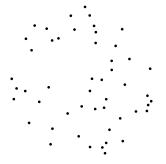
A Dense Neighborhood Lemma, with Applications to Domination and Chromatic Number

Romain Bourneuf LaBRI, LIP

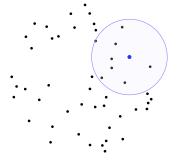
Joint work with Pierre Charbit (IRIF) and Stéphan Thomassé (ENS de Lyon)

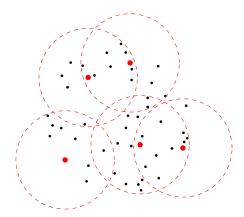
June 25, 2025

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.



Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.





Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. Then, there is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

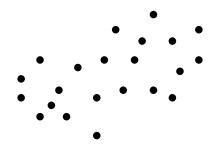
• Size of X does not depend on V.

- Size of X does not depend on V.
- Size of X does not depend on N.

- Size of X does not depend on V.
- Size of X does not depend on N.
- $f(\delta, \varepsilon) = \text{poly}(1/\delta, 1/\varepsilon).$

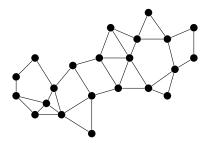
- Size of X does not depend on V.
- Size of X does not depend on N.
- $f(\delta, \varepsilon) = \text{poly}(1/\delta, 1/\varepsilon).$
- Similar statements in many other settings.

Case N = 2

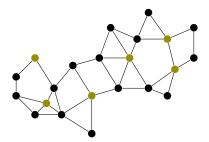




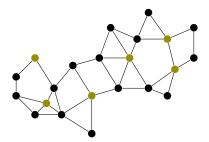
Build threshold graph G = (V, E)



Build threshold graph G = (V, E), minimum degree $\delta |V|$.



Build threshold graph G = (V, E), minimum degree $\delta |V|$. Want: set X of size $f(\delta)$ s.t. every $v \notin X$ has a neighbor in X.

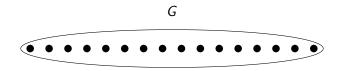


Build threshold graph G = (V, E), minimum degree $\delta |V|$. Want: set X of size $f(\delta)$ s.t. every $v \notin X$ has a neighbor in X. Dominating set of size $f(\delta)$.

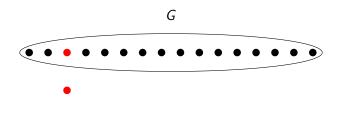
Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

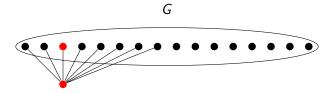
Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.



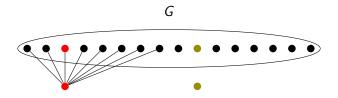
Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.



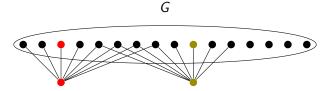
Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.



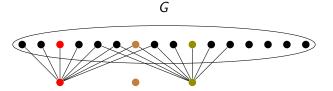
Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.



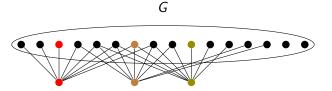
Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.



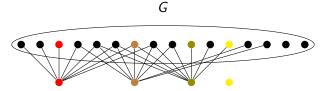
Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.



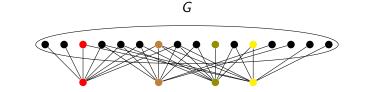
Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.



Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

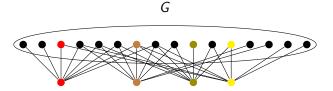


Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.



Dream: Minimum degree $\delta n \Rightarrow$ dominating set of size $f(\delta)$.

False: If $G \sim G(n, 1/2)$ then $\delta(G) \approx n/2$ but $\gamma(G) \approx \log(n)$.

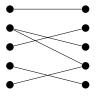


Definition (Vapnik, Cervonenkis '71)

A class C of graphs has bounded *VC-dimension* if it does not contain all bipartite graphs as semi-induced subgraphs.

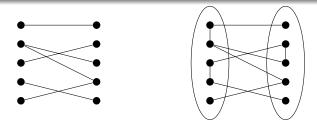
Definition (Vapnik, Cervonenkis '71)

A class C of graphs has bounded *VC-dimension* if it does not contain all bipartite graphs as semi-induced subgraphs.



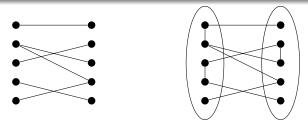
Definition (Vapnik, Cervonenkis '71)

A class C of graphs has bounded *VC-dimension* if it does not contain all bipartite graphs as semi-induced subgraphs.



Definition (Vapnik, Cervonenkis '71)

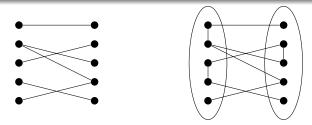
A class C of graphs has bounded *VC-dimension* if it does not contain all bipartite graphs as semi-induced subgraphs.



VC-dim(C) = "size" of the smallest missing subgraph.

Definition (Vapnik, Cervonenkis '71)

A class C of graphs has bounded *VC-dimension* if it does not contain all bipartite graphs as semi-induced subgraphs.



VC-dim(C) = "size" of the smallest missing subgraph.

Theorem [Haussler, Welzl '89]

If G has VC-dimension d and minimum degree δn then G has a dominating set of size $f(\delta, d)$.

Proposition [Folklore]

VC-dim(threshold graphs in \mathbb{R}^N) = N + 1.

Proposition [Folklore]

VC-dim(threshold graphs in \mathbb{R}^N) = N + 1.

Corollary

Proposition [Folklore]

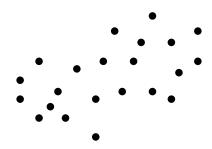
VC-dim(threshold graphs in \mathbb{R}^N) = N + 1.

Corollary

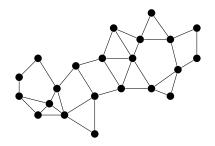
Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. Then, there is a set $X \subseteq V$ of size $f(\delta, N)$ such that $V \subseteq \bigcup_{x \in X} B(x,1)$.

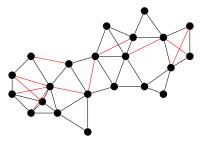
Every *n*-vertex graph is a threshold graph in $\mathbb{R}^n \Rightarrow$ needs to depend on *N*.

Trigraphs

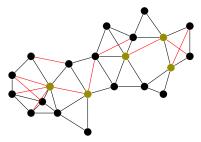


Trigraphs





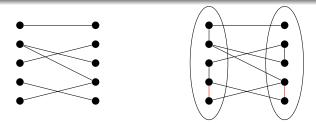
Build threshold trigraph T = (V, E, R), minimum black degree $\delta |V|$.



Build threshold trigraph T = (V, E, R), minimum black degree $\delta |V|$. Want: black/red dominating set X of size $f(\delta, \varepsilon)$.

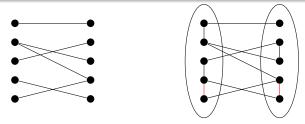
Definition (Alon, Hanneke, Holzman, Moran '21)

A class C of trigraphs has bounded *VC-dimension* if it does not contain all bipartite graphs as semi-induced subgraphs.



Definition (Alon, Hanneke, Holzman, Moran '21)

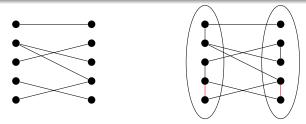
A class C of trigraphs has bounded *VC-dimension* if it does not contain all bipartite graphs as semi-induced subgraphs.



VC-dim(C) = "size" of the smallest missing subgraph.

Definition (Alon, Hanneke, Holzman, Moran '21)

A class C of trigraphs has bounded *VC-dimension* if it does not contain all bipartite graphs as semi-induced subgraphs.



VC-dim(C) = "size" of the smallest missing subgraph.

Theorem

If T has VC-dimension d and minimum black degree δn then T has a black/red dominating set of size $f(\delta, d)$.

• Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).

If G is a graph, its ε -disjointness trigraph is T = (V, E, R) where:

• $uv \in E \iff N(u) \cap N(v) = \emptyset$, and

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).

If G is a graph, its ε -disjointness trigraph is T = (V, E, R) where:

- $uv \in E \iff N(u) \cap N(v) = \emptyset$, and
- $uv \in R \iff 0 < |N(u) \cap N(v)| \le \varepsilon |V|.$

- Every $(1, 1 + \varepsilon)$ -threshold trigraph in \mathbb{R}^N has VC-dimension poly $(1/\varepsilon)$.
- Every (τ · N, (τ + ε) · N)-threshold trigraph in {0,1}^N has VC-dimension O(1/ε²).

If G is a graph, its ε -disjointness trigraph is T = (V, E, R) where:

- $uv \in E \iff N(u) \cap N(v) = \emptyset$, and
- $uv \in R \iff 0 < |N(u) \cap N(v)| \le \varepsilon |V|.$

Theorem

Every ε -disjointness trigraph has VC-dimension $O(1/\varepsilon^2)$.

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

$$V \subseteq \{0,1\}^N$$
 with $\left|\overline{B(v,\tau\cdot N)} \cap V\right| \ge \delta |V|$ for every $v \in V$.

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

$$V \subseteq \{0,1\}^N \text{ with } \left| \overline{B(v,\tau \cdot N)} \cap V \right| \ge \delta |V| \text{ for every } v \in V.$$

There is a set $X \subseteq V$ of size $f(\delta,\varepsilon)$ such that $V \subseteq \bigcup_{x \in X} \overline{B(x,(\tau - \varepsilon) \cdot N)}.$

Finite set $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Theorem

$$V \subseteq \{0,1\}^N \text{ with } \left| \overline{B(v,\tau \cdot N)} \cap V \right| \ge \delta |V| \text{ for every } v \in V.$$

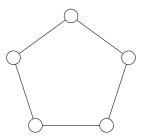
There is a set $X \subseteq V$ of size $f(\delta,\varepsilon)$ such that $V \subseteq \bigcup_{x \in X} \overline{B(x,(\tau - \varepsilon) \cdot N)}.$

Theorem

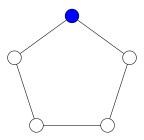
Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Definition (Chromatic Number)

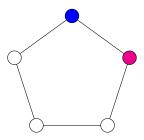
Definition (Chromatic Number)



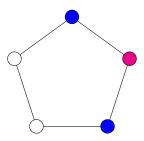
Definition (Chromatic Number)



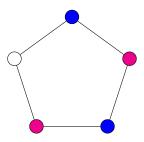
Definition (Chromatic Number)



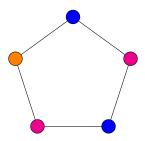
Definition (Chromatic Number)



Definition (Chromatic Number)

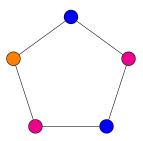


Definition (Chromatic Number)



Definition (Chromatic Number)

 $\chi(G) =$ minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.



Theorem [Mycielski, Zykov, Tutte, Erdős...]

There exist triangle-free graphs with arbitrarily large χ .

Dense Neighborhood Lemma

The chromatic threshold of triangle-free graphs (1/2)

The chromatic threshold of triangle-free graphs (1/2)

What is the minimum δ such that every triangle-free G with minimum degree at least δn satisfies $\chi(G) \leq f(\delta)$?

The chromatic threshold of triangle-free graphs (1/2)

What is the minimum δ such that every triangle-free G with minimum degree at least δn satisfies $\chi(G) \leq f(\delta)$?

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

What is the minimum δ such that every triangle-free G with minimum degree at least δn satisfies $\chi(G) \leq f(\delta)$?

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Theorem [Erdős, Hajnal '72]

There exist triangle-free graphs with minimum degree $(1/3 - \varepsilon) \cdot n$ and arbitrary large chromatic number.

What is the minimum δ such that every triangle-free G with minimum degree at least δn satisfies $\chi(G) \leq f(\delta)$?

Proposition [Andrásfai, Erdős, Sós '73]

Every triangle-free graph with minimum degree > 2n/5 is bipartite.

Theorem [Erdős, Hajnal '72]

There exist triangle-free graphs with minimum degree $(1/3 - \varepsilon) \cdot n$ and arbitrary large chromatic number.

Conjecture [Erdős, Simonovits '73]

The chromatic threshold of triangle-free graphs is 1/3.

Theorem [Thomassen '02]

Every triangle-free graph with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Brandt, Thomassé '04]

Every triangle-free graph with minimum degree > n/3 has chromatic number at most 4.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Idea: Find a dominating set of size $f(\varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Idea: Find a dominating set of size $f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Idea: Find a dominating set of size $f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Idea: Find a dominating set of size $f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where $uv \in E \iff N(u) \cap N(v) = \emptyset$, and $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon n$.

A quick proof

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Idea: Find a dominating set of size $f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where $uv \in E \iff N(u) \cap N(v) = \emptyset$, and $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon n$. Since G is triangle-free, neighbors in G are also black neighbors in T.

A quick proof

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Idea: Find a dominating set of size $f(\varepsilon)$.

Theorem

Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where $uv \in E \iff N(u) \cap N(v) = \emptyset$, and $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon n$. Since G is triangle-free, neighbors in G are also black neighbors in T.

Let X be a black/red dominating set of size $f(\varepsilon)$.

A quick proof

Theorem [Thomassen '02]

Every triangle-free graph G with minimum degree $(1/3 + \varepsilon) \cdot n$ has chromatic number $\leq f(\varepsilon)$.

Idea: Find a dominating set of size $f(\varepsilon)$.

Theorem

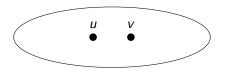
Every ε -disjointness trigraph with minimum black degree δn has a black/red dominating set of size $f(\delta, \varepsilon)$.

Let T = (V, E, R) be the ε -disjointness trigraph of G, where $uv \in E \iff N(u) \cap N(v) = \emptyset$, and $uv \in R \iff |N(u) \cap N(v)| \le \varepsilon n$. Since G is triangle-free, neighbors in G are also black neighbors in T.

Let X be a black/red dominating set of size $f(\varepsilon)$. If u, v are dominated by $x \in X$ and are neighbors in G then $|N(x) \cup N(u) \cup N(v)| \ge 3 \cdot (1/3 + \varepsilon) \cdot n - 2 \cdot \varepsilon n > n$, a contradiction.

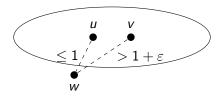
Theorem

 $V \subseteq \mathbb{R}^N$, set of *n* points. There is a partition of *V* into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if *u*, *v* are in the same cluster,



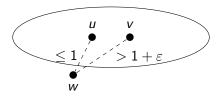
Theorem

 $V \subseteq \mathbb{R}^N$, set of *n* points. There is a partition of *V* into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if *u*, *v* are in the same cluster, there are at most $\varepsilon \cdot n$ points *w* such that $d(w, u) \leq 1$ and $d(w, v) > 1 + \varepsilon$.



Theorem

 $V \subseteq \mathbb{R}^N$, set of *n* points. There is a partition of *V* into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if *u*, *v* are in the same cluster, there are at most $\varepsilon \cdot n$ points *w* such that $d(w, u) \leq 1$ and $d(w, v) > 1 + \varepsilon$.

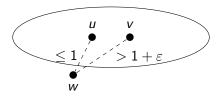


Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster,

Theorem

 $V \subseteq \mathbb{R}^N$, set of *n* points. There is a partition of *V* into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if *u*, *v* are in the same cluster, there are at most $\varepsilon \cdot n$ points *w* such that $d(w, u) \leq 1$ and $d(w, v) > 1 + \varepsilon$.



Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n$ vertices w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n$.

The chromatic threshold of regular triangle-free graphs is 1/4.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

Consider u, v in the same cluster. Every neighbor w of u satisfies $N(u) \cap N(w) = \emptyset$ so $(1/4 + \varepsilon/2)n$ of them satisfy $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

Consider u, v in the same cluster. Every neighbor w of u satisfies $N(u) \cap N(w) = \emptyset$ so $(1/4 + \varepsilon/2)n$ of them satisfy $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. If $uv \in E(G)$, there are at least $(1/2 + \varepsilon)n$ vertices w such that $|N(u) \cap N(w)| \le \varepsilon \cdot n/2$ and $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

Consider u, v in the same cluster. Every neighbor w of u satisfies $N(u) \cap N(w) = \emptyset$ so $(1/4 + \varepsilon/2)n$ of them satisfy $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. If $uv \in E(G)$, there are at least $(1/2 + \varepsilon)n$ vertices w such that $|N(u) \cap N(w)| \le \varepsilon \cdot n/2$ and $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. G is regular so $\alpha(G) \le n/2$ so two such vertices w, w' are adjacent.

The chromatic threshold of regular triangle-free graphs is 1/4.

Theorem

G, *n*-vertex graph. There is a partition of V(G) into $2^{\text{poly}(1/\varepsilon)}$ clusters such that if u, v are in the same cluster, there are at most $\varepsilon \cdot n/2$ points w such that $N(u) \cap N(w) = \emptyset$ and $|N(v) \cap N(w)| \ge \varepsilon \cdot n/2$.

Consider u, v in the same cluster. Every neighbor w of u satisfies $N(u) \cap N(w) = \emptyset$ so $(1/4 + \varepsilon/2)n$ of them satisfy $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. If $uv \in E(G)$, there are at least $(1/2 + \varepsilon)n$ vertices w such that $|N(u) \cap N(w)| \le \varepsilon \cdot n/2$ and $|N(v) \cap N(w)| \le \varepsilon \cdot n/2$. G is regular so $\alpha(G) \le n/2$ so two such vertices w, w' are adjacent. Then, $|N(u) \cup N(v) \cup N(w) \cup N(w')| \ge 4 \cdot (1/4 + \varepsilon) \cdot n - {4 \choose 2} \cdot \varepsilon \cdot n/2 > n$, a contradiction.

The set X of recipients is *fair* if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least k/2 referees.

The set X of recipients is *fair* if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least k/2 referees.

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

If k is odd, there is always a fair set of recipients of size f(k).

The set X of recipients is *fair* if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least k/2 referees.

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

If k is odd, there is always a fair set of recipients of size f(k).

The set X of recipients is ε -fair if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by more than $(1/2 - \varepsilon) \cdot k$ referees.

The set X of recipients is *fair* if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by at least k/2 referees.

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

If k is odd, there is always a fair set of recipients of size f(k).

The set X of recipients is ε -fair if for every $v \in V \setminus X$, some $x \in X$ is preferred to v by more than $(1/2 - \varepsilon) \cdot k$ referees.

Theorem

There is always an ε -fair set of recipients of size $O(1/\varepsilon^2)$.

• Is n/4 a sharp threshold for regular triangle-free graphs?

- Is n/4 a sharp threshold for regular triangle-free graphs?
- Correct bound for the number of recipients?

- Is n/4 a sharp threshold for regular triangle-free graphs?
- Correct bound for the number of recipients?
- Other applications?

- Is n/4 a sharp threshold for regular triangle-free graphs?
- Correct bound for the number of recipients?
- Other applications?

Thank you!