1
n−k,r +

p−1∑
i=0

(mi + 1) a1n−1,m↑i + a
1
n,m

a1n+1, (h+1):m =
∑

q�r=(h+1):m

n∑
k=0

a1k,q a
1
n−k,r

The sequence a1n,0ω of the numbers of affine closed terms for variable size 1 is

0,0,1,2,3,9,30,81,242,838,2799,9365,33616,122937,449698,1696724,6558855, ...
Manuscript submitted to ACM
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From our work, the sequence as been entered by Gheorghe Coserea as A281270 in the On-line Encyclopedia of Integer
Sequences. It corresponds to the coefficient of the generating function Â (z,0) where Â (z,u) is the solution of the
functional equation:

Â (z,u) = zu + z (Â (z,u))2 + z
∂Â (z,u)

∂u
+ zÂ (z,u).

Notice that this corrects the wrong assumptions of [17] (Section 6.2), which refers actually to sequence A073950 which
starts with 1,2,3,9,30,81, but the 7th of A073950 is 225 instead of 242.

7 GENERATING FUNCTIONS

Flajolet and Sedgewick start the preface of their famous book [13] by the following sentence:

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large structured combinato-

rial configurations, through an approach based extensively on analytic methods. Generating functions

are the central objects of study of the theory.

Recall (see [13] Appendix A.5) that generating functions or formal power series extend the notion of polynomials to
infinite series of the form:

f =
∑
n≥0

fnz
n .

They are used for studying integer sequences counting structures. The idea of considering functions like F (z,u) for
linear and affine λ-terms is due to Bendkowski, Bodini, Dovgal and Grygiel (private communication) and is not really
familiar in this framework.

Consider families Fm (z) of generating functions indexed by m, where m is an infinite tuple of naturals. In fact, we
are interested in the infinite tuples m that are always 0, except a finite number of indices, in order to compute F0ω (z),
which corresponds to closed λ-terms. Let u stand for the infinite sequences of variables (u0,u1, ...) and um stands for
(um0

0 ,u
m1
1 , ...,u

mn
n , ...) and tail (u) stand for (u1, ...). We consider the series of two variables z and u or double series

associated with Fm (z):
F (z,u) =

∑
m∈Nω

Fm (z) um.

Natural size

Lνm (z) is associated with the numbers of linear SwissCheeses for natural size:

Lν0:m (z) = z
∑

m′�m′′=0:m
Lνm′ (z)L

ν
m′′ (z) + z

∞∑
i=0

(mi + 1)ziLνm↑i (z)

Lν(h+1):m (z) = [h = 0 ∧
∞∧
i=0

mi = 0] + z
∑

m′�m′′=(h+1):m
Lνm′ (z)L

ν
m′′ (z)

Lν0ω is the generating function for the linear closed λ-terms. Lν (z,u) is the double series associated with Lνm (z), i.e.,

Lν (z,u) =
∑

m∈Nω
Lνm (z)um.

Lν (z,u) is solution of the equation:

Lν (z,u) = u0 + z (L
ν (z,u))2 +

∞∑
i=1

zi
∂Lν (z, tail (u))

∂ui

Manuscript submitted to ACM
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Lν (z,0ω ) is the generating function of linear closed λ-terms.
For affine SwissCheeses we get:

Aν0:m (z) = z
∑

m′�m′′=0:m
Aνm′ (z)A

ν
m′′ (z) + z

∞∑
i=0

(mi + 1)ziAνm↑i (z) + z A
ν
m (z)

Aν(h+1):m (z) = [h = 0 +
∞∧
i=0

mi = 0] + z
∑

m′�m′′=(h+1):m
Aνm′ (z)A

ν
m′′ (z)

Aν0ω is the generating function for the linear closed λ-terms. Aν (z,u) is the double series associated with Aνm (z) and is
solution of the equation:

Aν (z,u) = u0 + z (A
ν (z,u))2 +

∞∑
i=1

zi
∂Aν (z, tail (u))

∂ui
+ zAν (z, tail (u))

Aν (z,0ω ) is the generating function of affine closed λ-terms.

Variable size 0

L0m is associated with the numbers of linear SwissCheeses for variable size 0:

L00:m (z) = z
∑

m′�m′′=m
L0m′ (z)L

0
m′′ (z) + z

∞∑
i=0

(mi + 1)L0m↑i (z)

L0(h+1):m (z) = [h = 0 +
∞∧
i=0

mi = 0] +
∑

m′�m′′=m
zL0m′ (z)L

0
m′′ (z)

L00ω is the generating function for the linear closed λ-terms. L0 (z,u) is the double series associated with L0m (z) and is
solution of the equation:

L0 (z,u) = u0 + z (L
0 (z,u))2 +

∞∑
i=1

∂L0 (z, tail (u))
∂ui

L0 (z,0ω ) is the generating function of linear closed λ-terms.
For affine SwissCheeses we get:

A0
0:m (z) = z

∑
m′�m′′=0:m

A0
m′ (z)A

0
m′′ (z) + z

∞∑
i=0

(mi + 1)A0
m↑i (z) + z A

0
m (z)

A0
(h+1):m (z) = [h = 0 +

∞∧
i=0

mi = 0] +
∑

m′�m′′=(h+1):m
zA0

m′ (z)A
0
m′′ (z)

A0
0ω is the generating function for the affine linear λ-terms. A0 (z,u) is the double series associated with A0

m (z) and is
solution of the equation:

A0 (z,u) = u0 + z (A
0 (z,u))2 +

∞∑
i=1

∂A0 (z, tail (u))
∂ui

+ zA0 (z, tail (u))

A0 (z,0ω ) is the generating function of linear closed λ-terms.
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Variable size 1

The generating functions for l1n,m are:

L10:m (z) = z
∑

m′�m′′=m
L1m′ (z)L

1
m′′ (z) + z

2
∞∑
i=0

(mi + 1)L1m↑i (z)

L1(h+1):m (z) = [h = 0 +
∞∧
i=0

mi = 0] +
∑

m′�m′′=m
zL1m′ (z)L

1
m′′ (z)

Then we get as associated double series :

L1 (z,u) = u0 + z (L
1 (z,u))2 + z

∞∑
i=1

∂L1 (z, tail (u))
∂ui

8 EFFECTIVE COMPUTATIONS

In this section we present Haskell programs for effectively computing the values of the sequences counting affine and
linear λ-terms of size n. We are able to compute values for natural size up to 100 on a desk computer with a Pentium(R)
Dual-Core at 2.8GHz.

The definition of the coefficients aνm and others is highly recursive and requires a mechanism of memoization. In
Haskell, this can be done by using the call by need which is at the core of this language. Assume we want to compute
the values of aνm until a value upBound for n. We use a recursive data structure:

data Mem = Mem [Mem] | Load [Integer]

in which we store the computed values of a function

a :: Int -> [Int] -> Integer

In our implementation the depth of the recursion of Mem is limited by upBound, which is also the longest tuple m for
which we will compute aνm. Associated with Mem there is a function

access :: Mem -> Int -> [Int] -> Integer

access (Load l) n [] = l !! n

access (Mem listM) n (k:m) = access (listM !! k) n m

The leaves of the tree memory, corresponding to Load, contains the values of the function:

memory :: Int -> [Int] -> Mem

memory 0 m = Load [a n (reverse m) | n<-[0..]]

memory k m = Mem [memory (k-1) (j:m) | j<-[0..]]

The memory relative to the problem we are interested in is

theMemory = memory (bound) []

and the access to theMemory is given by a specific function:

acc :: Int -> [Int] -> Integer acc n m = access theMemory n m

Notice that a and acc have the same signature. This is not a coincidence, since acc accesses values of a already computed.
Now we are ready to express a:

a 0 m = iv (head m == 1 && all ((==) 0) (tail m))

a n m = aAPP n m + aABSwB n m + aABSnB n m
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Quantitative aspects of linear and affine closed lambda terms 11

aAPP counts affine terms that are applications:

aAPP n m = sum (map (\textbackslash((q,r),(k,nk))->(acc k q)*(acc nk r)) (allCombinations m (n-1)))

where allCombinations returns a list of all the pairs of pairs (m′,m′′) such m = m′ � m′′ and of pairs (k,nk ) such
that k + nk = n. aABSwB counts affine terms that are abstractions with binding.

aABSwB n m

| head m == 0 = sum [aABSAtD n m i |i<-[1..(n-1)]]

| otherwise = 0

aABSAtD counts affine terms that are abstractions with binding at level i:

aABSAtD n m i = (fromIntegral (1 + m!!i))*(acc (n-i-1) (tail (inc i m) ++ [0]))

aABSnB counts affine terms that are abstractions with no binding:

aABSnB n m

| head m == 0 = (acc (n-1) (tail m ++ [0]))

| otherwise = 0

Anyway the efficiency of this program is limited by the size of the memory, since for computing aνn,0n , for instance, we
need to compute aνr for about n! values.

9 GENERATING AFFINE AND LINEAR TERMS

In this section we present Haskell programs for effectively generating all affine λ-terms and all linear λ-terms of size n.
We can use those programs to generate affine or linear λ-terms of a given size.

By relatively small changes it is possible to build programs which generate linear and affine terms. For instance for
generating affine terms we get:

amg :: Int -> [Int] -> [SwissCheese]

amg 0 m = if (head m == 1 && all ((==) 0) (tail m)) then [Box 0] else []

amg n m = allAPP n m ++ allABSwB n m ++ allABSnB n m

allAPP :: Int -> [Int] -> [SwissCheese]

allAPP n m = foldr (++) [] (map (\textbackslash((q,r),(k,nk))-> appSC (cartesian (accAG k q)

(accAG nk r))

(allCombinations m (n-1)))

allABSAtD :: Int -> [Int] -> Int -> [SwissCheese]

allABSAtD n m i = foldr (++) [] (map (abstract (i-1)) (accAG (n - i - 1)

(tail (inc i m) ++ [0])))

allABSwB :: Int -> [Int] -> [SwissCheese]

allABSwB n m

| head m == 0 = foldr (++) [] [allABSAtD n m i |i<-[1..(n-1)]]

| otherwise = []
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allABSnB :: Int -> [Int] -> [SwissCheese]

allABSnB n m

| head m == 0 = map (AbsSC . raise) (accAG (n-1) (tail m ++ [0]))

| otherwise = []

memoryAG :: Int -> [Int] -> MemSC

memoryAG 0 m = LoadSC [amg n (reverse m) | n<-[0..]]

memoryAG k m = MemSC [memoryAG (k-1) (j:m) | j<-[0..]]

theMemoryAG = memoryAG (upBound) []

accAG :: Int -> [Int] -> [SwissCheese]

accAG n m = accessSC theMemoryAG n m

From this, we get programs for generating random affine closed λ-terms or random linear closed λ-terms as follows: if
we want a random linear closed λ-term of a given size n, we throw a random number, say p, between 1 and ln,0n and
we look for the pth in the list of all the linear closed λ-terms of size n. Haskell laziness mimics the unranking. Due
to high requests in space, we cannot go further than the random generation of linear closed λ-terms of size 23 and
affine closed λ-terms of size 19 . There are similar programs for generating all the terms of size n for variable size 0 and
variable size 1.

10 NORMAL FORMS

Normal forms are λ-terms with no β-redex, i.e., with no λ-term of the form (λM ) P . In this section, we are interested
with counting and generating normal forms among affine or linear λ-terms.

From the method used for counting affine and linear closed terms, it is easy to deduce method for counting affine
and linear closed normal forms. Like before, we use SwissCheeses.

10.1 Natural size

Affine closed normal forms. Let us call anf νn,m the numbers of affine SwissCheeses with no β-redex and aneνn,m the
numbers of neutral affine SwissCheeses, i.e., affine SwissCheeses with no β-redexes that are sequences of applications
starting with a de Bruijn index. In addition we count:

• anf νλwn,m the number of affine SwissCheeses with no β-redex which are abstraction with a binding of a de
Bruijn index,
• anf νλnn,m the number of affine SwissCheeses with no β-redex which are abstraction with no binding.

anf ν0,m = aneν0,m

anf νn+1,m = aneνn+1,m + anf
νλwn+1,m + anf

νλnn+1,m
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where

aneν0,m = [m0 = 1 ∧
p−1∧
j=1

mj = 0]

aneνn+1,m =
∑

q�r= 0:m

n∑
k=0

aneνk,q anf
ν
n−k,r

and

anf νλwn+1,m =

n∑
i=0

(mi + 1) anf νn−i,m↑i

and

anf νλnn+1,m = anf νn,m

There are two generating functions, Anf and Ane , which are associated with anf νn,m and anf νn,m:

Anf (z,u) = Ane (z,u) +
∞∑
i=1

zi
∂Anf (z, tail (u))

∂ui
+ zAnf (z, tail (u))

Ane (z,u) = u0 + zA
ne (z,u)Anf (z,u)

Linear closed normal forms. Let us call ln f νn,m the numbers of linear SwissCheeses with no β-redex and lneνn,m the
numbers of neutral linear SwissCheeses, linear SwissCheeses with no β-redexes that are sequences of applications
starting with a de Bruijn index. In addition we count ln f νλwn,m the number of linear SwissCheeses with no β-redex
which are abstraction with a binding of a de Bruijn index.

ln f ν0,m = lneν0,m

ln f νn+1,m = lneνn+1,m + ln f
νλwn+1,m

where

lneν0,m = [m0 = 1 ∧
p−1∧
j=1

mj = 0]

lneνn+1,m =
∑

q�r= 0:m

n∑
k=0

lneνk,q ln f
ν
n−k,r

and

ln f νλwn+1,m =

p−1∑
i=0

(mi + 1) ln f νn−i,m↑i

with the two generating functions:

Lnf ,ν (z,u) = Lne,ν (z,u) +
∞∑
i=1

zi
∂Lnf ,ν (z, tail (u))

∂ui

Lne,ν (z,u) = u0 + zL
ne,ν (z,u)Lnf ,ν (z,u)

Manuscript submitted to ACM



14 Pierre Lescanne

We also deduce programs for generating all the affine or linear closed normal forms of a given size from which we
deduce programs for generating random affine or linear closed normal forms of a given size. For instance, here are three
randoms linear closed normal forms (using de Bruijn indices) of natural size 28:

λλλλ (2 λ ((1 2) λ (0 (5 1)))) λ (0 λλ (1 λλ ((0 (2 λλ ((1 λ0) 0))) 1))) λ ((0 λ0) λλ ((0((1 λ0)λλ (1 (0 λ0))))λ0))

10.2 Variable size 0

Linear closed normal forms. A little like previously, let us call ln f 0n,m the numbers of linear SwissCheeses with no β-
redex and lne0n,m the numbers of neutral linear SwissCheeses, linear SwissCheeses with no β-redexes that are sequences
of applications starting with a de Bruijn index. In addition we count ln f 0λwn,m the number of linear SwissCheeses
with no β-redex which are abstraction with a binding of a de Bruijn index. We assume that the reader knows now how
to proceed.

ln f 00,m = lne00,m

ln f 0n+1,m = lne0n+1,m + ln f
0λwn+1,m

where

lne00,m = [m0 = 1 ∧
p−1∧
j=1

mj = 0]

lne0n+1,m =
∑

q�r= 0:m

n∑
k=0

lne0k,q ln f
0
n−k,r

ln f 0λwn+1,m =

n∑
i=0

(mi + 1) ln f 0n,m↑i

and the two generating functions:

Lnf ,0 (z,u) = Lne,0 (z,u) +
∞∑
i=1

∂Lnf ,0 (z, tail (u))
∂ui

Lne,0 (z,u) = u0 + zL
ne,0 (z,u)Lnf ,0 (z,u)

With no surprise we get for ln f 0n,0n the sequence:

0,1,0,3,0,26,0,367,0,7142,0,176766,0,5304356, ...

mentioned by Zeilberger in [26] and listing the coefficients of the generating function Lnf ,0 (z,0ω ).
We let the reader deduce how to count affine closed normal forms for variable size 0 and linear closed and affine

normal forms for variable size 1 alike. Notice that the Haskell programs are on the GitHub site.

DATA

In this Figure 4, 5 and 6 we give the first values of lνn,0n , a
ν
n,0n , and anf

ν
n,0n .
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0 0
1 0
2 1
3 0
4 0
5 3
6 2
7 0
8 16
9 24
10 8
11 117
12 252
13 180
14 1024
15 2680
16 2952
17 10350
18 29420
19 42776
20 116768
21 335520
22 587424
23 1420053
24 3976424
25 7880376
26 18103936
27 48816576
28 104890704
29 237500826
30 617733708
31 1396750576
32 3171222464
33 8014199360
34 18688490336
35 42840683418
36 106063081288
37 251769197688
38 583690110208
39 1425834260080
40 3417671496432
41 8007221710652
42 19404994897976
43 46747189542384
44 110498345360800
45 266679286291872
46 644021392071840
47 1533054190557133
48 3693823999533360
49 8931109667692464
50 21375091547312128

51 51496022711337536
52 124591137939086496
53 299402908258405410
54 721839933329222924
55 1747307145272084192
56 4211741383777966592
57 10165998012602469888
58 24620618729658655936
59 59482734150603634286
60 143764591607556354344
61 348379929166234350008
62 843169238563254723200
63 2040572920613086128400
64 4948102905207104837424
65 11992521016286173712196
66 29059897435554891991144
67 70516464312280927105392
68 171105110698292441423968
69 415095704639682396539232
70 1008016383720573882885792
71 2448305474519849567597826
72 5945721872300885649415632
73 14449388516068567845838736
74 35125352062243788817753856
75 85382289240293493116120064
76 207650379931166057815603296
77 505172267243918348155299780
78 1229005880128485245247395000
79 2991079243470267667831893408
80 7281852742753184123608419712
81 17729171587798767750815341440
82 43177454620325445122944305984
83 105185452787117035266315446868
84 256273862465425158211948020048
85 624527413292252904584121980208
86 1522355057007327280427270436480
87 3711429775030704772089070886624
88 9050041253711022076275958636128
89 22073150301758857110072042919800
90 53844910909398928990641101351664
91 131371135544173914537076774932576
92 320588677238085642820920910555968
93 782465218885869813183863213231424
94 1910077425906069707804966102543936
95 4663586586924802791117231052636349
96 11388259565942452837717688743953504
97 27813754361897984543467478917223008
98 67941781284113201998645699501746176
99 165989485724048964272023600773271424
100 405588809305168453963137377442321728

Fig. 4. Natural size: numbers of linear closed λ-terms of size n from 0 to 100
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0 0
1 0
2 1
3 1
4 2
5 5
6 12
7 25
8 64
9 166
10 405
11 1050
12 2763
13 7239
14 19190
15 51457
16 138538
17 374972
18 1020943
19 2792183
20 7666358
21 21126905
22 58422650
23 162052566
24 450742451
25 1256974690
26 3513731861
27 9843728012
28 27633400879
29 77721141911
30 218984204904
31 618021576627
32 1746906189740
33 4945026080426
34 14017220713131
35 39784695610433
36 113057573020242
37 321649935953313
38 916096006168770
39 2611847503880831
40 7453859187221508
41 21292177500898858
42 60875851617670699
43 174195916730975850
44 498863759031591507
45 1429753835635525063
46 4100730353324163138
47 11769771167532816128
48 33804054749367200891
49 97151933333668422006
50 279385977720772581435

51 803928779462727941247
52 2314623127904669382002
53 6667810436356967142481
54 19218411059885449257096
55 55421020161661024650870
56 159899218321197381984561
57 461557020400062903560120
58 1332920908954281811200519
59 3851027068336583693412910
60 11131032444503136571789527
61 32186581221116996967632029
62 93108410048006285466998584
63 269446191702411420790402033
64 780043726186403167392453886
65 2259043189995515315930349650
66 6544612955390252336187266873
67 18966737218108971681014445025
68 54985236298270057405776629352
69 159455737350384637847783055311
70 462562848624435724964181323484
71 1342251884451664733064283251627
72 3896065622127200625653134100538
73 11312117748805772104795220337816
74 32853646116456632492645965741531
75 95442534633482460553801961967438
76 277342191547330839640289978813667
77 806125189457291902863848267463755
78 2343682130911232279285707290604156
79 6815564023736534208079367816340359
80 19824812322145727566417303371819466
81 57679033022808238913186144092831856
82 167851787082561392384648248846390041
83 488574368670832093243802790464796207
84 1422426342380883254459783410845365006
85 4142104564089044203901190817275864665
86 12064305885705003967881526911560653106
87 35145647815239737143373764367447378676
88 102406303052123097062053564818109468705
89 298446029598661205216170897850336550644
90 869935452705023302189031644932803990417
91 2536229492704354513309696228592784181158
92 7395518143425160073537967606298755947391
93 21568776408467701927134211542478146593789
94 62915493935623036562559989770249004382816
95 183553775888862113259168150130266362416356
96 535600661621556969155453544692826625532079
97 1563109720672526919899689366626240867515144
98 4562542818801138452310024131223304186909233
99 13319630286623965617386598746472280781972745
100 38890520391341859449843201188612375394153776

Fig. 5. Natural size: numbers of affine closed λ-terms of size n from 0 to 100

12 CONCLUSION

This presentation shares similarities with those of [4, 15, 16]. Instead of considering the size n and the boundm of free
indices like in expressions of the form:

Tn+1,m = Tn,m+1 +
n∑
i=0

Ti,mTn−i,m
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0 0
1 0
2 1
3 1
4 2
5 3
6 7
7 10
8 20
9 40
10 77
11 160
12 318
13 671
14 1405
15 2981
16 6312
17 13672
18 29399
19 63697
20 139104
21 304153
22 667219
23 1469241
24 3247176
25 7184288
26 15949179
27 35480426
28 79083472
29 176607519
30 395119875
31 885450388
32 1987289740
33 4466760570
34 10053371987
35 22656801617
36 51121124910
37 115478296639
38 261139629999
39 591138386440
40 1339447594768

41 3037843646560
42 6895841598615
43 15666498585568
44 35620848278448
45 81052838239593
46 184564847153821
47 420564871255118
48 958975854646984
49 2188068392529104
50 4995528560788451
51 11411921511827547
52 26084524952754538
53 59654682828889245
54 136500653558490261
55 312496493161999851
56 715760763686417314
57 1640194881084692664
58 3760284787917366081
59 8624561382605096780
60 19789639944299656346
61 45427337308377290201
62 104320438668034814453
63 239656248361374562433
64 550769764273325683828
65 1266217774600330829940
66 2912050679107531357883
67 6699418399886008666265
68 15417663698156810292010
69 35492710197462925262295
70 81732521943462960197057
71 188270363628099910161436
72 433807135012774797924026
73 999851681931974600766994
74 2305129188866501774481545
75 5315847675735178072941600
76 12262083079763320881047944
77 28292248892584567512609357
78 65294907440089718078048829
79 150729070403767032817820543
80 348031015577337732605480908

Fig. 6. Natural size: numbers of affine closed normal forms of size n from 0 to 80

here we replacem by the characteristic m. As suggested by Dan Dougherty, we can imagine a common framework. On
the other hand, as noticed by Paul Tarau, this approach has features of dynamic programming [10], which makes it
somewhat efficient.
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