Quantitative aspects of linear and affine closed lambda terms

PIERRE LESCANNE, University of Lyon, École normale supérieure de Lyon, LIP (UMR 5668, CNRS, ENS Lyon,

UCBL, INRIA), France

Affine λ-terms are λ-terms in which each bound variable occurs at most once and linear λ-terms are λ-terms in which each bound variable occurs once and only once. In this paper we count the number of affine closed λ-terms of size n, linear closed λ-terms of size n, affine closed β-normal forms of size n and linear closed β-normal forms of size n, for several measures of the size of λ-terms. From these formulas, we show how we can derive programs for generating all the terms of size n for each class. The foundation of all of this is a specific data structure, made of contexts in which one counts all the holes at each level of abstractions by λ 's.

CCS Concepts: • Theory of computation \rightarrow Linear logic; Type theory; Generating random combinatorial structures;
Additional Key Words and Phrases: lambda calculus, combinatorics, functional programming

ACM Reference Format:

Pierre Lescanne. 2017. Quantitative aspects of linear and affine closed lambda terms. ACM Trans. Comput. Logic 1, 1, Article 1 (January 2017), 18 pages. https://doi.org/10.1145/3173547

1 INTRODUCTION

The λ-calculus [1] is a well known formal system designed by Alonzo Church [9] for studying the concept of function. It has three kinds of basic operations: variables, application and abstraction (with an operator λ which is a binder of variables). ${ }^{1}$

In this paper we are interested in terms in which bound variables occur once. A closed λ-term is a λ-term in which there are no free variables, i.e., only bound variables. An affine λ-term (or BCK term) is a λ-term in which bound variables occur at most once. A linear λ-term (or BCI term) is a λ-term in which bound variables occur once and only once.

In this paper we propose a method for counting and generating (including random generation) linear and affine closed λ-terms based on a data structure which we call SwissCheese because of its holes. Actually we count those λ-terms up to α-conversion. Therefore it is adequate to use de Bruijn indices [12], because a term with de Bruijn indices represents an α-equivalence class. An interesting aspect of these terms is the fact that they are simply typed as shown by Hindley [18, 19]. For instance, generated by the program of Section 9, here are the 16 linear terms of natural size 8:

$$
\begin{array}{llllllll}
(\lambda 0(\lambda 0 \lambda 0)) & (\lambda 0 \lambda(\lambda 00)) & (\lambda 0 \lambda(0 \lambda 0)) & ((\lambda 0 \lambda 0) \lambda 0) & (\lambda(\lambda 00) \lambda 0) & (\lambda(0 \lambda 0) \lambda 0) & \lambda(\lambda 0(\lambda 00)) & \lambda(\lambda 0(0 \lambda 0)) \\
\lambda((\lambda 0 \lambda 0) 0) & \lambda(\lambda(\lambda 00) 0) & \lambda(\lambda(0 \lambda 0) 0) & \lambda(0(\lambda 0 \lambda 0)) & \lambda(0 \lambda(\lambda 00)) & \lambda(0 \lambda(0 \lambda 0)) & \lambda((\lambda 00) \lambda 0) & \lambda((0 \lambda 0) \lambda 0)
\end{array}
$$

written with explicit variables

$$
\lambda x \cdot x(\lambda x \cdot x \lambda x \cdot x) \quad \lambda x . x \lambda y .(\lambda x \cdot x y) \quad \lambda x \cdot x \lambda y .(y \lambda x \cdot x) \quad(\lambda x \cdot x \lambda x \cdot x) \lambda x \cdot x
$$

${ }^{1}$ If the reader is not familiar with the λ-calculus, we advise her (him) to read the introduction of [16], for instance.
Author's address: Pierre Lescanne, University of Lyon, École normale supérieure de Lyon, LIP (UMR 5668, CNRS, ENS Lyon, UCBL, INRIA), 46 allée d'Italie, 69364, Lyon, France, pierre.lescanne@ens-lyon.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
Manuscript submitted to ACM

$$
\begin{array}{ccccc}
\lambda y \cdot(\lambda x \cdot x y) \lambda x \cdot x & \lambda y \cdot(y \lambda x \cdot x) \lambda x \cdot x & \lambda y \cdot(\lambda x \cdot x(\lambda x \cdot x y)) & \lambda y \cdot(\lambda x \cdot x(y \lambda x \cdot x)) \\
\lambda y \cdot((\lambda x \cdot x \lambda x \cdot x) y) & \lambda y \cdot(\lambda z \cdot(\lambda x \cdot x z) y) & \lambda y \cdot(\lambda z \cdot(z \lambda x \cdot x) y) & \lambda y \cdot(y(\lambda x \cdot x \lambda x \cdot x)) \\
\lambda y \cdot(y \lambda z \cdot(\lambda x \cdot x z)) & \lambda y \cdot(y \lambda z \cdot(z \lambda x \cdot x)) & \lambda y \cdot((\lambda x \cdot x y) \lambda x \cdot x) & \lambda y \cdot((y \lambda x \cdot x) \lambda x \cdot x) .
\end{array}
$$

There are 25 affine terms of natural size 7:

$$
\begin{aligned}
& \text { (} \lambda 0 \lambda \lambda 1 \text {) } \quad(\lambda 0 \lambda \lambda \lambda 0) \quad(\lambda \lambda 0 \lambda \lambda 0) \quad(\lambda \lambda 1 \lambda 0) \quad(\lambda \lambda \lambda 0 \lambda 0) \quad \lambda(\lambda \lambda 10) \quad \lambda(\lambda \lambda \lambda 00) \quad \lambda(0 \lambda \lambda 1) \\
& \begin{array}{llllllll}
\lambda(0 \lambda \lambda \lambda 0) & \lambda(\lambda 0 \lambda 1) & \lambda(\lambda 1 \lambda 0) & \lambda \lambda(\lambda 01) & \lambda \lambda(1 \lambda 0) & \lambda(\lambda 0 \lambda \lambda 0) & \lambda(\lambda \lambda 0 \lambda 0) & \lambda \lambda(\lambda \lambda 00)
\end{array} \\
& \lambda \lambda(0 \lambda \lambda 0) \quad \lambda \lambda \lambda(01) \quad \lambda \lambda \lambda(10) \quad \lambda \lambda \lambda \lambda 2 \quad \lambda \lambda(\lambda 0 \lambda 0) \quad \lambda \lambda \lambda(\lambda 00) \quad \lambda \lambda \lambda(0 \lambda 0) \quad \lambda \lambda \lambda \lambda \lambda 1 \quad \lambda \lambda \lambda \lambda \lambda \lambda 0
\end{aligned}
$$

The Haskell programs of this development are on GitHub: https://github.com/PierreLescanne/CountingGeneratingAfffineLinearClosedLambdaterms.

2 RELATED WORKS

The idea of counting structures in logic started from works of Marek Zaionc and his co-authors who studied quantitative aspects of propositions in several logics [20, 24, 25]. For instance, they got the amazing result that asymptotically almost all classical propositions are actually intuitionistic. In other words, at the limit the proportion of truly classical propositions among all the propositions is negligible. Since counting propositions yields interesting results, this suggested that proofs (i.e., λ-terms in the perspective of Curry-Howard correspondence) should also be considered quantitatively and this led David, Raffalli, Theyssier, Grygiel, Kozik and Zaionc [11] to address asymptotic behaviour using variable size 0 measure (see below), where only the tree structure of the λ-terms (abstractions and applications) matters for the size. Gittenberger et al. [5] proposed variable size 1 measure where also variables are counted for one, with no consideration on how far they are bound. For this, they count 1-2-trees (Motzkin trees) enriched by adding directed edges (pointers). The idea that terms should be counted using de Bruijn indices was proposed by the author in [21] in the same variable size 1 framework. Then counting with de Bruijn indices in the variable size 0 framework was considered by Grygiel and Lescanne in [15]. Actually, despite they seemed to fit well with affine and linear terms, it appeared that variable size 0 and variable size 1 measures loose interesting features of the λ-terms in general, especially they do not account for the distance between the bound variables and their binder. Too many terms are not discriminated by their size and have the same size. For this reason, the asymptotic growth of the number of terms w.r.t. their size is super-exponential and the nice theory of analytic function cannot apply and the efficient method of random generation, called Boltzmann sampler as well, see Lescanne [22] and Bendkowski, Grygiel and Tarau [4]. The first approach departing from variable size 0 and variable size 1 was an idea of John Tromp [23] based on a representation of λ-terms as bit strings, the so called binary λ-calculus of Grygiel and Lescanne [16]. Then it appears that the measure can be simplified and made more natural, yielding the so called natural size of Bendkowski et al. [2, 3]. See Gittenberger and Gołȩbiewski [14] for a synthetic view of both natural size and binary size. Unlike counting linear and affine closed λ-terms, counting general closed λ-terms is rather complex and indirect. Closed general λ-terms are the $p=0$ case of p-open terms, where p-open terms are λ-terms that require $p \lambda$'s to be closed. The equation defining generating function for counting the p-open terms uses the generating function for counting the $p+1$-open terms which is an unusual induction. Therefore specific techniques of analytic combinatorics have been devised by Bodini, Gittenberger and Gołȩbiewski [8].

Meanwhile, works started on counting, with variable size 1 or variable size 0 , linear closed λ-terms (called BCI) by Bodini et al. [7], and affine closed λ-terms (called BCK) by Zeilberger [26-28]. Bodini, Gardy, and Jacquot [6] and Grygiel et al. [17] study both closed and affine λ-terms. To express the integer sequences of numbers counting terms of
the same size, those approaches use generating functions computer algebra software computations and none proposes explicit inductive formulas on the coefficients. Moreover, the natural size is not addressed.

Notice that, from the results of this paper, new sequences A287141, A281270 and A287045 have been entered in the On-line Encyclopedia of Integer Sequences.

3 NOTATIONS

In this paper we use specific notations.
Given a predicate p, the Iverson notation written $[p(x)]$ is the function taking natural values which is 1 if $p(x)$ is true and which is 0 if $p(x)$ is false.

Let $\mathbf{m} \in \mathbb{N}^{p}$ be the p-tuple (m_{0}, \ldots, m_{p-1}). In Section 7 , we consider also infinite tuples. Thus $\mathbf{m} \in \mathbb{N}^{\omega}$ is the sequence (m_{0}, m_{1}, \ldots). Notice in the case of infinite tuples, we are only interested in infinite tuples equal to 0 after some index.

- p is the length of \mathbf{m}, which we write also length \mathbf{m}.
- The p-tuple $(0, \ldots, 0)$ is written $0^{p} .0^{\omega}$ is the infinite tuple made of 0 's.
- The increment of a p-tuple at i is:

$$
\mathbf{m}^{\uparrow i}=\mathbf{n} \in \mathbb{N}^{p} \text { where } n_{j}=m_{j} \text { if } j \neq i \text { and } n_{i}=m_{i}+1
$$

- Putting an element x as head of a tuple is written

$$
x: \mathbf{m}=x:\left(m_{0}, \ldots\right)=\left(x, m_{0}, \ldots\right)
$$

tail removes the head of a tuple:

$$
\operatorname{tail}(x: \mathbf{m})=\mathbf{m} .
$$

- \oplus is the componentwise addition on tuples.

4 SWISSCHEESE

The basic concept is that of \mathbf{m}-SwissCheese or Swisscheese of characteristic m or simply SwissCheese if there is no ambiguity on \mathbf{m}. An \mathbf{m}-SwissCheese or a SwissCheese of characteristic \mathbf{m}, where \mathbf{m} is of length p, is a λ-term with holes at p levels, which are all counted, using \mathbf{m}. Holes at level i are written \square_{i}. An \mathbf{m}-SwissCheese contains holes $\square_{0}, \ldots \square_{p-1}$. A hole \square_{i} is meant to be a location for a variable at level i, that is under $i \lambda$'s. Beside holes a SwissCheese contains variables, represented by de Bruijn indices. De Bruijn indices are written \underline{n} (a now traditional notation) or $S^{n} 0$. In this paper, we prefer the notation $S^{n} 0$ because it shows all the symbols (S and 0) which may contribute to the size, as it is the case for the natural size. The variables (or the de Bruijn indices) are bound and each binder binds at most one variable, like in closed and affine λ-terms. A Swisscheese can be seen as an affine or a linear closed λ-terms to which holes have been added. According to the way bound variables are inserted when creating abstractions (see below), we create linear or affine SwissCheeses. The holes have size 0 . An \mathbf{m}-SwissCheese or a SwissCheese of characteristic \mathbf{m} has m_{0} holes at level $0, m_{1}$ holes at level $1, \ldots m_{p-1}$ holes at level $p-1$. Let $l_{n, \mathrm{~m}}$ (resp. $a_{n, \mathrm{~m}}$) count the linear (resp. the affine) m -SwissCheese of size $n . l_{n, \mathrm{~m}}=l_{n, \mathrm{~m}^{\prime}}$ and $a_{n, \mathrm{~m}}=a_{n, \mathrm{~m}^{\prime}}$ if \mathbf{m} is finite, length $\mathrm{m} \leq$ length $\mathrm{m}^{\prime}, m_{i}=m_{i}^{\prime}$ for $i \leq$ length \mathbf{m}, and $m_{i}^{\prime}=0$ for $i>$ length \mathbf{m}. This statement holds also for $\mathbf{m}^{\prime} \in \mathbb{N}^{\omega} \cdot l_{n, 0^{n}}$ (resp. $a_{n, 0^{n}}$) counts the linear closed (resp. the closed affine) λ-terms of size n, since it counts SwissCheeses with no hole.

Fig. 1. Building a SwissCheese by application

Fig. 2. Abstracting a SwissCheese with no binding

4.1 Growing a SwissCheese

Given two SwissCheeses, we can build a SwissCheese by application like in Figure 1. In Figure 1, c_{1} is a $(0,1,0,0,0)-$ SwissCheese, c_{2} is a $(1,1,0,0,0)$-SwissCheese and $c_{1} @ c_{2}$ is a $(1,2,0,0,0)$-SwissCheese. Said otherwise, c_{1} has characteristic $(0,1,0,0,0), c_{2}$ has characteristic $(1,1,0,0,0)$ and $c_{1} @ c_{2}$ has characteristic (1,2,0,0,0). According to what we said, $c_{1} @ c_{2}$ has characteristic $(1,2)$ as well as characteristic $(1,2,0,0, \ldots)$ (a tuple starting with 1 , followed by 2 , followed by infinitely many 0 's). We could also say that c_{1} has characteristic $(0,1)$ and c_{2} has characteristic $(1,1)$ making @ a binary operation on SwissCheeses of length 2 whereas previously we have made @ a binary operation on SwissCheeses of length 5 . In other words, when counting SwissCheeses of characteristic \mathbf{m}, the trailing 0 's are irrelevant. In actual computations, we make the lengths of characteristics consistent by adding trailing 0 's to too short ones.

Given a SwissCheese, there are two ways to grow a SwissCheese to make another SwissCheese by abstraction.
(1) We put a λ on the top of a m-SwissCheese c. This increases the levels of the holes: a hole \square_{i} becomes a hole $\square_{i+1} . \lambda c$ is a $(0: m)$-SwissCheese. See Figure 2. This way, no index is bound by the top λ, therefore this does not preserve linearity (it preserves affinity however). Therefore this construction is only for building affine SwissCheeses, not for building linear SwissCheeses. In Figure 2, we colour the added λ in blue and we call it abstraction with no binding.
(2) In the second method for growing a SwissCheese by abstraction, we select first a hole \square_{i}, we top the SwissCheese by a λ, we increment the levels of the other holes and we replace the chosen hole by $S^{i} 0$, i.e., by the de Bruijn index $\underset{\underline{i}}{ }$. In Figure 3 we colour the added λ in green and we call it abstraction with binding.

4.2 Measuring SwissCheese

We consider several ways of measuring the size of a SwissCheese derived from what is done on λ-terms. In all these sizes, applications @ and abstractions λ have size 1 and holes have size 0 . The differences are in the way variables are measured.

- Variables have size 0 , we call this variable size 0 .

Manuscript submitted to ACM

Fig. 3. Abstracting a SwissCheese with binding

- Variables have size 1 , we call this variable size 1.
- Variables (or de Bruijn indices) $S^{i} 0$ have size $i+1$, we call this natural size.

5 COUNTING LINEAR CLOSED TERMS

We start with counting linear terms since they are slightly simpler. We will give recursive formulas first for the numbers $l_{n, \mathrm{~m}}^{v}$ of linear SwissCheeses of natural size n with holes set by \mathbf{m}, then for the numbers $l_{n, \mathrm{~m}}^{0}$ of linear SwissCheeses of size n, for variable size 0 , with holes set by \mathbf{m}, eventually for the numbers $l_{n, \mathbf{m}}^{1}$ of linear SwissCheeses of size n, for variable size 1 , with holes set by m. When we do not want to specify a chosen size, we write only $l_{n, \mathrm{~m}}$ without superscript. This is for specific cases when the part of the formula we describe does not depend of the measure of the size.

5.1 Natural size

First let us count linear SwissCheeses with natural size. This is given by the coefficient l^{v} which has two arguments: the size n of the SwissCheese and a tuple m which specifies the number of holes of each level, i.e, which specifies the characteristics of the SwissCheese. In other words we are interested in the quantity $l_{n, \mathrm{~m}}^{v}$. We assume that the length of m is p, greater than n.

Size is 0 Whatever size is considered, there is only one SwissCheese of size 0 namely \square_{0}. This means that the number of SwissCheeses of size 0 is 1 if and only if $\mathbf{m}=(1,0,0, \ldots)$:

$$
l_{0, \mathrm{~m}}^{v}=l_{0, \mathrm{~m}}^{0}=l_{0, \mathrm{~m}}^{1}=\left[m_{0}=1 \wedge \bigwedge_{j=1}^{p-1} m_{j}=0\right]
$$

Size is $\mathbf{n}+\mathbf{1}$ and application If a SwissCheese of size $n+1$ has holes set by \mathbf{m} and is an application, then it is obtained from a SwissCheese of size k with holes set by \mathbf{q} and a SwissCheese of size $n-k$ with holes set by \mathbf{r}, with $\mathbf{m}=\mathbf{q} \oplus \mathbf{r}$:

$$
\sum_{\mathbf{q} \oplus \mathrm{r}=\mathrm{m}} \sum_{k=0}^{n} l_{k, \mathbf{q}} l_{n-k, \mathbf{r}}
$$

Size is $\mathbf{n}+1$ and abstraction with binding Consider a level i, that is a level of hole \square_{i}. If one wants to get a SwissCheese of size $n+1$ by abstraction with binding, first this SwissCheese must be a $0: m$-SwissCheese (there is no hole at level 0 in this SwissCheese), second the SwissCheese in which one chooses the hole \square_{i} is a $\mathbf{m}^{\uparrow i_{-}}$ SwissCheese, since one removes a hole \square_{i}. Therefore, there are $m_{i}+1$ ways to choose a hole \square_{i}. In this hole
we put a term $S^{i-1} 0$ of size i. Hence, among $l_{n, 0: \mathrm{m}}^{v}$ SwissCheeses, there are $\left(m_{i}+1\right) l_{n-i, \mathbf{m}^{\dagger i}}^{v} 0: \mathbf{m}$-SwissCheeses which are abstractions with binding in which a \square_{i} has been replaced by the de Bruijn index $S^{i-1} 0$. Hence by summing over i, the part of abstraction with binding contributes to $l_{n+1,0: \mathrm{m}}^{v}$ as:

$$
\sum_{i=0}^{p-1}\left(m_{i}+1\right) l_{n-i, \mathbf{m}^{\uparrow i}}^{v}
$$

The subtle case of abstraction with binding is pictured in Figure 3. It works as follows. Consider the case where the $(0,1,1)$-SwissCheese $\lambda\left(\lambda\left(\square_{2} 0\right)\left((\lambda S 0) \square_{1}\right)\right)$ is obtained from the (1,2)-SwissCheese $\lambda\left(\square_{1} 0\right)\left(\left(\lambda \square_{1}\right) \square_{0}\right)$ of Figure 1 (right) by abstraction with binding. Notice that $(0,1,1)=0:(1,1)$ and that $(1,2)=(1,1)^{\uparrow 1}$. Focus on level 1 in $\lambda\left(\square_{1} 0\right)\left(\left(\lambda \square_{1}\right) \square_{0}\right)$. There are 2 holes at level 1 , then 2 ways to choose a hole \square_{1} at level 1 , because 2 is the second index of (1,2), which corresponds to level 1. Assume we choose the second hole from the left, the one in red. Put a (green) lambda on the top. Because of this lambda on the top, raise the levels of the other holes (the leftmost one becomes \square_{2}, the rightmost one becomes \square_{1}). Then replace the chosen hole \square_{1} by $S 0$. We get $\lambda\left(\lambda\left(\square_{2} 0\right)\left((\lambda S 0) \square_{1}\right)\right)$.

We have the following recursive definitions of $l_{n+1, \mathrm{~m}}^{v}$:

$$
\begin{aligned}
l_{n+1,0: \mathrm{m}}^{v} & =\sum_{\mathbf{q} \oplus \mathrm{r}=0: \mathrm{m}} \sum_{k=0}^{n} l_{k, \mathbf{q}}^{v} l_{n-k, \mathbf{r}}^{v}+\sum_{i=0}^{p-1}\left(m_{i}+1\right) l_{n-i, \mathbf{m}^{\uparrow i}}^{v} \\
l_{n+1,(h+1): \mathrm{m}}^{v} & =\sum_{\mathbf{q} \oplus \mathbf{r}=(h+1): \mathrm{m}} \sum_{k=0}^{n} l_{k, \mathbf{q}}^{v} l_{n-k, \mathbf{r}}^{v}
\end{aligned}
$$

Numbers of linear closed λ-terms with natural size are given in Figure 4.

5.2 Variable size 0

The only difference is that the inserted de Bruijn index has size 0 . Therefore we have $\left(m_{i}+1\right) l_{n, \mathrm{~m}^{\dagger i}}^{0}$ where we had $\left(m_{i}+1\right) l_{n-i, \mathbf{m}^{\dagger_{i}}}^{v}$ for natural size. Hence the formulas:

$$
\begin{aligned}
l_{n+1,0: \mathbf{m}}^{0} & =\sum_{\mathbf{q} \oplus \mathbf{r}=0: \mathrm{m}} \sum_{k=0}^{n} l_{k, \mathbf{q}}^{0} l_{n-k, \mathbf{r}}^{0}+\sum_{i=0}^{p-1}\left(m_{i}+1\right) l_{n, \mathbf{m}^{\dagger i}}^{0} \\
l_{n+1,(h+1): \mathbf{m}}^{0} & =\sum_{\mathbf{q} \oplus \mathbf{r}=(h+1): \mathrm{m}} \sum_{k=0}^{n} l_{k, \mathbf{q}}^{0} l_{n-k, \mathbf{r}}^{0}
\end{aligned}
$$

The sequence $l_{n, 0^{n}}^{0}$ of the numbers of linear closed λ terms is $0,1,0,5,0,60,0,1105,0,27120,0,828250$, which is sequence A062980 in the On-line Encyclopedia of Integer Sequences with 0's at even indices.

5.3 Variable size 1

The inserted de Bruijn index has size 1 . We have $\left(m_{i}+1\right) l_{n-1, \mathrm{~m}}^{1}$ where we had $\left(m_{i}+1\right) l_{n-i, \mathrm{~m}}^{v}$ for natural size.

$$
\begin{aligned}
l_{n+1,0: \mathrm{m}}^{1} & =\sum_{\mathrm{q} \oplus \mathrm{r}=0: \mathrm{m}} \sum_{k=0}^{n} l_{k, \mathrm{q}}^{1} l_{n-k, \mathrm{r}}^{1}+\sum_{i=0}^{p-1}\left(m_{i}+1\right) l_{n-1, \mathrm{~m}^{i}}^{1} \\
l_{n+1,(h+1): \mathrm{m}}^{1} & =\sum_{\mathrm{q} \oplus \mathrm{r}=(h+1): \mathrm{m}} \sum_{k=0}^{n} l_{k, \mathrm{q}}^{1} l_{n-k, \mathbf{r}}^{1}
\end{aligned}
$$

Manuscript submitted to ACM

As noticed by Grygiel et al. [17] (Section 6.1), there are no linear closed λ-terms of size $3 k$ and $3 k+1$. However for the values $3 k+2$ we get the sequence: $1,5,60,1105,27120, \ldots$ which is again sequence $\mathbf{A} 062980$ of the On-line Encyclopedia of Integer Sequences.

6 COUNTING AFFINE CLOSED TERMS

We have just to add the case $n \neq 0$ and abstraction without binding. Since no index is added, the size increases by 1 . The numbers are written $a_{n, \mathrm{~m}}^{v}, a_{n, \mathrm{~m}}^{0}$ and $a_{n, \mathrm{~m}}^{1}$, and $a_{n, \mathrm{~m}}$ when the size does not matter. There are $a_{n, m}(0: \mathbf{m})$-SwissCheeses of size n that are abstractions with no binding. We get the recursive formulas:

6.1 Natural size

$$
\begin{aligned}
a_{n+1,0: \mathrm{m}}^{v} & =\sum_{\mathbf{q} \oplus \mathbf{r}=0: \mathrm{m}} \sum_{k=0}^{n} a_{k, \mathbf{q}}^{v} a_{n-k, \mathbf{r}}^{v}+\sum_{i=0}^{p-1}\left(m_{i}+1\right) a_{n-i, \mathbf{m}^{\uparrow i}}^{v}+a_{n, \mathbf{m}}^{v} \\
a_{n+1,(h+1): \mathrm{m}}^{v} & =\sum_{\mathbf{q} \oplus \mathbf{r}=(h+1): \mathrm{m}} \sum_{k=0}^{n} a_{k, \mathbf{q}}^{v} a_{n-k, \mathbf{r}}^{v}
\end{aligned}
$$

The numbers of affine closed size with natural size are given in Figure 5. Since the sequence was unknown in the On-line Encyclopedia of Integer Sequences we entered it under the number A287141.

6.2 Variable size 0

$$
\begin{aligned}
a_{n+1,0: \mathbf{m}}^{0} & =\sum_{\mathbf{q} \oplus \mathbf{r}=0: \mathbf{m}} \sum_{k=0}^{n} a_{k, \mathbf{q}}^{0} a_{n-k, \mathbf{r}}^{0}+\sum_{i=0}^{p-1}\left(m_{i}+1\right) a_{n, \mathbf{m}^{\uparrow i}}^{0}+a_{n, \mathbf{m}}^{0} \\
a_{n+1,(h+1): \mathbf{m}}^{0} & =\sum_{\mathbf{q} \oplus \mathbf{r}=(h+1): \mathbf{m}} \sum_{k=0}^{n} a_{k, \mathbf{q}}^{0} a_{n-k, \mathbf{r}}^{0}
\end{aligned}
$$

The sequence $a_{n, 0^{\omega}}^{0}$ of the numbers of affine closed terms for variable size 0 is

$$
0,1,2,8,29,140,661,3622,19993,120909,744890,4887401,32795272, \ldots
$$

From our work, the sequence as been entered by Gheorghe Coserea as A287045 in the On-line Encyclopedia of Integer Sequences. It corresponds to the coefficients of the generating function $\mathcal{A}(z, 0)$ where

$$
\mathcal{A}(z, u)=u+z(\mathcal{A}(z, u))^{2}+z \frac{\partial \mathcal{A}(z, u)}{\partial u}+z \mathcal{A}(z, u) .
$$

6.3 Variable size 1

$$
\begin{aligned}
a_{n+1,0: \mathrm{m}}^{1} & =\sum_{\mathbf{q} \oplus \mathbf{r}=0: \mathbf{m}} \sum_{k=0}^{n-1} a_{k, \mathbf{q}}^{1} a_{n-k, \mathbf{r}}^{1}+\sum_{i=0}^{p-1}\left(m_{i}+1\right) a_{n-1, \mathbf{m}^{\uparrow i}}^{1}+a_{n, \mathbf{m}}^{1} \\
a_{n+1,(h+1): \mathbf{m}}^{1} & =\sum_{\mathbf{q} \oplus \mathbf{r}=(h+1): \mathrm{m}} \sum_{k=0}^{n} a_{k, \mathbf{q}}^{1} a_{n-k, \mathbf{r}}^{1}
\end{aligned}
$$

The sequence $a_{n, 0^{\omega}}^{1}$ of the numbers of affine closed terms for variable size 1 is

$$
0,0,1,2,3,9,30,81,242,838,2799,9365,33616,122937,449698,1696724,6558855, \ldots
$$

From our work, the sequence as been entered by Gheorghe Coserea as A281270 in the On-line Encyclopedia of Integer Sequences. It corresponds to the coefficient of the generating function $\hat{\mathcal{A}}(z, 0)$ where $\hat{\mathcal{A}}(z, u)$ is the solution of the functional equation:

$$
\hat{\mathcal{A}}(z, u)=z u+z(\hat{\mathcal{A}}(z, u))^{2}+z \frac{\partial \hat{\mathcal{A}}(z, u)}{\partial u}+z \hat{\mathcal{A}}(z, u) .
$$

Notice that this corrects the wrong assumptions of [17] (Section 6.2), which refers actually to sequence A073950 which starts with $1,2,3,9,30,81$, but the $7^{\text {th }}$ of A073950 is 225 instead of 242 .

7 GENERATING FUNCTIONS

Flajolet and Sedgewick start the preface of their famous book [13] by the following sentence:
ANALYTIC COMBINATORICS aims at predicting precisely the properties of large structured combinatorial configurations, through an approach based extensively on analytic methods. Generating functions are the central objects of study of the theory.

Recall (see [13] Appendix A.5) that generating functions or formal power series extend the notion of polynomials to infinite series of the form:

$$
f=\sum_{n \geq 0} f_{n} z^{n} .
$$

They are used for studying integer sequences counting structures. The idea of considering functions like $\mathcal{F}(z, \mathbf{u})$ for linear and affine λ-terms is due to Bendkowski, Bodini, Dovgal and Grygiel (private communication) and is not really familiar in this framework.

Consider families $F_{\mathbf{m}}(z)$ of generating functions indexed by \mathbf{m}, where \mathbf{m} is an infinite tuple of naturals. In fact, we are interested in the infinite tuples m that are always 0 , except a finite number of indices, in order to compute $F_{0} \omega(z)$, which corresponds to closed λ-terms. Let \mathbf{u} stand for the infinite sequences of variables (u_{0}, u_{1}, \ldots) and $\mathbf{u}^{\mathbf{m}}$ stands for $\left(u_{0}^{m_{0}}, u_{1}^{m_{1}}, \ldots, u_{n}^{m_{n}}, \ldots\right)$ and tail (\mathbf{u}) stand for $\left(u_{1}, \ldots\right)$. We consider the series of two variables z and \mathbf{u} or double series associated with $F_{\mathbf{m}}(z)$:

$$
\mathcal{F}(z, \mathbf{u})=\sum_{\mathbf{m} \in \mathbb{N}^{\omega}} F_{\mathbf{m}}(z) \mathbf{u}^{\mathbf{m}} .
$$

Natural size

$L_{\mathbf{m}}^{\nu}(z)$ is associated with the numbers of linear SwissCheeses for natural size:

$$
\begin{aligned}
L_{0: \mathbf{m}}^{v}(z) & =z \sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=0: \mathbf{m}} L_{\mathbf{m}^{\prime}}^{v}(z) L_{\mathbf{m}^{\prime \prime}}^{v}(z)+z \sum_{i=0}^{\infty}\left(m_{i}+1\right) z^{i} L_{\mathbf{m}^{\uparrow i}}^{v}(z) \\
L_{(h+1): \mathbf{m}}^{v}(z) & =\left[h=0 \wedge \bigwedge_{i=0}^{\infty} m_{i}=0\right]+z \sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=(h+1): \mathbf{m}} L_{\mathbf{m}^{\prime}}^{v}(z) L_{\mathbf{m}^{\prime \prime}}^{v}(z)
\end{aligned}
$$

$L_{0^{\omega}}^{v}$ is the generating function for the linear closed λ-terms. $\mathcal{L}^{v}(z, \mathbf{u})$ is the double series associated with $L_{\mathbf{m}}^{v}(z)$, i.e.,

$$
\mathcal{L}^{v}(z, \mathbf{u})=\sum_{\mathbf{m} \in \mathbb{N} \omega} L_{\mathbf{m}}^{v}(z) \mathbf{u}^{\mathbf{m}}
$$

$\mathcal{L}^{\nu}(z, \mathbf{u})$ is solution of the equation:

$$
\mathcal{L}^{v}(z, \mathbf{u})=u_{0}+z\left(\mathcal{L}^{v}(z, \mathbf{u})\right)^{2}+\sum_{i=1}^{\infty} z^{i} \frac{\partial \mathcal{L}^{v}(z, \text { tail }(\mathbf{u}))}{\partial u^{i}}
$$

Manuscript submitted to ACM
$\mathcal{L}^{\nu}\left(z, 0^{\omega}\right)$ is the generating function of linear closed λ-terms.
For affine SwissCheeses we get:

$$
\begin{aligned}
A_{0: \mathbf{m}}^{v}(z) & =z \sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=0: \mathbf{m}} A_{\mathbf{m}^{\prime}}^{v}(z) A_{\mathbf{m}^{\prime \prime}}^{v}(z)+z \sum_{i=0}^{\infty}\left(m_{i}+1\right) z^{i} A_{\mathbf{m}^{\uparrow i}}^{v}(z)+z A_{\mathbf{m}}^{v}(z) \\
A_{(h+1): \mathrm{m}}^{v}(z) & =\left[h=0+\bigwedge_{i=0}^{\infty} m_{i}=0\right]+z \sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=(h+1): \mathbf{m}} A_{\mathbf{m}^{\prime}}^{v}(z) A_{\mathbf{m}^{\prime \prime}}^{v}(z)
\end{aligned}
$$

$A_{0 \omega}^{v}$ is the generating function for the linear closed λ-terms. $\mathcal{A}^{v}(z, \mathbf{u})$ is the double series associated with $A_{\mathbf{m}}^{v}(z)$ and is solution of the equation:

$$
\mathcal{A}^{v}(z, \mathbf{u})=u_{0}+z\left(\mathcal{A}^{v}(z, \mathbf{u})\right)^{2}+\sum_{i=1}^{\infty} z^{i} \frac{\partial \mathcal{A}^{v}(z, \text { tail }(\mathbf{u}))}{\partial u^{i}}+z \mathcal{A}^{v}(z, \text { tail }(\mathbf{u}))
$$

$\mathcal{A}^{v}\left(z, 0^{\omega}\right)$ is the generating function of affine closed λ-terms.

Variable size 0

L_{m}^{0} is associated with the numbers of linear SwissCheeses for variable size 0 :

$$
\begin{aligned}
L_{0: \mathbf{m}}^{0}(z) & =z \sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=\mathbf{m}} L_{\mathbf{m}^{\prime}}^{0}(z) L_{\mathbf{m}^{\prime \prime}}^{0}(z)+z \sum_{i=0}^{\infty}\left(m_{i}+1\right) L_{\mathbf{m}^{\dagger i}}^{0}(z) \\
L_{(h+1): \mathbf{m}}^{0}(z) & =\left[h=0+\bigwedge_{i=0}^{\infty} m_{i}=0\right]+\sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=\mathbf{m}} z L_{\mathbf{m}^{\prime}}^{0}(z) L_{\mathbf{m}^{\prime \prime}}^{0}(z)
\end{aligned}
$$

$L_{0^{\omega}}^{0}$ is the generating function for the linear closed λ-terms. $\mathcal{L}^{0}(z, \mathbf{u})$ is the double series associated with $L_{\mathbf{m}}^{0}(z)$ and is solution of the equation:

$$
\mathcal{L}^{0}(z, \mathbf{u})=u_{0}+z\left(\mathcal{L}^{0}(z, \mathbf{u})\right)^{2}+\sum_{i=1}^{\infty} \frac{\partial \mathcal{L}^{0}(z, \text { tail }(\mathbf{u}))}{\partial u^{i}}
$$

$\mathcal{L}^{0}\left(z, 0^{\omega}\right)$ is the generating function of linear closed λ-terms.
For affine SwissCheeses we get:

$$
\begin{aligned}
A_{0: \mathbf{m}}^{0}(z) & =z \sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=0: \mathbf{m}} A_{\mathbf{m}^{\prime}}^{0}(z) A_{\mathbf{m}^{\prime \prime}}^{0}(z)+z \sum_{i=0}^{\infty}\left(m_{i}+1\right) A_{\mathbf{m}^{\dagger i}}^{0}(z)+z A_{\mathbf{m}}^{0}(z) \\
A_{(h+1): \mathrm{m}}^{0}(z) & =\left[h=0+\bigwedge_{i=0}^{\infty} m_{i}=0\right]+\sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=(h+1): \mathbf{m}} z A_{\mathbf{m}^{\prime}}^{0}(z) A_{\mathbf{m}^{\prime \prime}}^{0}(z)
\end{aligned}
$$

$A_{0 \omega}^{0}$ is the generating function for the affine linear λ-terms. $\mathcal{A}^{0}(z, \mathbf{u})$ is the double series associated with $A_{\mathbf{m}}^{0}(z)$ and is solution of the equation:

$$
\mathcal{A}^{0}(z, \mathbf{u})=u_{0}+z\left(\mathcal{A}^{0}(z, \mathbf{u})\right)^{2}+\sum_{i=1}^{\infty} \frac{\partial \mathcal{A}^{0}(z, \text { tail }(\mathbf{u}))}{\partial u^{i}}+z \mathcal{A}^{0}(z, \text { tail }(\mathbf{u}))
$$

$\mathcal{A}^{0}\left(z, 0^{\omega}\right)$ is the generating function of linear closed λ-terms.

Variable size 1

The generating functions for $l_{n, \mathrm{~m}}^{1}$ are:

$$
\begin{aligned}
L_{0: \mathbf{m}}^{1}(z) & =z \sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=\mathbf{m}} L_{\mathbf{m}^{\prime}}^{1}(z) L_{\mathbf{m}^{\prime \prime}}^{1}(z)+z^{2} \sum_{i=0}^{\infty}\left(m_{i}+1\right) L_{\mathbf{m}^{\dagger i}}^{1}(z) \\
L_{(h+1): \mathbf{m}}^{1}(z) & =\left[h=0+\bigwedge_{i=0}^{\infty} m_{i}=0\right]+\sum_{\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}=\mathbf{m}} z L_{\mathbf{m}^{\prime}}^{1}(z) L_{\mathbf{m}^{\prime \prime}}^{1}(z)
\end{aligned}
$$

Then we get as associated double series :

$$
\mathcal{L}^{1}(z, \mathbf{u})=u_{0}+z\left(\mathcal{L}^{1}(z, \mathbf{u})\right)^{2}+z \sum_{i=1}^{\infty} \frac{\partial \mathcal{L}^{1}(z, \text { tail }(\mathbf{u}))}{\partial u^{i}}
$$

8 EFFECTIVE COMPUTATIONS

In this section we present Haskell programs for effectively computing the values of the sequences counting affine and linear λ-terms of size n. We are able to compute values for natural size up to 100 on a desk computer with a Pentium(R) Dual-Core at 2.8 GHz .

The definition of the coefficients a_{m}^{v} and others is highly recursive and requires a mechanism of memoization. In Haskell, this can be done by using the call by need which is at the core of this language. Assume we want to compute the values of a_{m}^{v} until a value upBound for n. We use a recursive data structure:

```
data Mem = Mem [Mem] | Load [Integer]
```

in which we store the computed values of a function
a :: Int -> [Int] -> Integer

In our implementation the depth of the recursion of Mem is limited by upBound, which is also the longest tuple \mathbf{m} for which we will compute a_{m}^{v}. Associated with Mem there is a function

```
access :: Mem -> Int -> [Int] -> Integer
access (Load l) n [] = 1 !! n
access (Mem listM) n (k:m) = access (listM !! k) n m
```

The leaves of the tree memory, corresponding to Load, contains the values of the function:

```
memory :: Int -> [Int] -> Mem
memory 0 m = Load [a n (reverse m) | n<-[0..]]
memory k m = Mem [memory (k-1) (j:m) | j<-[0..]]
```

The memory relative to the problem we are interested in is

```
theMemory = memory (bound) []
```

and the access to theMemory is given by a specific function:

```
acc :: Int -> [Int] -> Integer acc n m = access theMemory n m
```

Notice that a and acc have the same signature. This is not a coincidence, since acc accesses values of a already computed. Now we are ready to express a:

```
a 0 m = iv (head m == 1 && all ((==) 0) (tail m))
a n m = aAPP n m + aABSwB n m + aABSnB n m
Manuscript submitted to ACM
```

aAPP counts affine terms that are applications:
$\operatorname{aAPP} \mathrm{n} m=\operatorname{sum}(\operatorname{map}(\backslash t e x t b a c k s l a s h((q, r),(k, n k))->(\operatorname{acc} k \quad q) *(\operatorname{acc} n k r))$ (allCombinations $m(n-1)))$ where allCombinations returns a list of all the pairs of pairs $\left(\mathbf{m}^{\prime}, \mathbf{m}^{\prime \prime}\right)$ such $\mathbf{m}=\mathbf{m}^{\prime} \oplus \mathbf{m}^{\prime \prime}$ and of pairs $(k, n k)$ such that $k+n k=n$. aABSwB counts affine terms that are abstractions with binding.

```
aABSwB n m
```

 | head \(m=0=\operatorname{sum}[a A B S A t D n m i \mid i<-[1 \ldots(n-1)]]\)
 | otherwise = 0
 aABSAtD counts affine terms that are abstractions with binding at level i :
aABSAtD $n \mathrm{~m} i=(f r o m I n t e g r a l(1+m!!i)) *(\operatorname{acc}(n-i-1)(t a i l(i n c i m)++[0]))$
aABSnB counts affine terms that are abstractions with no binding:
aABSnB $n \mathrm{~m}$
| head $m=0=(\operatorname{acc}(n-1)($ tail $m++[0]))$
| otherwise $=0$
Anyway the efficiency of this program is limited by the size of the memory, since for computing $a_{n, 0^{n}}^{v}$, for instance, we need to compute a_{r}^{v} for about $n!$ values.

9 GENERATING AFFINE AND LINEAR TERMS

In this section we present Haskell programs for effectively generating all affine λ-terms and all linear λ-terms of size n. We can use those programs to generate affine or linear λ-terms of a given size.

By relatively small changes it is possible to build programs which generate linear and affine terms. For instance for generating affine terms we get:

```
amg :: Int -> [Int] -> [SwissCheese]
amg 0 m = if (head m == 1 && all ((==) 0) (tail m)) then [Box 0] else []
amg n m = allAPP n m ++ allABSwB n m ++ allABSnB n m
allAPP :: Int -> [Int] -> [SwissCheese]
allAPP n m = foldr (++) [] (map (\textbackslash((q,r),(k,nk))-> appSC (cartesian (accAG k q)
                                    (accAG nk r))
                                    (allCombinations m (n-1)))
allABSAtD :: Int -> [Int] -> Int -> [SwissCheese]
allABSAtD n m i = foldr (++) [] (map (abstract (i-1)) (accAG (n - i - 1)
                                    (tail (inc i m) ++ [0])))
allABSwB :: Int -> [Int] -> [SwissCheese]
allABSwB n m
    | head m == 0 = foldr (++) [] [allABSAtD n m i |i<-[1..(n-1)]]
    | otherwise = []
```

```
allABSnB :: Int -> [Int] -> [SwissCheese]
allABSnB n m
    | head m == 0 = map (AbsSC . raise) (accAG (n-1) (tail m ++ [0]))
    | otherwise = []
memoryAG :: Int -> [Int] -> MemSC
memoryAG 0 m = LoadSC [amg n (reverse m) | n<-[0..]]
memoryAG k m = MemSC [memoryAG (k-1) (j:m) | j<-[0..]]
theMemoryAG = memoryAG (upBound) []
accAG :: Int -> [Int] -> [SwissCheese]
accAG n m = accessSC theMemoryAG n m
```

From this, we get programs for generating random affine closed λ-terms or random linear closed λ-terms as follows: if we want a random linear closed λ-term of a given size n, we throw a random number, say p, between 1 and $l_{n, 0^{n}}$ and we look for the $p^{t h}$ in the list of all the linear closed λ-terms of size n. Haskell laziness mimics the unranking. Due to high requests in space, we cannot go further than the random generation of linear closed λ-terms of size 23 and affine closed λ-terms of size 19 . There are similar programs for generating all the terms of size n for variable size 0 and variable size 1 .

10 NORMAL FORMS

Normal forms are λ-terms with no β-redex, i.e., with no λ-term of the form $(\lambda M) P$. In this section, we are interested with counting and generating normal forms among affine or linear λ-terms.

From the method used for counting affine and linear closed terms, it is easy to deduce method for counting affine and linear closed normal forms. Like before, we use SwissCheeses.

10.1 Natural size

Affine closed normal forms. Let us call an $f_{n, \mathrm{~m}}^{v}$ the numbers of affine SwissCheeses with no β-redex and ane $e_{n, \mathrm{~m}}^{v}$ the numbers of neutral affine SwissCheeses, i.e., affine SwissCheeses with no β-redexes that are sequences of applications starting with a de Bruijn index. In addition we count:

- anf $f^{\nu} \lambda w_{n, m}$ the number of affine SwissCheeses with no β-redex which are abstraction with a binding of a de Bruijn index,
- $a n f^{\nu} \lambda n_{n, m}$ the number of affine SwissCheeses with no β-redex which are abstraction with no binding.

$$
\begin{aligned}
a n f_{0, \mathrm{~m}}^{v} & =a n e_{0, \mathrm{~m}}^{v} \\
a n f_{n+1, \mathrm{~m}}^{v} & =a n e_{n+1, \mathrm{~m}}^{v}+a n f^{v} \lambda w_{n+1, m}+a n f^{v} \lambda n_{n+1, m}
\end{aligned}
$$

Manuscript submitted to ACM
where

$$
\begin{aligned}
a n e_{0, \mathrm{~m}}^{v} & =\left[m_{0}=1 \wedge \bigwedge_{j=1}^{p-1} m_{j}=0\right] \\
a n e_{n+1, \mathrm{~m}}^{v} & =\sum_{\mathrm{q} \oplus \mathrm{r}=0: \mathrm{m}} \sum_{k=0}^{n} a n e_{k, \mathrm{q}}^{v} a n f_{n-k, \mathrm{r}}^{v}
\end{aligned}
$$

and

$$
a n f^{v} \lambda w_{n+1, m}=\sum_{i=0}^{n}\left(m_{i}+1\right) a n f_{n-i, \mathbf{m}^{\uparrow i}}^{v}
$$

and

$$
a n f^{v} \lambda n_{n+1, m}=a n f_{n, m}^{v}
$$

There are two generating functions, $\mathcal{A}^{n f}$ and $\mathcal{A}^{n e}$, which are associated with an $f_{n, \mathrm{~m}}^{v}$ and $a n f_{n, \mathrm{~m}}^{v}$:

$$
\begin{aligned}
& \mathcal{A}^{n f}(z, \mathbf{u})=\mathcal{A}^{n e}(z, \mathbf{u})+\sum_{i=1}^{\infty} z^{i} \frac{\partial \mathcal{A}^{n f}(z, \text { tail }(\mathbf{u}))}{\partial u^{i}}+z \mathcal{A}^{n f}(z, \text { tail }(\mathbf{u})) \\
& \mathcal{A}^{n e}(z, \mathbf{u})=u_{0}+z \mathcal{A}^{n e}(z, \mathbf{u}) \mathcal{A}^{n f}(z, \mathbf{u})
\end{aligned}
$$

Linear closed normal forms. Let us call $\ln f_{n, \mathrm{~m}}^{v}$ the numbers of linear SwissCheeses with no β-redex and $\ln e_{n, \mathrm{~m}}^{v}$ the numbers of neutral linear SwissCheeses, linear SwissCheeses with no β-redexes that are sequences of applications starting with a de Bruijn index. In addition we count $\ln f^{v} \lambda w_{n, m}$ the number of linear SwissCheeses with no β-redex which are abstraction with a binding of a de Bruijn index.

$$
\begin{aligned}
\ln f_{0, \mathrm{~m}}^{v} & =\ln e_{0, \mathrm{~m}}^{v} \\
\ln f_{n+1, \mathrm{~m}}^{v} & =\ln e_{n+1, \mathrm{~m}}^{v}+\ln f^{v} \lambda w_{n+1, m}
\end{aligned}
$$

where

$$
\begin{aligned}
\ln e_{0, \mathrm{~m}}^{v} & =\left[m_{0}=1 \wedge \bigwedge_{j=1}^{p-1} m_{j}=0\right] \\
\ln e_{n+1, \mathrm{~m}}^{v} & =\sum_{\mathbf{q} \oplus \mathbf{r}=0: \mathrm{m}} \sum_{k=0}^{n} \ln e_{k, \mathbf{q}}^{v} \ln f_{n-k, \mathbf{r}}^{v}
\end{aligned}
$$

and

$$
\ln f^{v} \lambda w_{n+1, m}=\sum_{i=0}^{p-1}\left(m_{i}+1\right) \ln f_{n-i, \mathbf{m}^{\uparrow i}}^{v}
$$

with the two generating functions:

$$
\begin{aligned}
& \mathcal{L}^{n f, v}(z, \mathbf{u})=\mathcal{L}^{n e, v}(z, \mathbf{u})+\sum_{i=1}^{\infty} z^{i} \frac{\partial \mathcal{L}^{n f, v}(z, \text { tail }(\mathbf{u}))}{\partial u^{i}} \\
& \mathcal{L}^{n e, v}(z, \mathbf{u})=u_{0}+z \mathcal{L}^{n e, v}(z, \mathbf{u}) \mathcal{L}^{n f, v}(z, \mathbf{u})
\end{aligned}
$$

We also deduce programs for generating all the affine or linear closed normal forms of a given size from which we deduce programs for generating random affine or linear closed normal forms of a given size. For instance, here are three randoms linear closed normal forms (using de Bruijn indices) of natural size 28:

$$
\lambda \lambda \lambda \lambda(2 \lambda((12) \lambda(0(51)))) \quad \lambda(0 \lambda \lambda(1 \lambda \lambda((0(2 \lambda \lambda((1 \lambda 0) 0))) 1))) \quad \lambda((0 \lambda 0) \lambda \lambda((0((1 \lambda 0) \lambda \lambda(1(0 \lambda 0)))) \lambda 0))
$$

10.2 Variable size 0

Linear closed normal forms. A little like previously, let us call $\ln f_{n, \mathrm{~m}}^{0}$ the numbers of linear SwissCheeses with no β redex and $\ln e_{n, \mathrm{~m}}^{0}$ the numbers of neutral linear SwissCheeses, linear SwissCheeses with no β-redexes that are sequences of applications starting with a de Bruijn index. In addition we count $\ln f^{0} \lambda w_{n, m}$ the number of linear SwissCheeses with no β-redex which are abstraction with a binding of a de Bruijn index. We assume that the reader knows now how to proceed.

$$
\begin{aligned}
\ln f_{0, \mathrm{~m}}^{0} & =\ln e_{0, \mathrm{~m}}^{0} \\
\ln f_{n+1, \mathrm{~m}}^{0} & =\ln e_{n+1, \mathrm{~m}}^{0}+\ln f^{0} \lambda w_{n+1, m}
\end{aligned}
$$

where

$$
\begin{gathered}
\ln e_{0, \mathrm{~m}}^{0}=\left[m_{0}=1 \wedge \bigwedge_{j=1}^{p-1} m_{j}=0\right] \\
\ln e_{n+1, \mathrm{~m}}^{0}=\sum_{\mathbf{q} \oplus \mathrm{r}=0: \mathrm{m}} \sum_{k=0}^{n} \ln e_{k, \mathbf{q}}^{0} \ln f_{n-k, \mathrm{r}}^{0} \\
\ln f^{0} \lambda w_{n+1, m}=\sum_{i=0}^{n}\left(m_{i}+1\right) \ln f_{n, \mathrm{~m}^{\top i}}^{0}
\end{gathered}
$$

and the two generating functions:

$$
\begin{aligned}
& \mathcal{L}^{n f, 0}(z, \mathbf{u})=\mathcal{L}^{n e, 0}(z, \mathbf{u})+\sum_{i=1}^{\infty} \frac{\partial \mathcal{L}^{n f, 0}(z, \text { tail }(\mathbf{u}))}{\partial u^{i}} \\
& \mathcal{L}^{n e, 0}(z, \mathbf{u})=u_{0}+z \mathcal{L}^{n e, 0}(z, \mathbf{u}) \mathcal{L}^{n f, 0}(z, \mathbf{u})
\end{aligned}
$$

With no surprise we get for $\ln f_{n, 0^{n}}^{0}$ the sequence:

$$
0,1,0,3,0,26,0,367,0,7142,0,176766,0,5304356, \ldots
$$

mentioned by Zeilberger in [26] and listing the coefficients of the generating function $\mathcal{L}^{n f, 0}\left(z, 0^{\omega}\right)$.
We let the reader deduce how to count affine closed normal forms for variable size 0 and linear closed and affine normal forms for variable size 1 alike. Notice that the Haskell programs are on the GitHub site.

DATA

In this Figure 4, 5 and 6 we give the first values of $l_{n, 0^{n}}^{v}, a_{n, 0^{n}}^{v}$, and an $f_{n, 0^{n}}^{v}$.

0	0		
1	0	51	51496022711337536
2	1	52	124591137939086496
3	0	53	299402908258405410
4	0	54	721839933329222924
5	3	55	1747307145272084192
6	3	56	4211741383777966592
6	2	57	10165998012602469888
8	16	58	24620618729658655936
8	16	59	59482734150603634286
9	24	60	143764591607556354344
10	8	61	348379929166234350008
11	117	62	843169238563254723200
12	252	63	2040572920613086128400
13	180	64	4948102905207104837424
14	1024	65	11992521016286173712196
15	2680	66	29059897435554891991144
16	2952	67	70516464312280927105392
17	10350	68	171105110698292441423968
18	29420	69	415095704639682396539232
19	42776	70	1008016383720573882885792
20	116768	71	2448305474519849567597826
21	335520	72	5945721872300885649415632
22	587424	73	14449388516068567845838736
23	1420053	74	$35125352062243788817753856$
24	3976424	75	$85382289240293493116120064$
25	7880376	76	$207650379931166057815603296$
26	18103936	77	505172267243918348155299780
27	48816576	78	1229005880128485245247395000
28	104890704	79	2991079243470267667831893408
29	237500826	80	7281852742753184123608419712
30	617733708	81	17729171587798767750815341440
31	1396750576	81	17729171587798767750815341440 43177454620325445122944305984
32	3171222464	82	43177454620325445122944305984
33	8014199360	83	105185452787117035266315446868
34	18688490336	84	256273862465425158211948020048
35	42840683418	85	624527413292252904584121980208
36	106063081288	86	1522355057007327280427270436480
37	251769197688	87	3711429775030704772089070886624
38	583690110208	88	9050041253711022076275958636128
39	1425834260080	89	22073150301758857110072042919800
40	3417671496432	90	53844910909398928990641101351664
41	8007221710652	91	131371135544173914537076774932576
42	19404994897976	92	320588677238085642820920910555968
43	46747189542384	93	782465218885869813183863213231424
44	110498345360800	94	1910077425906069707804966102543936
45	266679286291872	95	4663586586924802791117231052636349
46	644021392071840	96	11388259565942452837717688743953504
47	1533054190557133	97	27813754361897984543467478917223008
48	3693823999533360	98	67941781284113201998645699501746176
49	8931109667692464	99	165989485724048964272023600773271424
50	21375091547312128	100	405588809305168453963137377442321728

Fig. 4. Natural size: numbers of linear closed λ-terms of size n from 0 to 100

11 ACKNOWLEDGEMENT

The basic idea of this work comes from a discussion with Maciej Bendkowski, Olivier Bodini, Sergey Dovgal and Katarzyna Grygiel, I thank them as I thank Noam Zeilberger for interactions, Marek Zaionc for constant support and for initiating the field and the referees for a careful reading and useful suggestions.

0		
0	51	803928779462727941247
1	52	2314623127904669382002
1	53	6667810436356967142481
2	54	19218411059885449257096
2	55	55421020161661024650870
12	56	159899218321197381984561
12	57	461557020400062903560120
64	58	1332920908954281811200519
64	59	3851027068336583693412910
166	60	11131032444503136571789527
405	61	32186581221116996967632029
1050	62	93108410048006285466998584
7763	63	269446191702411420790402033
19190	64	780043726186403167392453886
191457	65	2259043189995515315930349650
138538	66	6544612955390252336187266873
374972	67	18966737218108971681014445025
1020943	68	54985236298270057405776629352
1020943	69	159455737350384637847783055311
2792183	70	462562848624435724964181323484
7666358	71	1342251884451664733064283251627
21126905	72	3896065622127200625653134100538
58422650	73	11312117748805772104795220337816
162052566	74	32853646116456632492645965741531
450742451	75	95442534633482460553801961967438
1256974690	76	277342191547330839640289978813667
3513731861	77	806125189457291902863848267463755
9843728012	78	2343682130911232279285707290604156
27633400879	79	6815564023736534208079367816340359
77721141911	80	19824812322145727566417303371819466
218984204904	81	57679033022808238913186144092831856
618021576627	82	167851787082561392384648248846390041
1746906189740	83	488574368670832093243802790464796207
4945026080426	84	1422426342380883254459783410845365006
14017220713131	85	4142104564089044203901190817275864665
39784695610433	86	12064305885705003967881526911560653106
113057573020242	87	35145647815239737143373764367447378676
916096006168770	88	102406303052123097062053564818109468705
2611847503880831	89	298446029598661205216170897850336550644
7453859187221508	90	869935452705023302189031644932803990417
7453859187221508	91	2536229492704354513309696228592784181158
21292177500898858	92	7395518143425160073537967606298755947391
60875851617670699	93	21568776408467701927134211542478146593789
174195916730975850	94	62915493935623036562559989770249004382816
498863759031591507	95	183553775888862113259168150130266362416356
1429753835635525063	96	535600661621556969155453544692826625532079
4100730353324163138	97	1563109720672526919899689366626240867515144
11769771167532816128	98	4562542818801138452310024131223304186909233
37151933333668422006	99	13319630286623965617386598746472280781972745
279385977720772581435	100	38890520391341859449843201188612375394153776

Fig. 5. Natural size: numbers of affine closed λ-terms of size n from 0 to 100

12 CONCLUSION

This presentation shares similarities with those of $[4,15,16]$. Instead of considering the size n and the bound m of free indices like in expressions of the form:

$$
T_{n+1, m}=T_{n, m+1}+\sum_{i=0}^{n} T_{i, m} T_{n-i, m}
$$

0	0		
1	0	41	3037843646560
2	1	42	6895841598615
3	1	43	15666498585568
4	2	44	35620848278448
5	3	45	81052838239593
6	7	46	184564847153821
7	10	47	420564871255118
8	10	48	958975854646984
9	40	49	2188068392529104
9	40	50	4995528560788451
11	77	51	11411921511827547
11	160	52	26084524952754538
12	318	53	59654682828889245
13	671	54	136500653558490261
15	14081	55	312496493161999851
16	6312	56	715760763686417314
17	13672	57	1640194881084692664
18	293	58	3760284787917366081
19		59	8624561382605096780
20	63697	60	19789639944299656346
21	139104	61	45427337308377290201
22	304153	62	104320438668034814453
23	667219	63	239656248361374562433
24	1469241	64	550769764273325683828
25	3247176	65	1266217774600330829940
26	15949179	66	2912050679107531357883
27	35480426	67	6699418399886008666265
28	79083472	68	15417663698156810292010
29	17660751	69	35492710197462925262295
30	39511987	70	81732521943462960197057
31	885450388	71	188270363628099910161436
32		72	433807135012774797924026
33	1987289740	73	999851681931974600766994
34	4466760570	74	2305129188866501774481545
34 35	10053371987	75	5315847675735178072941600
35 36	22656801617	76	12262083079763320881047944
36 37	51121124910	77	28292248892584567512609357
37 38	115478296639	78	65294907440089718078048829
38	261139629999	79	150729070403767032817820543
39	591138386440	80	348031015577337732605480908
40	1339447594768		3480310155773373260548008

Fig. 6. Natural size: numbers of affine closed normal forms of size n from 0 to 80
here we replace m by the characteristic \mathbf{m}. As suggested by Dan Dougherty, we can imagine a common framework. On the other hand, as noticed by Paul Tarau, this approach has features of dynamic programming [10], which makes it somewhat efficient.

REFERENCES

[1] Barendregt, H. P. (1984). The Lambda-Calculus, its syntax and semantics. Studies in Logic and the Foundation of Mathematics. Elsevier Science Publishers B. V. (North-Holland), Amsterdam. Second edition.
[2] Bendkowski, M., Grygiel, K., Lescanne, P., and Zaionc, M. (2016a). Combinatorics of λ-terms: a natural approach. $A r X i V$, abs/1609.07593.
[3] Bendkowski, M., Grygiel, K., Lescanne, P., and Zaionc, M. (2016b). A natural counting of lambda terms. In R. M. Freivalds, G. Engels, and B. Catania, editors, SOFSEM 2016: Theory and Practice of Computer Science - 42nd International Conference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic, January 23-28, 2016, Proceedings, volume 9587 of Lecture Notes in Computer Science, pages 183-194. Springer.
[4] Bendkowski, M., Grygiel, K., and Tarau, P. (2017). Boltzmann samplers for closed simply-typed lambda terms. In Y. Lierler and W. Taha, editors, Practical Aspects of Declarative Languages - 19th International Symposium, PADL 2017, Paris, France, Fanuary 16-17, 2017, Proceedings, volume 10137 of Lecture Notes in Computer Science, pages 120-135. Springer.
[5] Bodini, O., Gardy, D., and Gittenberger, B. (2011). Lambda terms of bounded unary height. In Proceedings of the Eighth Workshop on Analytic Algorithmics and Combinatorics, pages 23-32.
[6] Bodini, O., Gardy, D., and Jacquot, A. (2013a). Asymptotics and random sampling for BCI and BCK lambda terms. Theor. Comput. Sci., 502, $227-238$.
[7] Bodini, O., Gardy, D., Gittenberger, B., and Jacquot, A. (2013b). Enumeration of generalized BCI lambda-terms. Electr. F. Comb., 20(4), P30.
[8] Bodini, O., Gittenberger, B., and Gołȩbiewski, Z. (2017). Enumerating lambda terms by weighted length of their de bruijn representation. ArXiV, abs/1707.02101.
[9] Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5, 56-68.
[10] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition.
[11] David, R., Raffalli, C., Theyssier, G., Grygiel, K., Kozik, J., and Zaionc, M. (2009). Some properties of random lambda terms. Logical Methods in Computer Science, 9(1).
[12] de Bruijn, N. G. (1972). Lambda calculus with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Proc. Koninkl. Nederl. Akademie van Wetenschappen, 75(5), 381-392.
[13] Flajolet, P. and Sedgewick, R. (2008). Analytic Combinatorics. Cambridge University Press.
[14] Gittenberger, B. and Gołȩbiewski, Z. (2016). On the number of lambda terms with prescribed size of their de Bruijn representation. In N. Ollinger and H. Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 40:1-40:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
[15] Grygiel, K. and Lescanne, P. (2013). Counting and generating lambda terms. J. Funct. Program., 23(5), 594-628.
[16] Grygiel, K. and Lescanne, P. (2015). Counting and generating terms in the binary lambda calculus. 7. Funct. Program., 25.
[17] Grygiel, K., Idziak, P. M., and Zaionc, M. (2013). How big is BCI fragment of BCK logic. F. Log. Comput., 23(3), 673-691.
[18] Hindley, J. R. (1989). BCK-combinators and linear lambda-terms have types. Theor. Comput. Sci., 64(1), 97-105.
[19] Hindley, J. R. (1997). Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
[20] Kostrzycka, Z. and Zaionc, M. (2004). Statistics of intuitionistic versus classical logics. Studia Logica, 76(3), 307-328.
[21] Lescanne, P. (2013). On counting untyped lambda terms. Theor. Comput. Sci., 474, 80-97.
[22] Lescanne, P. (2014). Boltzmann samplers for random generation of lambda terms. ArXiV, abs/1404.3875.
[23] Tromp, J. (2006). Binary lambda calculus and combinatory logic. In M. Hutter, W. Merkle, and P. M. B. Vitányi, editors, Kolmogorov Complexity and Applications, volume 06051 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.
[24] Zaionc, M. (2005). On the asymptotic density of tautologies in logic of implication and negation. Reports on Mathematical Logic, 39, 67-87.
[25] Zaionc, M. (2006). Probability distribution for simple tautologies. Theor. Comput. Sci., 355(2), 243-260.
[26] Zeilberger, N. (2015). Counting isomorphism classes of β-normal linear lambda terms. ArXiV, abs/1509.07596.
[27] Zeilberger, N. (2016). Linear lambda terms as invariants of rooted trivalent maps. 7. Funct. Program., 26, e21.
[28] Zeilberger, N. and Giorgetti, A. (2015). A correspondence between rooted planar maps and normal planar lambda terms. Logical Methods in Computer Science, 11(3).

