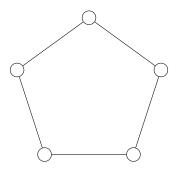
A Dense Neighborhood Lemma, with Applications to Domination and Chromatic Number

Romain Bourneuf LaBRI (Bordeaux) & LIP (Lyon)

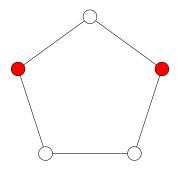
Joint work with Pierre Charbit (IRIF) and Stéphan Thomassé (LIP)

November 20, 2025

Domination

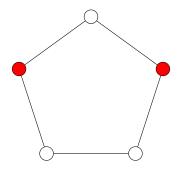


Domination

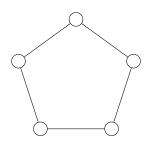


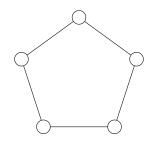
X is a dominating set if every vertex not in X has a neighbor in X

Domination

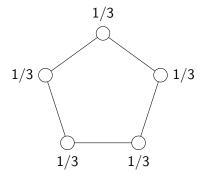


X is a dominating set if every vertex not in X has a neighbor in X $\gamma(G) := \min \max \text{size of a dominating set}$

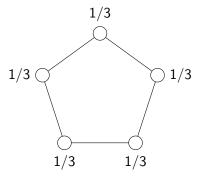




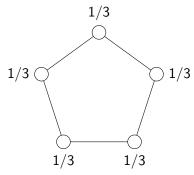
w:V(G)
ightarrow [0,1] is a fractional dominating set if $w(N[v]) \geq 1$ for every $v \in V(G)$



w:V(G)
ightarrow [0,1] is a fractional dominating set if $w(N[v])\geq 1$ for every $v\in V(G)$

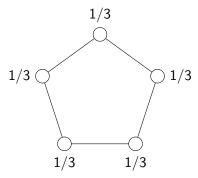


 $w:V(G) \to [0,1]$ is a fractional dominating set if $w(N[v]) \geq 1$ for every $v \in V(G)$ $\gamma^*(G) := \text{minimum weight of a fractional dominating set}$



w:V(G)
ightarrow [0,1] is a fractional dominating set if $w(N[v]) \geq 1$ for every $v \in V(G)$ $\gamma^*(G) :=$ minimum weight of a fractional dominating set

$$\forall G, \ \gamma^*(G) \leq \gamma(G)$$



$$w:V(G)
ightarrow [0,1]$$
 is a fractional dominating set if $w(N[v]) \geq 1$ for every $v \in V(G)$ $\gamma^*(G) :=$ minimum weight of a fractional dominating set $\forall G, \ \gamma^*(G) \leq \gamma(G)$

Question

When do we have $\gamma(G) \leq f(\gamma^*(G))$?

Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.

Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.

Proposition [Folklore]

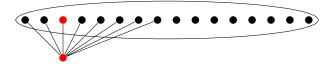
If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.

Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

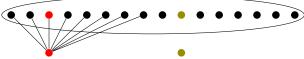
If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.



Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

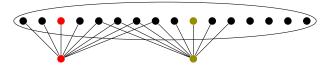
If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.



Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

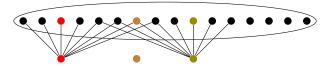
If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.



Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

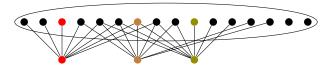
If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.



Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.



Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

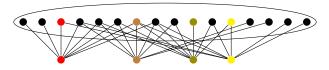
If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.



Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.

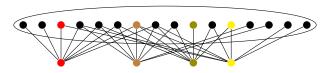


Proposition [Folklore]

If $G \sim G(n, 1/2)$ then whp. $\gamma^*(G) \leq 3$ and $\gamma(G) \geq \log(n)/2$.

If $G \sim G(n, 1/2)$ then whp. all vertices of G have degree at least n/3.

G



Proposition [Folklore]

If $G \sim G(n/2, n/2, 1/2)$ then whp. $\gamma^*(G) \leq 6$ and $\gamma(G) \geq \log(n)/2$.

Theorem [Vapnik, Cervonenkis '71]

If C is a monotone class of graphs then the following are equivalent:

- ullet C does not contain all bipartite graphs.
- There exists a function f such that $\gamma(G) \leq f(\gamma^*(G))$ for every $G \in \mathcal{C}$.

Theorem [Vapnik, Cervonenkis '71]

If ${\mathcal C}$ is a monotone class of graphs then the following are equivalent:

- ullet C does not contain all bipartite graphs.
- There exists a function f such that $\gamma(G) \leq f(\gamma^*(G))$ for every $G \in \mathcal{C}$.

Key notion: VC-dimension.

Theorem [Vapnik, Cervonenkis '71]

If C is a monotone class of graphs then the following are equivalent:

- ullet C does not contain all bipartite graphs.
- There exists a function f such that $\gamma(G) \leq f(\gamma^*(G))$ for every $G \in \mathcal{C}$.

Key notion: VC-dimension.

Various applications in combinatorics, learning, computational geometry, approximation algorithms, optimization...

Theorem [Vapnik, Cervonenkis '71]

If $\mathcal C$ is a monotone class of graphs then the following are equivalent:

- ullet C does not contain all bipartite graphs.
- There exists a function f such that $\gamma(G) \leq f(\gamma^*(G))$ for every $G \in \mathcal{C}$.

Key notion: VC-dimension.

Various applications in combinatorics, learning, computational geometry, approximation algorithms, optimization...

VC-dim $(G) \simeq$ "size" of the smallest bipartite graph not "contained" in G.

Theorem [Vapnik, Cervonenkis '71]

If C is a monotone class of graphs then the following are equivalent:

- ullet C does not contain all bipartite graphs.
- There exists a function f such that $\gamma(G) \leq f(\gamma^*(G))$ for every $G \in \mathcal{C}$.

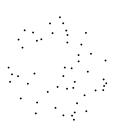
Key notion: VC-dimension.

Various applications in combinatorics, learning, computational geometry, approximation algorithms, optimization...

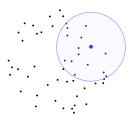
 $\mathsf{VC}\text{-}\mathsf{dim}(\mathcal{G})\simeq \text{``size''}$ of the smallest bipartite graph not 'contained'' in $\mathcal{G}.$

Theorem [Vapnik, Cervonenkis '71], [Haussler, Welzl '89]

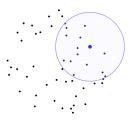
If G has VC-dimension d then $\gamma(G) \leq f(d, \gamma^*(G))$.



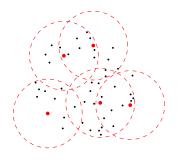
$$V\subseteq\mathbb{R}^N$$
 , $au>0$.



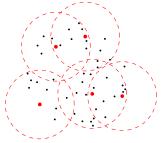
 $V\subseteq \mathbb{R}^N$, $\tau>0$. $\gamma_{\tau}(V):=$ minimum size of $X\subseteq V$ such that $d(v,X)\leq \tau$ for every $v\in V$.



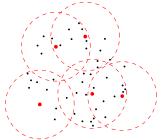
 $V\subseteq\mathbb{R}^N$, $\tau>0$. $\gamma_{\tau}(V):=$ minimum size of $X\subseteq V$ such that $d(v,X)\leq \tau$ for every $v\in V$.



 $V\subseteq \mathbb{R}^N$, $\tau>0$. $\gamma_{\tau}(V):=$ minimum size of $X\subseteq V$ such that $d(v,X)\leq \tau$ for every $v\in V$. $\gamma_{\tau}^*(V):=$ minimum w(V) over all $w:V\to [0,1]$ such that $w(B(v,\tau))\geq 1$ for every $v\in V$.



 $V\subseteq \mathbb{R}^N$, $\tau>0$. $\gamma_{\tau}(V):=$ minimum size of $X\subseteq V$ such that $d(v,X)\leq \tau$ for every $v\in V$. $\gamma_{\tau}^*(V):=$ minimum w(V) over all $w:V\to [0,1]$ such that $w(B(v,\tau))\geq 1$ for every $v\in V$.



Question

For $\tau > 0$, is there a function f such that every $V \subseteq \mathbb{R}^N$ satisfies $\gamma_{\tau}(V) \leq f(\gamma_{\tau}^*(V))$?

Approximate domination

Proposition [Folklore]

• There is no such function f independent of N.

Approximate domination

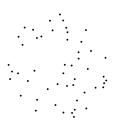
Proposition [Folklore]

- There is no such function f independent of N.
- Every $V \subseteq \mathbb{R}^N$ satisfies $\gamma_{\tau}(V) \leq f(N, \gamma_{\tau}^*(V))$.

Approximate domination

Proposition [Folklore]

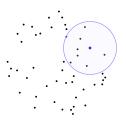
- There is no such function f independent of N.
- Every $V \subseteq \mathbb{R}^N$ satisfies $\gamma_{\tau}(V) \leq f(N, \gamma_{\tau}^*(V))$.



Approximate domination

Proposition [Folklore]

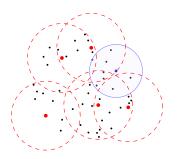
- There is no such function f independent of N.
- Every $V \subseteq \mathbb{R}^N$ satisfies $\gamma_{\tau}(V) \leq f(N, \gamma_{\tau}^*(V))$.



Approximate domination

Proposition [Folklore]

- There is no such function f independent of N.
- Every $V \subseteq \mathbb{R}^N$ satisfies $\gamma_{\tau}(V) \leq f(N, \gamma_{\tau}^*(V))$.



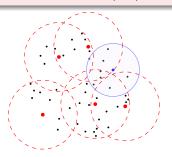
Approximate domination

Proposition [Folklore]

- There is no such function *f* independent of *N*.
- Every $V \subseteq \mathbb{R}^N$ satisfies $\gamma_{\tau}(V) \leq f(N, \gamma_{\tau}^*(V))$.

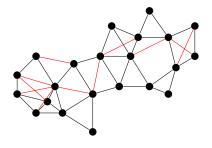
Theorem [BCT '25], [Alon, Hanneke, Holzman, Moran '21]

For every $\varepsilon > 0$, every $V \subseteq \mathbb{R}^N$ satisfies $\gamma_{(1+\varepsilon)\tau}(V) \leq \text{poly}(1/\varepsilon, \gamma_{\tau}^*(V))$.



Trigraphs

Trigraphs



Election: 2k + 1 voters, n candidates.

Election: 2k + 1 voters, n candidates.

Definition

Candidate A beats candidate B if most voters rank A above B.

Election: 2k + 1 voters, n candidates.

Definition

Candidate A beats candidate B if most voters rank A above B.

Theorem [Condorcet 1785]

There exist elections where every candidate is beaten by another candidate.

Election: 2k + 1 voters, n candidates.

Definition

Candidate A beats candidate B if most voters rank A above B.

Theorem [Condorcet 1785]

There exist elections where every candidate is beaten by another candidate.

Voter 1: A > B > C.

Voter 2: B > C > A.

Voter 3: C > A > B.

Election: 2k + 1 voters, n candidates.

Definition

Candidate A beats candidate B if most voters rank A above B.

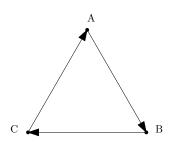
Theorem [Condorcet 1785]

There exist elections where every candidate is beaten by another candidate.

Voter 1: A > B > C.

Voter 2: B > C > A.

Voter 3: C > A > B.

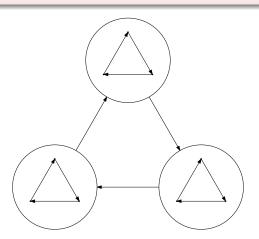


Theorem [Condorcet 1785]

For every $m \ge 1$, there exist elections where every set of m candidates is beaten by another candidate.

Theorem [Condorcet 1785]

For every $m \ge 1$, there exist elections where every set of m candidates is beaten by another candidate.



Bound the number of voters?

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a set of at most f(k) candidates which are not all simultaneously beaten by any candidate.

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a set of at most f(k) candidates which are not all simultaneously beaten by any candidate.

Relax the condition for beating?

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a set of at most f(k) candidates which are not all simultaneously beaten by any candidate.

Relax the condition for beating?

Definition

For $\alpha \in [0,1]$, candidate A α -beats candidate B if at least an α proportion of the voters rank A above B.

Bound the number of voters?

Theorem [Alon, Brightwell, Kierstead, Kostochka, Winkler '06]

For 2k + 1 voters, there is always a set of at most f(k) candidates which are not all simultaneously beaten by any candidate.

Relax the condition for beating?

Definition

For $\alpha \in [0,1]$, candidate A α -beats candidate B if at least an α proportion of the voters rank A above B.

Theorem [BCT '25], [Charikar, Ramakrishnan, Wang '25]

For every $\varepsilon>0$, there is always a set of at most $O(1/\varepsilon^2)$ candidates which are not all simultaneously $(1/2+\varepsilon)$ -beaten by any candidate.

Theorem [BCT '25], [Charikar, Ramakrishnan, Wang '25]

For every $\varepsilon>0$, there is always a set of at most $O(1/\varepsilon^2)$ candidates which are not all simultaneously $(1/2+\varepsilon)$ -beaten by any candidate.

Theorem [BCT '25], [Charikar, Ramakrishnan, Wang '25]

For every $\varepsilon>0$, there is always a set of at most $O(1/\varepsilon^2)$ candidates which are not all simultaneously $(1/2+\varepsilon)$ -beaten by any candidate.

Form a tri-directed graph T = (V, A, R) with

• $u \rightarrow v \in A$ if $u \ 1/2$ -beats v,

Theorem [BCT '25], [Charikar, Ramakrishnan, Wang '25]

For every $\varepsilon>0$, there is always a set of at most $O(1/\varepsilon^2)$ candidates which are not all simultaneously $(1/2+\varepsilon)$ -beaten by any candidate.

Form a tri-directed graph T = (V, A, R) with

- $u \rightarrow v \in A$ if $u \ 1/2$ -beats v,
- $u \to v \in R$ if $u(1/2 \varepsilon)$ -beats v.

Theorem [BCT '25], [Charikar, Ramakrishnan, Wang '25]

For every $\varepsilon > 0$, there is always a set of at most $O(1/\varepsilon^2)$ candidates which are not all simultaneously $(1/2 + \varepsilon)$ -beaten by any candidate.

Form a tri-directed graph T = (V, A, R) with

- $u \rightarrow v \in A$ if $u \ 1/2$ -beats v,
- $u \to v \in R$ if $u(1/2 \varepsilon)$ -beats v.

Claim [Folklore]

T has a black fractional dominating set of weight at most 2.

Theorem [BCT '25], [Charikar, Ramakrishnan, Wang '25]

For every $\varepsilon>0$, there is always a set of at most $O(1/\varepsilon^2)$ candidates which are not all simultaneously $(1/2+\varepsilon)$ -beaten by any candidate.

Form a tri-directed graph T = (V, A, R) with

- $u \rightarrow v \in A$ if $u \ 1/2$ -beats v,
- $u \to v \in R$ if $u(1/2 \varepsilon)$ -beats v.

Claim [Folklore]

T has a black fractional dominating set of weight at most 2.

Claim

T has VC-dimension $O(1/\varepsilon^2)$.

Theorem [BCT '25], [Charikar, Ramakrishnan, Wang '25]

For every $\varepsilon>0$, there is always a set of at most $O(1/\varepsilon^2)$ candidates which are not all simultaneously $(1/2+\varepsilon)$ -beaten by any candidate.

Form a tri-directed graph T = (V, A, R) with

- $u \rightarrow v \in A$ if $u \ 1/2$ -beats v,
- $u \to v \in R$ if $u(1/2 \varepsilon)$ -beats v.

Claim [Folklore]

T has a black fractional dominating set of weight at most 2.

Claim

T has VC-dimension $O(1/\varepsilon^2)$.

Then, there exists a black/red dominating set X of size $f(\varepsilon)$.

Open questions

• Is it possible to reduce to O(1/arepsilon) candidates?

Open questions

- Is it possible to reduce to $O(1/\varepsilon)$ candidates?
- Other applications?

Open questions

- Is it possible to reduce to $O(1/\varepsilon)$ candidates?
- Other applications?

Thank you!