A Dense Neighborhood Lemma, with Applications to Domination and Chromatic Number

Romain Bourneuf LaBRI, LIP

Joint work with Pierre Charbit (IRIF) and Stéphan Thomassé (ENS de Lyon)

October 3, 2025

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

Theorem

Theorem

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

Then, there is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. Then, there is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

• Size of X does not depend on V.

Theorem

- Size of X does not depend on V.
- Size of X does not depend on N.

Theorem

- Size of X does not depend on V.
- Size of X does not depend on N.
- $f(\delta, \varepsilon) = \text{poly}(1/\delta, 1/\varepsilon)$.

Theorem

- Size of X does not depend on V.
- Size of X does not depend on N.
- $f(\delta, \varepsilon) = \text{poly}(1/\delta, 1/\varepsilon)$.
- Several similar statements in various contexts.

Build distance-threshold graph G = (V, E)

Build distance-threshold graph G = (V, E), minimum degree $\delta |V|$.

Build distance-threshold graph G = (V, E), minimum degree $\delta |V|$. Want: set X of size $f(\delta)$ s.t. every $v \notin X$ has a neighbor in X.

Build distance-threshold graph G = (V, E), minimum degree $\delta |V|$. Want: set X of size $f(\delta)$ s.t. every $v \notin X$ has a neighbor in X. Dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

False: If $G \sim G(n, 1/2)$ then $\delta(G) \approx n/2$ but $\gamma(G) \approx \log(n)$.

G

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

False: If $G \sim G(n, 1/2)$ then $\delta(G) \approx n/2$ but $\gamma(G) \approx \log(n)$.

G

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

False: If $G \sim G(n, 1/2)$ then $\delta(G) \approx n/2$ but $\gamma(G) \approx \log(n)$.

Definition (Vapnik, Cervonenkis '71)

A class $\mathcal C$ of graphs has bounded VC-dimension if it does not contain all bipartite graphs as semi-induced subgraphs.

Definition (Vapnik, Cervonenkis '71)

A class \mathcal{C} of graphs has bounded VC-dimension if it does not contain all bipartite graphs as semi-induced subgraphs.

Definition (Vapnik, Cervonenkis '71)

A class \mathcal{C} of graphs has bounded VC-dimension if it does not contain all bipartite graphs as semi-induced subgraphs.

Definition (Vapnik, Cervonenkis '71)

A class $\mathcal C$ of graphs has bounded VC-dimension if it does not contain all bipartite graphs as semi-induced subgraphs.

 $VC\text{-}dim(\mathcal{C}) = \text{``size''} \text{ of the smallest missing subgraph.}$

Definition (Vapnik, Cervonenkis '71)

A class $\mathcal C$ of graphs has bounded VC-dimension if it does not contain all bipartite graphs as semi-induced subgraphs.

 $VC\text{-dim}(\mathcal{C}) = \text{"size"}$ of the smallest missing subgraph.

Theorem [Haussler, Welzl '89]

If G has VC-dimension d and minimum degree δn then G has a dominating set of size $f(\delta, d)$.

VC-dimension of threshold graphs

Proposition [Folklore]

VC-dim(distance-threshold graphs in \mathbb{R}^N) = N + 1.

VC-dimension of threshold graphs

Proposition [Folklore]

VC-dim(distance-threshold graphs in \mathbb{R}^N) = N + 1.

Corollary

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

Then, there is a set $X \subseteq V$ of size $f(\delta, N)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1)$.

VC-dimension of threshold graphs

Proposition [Folklore]

VC-dim(distance-threshold graphs in \mathbb{R}^N) = N + 1.

Corollary

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. Then, there is a set $X \subseteq V$ of size $f(\delta, N)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1)$.

Every *n*-vertex graph is a distance-threshold graph in $\mathbb{R}^n \Rightarrow$ needs to depend on N.

Build distance-threshold trigraph T = (V, E, R),

Build distance-threshold trigraph T = (V, E, R), minimum black degree $\delta |V|$.

Build distance-threshold trigraph T = (V, E, R), minimum black degree $\delta |V|$.

Want: black/red dominating set X of size $f(\delta, \varepsilon)$.

VC-dimension of trigraphs

Definition (Alon, Hanneke, Holzman, Moran '21)

A class $\mathcal C$ of trigraphs has bounded VC-dimension if it does not contain all bipartite graphs as semi-induced subgraphs.

VC-dimension of trigraphs

Definition (Alon, Hanneke, Holzman, Moran '21)

A class $\mathcal C$ of trigraphs has bounded VC-dimension if it does not contain all bipartite graphs as semi-induced subgraphs.

 $VC\text{-dim}(\mathcal{C}) = \text{"size"}$ of the smallest missing subgraph.

VC-dimension of trigraphs

Definition (Alon, Hanneke, Holzman, Moran '21)

A class $\mathcal C$ of trigraphs has bounded VC-dimension if it does not contain all bipartite graphs as semi-induced subgraphs.

VC-dim(C) = "size" of the smallest missing subgraph.

Theorem [Alon, Hanneke, Holzman, Moran '21], [BCT '25]

If T has VC-dimension d and minimum black degree δn then T has a black/red dominating set of size $f(\delta, d)$.

Theorem [Rosenblatt '58]

Every $(1, 1 + \varepsilon)$ -distance-threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.

Theorem [Rosenblatt '58]

Every $(1, 1 + \varepsilon)$ -distance-threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.

N-dimensional hypercube: $\{0,1\}^N$, Hamming distance.

Theorem [Rosenblatt '58]

Every $(1, 1 + \varepsilon)$ -distance-threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.

N-dimensional hypercube: $\{0,1\}^N$, Hamming distance.

Theorem [Rosenblatt '58]

Every $(\tau \cdot N, (\tau + \varepsilon) \cdot N)$ -distance-threshold trigraph in $\{0,1\}^N$ has VC-dimension $O(1/\varepsilon^2)$.

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

$$V \subseteq \{0,1\}^N$$
 with $\left|\overline{B(v,\tau \cdot N)} \cap V\right| \ge \delta |V|$ for every $v \in V$.

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

 $V \subseteq \{0,1\}^N$ with $\left|\overline{B(v,\tau \cdot N)} \cap V\right| \ge \delta |V|$ for every $v \in V$.

There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} \overline{B(x, (\tau - \varepsilon) \cdot N)}$.

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

 $V \subseteq \{0,1\}^N$ with $\left|\overline{B(v,\tau \cdot N)} \cap V\right| \ge \delta |V|$ for every $v \in V$.

There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} \overline{B(x, (\tau - \varepsilon) \cdot N)}$.

Theorem

 \mathcal{F} – family of subsets of [N] s.t.:

 $\forall S \in \mathcal{F}$, at least $\delta |\mathcal{F}|$ sets $S' \in \mathcal{F}$ s.t. $S \cap S' = \emptyset$.

Theorem

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

 $V \subseteq \{0,1\}^N$ with $\left|\overline{B(v,\tau \cdot N)} \cap V\right| \ge \delta |V|$ for every $v \in V$.

There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} \overline{B(x, (\tau - \varepsilon) \cdot N)}$.

Theorem

 \mathcal{F} – family of subsets of [N] s.t.:

 $\forall S \in \mathcal{F}$, at least $\delta |\mathcal{F}|$ sets $S' \in \mathcal{F}$ s.t. $S \cap S' = \emptyset$.

There is a set $\mathcal{F}' \subseteq \mathcal{F}$ of size $f(\delta, \varepsilon)$ such that for every $S \in \mathcal{F}$ there exists $S' \in \mathcal{F}'$ such that $|S \cap S'| \leq \varepsilon \cdot N$.

Definition

 $\chi(G)=$ minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.

Definition

 $\chi(G) = \text{minimum number of colors we need to color the vertices of } G \text{ so that adjacent vertices always get different colors.}$

Definition

 $\chi(G) = \text{minimum number of colors we need to color the vertices of } G \text{ so that adjacent vertices always get different colors.}$

Definition

 $\chi(G)=$ minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.

Definition

 $\chi(G) = \text{minimum number of colors we need to color the vertices of } G \text{ so that adjacent vertices always get different colors.}$

Definition

 $\chi(G) = \text{minimum number of colors we need to color the vertices of } G \text{ so that adjacent vertices always get different colors.}$

Definition

 $\chi(G)=$ minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.

Definition

 $\chi(G) = \text{minimum number of colors we need to color the vertices of } G \text{ so that adjacent vertices always get different colors.}$

Theorem [Mycielski, Zykov, Tutte, Erdős...]

There exist triangle-free graphs with arbitrarily large χ .

What is the smallest δ such that every triangle-free G with minimum degree at least δn satisfies $\chi(G) \leq f(\delta)$?

What is the smallest δ such that every triangle-free G with minimum degree at least δn satisfies $\chi(G) \leq f(\delta)$?

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

What is the smallest δ such that every triangle-free G with minimum degree at least δn satisfies $\chi(G) \leq f(\delta)$?

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Theorem [Erdős, Hajnal '72]

There exist triangle-free graphs with minimum degree $(1/3 - \varepsilon) \cdot n$ and arbitrary large chromatic number.

What is the smallest δ such that every triangle-free G with minimum degree at least δn satisfies $\chi(G) \leq f(\delta)$?

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Theorem [Erdős, Hajnal '72]

There exist triangle-free graphs with minimum degree $(1/3 - \varepsilon) \cdot n$ and arbitrary large chromatic number.

Conjecture [Erdős, Simonovits '73]

The chromatic threshold of triangle-free graphs is 1/3.

Theorem [Thomassen '02]

Every triangle-free graph with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Brandt, Thomassé '04]

Every triangle-free graph with minimum degree > n/3 has chromatic number at most 4.

Theorem [Thomassen '02]

Every triangle-free graph with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Brandt, Thomassé '04]

Every triangle-free graph with minimum degree > n/3 has chromatic number at most 4.

Theorem [CBT '25]

Every triangle-free graph with minimum degree $n/3 - n^{1-\varepsilon}$ has chromatic number at most $f(\varepsilon)$.

A quick proof

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

 \mathcal{F} – family of subsets of [n] s.t.:

 $\forall S \in \mathcal{F}$, at least $\delta |\mathcal{F}|$ sets $S' \in \mathcal{F}$ s.t. $S \cap S' = \emptyset$.

There is a set $\mathcal{F}' \subseteq \mathcal{F}$ of size $f(\delta, \varepsilon)$ such that every $S \in \mathcal{F}$ intersects some $S' \in \mathcal{F}'$ on at most $\varepsilon \cdot n$ elements.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

 \mathcal{F} – family of subsets of [n] s.t.:

 $\forall S \in \mathcal{F}$, at least $\delta |\mathcal{F}|$ sets $S' \in \mathcal{F}$ s.t. $S \cap S' = \emptyset$.

There is a set $\mathcal{F}' \subseteq \mathcal{F}$ of size $f(\delta, \varepsilon)$ such that every $S \in \mathcal{F}$ intersects some $S' \in \mathcal{F}'$ on at most $\varepsilon \cdot n$ elements.

Take $\mathcal{F} = \{N(v) : v \in V(G)\}.$

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

 \mathcal{F} – family of subsets of [n] s.t.:

 $\forall S \in \mathcal{F}$, at least $\delta |\mathcal{F}|$ sets $S' \in \mathcal{F}$ s.t. $S \cap S' = \emptyset$.

There is a set $\mathcal{F}' \subseteq \mathcal{F}$ of size $f(\delta, \varepsilon)$ such that every $S \in \mathcal{F}$ intersects some $S' \in \mathcal{F}'$ on at most $\varepsilon \cdot n$ elements.

Take $\mathcal{F} = \{N(v) : v \in V(G)\}.$

There is a set $X \subseteq V$ of size $f(\varepsilon)$ such that for every $v \in V$ there exists $x \in X$ such that $|N(v) \cap N(x)| \leq \varepsilon n$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

 \mathcal{F} – family of subsets of [n] s.t.:

 $\forall S \in \mathcal{F}$, at least $\delta |\mathcal{F}|$ sets $S' \in \mathcal{F}$ s.t. $S \cap S' = \emptyset$.

There is a set $\mathcal{F}' \subseteq \mathcal{F}$ of size $f(\delta, \varepsilon)$ such that every $S \in \mathcal{F}$ intersects some $S' \in \mathcal{F}'$ on at most $\varepsilon \cdot n$ elements.

Take $\mathcal{F} = \{N(v) : v \in V(G)\}.$

There is a set $X \subseteq V$ of size $f(\varepsilon)$ such that for every $v \in V$ there exists $x \in X$ such that $|N(v) \cap N(x)| \le \varepsilon n$.

If $|N(u) \cap N(x)|, |N(v) \cap N(x)| \le \varepsilon \cdot n$ and $uv \in E(G)$ then

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem

 \mathcal{F} – family of subsets of [n] s.t.:

 $\forall S \in \mathcal{F}$, at least $\delta |\mathcal{F}|$ sets $S' \in \mathcal{F}$ s.t. $S \cap S' = \emptyset$.

There is a set $\mathcal{F}' \subseteq \mathcal{F}$ of size $f(\delta, \varepsilon)$ such that every $S \in \mathcal{F}$ intersects some $S' \in \mathcal{F}'$ on at most $\varepsilon \cdot n$ elements.

Take $\mathcal{F} = \{N(v) : v \in V(G)\}.$

There is a set $X \subseteq V$ of size $f(\varepsilon)$ such that for every $v \in V$ there exists $x \in X$ such that $|N(v) \cap N(x)| \le \varepsilon n$.

If $|N(u) \cap N(x)|$, $|N(v) \cap N(x)| \le \varepsilon \cdot n$ and $uv \in E(G)$ then $|N(x) \cup N(u) \cup N(v)| > 3 \cdot (1/3 + \varepsilon) \cdot n - 2 \cdot \varepsilon n > n$, a contradiction.

Election: 2k + 1 voters, n candidates.

Election: 2k + 1 voters, n candidates.

Theorem [Condorcet 1785]

There exist elections where every candidate "loses" to another candidate.

Election: 2k + 1 voters, n candidates.

Theorem [Condorcet 1785]

There exist elections where every candidate "loses" to another candidate.

Voter 1: A > B > C.

Voter 2: B > C > A.

Voter 3: C > A > B.

Election: 2k + 1 voters, n candidates.

Theorem [Condorcet 1785]

There exist elections where every candidate "loses" to another candidate.

Voter 1: A > B > C.

Voter 2: B > C > A.

Voter 3: C > A > B.

Definition

A set X of winners is fair if no candidate outside of X beats all candidates in X.

Definition

A set X of winners is *fair* if no candidate outside of X beats all candidates in X.

Theorem [Condorcet 1785]

For every $m \ge 1$, there exist elections with no fair set of winners of size at most m.

Definition

A set X of winners is *fair* if no candidate outside of X beats all candidates in X.

Theorem [Condorcet 1785]

For every $m \ge 1$, there exist elections with no fair set of winners of size at most m.

Bound the number of voters?

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a fair set of winners of size f(k).

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a fair set of winners of size f(k).

A set X of winners is ε -fair if no candidate outside of X beats all candidates in X by a margin of more than ε .

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a fair set of winners of size f(k).

A set X of winners is ε -fair if no candidate outside of X beats all candidates in X by a margin of more than ε .

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a fair set of winners of size f(k).

A set X of winners is ε -fair if no candidate outside of X beats all candidates in X by a margin of more than ε .

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

A set X of winners is a *coalition* if no candidate outside of X is preferred to *everyone* in X by at least half of the voters.

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a fair set of winners of size f(k).

A set X of winners is ε -fair if no candidate outside of X beats all candidates in X by a margin of more than ε .

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

A set X of winners is a *coalition* if no candidate outside of X is preferred to *everyone* in X by at least half of the voters.

Theorem [Jiang, Munagala, Wang '20]

There is a coalition of order O(1).

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a fair set of winners of size f(k).

A set X of winners is ε -fair if no candidate outside of X beats all candidates in X by a margin of more than ε .

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

A set X of winners is a *coalition* if no candidate outside of X is preferred to *everyone* in X by at least half of the voters.

Theorem [Jiang, Munagala, Wang '20], [Nguyen, Song, Lin '25]

There is a coalition of order 5.

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

Form a tri-directed graph T=(V,A,R) with $u\to v\in A$ if u is preferred to v by at least k+1 voters, and $u\to v\in R$ if u is preferred to v by at least $(1/2-\varepsilon)\cdot(2k+1)$ voters.

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

Form a tri-directed graph T = (V, A, R) with $u \to v \in A$ if u is preferred to v by at least k+1 voters, and $u \to v \in R$ if u is preferred to v by at least $(1/2 - \varepsilon) \cdot (2k+1)$ voters.

Once again, we can show that T has bounded VC-dimension.

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

Form a tri-directed graph T=(V,A,R) with $u\to v\in A$ if u is preferred to v by at least k+1 voters, and $u\to v\in R$ if u is preferred to v by at least $(1/2-\varepsilon)\cdot (2k+1)$ voters.

Once again, we can show that T has bounded VC-dimension.

Lemma [Folklore]

Every tournament has a fractional dominating set of weight at most 2.

Theorem [BCT '25, Charikar, Ramakrishnan, Wang '25]

There is always an ε -fair set of winners of size $O(1/\varepsilon^2)$.

Form a tri-directed graph T=(V,A,R) with $u\to v\in A$ if u is preferred to v by at least k+1 voters, and $u\to v\in R$ if u is preferred to v by at least $(1/2-\varepsilon)\cdot (2k+1)$ voters.

Once again, we can show that T has bounded VC-dimension.

Lemma [Folklore]

Every tournament has a fractional dominating set of weight at most 2.

Then, there exists a black/red dominating set X of size $f(\varepsilon)$.

• Size of an ε -fair set of recipients?

- Size of an ε -fair set of recipients?
- Size of a coalition ?

- Size of an ε -fair set of recipients?
- Size of a coalition ?
- Other applications?

- Size of an ε -fair set of recipients?
- Size of a coalition ?
- Other applications?

Thank you!