A Dense Neighborhood Lemma, with Applications to Domination and Chromatic Number

Romain Bourneuf LaBRI, LIP

Joint work with Pierre Charbit and Stéphan Thomassé

April 24, 2025

 $V \subseteq \mathbb{R}^N$, finite set of points with $|B(v, 1) \cap V| \ge \delta |V|$ for every $v \in V$.

 $V \subseteq \mathbb{R}^N$, finite set of points with $|B(v, 1) \cap V| \ge \delta |V|$ for every $v \in V$. Then, there is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

• Size of X does not depend on V.

- Size of X does not depend on V.
- Size of X does not depend on N.

- Size of X does not depend on V.
- Size of X does not depend on N.
- $f(\delta, \varepsilon) = \text{poly}(1/\delta, 1/\varepsilon).$

- Size of X does not depend on V.
- Size of X does not depend on N.
- $f(\delta, \varepsilon) = \text{poly}(1/\delta, 1/\varepsilon).$
- Similar statements in many other settings.

Build threshold graph G = (V, E), minimum degree $\delta |V|$.

Build threshold graph G = (V, E), minimum degree $\delta |V|$. Want: dominating set X of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

False: If $G \sim G(n, 1/2)$ then $\delta(G) \approx n/2$ but $\gamma(G) \approx \log(n)$.

Definition (Vapnik, Cervonenkis '71)

A class C of graphs has bounded *VC-dimension* if it does not contain some bipartite graph as a semi-induced subgraph.

Definition (Vapnik, Cervonenkis '71)

A class C of graphs has bounded *VC-dimension* if it does not contain some bipartite graph as a semi-induced subgraph.

VC-dim(C) = "size" of the smallest such subgraph.

Definition (Vapnik, Cervonenkis '71)

A class C of graphs has bounded *VC-dimension* if it does not contain some bipartite graph as a semi-induced subgraph.

VC-dim(C) = "size" of the smallest such subgraph.

Theorem [Haussler, Welzl '89]

If G has VC-dimension d and minimum degree δn then G has a dominating set of size $f(\delta, d)$.

Proposition [Folklore]

VC-dim(threshold graphs in \mathbb{R}^N) = N + 1.

Proposition [Folklore]

VC-dim(threshold graphs in \mathbb{R}^N) = N + 1.

Corollary

Proposition [Folklore]

VC-dim(threshold graphs in \mathbb{R}^N) = N + 1.

Corollary

 $V \subseteq \mathbb{R}^N$, finite set of points with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. Then, there is a set $X \subseteq V$ of size $f(\delta, N)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1)$.

Every *n*-vertex graph is a threshold graph in $\mathbb{R}^n \Rightarrow$ needs to depend on *N*.

Trigraphs

Trigraphs

Build threshold trigraph T = (V, E, R), minimum black degree $\delta |V|$.

Build threshold trigraph T = (V, E, R), minimum black degree $\delta |V|$. Want: black/red dominating set X of size $f(\delta, \varepsilon)$.

VC-dimension of trigraphs

Definition (Alon, Hanneke, Holzman, Moran '21)

A class C of trigraphs has bounded *VC-dimension* if it does not contain some bipartite graph as a semi-induced subgraph.

VC-dimension of trigraphs

Definition (Alon, Hanneke, Holzman, Moran '21)

A class C of trigraphs has bounded *VC-dimension* if it does not contain some bipartite graph as a semi-induced subgraph.

VC-dim(C) = "size" of the smallest such subgraph.
VC-dimension of trigraphs

Definition (Alon, Hanneke, Holzman, Moran '21)

A class C of trigraphs has bounded *VC-dimension* if it does not contain some bipartite graph as a semi-induced subgraph.

VC-dim(C) = "size" of the smallest such subgraph.

Theorem

If G has VC-dimension d and minimum black degree δn then G has a black/red dominating set of size $f(\delta, d)$.

• Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).
- Every $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N has VC-dimension $O(1/\varepsilon^2)$.

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).
- Every $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N has VC-dimension $O(1/\varepsilon^2)$.

If G is a graph, its ε -disjointness trigraph is T = (V, E, R) where:

• $uv \in E \iff N(u) \cap N(v) = \emptyset$, and

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).
- Every $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N has VC-dimension $O(1/\varepsilon^2)$.

If G is a graph, its ε -disjointness trigraph is T = (V, E, R) where:

- $uv \in E \iff N(u) \cap N(v) = \emptyset$, and
- $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon |V|.$

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).
- Every $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N has VC-dimension $O(1/\varepsilon^2)$.

If G is a graph, its ε -disjointness trigraph is T = (V, E, R) where:

- $uv \in E \iff N(u) \cap N(v) = \emptyset$, and
- $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon |V|.$

Theorem

Every ε -disjointness trigraph has VC-dimension $O(1/\varepsilon^2)$.

Let T = (V, E, R) be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :

Let T = (V, E, R) be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N : $V \subseteq \mathbb{S}^N$, $uv \in E \iff d_S(u, v) \le \tau$ and $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Let
$$T = (V, E, R)$$
 be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :
 $V \subseteq \mathbb{S}^N$,
 $uv \in E \iff d_S(u, v) \le \tau$ and
 $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Consider a semi-induced subgraph T[A, B] of T without any red edge.

Let
$$T = (V, E, R)$$
 be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :
 $V \subseteq \mathbb{S}^N$,
 $uv \in E \iff d_S(u, v) \le \tau$ and
 $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Consider a semi-induced subgraph T[A, B] of T without any red edge.

Let
$$T = (V, E, R)$$
 be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :
 $V \subseteq \mathbb{S}^N$,
 $uv \in E \iff d_S(u, v) \le \tau$ and
 $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Consider a semi-induced subgraph T[A, B] of T without any red edge.

Take a random hyperplane $H \subseteq \mathbb{R}^{N+1}$.

Let
$$T = (V, E, R)$$
 be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :
 $V \subseteq \mathbb{S}^N$,
 $uv \in E \iff d_S(u, v) \le \tau$ and
 $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Consider a semi-induced subgraph T[A, B] of T without any red edge.

Fake a random hyperplane
$$H\subseteq \mathbb{R}^{N+1}$$
 .

Let
$$T = (V, E, R)$$
 be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :
 $V \subseteq \mathbb{S}^N$,
 $uv \in E \iff d_S(u, v) \le \tau$ and
 $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Consider a semi-induced subgraph T[A, B] of T without any red edge.

Let
$$T = (V, E, R)$$
 be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :
 $V \subseteq \mathbb{S}^N$,
 $uv \in E \iff d_S(u, v) \le \tau$ and
 $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Consider a semi-induced subgraph T[A, B] of T without any red edge.

Take a random hyperplane $H \subseteq \mathbb{R}^{N+1}$. Edges survive with probability $\leq \tau/\pi$, non-edges with probability $> (\tau + \varepsilon)/\pi$.

Let
$$T = (V, E, R)$$
 be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :
 $V \subseteq \mathbb{S}^N$,
 $uv \in E \iff d_S(u, v) \le \tau$ and
 $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Consider a semi-induced subgraph T[A, B] of T without any red edge.

Take a random hyperplane $H \subseteq \mathbb{R}^{N+1}$. Edges survive with probability $\leq \tau/\pi$, non-edges with probability $> (\tau + \varepsilon)/\pi$. T[A, B] has a cut which kills *significantly* more edges than non-edges.

Let
$$T = (V, E, R)$$
 be a $(\tau, \tau + \varepsilon)$ -threshold trigraph in \mathbb{S}^N :
 $V \subseteq \mathbb{S}^N$,
 $uv \in E \iff d_S(u, v) \le \tau$ and
 $uv \in R \iff \tau < d_S(u, v) \le \tau + \varepsilon$.

Consider a semi-induced subgraph T[A, B] of T without any red edge.

Take a random hyperplane $H \subseteq \mathbb{R}^{N+1}$. Edges survive with probability $\leq \tau/\pi$, non-edges with probability $> (\tau + \varepsilon)/\pi$. T[A, B] has a cut which kills *significantly* more edges than non-edges.

Some bipartite graphs have no such cuts.

 $V \subseteq \mathbb{R}^N$, finite set of points with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

 $V \subseteq \mathbb{R}^N$, finite set of points with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

 $V \subseteq \{0,1\}^N$, set of points with $\left|\overline{B(v, \tau \cdot N)} \cap V\right| \ge \delta |V|$ for every $v \in V$.

 $V \subseteq \mathbb{R}^N$, finite set of points with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

 $V \subseteq \{0,1\}^N$, set of points with $\left|\overline{B(v,\tau \cdot N)} \cap V\right| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta,\varepsilon)$ such that $V \subseteq \bigcup_{x \in X} \overline{B(x,(\tau - \varepsilon) \cdot N)}$.

 $V \subseteq \mathbb{R}^N$, finite set of points with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

 $V \subseteq \{0,1\}^N$, set of points with $\left|\overline{B(v,\tau \cdot N)} \cap V\right| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta,\varepsilon)$ such that $V \subseteq \bigcup_{x \in X} \overline{B(x,(\tau - \varepsilon) \cdot N)}$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

The chromatic threshold of triangle-free graphs (1/2)

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Theorem [Erdős, Hajnal '72]

There exist triangle-free graphs with minimum degree $(1/3 - \varepsilon) \cdot n$ and arbitrary large chromatic number.

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Theorem [Erdős, Hajnal '72]

There exist triangle-free graphs with minimum degree $(1/3 - \varepsilon) \cdot n$ and arbitrary large chromatic number.

Conjecture [Erdős, Simonovits '73]

The chromatic threshold of triangle-free graphs is 1/3.

Theorem [Thomassen '02]

Every triangle-free graph with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Brandt, Thomassé '04]

Every triangle-free graph with minimum degree > n/3 has chromatic number at most 4.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where $uv \in E \iff N(u) \cap N(v) = \emptyset$, and $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon n$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where $uv \in E \iff N(u) \cap N(v) = \emptyset$, and $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon n$. Since G is triangle-free, neighbors in G are also black neighbors in T.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where $uv \in E \iff N(u) \cap N(v) = \emptyset$, and $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon n$. Since G is triangle-free, neighbors in G are also black neighbors in T.

Let X be a black/red dominating set of size $f(\varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where $uv \in E \iff N(u) \cap N(v) = \emptyset$, and $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon n$. Since G is triangle-free, neighbors in G are also black neighbors in T.

Let X be a black/red dominating set of size $f(\varepsilon)$. If u, v are dominated by $x \in X$ and are neighbors in G then $|N(x) \cup N(u) \cup N(v)| \ge 3 \cdot (1/3 + \varepsilon) \cdot n - 2 \cdot \varepsilon n > n$, a contradiction.

Clustering

Clustering

Theorem

 $V \subseteq \mathbb{R}^N$, set of *n* points. There is a partition of *V* into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if *u*, *v* are in the same cluster,

Clustering

Theorem

 $V \subseteq \mathbb{R}^N$, set of *n* points. There is a partition of *V* into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if *u*, *v* are in the same cluster, there are at most $\varepsilon \cdot n$ points *w* such that $d(w, u) \leq 1$ and $d(w, v) > 1 + \varepsilon$.

Clustering

Theorem

 $V \subseteq \mathbb{R}^N$, set of *n* points. There is a partition of *V* into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if *u*, *v* are in the same cluster, there are at most $\varepsilon \cdot n$ points *w* such that $d(w, u) \leq 1$ and $d(w, v) > 1 + \varepsilon$.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster,

Clustering

Theorem

 $V \subseteq \mathbb{R}^N$, set of *n* points. There is a partition of *V* into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if *u*, *v* are in the same cluster, there are at most $\varepsilon \cdot n$ points *w* such that $d(w, u) \leq 1$ and $d(w, v) > 1 + \varepsilon$.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n$ vertices w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n$.

The chromatic threshold of regular triangle-free graphs is 1/4.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

Consider u, v in the same cluster. Every neighbor w of u satisfies $N(u) \cap N(w) = \emptyset$ so $(1/4 + \varepsilon/2)n$ of them satisfy $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

Consider u, v in the same cluster. Every neighbor w of u satisfies $N(u) \cap N(w) = \emptyset$ so $(1/4 + \varepsilon/2)n$ of them satisfy $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. If $uv \in E(G)$, there are at least $(1/2 + \varepsilon)n$ vertices w such that $|N(u) \cap N(w)| \le \varepsilon \cdot n/2$ and $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

Consider u, v in the same cluster. Every neighbor w of u satisfies $N(u) \cap N(w) = \emptyset$ so $(1/4 + \varepsilon/2)n$ of them satisfy $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. If $uv \in E(G)$, there are at least $(1/2 + \varepsilon)n$ vertices w such that $|N(u) \cap N(w)| \le \varepsilon \cdot n/2$ and $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. G is regular so $\alpha(G) \le n/2$ so two such vertices w, w' are adjacent.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

Consider u, v in the same cluster. Every neighbor w of u satisfies $N(u) \cap N(w) = \emptyset$ so $(1/4 + \varepsilon/2)n$ of them satisfy $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. If $uv \in E(G)$, there are at least $(1/2 + \varepsilon)n$ vertices w such that $|N(u) \cap N(w)| \le \varepsilon \cdot n/2$ and $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. G is regular so $\alpha(G) \le n/2$ so two such vertices w, w' are adjacent. Then, $|N(u) \cup N(v) \cup N(w) \cup N(w')| \ge 4 \cdot (1/4 + \varepsilon) \cdot n - {4 \choose 2} \cdot \varepsilon \cdot n/2 > n$, a contradiction.

The set X of recipients is *fair* if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least k + 1 referees.

The set X of recipients is *fair* if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least k + 1 referees.

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

There is always a fair set of recipients of size f(k).

The set X of recipients is *fair* if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least k + 1 referees.

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

There is always a fair set of recipients of size f(k).

The set X of recipients is ε -fair if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least $(1/2 - \varepsilon) \cdot (2k + 1)$ referees.

The set X of recipients is *fair* if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least k + 1 referees.

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

There is always a fair set of recipients of size f(k).

The set X of recipients is ε -fair if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least $(1/2 - \varepsilon) \cdot (2k + 1)$ referees.

Theorem

There is always an ε -fair set of recipients of size $f(\varepsilon)$.

Form a tri-directed graph T = (V, A, R) with $u \to v \in A$ if u is preferred to v by at least k + 1 referees, and $u \to v \in R$ if u is preferred to v by at least $(1/2 - \varepsilon) \cdot (2k + 1)$ referees.

Form a tri-directed graph T = (V, A, R) with $u \to v \in A$ if u is preferred to v by at least k + 1 referees, and $u \to v \in R$ if u is preferred to v by at least $(1/2 - \varepsilon) \cdot (2k + 1)$ referees. Once again, we can show that T has bounded VC-dimension. Form a tri-directed graph T = (V, A, R) with $u \to v \in A$ if u is preferred to v by at least k + 1 referees, and $u \to v \in R$ if u is preferred to v by at least $(1/2 - \varepsilon) \cdot (2k + 1)$ referees.

Once again, we can show that T has bounded VC-dimension.

Using Farkas' Lemma, we can give weights to the vertices such that every vertex has black in-degree at least n/2 (keeping the total weight to n).

Form a tri-directed graph T = (V, A, R) with $u \to v \in A$ if u is preferred to v by at least k + 1 referees, and $u \to v \in R$ if u is preferred to v by at least $(1/2 - \varepsilon) \cdot (2k + 1)$ referees.

Once again, we can show that T has bounded VC-dimension.

Using Farkas' Lemma, we can give weights to the vertices such that every vertex has black in-degree at least n/2 (keeping the total weight to n). Then, there exists a black (red degring the total weight to n).

Then, there exists a black/red dominating set X of size $f(\varepsilon)$.

• Is n/4 a sharp threshold for regular triangle-free graphs?

- Is n/4 a sharp threshold for regular triangle-free graphs?
- Clustering for trigraphs of bounded VC-dimension?

- Is n/4 a sharp threshold for regular triangle-free graphs?
- Clustering for trigraphs of bounded VC-dimension?
- Other applications?

- Is n/4 a sharp threshold for regular triangle-free graphs?
- Clustering for trigraphs of bounded VC-dimension?
- Other applications?

Thank you!