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May 20, 2025

Dense Neighborhood Lemma May 20, 2025 1 / 18



Dense Neighborhood Lemma

Theorem

V ⊆ RN , finite set of points with |B(v , 1) ∩ V | ≥ δ|V | for every v ∈ V .

Then, there is a set X ⊆ V of size f (δ, ε) such that V ⊆
⋃

x∈X B(x , 1+ ε).

• Size of X does not depend on V .

• Size of X does not depend on N.

• f (δ, ε) = poly(1/δ, 1/ε).

• Similar statements in many other settings.
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Case N = 2

Build threshold graph G = (V ,E ), minimum degree δ|V |.
Want: dominating set X of size f (δ).
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Large degree ⇒ small dominating set?

Dream: Minimum degree δn ⇒ dominating set of size f (δ).

False: If G ∼ G (n, 1/2) then δ(G ) ≈ n/2 but γ(G ) ≈ log(n).

G

If G ∼ G (n/2, n/2, 1/2) then δ(G ) ≈ n/4 but γ(G ) ≈ log(n).
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VC-dimension

Definition (Vapnik, Cervonenkis ’71)

A class C of graphs has bounded VC-dimension if it does not contain all
bipartite graphs as semi-induced subgraphs.

VC-dim(C) = “size” of the smallest missing subgraph.

Theorem [Haussler, Welzl ’89]

If G has VC-dimension d and minimum degree δn then G has a
dominating set of size f (δ, d).
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VC-dimension of threshold graphs

Proposition [Folklore]

VC-dim
(
threshold graphs in RN

)
= N + 1.

Corollary

V ⊆ RN , finite set of points with |B(v , 1) ∩ V | ≥ δ|V | for every v ∈ V .
Then, there is a set X ⊆ V of size f (δ,N) such that V ⊆

⋃
x∈X B(x , 1).

Every n-vertex graph is a threshold graph in Rn ⇒ needs to depend on N.
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Trigraphs

Build threshold trigraph T = (V ,E ,R), minimum black degree δ|V |.
Want: black/red dominating set X of size f (δ, ε).
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VC-dimension of trigraphs

Definition (Alon, Hanneke, Holzman, Moran ’21)

A class C of trigraphs has bounded VC-dimension if it does not contain all
bipartite graphs as semi-induced subgraphs.

VC-dim(C) = “size” of the smallest missing subgraph.

Theorem

If G has VC-dimension d and minimum black degree δn then G has a
black/red dominating set of size f (δ, d).
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Trigraphs of bounded VC-dimension

Theorem

• Every (1, 1+ ε)-threshold trigraph in RN has VC-dimension poly(1/ε).

• Every (τ · N, (τ + ε) · N)-threshold trigraph in {0, 1}N has
VC-dimension O(1/ε2).

If G is a graph, its ε-disjointness trigraph is T = (V ,E ,R) where:

• uv ∈ E ⇐⇒ N(u) ∩ N(v) = ∅, and
• uv ∈ R ⇐⇒ |N(u) ∩ N(v)| ≤ ε|V |.

Theorem

Every ε-disjointness trigraph has VC-dimension O(1/ε2).
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Proof sketch in {0, 1}N

Let T = (V ,E ,R) be a (τ · N, (τ + ε) · N)-threshold trigraph in {0, 1}N :

V ⊆ {0, 1}N ,
uv ∈ E ⇐⇒ dH(u, v) ≤ τ · N and
uv ∈ R ⇐⇒ τ · N < dH(u, v) ≤ (τ + ε) · N.

Consider a semi-induced subgraph T [A,B] of T without any red edge.

A

A0

A1

B

B0

B1

≤ τ · N

> (τ + ε)N

Pick a random dimension i ∈ [N].
Edges survive with probability ≤ τ ,
non-edges with probability > τ + ε.
T [A,B] has a cut which kills significantly
more edges than non-edges.
Some bipartite graphs have no such cuts.
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Statements of DNL

Theorem

V ⊆ RN , finite set of points with |B(v , 1) ∩ V | ≥ δ|V | for every v ∈ V .
There is a set X ⊆ V of size f (δ, ε) such that V ⊆

⋃
x∈X B(x , 1 + ε).

Theorem

V ⊆ {0, 1}N , set of points with
∣∣∣B(v , τ · N) ∩ V

∣∣∣ ≥ δ|V | for every v ∈ V .

There is a set X ⊆ V of size f (δ, ε) such that V ⊆
⋃

x∈X B(x , (τ − ε) · N).

Theorem

Every ε-disjointness trigraph with minimum black degree δn has a
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The chromatic threshold of triangle-free graphs (1/2)

Proposition [Andrásfai, Erdős, Sós ’73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Theorem [Erdős, Hajnal ’72]

There exist triangle-free graphs with minimum degree (1/3− ε) · n and
arbitrary large chromatic number.

Conjecture [Erdős, Simonovits ’73]

The chromatic threshold of triangle-free graphs is 1/3.
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The chromatic threshold of triangle-free graphs (2/2)

Theorem [Thomassen ’02]

Every triangle-free graph with minimum degree (1/3 + ε) · n has chromatic
number ≤ f (ε).

Theorem [Brandt, Thomassé ’04]

Every triangle-free graph with minimum degree > n/3 has chromatic
number at most 4.
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A quick proof

Theorem [Thomassen ’02]

Every triangle-free graph G with minimum degree (1/3 + ε) · n has
chromatic number ≤ f (ε).

Theorem

Every ε-disjointness trigraph with minimum black degree δn has a
black/red dominating set of size f (δ, ε).

Let T = (V ,E ,R) be the ε-disjointness trigraph of G , where
uv ∈ E ⇐⇒ N(u) ∩ N(v) = ∅, and uv ∈ R ⇐⇒ |N(u) ∩ N(v)| ≤ εn.
Since G is triangle-free, neighbors in G are also black neighbors in T .

Let X be a black/red dominating set of size f (ε).
If u, v are dominated by x ∈ X and are neighbors in G then
|N(x) ∪ N(u) ∪ N(v)| ≥ 3 · (1/3 + ε) · n − 2 · εn > n, a contradiction.

Dense Neighborhood Lemma May 20, 2025 14 / 18



A quick proof

Theorem [Thomassen ’02]

Every triangle-free graph G with minimum degree (1/3 + ε) · n has
chromatic number ≤ f (ε).

Theorem

Every ε-disjointness trigraph with minimum black degree δn has a
black/red dominating set of size f (δ, ε).

Let T = (V ,E ,R) be the ε-disjointness trigraph of G , where
uv ∈ E ⇐⇒ N(u) ∩ N(v) = ∅, and uv ∈ R ⇐⇒ |N(u) ∩ N(v)| ≤ εn.
Since G is triangle-free, neighbors in G are also black neighbors in T .

Let X be a black/red dominating set of size f (ε).
If u, v are dominated by x ∈ X and are neighbors in G then
|N(x) ∪ N(u) ∪ N(v)| ≥ 3 · (1/3 + ε) · n − 2 · εn > n, a contradiction.

Dense Neighborhood Lemma May 20, 2025 14 / 18



A quick proof

Theorem [Thomassen ’02]

Every triangle-free graph G with minimum degree (1/3 + ε) · n has
chromatic number ≤ f (ε).

Theorem

Every ε-disjointness trigraph with minimum black degree δn has a
black/red dominating set of size f (δ, ε).

Let T = (V ,E ,R) be the ε-disjointness trigraph of G , where

uv ∈ E ⇐⇒ N(u) ∩ N(v) = ∅, and uv ∈ R ⇐⇒ |N(u) ∩ N(v)| ≤ εn.
Since G is triangle-free, neighbors in G are also black neighbors in T .

Let X be a black/red dominating set of size f (ε).
If u, v are dominated by x ∈ X and are neighbors in G then
|N(x) ∪ N(u) ∪ N(v)| ≥ 3 · (1/3 + ε) · n − 2 · εn > n, a contradiction.

Dense Neighborhood Lemma May 20, 2025 14 / 18



A quick proof

Theorem [Thomassen ’02]

Every triangle-free graph G with minimum degree (1/3 + ε) · n has
chromatic number ≤ f (ε).

Theorem

Every ε-disjointness trigraph with minimum black degree δn has a
black/red dominating set of size f (δ, ε).

Let T = (V ,E ,R) be the ε-disjointness trigraph of G , where
uv ∈ E ⇐⇒ N(u) ∩ N(v) = ∅, and uv ∈ R ⇐⇒ |N(u) ∩ N(v)| ≤ εn.

Since G is triangle-free, neighbors in G are also black neighbors in T .

Let X be a black/red dominating set of size f (ε).
If u, v are dominated by x ∈ X and are neighbors in G then
|N(x) ∪ N(u) ∪ N(v)| ≥ 3 · (1/3 + ε) · n − 2 · εn > n, a contradiction.

Dense Neighborhood Lemma May 20, 2025 14 / 18



A quick proof

Theorem [Thomassen ’02]

Every triangle-free graph G with minimum degree (1/3 + ε) · n has
chromatic number ≤ f (ε).

Theorem

Every ε-disjointness trigraph with minimum black degree δn has a
black/red dominating set of size f (δ, ε).

Let T = (V ,E ,R) be the ε-disjointness trigraph of G , where
uv ∈ E ⇐⇒ N(u) ∩ N(v) = ∅, and uv ∈ R ⇐⇒ |N(u) ∩ N(v)| ≤ εn.
Since G is triangle-free, neighbors in G are also black neighbors in T .

Let X be a black/red dominating set of size f (ε).
If u, v are dominated by x ∈ X and are neighbors in G then
|N(x) ∪ N(u) ∪ N(v)| ≥ 3 · (1/3 + ε) · n − 2 · εn > n, a contradiction.

Dense Neighborhood Lemma May 20, 2025 14 / 18



A quick proof

Theorem [Thomassen ’02]

Every triangle-free graph G with minimum degree (1/3 + ε) · n has
chromatic number ≤ f (ε).

Theorem

Every ε-disjointness trigraph with minimum black degree δn has a
black/red dominating set of size f (δ, ε).

Let T = (V ,E ,R) be the ε-disjointness trigraph of G , where
uv ∈ E ⇐⇒ N(u) ∩ N(v) = ∅, and uv ∈ R ⇐⇒ |N(u) ∩ N(v)| ≤ εn.
Since G is triangle-free, neighbors in G are also black neighbors in T .

Let X be a black/red dominating set of size f (ε).

If u, v are dominated by x ∈ X and are neighbors in G then
|N(x) ∪ N(u) ∪ N(v)| ≥ 3 · (1/3 + ε) · n − 2 · εn > n, a contradiction.

Dense Neighborhood Lemma May 20, 2025 14 / 18



A quick proof

Theorem [Thomassen ’02]

Every triangle-free graph G with minimum degree (1/3 + ε) · n has
chromatic number ≤ f (ε).

Theorem

Every ε-disjointness trigraph with minimum black degree δn has a
black/red dominating set of size f (δ, ε).

Let T = (V ,E ,R) be the ε-disjointness trigraph of G , where
uv ∈ E ⇐⇒ N(u) ∩ N(v) = ∅, and uv ∈ R ⇐⇒ |N(u) ∩ N(v)| ≤ εn.
Since G is triangle-free, neighbors in G are also black neighbors in T .

Let X be a black/red dominating set of size f (ε).
If u, v are dominated by x ∈ X and are neighbors in G then
|N(x) ∪ N(u) ∪ N(v)| ≥ 3 · (1/3 + ε) · n − 2 · εn > n, a contradiction.

Dense Neighborhood Lemma May 20, 2025 14 / 18



More results

Theorem [O’Rourke ’14]

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem [Goddard, Lyle ’10], [Nikiforov ’10]

The chromatic threshold of Kt-free graphs is 2t−5
2t−3 .

Theorem

Every tournament with fractional dichromatic number at most k has
domination at most g(k).
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Domination in majority digraphs

2k + 1 referees are in charge of awarding some grants. Each of them has a
total order on the set V of candidates.

The set X of recipients is fair if for every v ∈ V \ X , some x ∈ X is
preferred to v by at least k + 1 referees.

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler ’06]

There is always a fair set of recipients of size f (k).

The set X of recipients is ε-fair if for every v ∈ V \ X , some x ∈ X is
preferred to v by at least (1/2− ε) · (2k + 1) referees.

Theorem

There is always an ε-fair set of recipients of size f (ε).
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Proof sketch

Form a tri-directed graph T = (V ,A,R) with u → v ∈ A if u is preferred
to v by at least k + 1 referees, and u → v ∈ R if u is preferred to v by at
least (1/2− ε) · (2k + 1) referees.

Once again, we can show that T has bounded VC-dimension.
Using Farkas’ Lemma, we can give weights to the vertices such that every
vertex has black in-degree at least n/2 (keeping the total weight to n).
Then, there exists a black/red dominating set X of size f (ε).
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Open questions

• Is n/4 a sharp threshold for regular triangle-free graphs?

• Extend more classical results from VC-dimension theory?

• Other applications?

Thank you!
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