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Dense Neighborhood Lemma

Theorem

Finite set V ⊆ RN with |B(v , 1) ∩ V | ≥ δ|V | for every v ∈ V .

Then, there is a set X ⊆ V of size f (δ, ε) such that V ⊆
⋃

x∈X B(x , 1+ ε).
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First observations

Theorem

Finite set V ⊆ RN with |B(v , 1) ∩ V | ≥ δ|V | for every v ∈ V .
Then, there is a set X ⊆ V of size f (δ, ε) such that V ⊆

⋃
x∈X B(x , 1+ ε).

• Size of X does not depend on V .

• Size of X does not depend on N.

• f (δ, ε) = poly(1/δ, 1/ε).

• Several similar statements in various contexts.
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Case N = 2

Build distance-threshold graph G = (V ,E ), minimum degree δ|V |.
Want: set X of size f (δ) s.t. every v /∈ X has a neighbor in X .

Dominating set of size f (δ).
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Large degree ⇒ small dominating set?

Dream: Minimum degree δn ⇒ dominating set of size f (δ).

False: If G ∼ G (n, 1/2) then δ(G ) ≈ n/2 but γ(G ) ≈ log(n).

G

If G ∼ G (n/2, n/2, 1/2) then δ(G ) ≈ n/4 but γ(G ) ≈ log(n).
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VC-dimension

Definition (Vapnik, Cervonenkis ’71)

A class C of graphs has bounded VC-dimension if it does not contain all
bipartite graphs as semi-induced subgraphs.

VC-dim(C) = “size” of the smallest missing subgraph.

Theorem [Haussler, Welzl ’89]

If G has VC-dimension d and minimum degree δn then G has a
dominating set of size f (δ, d).
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VC-dimension of threshold graphs

Proposition [Folklore]

VC-dim
(
distance-threshold graphs in RN

)
= N + 1.

Corollary

Finite set V ⊆ RN with |B(v , 1) ∩ V | ≥ δ|V | for every v ∈ V .
Then, there is a set X ⊆ V of size f (δ,N) such that V ⊆

⋃
x∈X B(x , 1).

Every n-vertex graph is a distance-threshold graph in Rn ⇒ needs to
depend on N.
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Trigraphs

Build distance-threshold trigraph T = (V ,E ,R),
minimum black degree δ|V |.

Want: black/red dominating set X of size f (δ, ε).
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VC-dimension of trigraphs

Definition (Alon, Hanneke, Holzman, Moran ’21)

A class C of trigraphs has bounded VC-dimension if it does not contain all
bipartite graphs as semi-induced subgraphs.

VC-dim(C) = “size” of the smallest missing subgraph.

Theorem [Alon, Hanneke, Holzman, Moran ’21], [BCT ’25]

If T has VC-dimension d and minimum black degree δn then T has a
black/red dominating set of size f (δ, d).
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Trigraphs of bounded VC-dimension

Theorem [Rosenblatt ’58]

Every (1, 1 + ε)-distance-threshold trigraph in RN has VC-dimension
poly(1/ε).

N-dimensional hypercube: {0, 1}N , Hamming distance.

Theorem [Rosenblatt ’58]

Every (τ · N, (τ + ε) · N)-distance-threshold trigraph in {0, 1}N has
VC-dimension O(1/ε2).
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Statements of DNL

Theorem

Finite set V ⊆ RN with |B(v , 1) ∩ V | ≥ δ|V | for every v ∈ V .
There is a set X ⊆ V of size f (δ, ε) such that V ⊆

⋃
x∈X B(x , 1 + ε).

Theorem

V ⊆ {0, 1}N with
∣∣∣B(v , τ · N) ∩ V

∣∣∣ ≥ δ|V | for every v ∈ V .

There is a set X ⊆ V of size f (δ, ε) such that V ⊆
⋃

x∈X B(x , (τ − ε) · N).

Theorem

F – family of subsets of [N] s.t.:
∀S ∈ F , at least δ|F| sets S ′ ∈ F s.t. S ∩ S ′ = ∅.
There is a set F ′ ⊆ F of size f (δ, ε) such that for every S ∈ F there exists
S ′ ∈ F ′ such that |S ∩ S ′| ≤ ε · N.
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Chromatic number

Definition

χ(G ) = minimum number of colors we need to color the vertices of G so
that adjacent vertices always get different colors.

Theorem [Mycielski, Zykov, Tutte, Erdős...]

There exist triangle-free graphs with arbitrarily large χ.
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There exist triangle-free graphs with arbitrarily large χ.

Dense Neighborhood Lemma October 3, 2025 12 / 20



Chromatic number

Definition

χ(G ) = minimum number of colors we need to color the vertices of G so
that adjacent vertices always get different colors.

Theorem [Mycielski, Zykov, Tutte, Erdős...]
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There exist triangle-free graphs with arbitrarily large χ.

Dense Neighborhood Lemma October 3, 2025 12 / 20



Chromatic number

Definition

χ(G ) = minimum number of colors we need to color the vertices of G so
that adjacent vertices always get different colors.

Theorem [Mycielski, Zykov, Tutte, Erdős...]
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There exist triangle-free graphs with arbitrarily large χ.

Dense Neighborhood Lemma October 3, 2025 12 / 20



The chromatic threshold of triangle-free graphs (1/2)

What is the smallest δ such that every triangle-free G with minimum
degree at least δn satisfies χ(G ) ≤ f (δ)?

Proposition [Andrásfai, Erdős, Sós ’73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Theorem [Erdős, Hajnal ’72]

There exist triangle-free graphs with minimum degree (1/3− ε) · n and
arbitrary large chromatic number.

Conjecture [Erdős, Simonovits ’73]

The chromatic threshold of triangle-free graphs is 1/3.
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The chromatic threshold of triangle-free graphs (2/2)

Theorem [Thomassen ’02]

Every triangle-free graph with minimum degree (1/3 + ε) · n has chromatic
number ≤ f (ε).

Theorem [Brandt, Thomassé ’04]

Every triangle-free graph with minimum degree > n/3 has chromatic
number at most 4.

Theorem [CBT ’25]

Every triangle-free graph with minimum degree n/3− n1−ε has chromatic
number at most f (ε).
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A quick proof

Theorem [Thomassen ’02]

Every triangle-free graph G with minimum degree (1/3 + ε) · n has
chromatic number ≤ f (ε).

Theorem

F – family of subsets of [n] s.t.:
∀S ∈ F , at least δ|F| sets S ′ ∈ F s.t. S ∩ S ′ = ∅.
There is a set F ′ ⊆ F of size f (δ, ε) such that every S ∈ F intersects
some S ′ ∈ F ′ on at most ε · n elements.

Take F = {N(v) : v ∈ V (G )}.
There is a set X ⊆ V of size f (ε) such that for every v ∈ V there exists
x ∈ X such that |N(v) ∩ N(x)| ≤ εn.

If |N(u) ∩ N(x)|, |N(v) ∩ N(x)| ≤ ε · n and uv ∈ E (G ) then
|N(x) ∪ N(u) ∪ N(v)| ≥ 3 · (1/3 + ε) · n − 2 · εn > n, a contradiction.
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Condorcet’s Paradox (1/2)

Election: 2k + 1 voters, n candidates.

Theorem [Condorcet 1785]

There exist elections where every candidate “loses” to another candidate.

Voter 1: A > B > C .
Voter 2: B > C > A.
Voter 3: C > A > B.
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Condorcet’s Paradox (2/2)

Definition

A set X of winners is fair if no candidate outside of X beats all candidates
in X .

Theorem [Condorcet 1785]

For every m ≥ 1, there exist elections with no fair set of winners of size at
most m.
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Beyond Condorcet’s Paradox

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler ’06]

For 2k + 1 voters, there is always a fair set of winners of size f (k).

A set X of winners is ε-fair if no candidate outside of X beats all
candidates in X by a margin of more than ε.

Theorem [BCT ’25, Charikar, Ramakrishnan, Wang ’25]

There is always an ε-fair set of winners of size O(1/ε2).

A set X of winners is a coalition if no candidate outside of X is preferred
to everyone in X by at least half of the voters.

Theorem

[Jiang, Munagala, Wang ’20] , [Nguyen, Song, Lin ’25]

There is a coalition of order

O(1).5.
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Proof sketch

Theorem [BCT ’25, Charikar, Ramakrishnan, Wang ’25]

There is always an ε-fair set of winners of size O(1/ε2).

Form a tri-directed graph T = (V ,A,R) with u → v ∈ A if u is preferred
to v by at least k + 1 voters, and u → v ∈ R if u is preferred to v by at
least (1/2− ε) · (2k + 1) voters.
Once again, we can show that T has bounded VC-dimension.

Lemma [Folklore]

Every tournament has a fractional dominating set of weight at most 2.

Then, there exists a black/red dominating set X of size f (ε).
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Open questions

• Size of an ε-fair set of recipients?

• Size of a coalition ?

• Other applications?

Thank you!
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