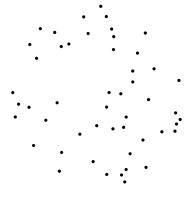
A Dense Neighborhood Lemma, with Applications to Domination and Chromatic Number

Romain Bourneuf LaBRI (Bordeaux)

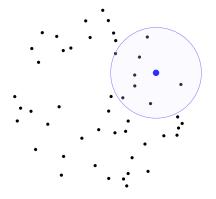
Joint work with Pierre Charbit (IRIF) and Stéphan Thomassé (LIP)

December 16, 2025

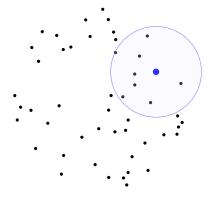
Finite $V \subseteq \mathbb{R}^N$



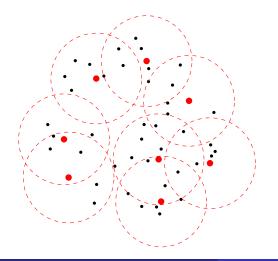
Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.



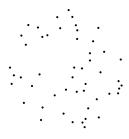
Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. Goal: Small $X \subseteq V$ such that $d(v,X) \le 1$ for every $v \in V$.



Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$. Goal: Small $X \subseteq V$ such that $d(v,X) \le 1$ for every $v \in V$.



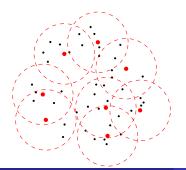
Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.



Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

Theorem [Folklore]

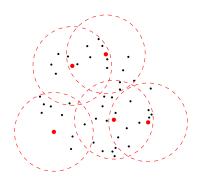
There is a set $X \subseteq V$ of size $f(\delta, N)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1)$.



Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

Theorem [Folklore]

There is a set $X \subseteq V$ of size $f(\delta, N)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1)$.



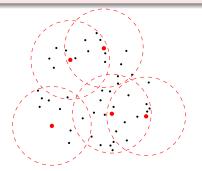
Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

Theorem [Folklore]

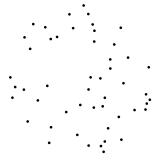
There is a set $X \subseteq V$ of size $f(\delta, N)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1)$.

Theorem (Dense Neighborhood Lemma)

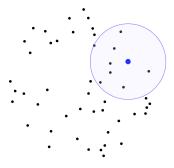
There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.



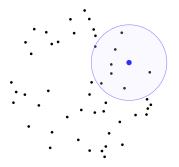
Set system $S = \{S_1, \dots, S_k\}$ on ground set V.



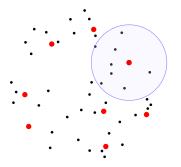
Set system $S = \{S_1, \dots, S_k\}$ on ground set V.



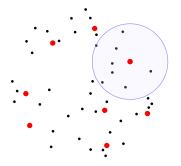
Set system $S = \{S_1, \dots, S_k\}$ on ground set V. $X \subseteq V$ is a *hitting set* if $X \cap S \neq \emptyset$ for every $S \in S$.



Set system $S = \{S_1, \dots, S_k\}$ on ground set V. $X \subseteq V$ is a *hitting set* if $X \cap S \neq \emptyset$ for every $S \in S$.

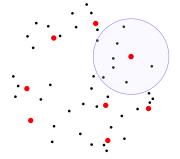


Set system $S = \{S_1, \dots, S_k\}$ on ground set V. $X \subseteq V$ is a *hitting set* if $X \cap S \neq \emptyset$ for every $S \in S$. $\tau(S) :=$ size of a smallest hitting set.

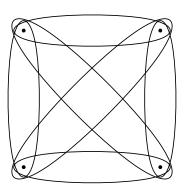


Set system $S = \{S_1, \dots, S_k\}$ on ground set V. $X \subseteq V$ is a *hitting set* if $X \cap S \neq \emptyset$ for every $S \in S$. $\tau(S) :=$ size of a smallest hitting set.

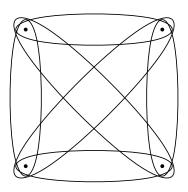
Question: If $|S| \ge \delta |V|$ for every $S \in \mathcal{S}$, do we have $\tau(\mathcal{S}) \le f(\delta)$?



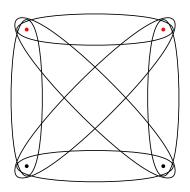
$$V = [n]$$
 and $S = {n \choose n/2}$.



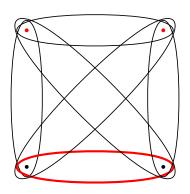
$$V = [n]$$
 and $S = {n \choose n/2}$.
 $|S| = n/2$ for every $S \in S$ but $\tau(S) > n/2$.



$$V = [n]$$
 and $S = {n \choose n/2}$.
 $|S| = n/2$ for every $S \in S$ but $\tau(S) > n/2$.

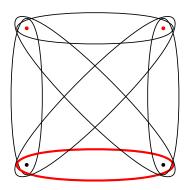


$$V = [n]$$
 and $S = {n \choose n/2}$.
 $|S| = n/2$ for every $S \in S$ but $\tau(S) > n/2$.



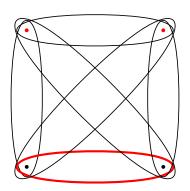
$$V = [n]$$
 and $S = {n \choose n/2}$.
 $|S| = n/2$ for every $S \in S$ but $\tau(S) > n/2$.

 ${\mathcal S}$ is complex



$$V = [n]$$
 and $S = {n \choose n/2}$.
 $|S| = n/2$ for every $S \in S$ but $\tau(S) > n/2$.

 \mathcal{S} is complex: $\mathcal{S}_{|[n/2]} = \mathcal{P}([n/2])$.



VC-dimension

Definition (Vapnik, Cervonenkis '71)

The *VC-dimension* of S is the maximum size of a set $Y\subseteq V$ such that $S_{|Y}=\mathcal{P}(Y)$.

VC-dimension

Definition (Vapnik, Cervonenkis '71)

The *VC-dimension* of S is the maximum size of a set $Y \subseteq V$ such that $S_{|Y} = \mathcal{P}(Y)$.

Key notion in learning, combinatorics, computational geometry, approximation algorithms, optimization...

VC-dimension

Definition (Vapnik, Cervonenkis '71)

The *VC-dimension* of S is the maximum size of a set $Y \subseteq V$ such that $S_{|Y} = \mathcal{P}(Y)$.

Key notion in learning, combinatorics, computational geometry, approximation algorithms, optimization...

Theorem [Vapnik, Cervonenkis '71], [Haussler, Welzl '89]

If $\mathcal S$ has VC-dimension d and $|\mathcal S| \geq \delta |\mathcal V|$ for every $\mathcal S \in \mathcal S$ then

$$au(\mathcal{S}) = O\left(rac{d}{\delta}\lograc{1}{\delta}
ight).$$

Back to the Euclidean Setting

Proposition [Folklore]

If S is a set system of balls in \mathbb{R}^N then $VC\text{-dim}(S) \leq N+1$.

Back to the Euclidean Setting

Proposition [Folklore]

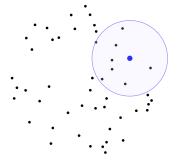
If S is a set system of balls in \mathbb{R}^N then VC-dim $(S) \leq N + 1$.

Corollary [Folklore]

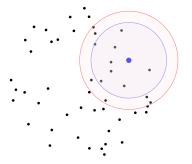
Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

There is a set $X \subseteq V$ of size $f(\delta, N)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1)$.

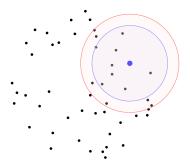
Subset of $V \leftrightarrow \text{Bipartition } (B, W) \text{ of } V$.



Subset of $V \leftrightarrow \text{Bipartition } (B, W) \text{ of } V$.



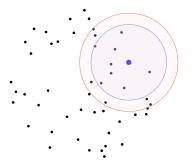
Subset of $V \leftrightarrow \text{Bipartition } (B, W)$ of V. Partial subset of $V \leftrightarrow \text{Tripartition } (B, R, W)$ of V.



Subset of $V \leftrightarrow \text{Bipartition } (B,W)$ of V.

Partial subset of $V \leftrightarrow \text{Tripartition } (B,R,W)$ of V.

A partial set system on V is a collection of partial subsets of V.



Key idea:

For a partial set system $S = \{(B_i, R_i, W_i)\}$ on V,

• The "size" of (B_i, R_i, W_i) is $|B_i|$.

Key idea:

For a partial set system $S = \{(B_i, R_i, W_i)\}$ on V,

- The "size" of (B_i, R_i, W_i) is $|B_i|$.
- $X \subseteq V$ is a hitting set if $X \cap (B_i \cup R_i)$ for every i.

Key idea:

For a partial set system $S = \{(B_i, R_i, W_i)\}$ on V,

- The "size" of (B_i, R_i, W_i) is $|B_i|$.
- $X \subseteq V$ is a hitting set if $X \cap (B_i \cup R_i)$ for every i.

Definition (Alon, Hanneke, Holzman, Moran '21)

The *VC-dimension* of S is the maximum size of a set $Y \subseteq V$ such that $S_{|Y} = \mathcal{P}(Y)$.

Key idea:

For a partial set system $S = \{(B_i, R_i, W_i)\}$ on V,

- The "size" of (B_i, R_i, W_i) is $|B_i|$.
- $X \subseteq V$ is a hitting set if $X \cap (B_i \cup R_i)$ for every i.

Definition (Alon, Hanneke, Holzman, Moran '21)

The *VC-dimension* of S is the maximum size of a set $Y \subseteq V$ such that $S_{|Y} = \mathcal{P}(Y)$.

Theorem [Alon, Hanneke, Holzman, Moran '21], [BCT '25]

If $\mathcal S$ has VC-dimension d and $|B| \geq \delta |V|$ for every $(B,R,W) \in \mathcal S$ then

$$au(\mathcal{S}) = O\left(rac{d}{\delta}\lograc{1}{\delta}
ight).$$

Back to the Euclidean Setting

Proposition [Alon, Hanneke, Holzman, Moran '21], [BCT '25]

If S is a partial set system of balls of radius $(1, 1 + \varepsilon)$ in \mathbb{R}^N then VC-dim $(S) = poly(1/\varepsilon)$.

Back to the Euclidean Setting

Proposition [Alon, Hanneke, Holzman, Moran '21], [BCT '25]

If S is a partial set system of balls of radius $(1, 1 + \varepsilon)$ in \mathbb{R}^N then VC-dim $(S) = poly(1/\varepsilon)$.

Theorem (Dense Neighborhood Lemma)

Finite $V \subseteq \mathbb{R}^N$ with $|B(v,1) \cap V| \ge \delta |V|$ for every $v \in V$.

There is a set $X \subseteq V$ of size $f(\delta, \varepsilon)$ such that $V \subseteq \bigcup_{x \in X} B(x, 1 + \varepsilon)$.

Dense Neighborhood Lemmas

Structure	Small set corresponding to v	Large set corresponding to ν
$V\subseteq\mathbb{R}^N$	$B(v,1) = \{u : d(u,v) \leq 1\}$	$\mathcal{B}(v,1+\varepsilon)$
$V\subseteq\{0,1\}^N$	$\Big\{u:d_H(u,v)\geq \tau\cdot N\Big\}$	$\left\{u:d_H(u,v)\geq (\tau-\varepsilon)\cdot N\right\}$
Set system ${\mathcal S}$ on V	$\{u: \mathcal{S}_u \cap \mathcal{S}_v = \emptyset\}$	$\{u: \mathcal{S}_u \cap \mathcal{S}_v \leq \varepsilon \mathcal{S} \}$
Graph $G = (V, E)$	$\{u:N(u)\cap N(v)=\emptyset\}$	$\{u: N(u)\cap N(v) \leq \varepsilon n\}$
Digraph $D = (V, A)$	$\{u:N^-(u)\cap N^+(v)=\emptyset\}$	$\{u: N^-(u)\cap N^+(v) \leq \varepsilon n\}$
0-1 random variables X_{v}	$\{X_u: \mathbb{P}[X_u = X_v = 1] \ge \tau\}$	$\{X_u: \mathbb{P}[X_u = X_v = 1] \ge \tau - \varepsilon\}$
Majority voting on <i>V</i>	$\{u: v \text{ is } 1/2\text{-preferred to } u\}$	$\{u: v \text{ is } (1/2 - \varepsilon)\text{-preferred to } u\}$

Dense Neighborhood Lemmas

Structure	Small set corresponding to v	Large set corresponding to ν
$V\subseteq\mathbb{R}^N$	$B(v,1) = \{u : d(u,v) \leq 1\}$	$\mathcal{B}(v,1+\varepsilon)$
$V\subseteq\{0,1\}^N$	$\Big\{u:d_H(u,v)\geq \tau\cdot N\Big\}$	$\left\{u:d_H(u,v)\geq (\tau-\varepsilon)\cdot N\right\}$
Set system ${\mathcal S}$ on V	$\{u: \mathcal{S}_u \cap \mathcal{S}_v = \emptyset\}$	$\{u: \mathcal{S}_u \cap \mathcal{S}_v \leq \varepsilon \mathcal{S} \}$
Graph $G = (V, E)$	$\{u:N(u)\cap N(v)=\emptyset\}$	$\{u: N(u)\cap N(v) \leq \varepsilon n\}$
Digraph $D = (V, A)$	$\{u:N^-(u)\cap N^+(v)=\emptyset\}$	$\{u: N^-(u)\cap N^+(v) \leq \varepsilon n\}$
0-1 random variables X_{v}	$\{X_u: \mathbb{P}[X_u = X_v = 1] \ge \tau\}$	$\{X_u: \mathbb{P}[X_u = X_v = 1] \ge \tau - \varepsilon\}$
Majority voting on <i>V</i>	$\{u: v \text{ is } 1/2\text{-preferred to } u\}$	$\{u: v \text{ is } (1/2 - \varepsilon)\text{-preferred to } u\}$

This work: Combinatorial consequences of the theory of VC-dimension for partial set systems.

Election: k voters, n candidates, each voter ranks all the candidates.

Election: k voters, n candidates, each voter ranks all the candidates.

Definition

Candidate A beats candidate B if > k/2 voters rank A above B.

Election: *k* voters, *n* candidates, each voter ranks all the candidates.

Definition

Candidate A beats candidate B if > k/2 voters rank A above B.

Theorem [Condorcet 1785]

For every $m \ge 1$, there exists an election where every set of m candidates is beaten by a single candidate.

Election: *k* voters, *n* candidates, each voter ranks all the candidates.

Definition

Candidate A beats candidate B if > k/2 voters rank A above B.

Theorem [Condorcet 1785]

For every $m \ge 1$, there exists an election where every set of m candidates is beaten by a single candidate.

Definition

Candidate $A \alpha$ -beats candidate B if $> \alpha k$ voters rank A above B.

Election: k voters, n candidates, each voter ranks all the candidates.

Definition

Candidate A beats candidate B if > k/2 voters rank A above B.

Theorem [Condorcet 1785]

For every $m \ge 1$, there exists an election where every set of m candidates is beaten by a single candidate.

Definition

Candidate A α -beats candidate B if $> \alpha k$ voters rank A above B.

Theorem [BCT '25], [Charikar, Ramakrishnan, Wang '25]

For every $\varepsilon>0$, every election admits a set of $O(1/\varepsilon^2)$ candidates which are not simultaneously $(1/2+\varepsilon)$ -beaten by any single candidate.

• Several other applications in different contexts.

- Several other applications in different contexts.
- Very simple proofs.

- Several other applications in different contexts.
- Very simple proofs.

• Is it possible to reduce to $O(1/\varepsilon)$ candidates?

- Several other applications in different contexts.
- Very simple proofs.

- Is it possible to reduce to $O(1/\varepsilon)$ candidates?
- More applications?

- Several other applications in different contexts.
- Very simple proofs.

- Is it possible to reduce to $O(1/\varepsilon)$ candidates?
- More applications?

Thank you!