Decomposition of ordered graphs

Romain Bourneuf Based on joint works with Édouard Bonnet, Julien Cocquet, Colin Geniet, Chaoliang Tang and Stéphan Thomassé

Workshop ANR GODASse, Sète, 2025

G is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06] *G* is perfect \Leftrightarrow *G* is Berge.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06] *G* is perfect \Leftrightarrow *G* is Berge. Proof strategy: eveny Berge graph can be constructed from some basis

Proof strategy: every Berge graph can be constructed from some basic graphs using some set of operations, such that:

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06] G is perfect \Leftrightarrow G is Berge.

Proof strategy: every Berge graph can be constructed from some basic graphs using some set of operations, such that:

• The basic graphs are perfect.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06] G is perfect \Leftrightarrow G is Berge.

Proof strategy: every Berge graph can be constructed from some basic graphs using some set of operations, such that:

- The basic graphs are perfect.
- These operations preserve perfection.

Theorem [Wagner '37]

Every edge-maximal K_5 -minor-free graph can be constructed from plane triangulations and the Wagner graph by recursively gluing along K_2 's and K_3 's.

Theorem [Wagner '37]

Every edge-maximal K_5 -minor-free graph can be constructed from plane triangulations and the Wagner graph by recursively gluing along K_2 's and K_3 's.

Theorem [Seymour '80]

Every Totally Unimodular matrix can be constructed from network matrices and two basic TU matrices by recursively applying *k*-sum operations.

Theorem [Wagner '37]

Every edge-maximal K_5 -minor-free graph can be constructed from plane triangulations and the Wagner graph by recursively gluing along K_2 's and K_3 's.

Theorem [Seymour '80]

Every Totally Unimodular matrix can be constructed from network matrices and two basic TU matrices by recursively applying k-sum operations.

Theorem [Bonnet, B., Geniet, Thomassé '23]

Every pattern-avoiding permutation is the product of a bounded number of separable permutations.

Want: cannot create too complex class using our operations.

Want: cannot create too complex class using our operations. If C_1 and C_2 are nice, so is $C_1 \wedge C_2$.

Want: cannot create too complex class using our operations. If C_1 and C_2 are nice, so is $C_1 \wedge C_2$. Running example: graph coloring. Want: cannot create too complex class using our operations. If C_1 and C_2 are nice, so is $C_1 \wedge C_2$. Running example: graph coloring.

Definition (χ -bounded)

C - hereditary class of graphs, is χ -bounded if there is a function f such that $\forall G \in C, \chi(G) \leq f(\omega(G))$.

 $V(G) = V_1 \cup V_2$, consider $G[V_1]$ and $G[V_2]$.

Order between the two sets?

Order between the two sets?

• Arbitrary.

Order between the two sets?

- Arbitrary.
- One before the other.

Order between the two sets?

- Arbitrary.
- One before the other.

Edges between the two sets?

Order between the two sets?

- Arbitrary.
- One before the other.

Edges between the two sets?

• No (disjoint union).

Order between the two sets?

- Arbitrary.
- One before the other.

Edges between the two sets?

- No (disjoint union).
- Arbitrary.

Order between the two sets?

- Arbitrary.
- One before the other.

Edges between the two sets?

- No (disjoint union).
- Arbitrary.
- Yes but controlled.

 $E(G) = E_1 \cup E_2$, consider $G[E_1]$ and $G[E_2]$.

 $E(G) = E_1 \cup E_2, \text{ consider } G[E_1] \text{ and } G[E_2].$ $\chi(G) \le \chi(G[E_1]) \cdot \chi(G[E_2]).$

 $E(G) = E_1 \cup E_2, \text{ consider } G[E_1] \text{ and } G[E_2].$ $\chi(G) \leq \chi(G[E_1]) \cdot \chi(G[E_2]).$

Partition or union?

 $E(G) = E_1 \cup E_2, \text{ consider } G[E_1] \text{ and } G[E_2].$ $\chi(G) \le \chi(G[E_1]) \cdot \chi(G[E_2]).$

Partition or union?

Order of the graphs?

 $E(G) = E_1 \cup E_2, \text{ consider } G[E_1] \text{ and } G[E_2].$ $\chi(G) \le \chi(G[E_1]) \cdot \chi(G[E_2]).$

Partition or union?

Order of the graphs?

• Always the same.

 $E(G) = E_1 \cup E_2, \text{ consider } G[E_1] \text{ and } G[E_2].$ $\chi(G) \le \chi(G[E_1]) \cdot \chi(G[E_2]).$

Partition or union?

Order of the graphs?

- Always the same.
- Arbitrary.

 $E(G) = E_1 \cup E_2, \text{ consider } G[E_1] \text{ and } G[E_2].$ $\chi(G) \le \chi(G[E_1]) \cdot \chi(G[E_2]).$

Partition or union?

Order of the graphs?

- Always the same.
- Arbitrary.

(Very powerful: all cubic graphs from ordered matchings)

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

If C is χ -bounded, so is \overline{C} .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

If C is χ -bounded, so is \overline{C} .

C – class of graphs $\longrightarrow \overline{C} :=$ all graphs which can be obtained by iterating substitutions from C.

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

If C is χ -bounded, so is \overline{C} .

C - class of graphs $\longrightarrow \overline{C} :=$ all graphs which can be obtained by iterating substitutions from C.

What about the order?

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

If C is χ -bounded, so is \overline{C} .

C – class of graphs $\longrightarrow \overline{C} :=$ all graphs which can be obtained by iterating substitutions from C.

What about the order?

• Arbitrary.
Substitutions

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

If C is χ -bounded, so is \overline{C} .

C – class of graphs $\longrightarrow \overline{C} :=$ all graphs which can be obtained by iterating substitutions from C.

What about the order?

- Arbitrary.
- Consistent.

Well-suited for ordered graphs.

Well-suited for ordered graphs.

Theorem [Cournier, Habib '94], [McConnell, Spinrad '94]

The modular decomposition can be computed in linear time.

Well-suited for ordered graphs.

Theorem [Cournier, Habib '94], [McConnell, Spinrad '94]

The modular decomposition can be computed in linear time.

The substitution tree is often trivial...

Edges between siblings are irrelevant.

C - class of graphs $\longrightarrow C_d :=$ all graphs with a delayed substitution tree with all quotient graphs in C.

 \mathcal{C} - class of graphs $\longrightarrow \mathcal{C}_d :=$ all graphs with a delayed substitution tree with all quotient graphs in \mathcal{C} .

Theorem

Every graph in C_d is the edge union of two graphs in \overline{C} .

 \mathcal{C} - class of graphs $\longrightarrow \mathcal{C}_d :=$ all graphs with a delayed substitution tree with all quotient graphs in \mathcal{C} .

Theorem

Every graph in C_d is the edge union of two graphs in \overline{C} .

Theorem

If C is χ -bounded, so is C_d .

C – class of graphs $\longrightarrow C_d :=$ all graphs with a delayed substitution tree with all quotient graphs in C.

Theorem

Every graph in C_d is the edge union of two graphs in \overline{C} .

Theorem

If C is χ -bounded, so is C_d .

Theorem [Bonnet, B., Geniet, Thomassé '23]

A nontrivial delayed decomposition can be computed in time O(n + m).

Right Module Partition

Right Module Partition

First try: all subgraphs with at most 1 point in each independent set.

First try: all subgraphs with at most 1 point in each independent set.

With this definition, the right extension of the class of all forests is not χ -bounded.

First try: all subgraphs with at most 1 point in each independent set.

With this definition, the right extension of the class of all forests is not χ -bounded. Shift graphs:
First try: all subgraphs with at most 1 point in each independent set.

With this definition, the right extension of the class of all forests is not χ -bounded. Shift graphs: $V(S_n) = \{(i, j) : 1 \le i < j \le n\}$,

First try: all subgraphs with at most 1 point in each independent set.

With this definition, the right extension of the class of all forests is not χ -bounded. Shift graphs: $V(S_n) = \{(i,j) : 1 \le i < j \le n\}, E(S_n) = \{(i,j)(j,k)\}.$

First try: all subgraphs with at most 1 point in each independent set.

With this definition, the right extension of the class of all forests is not χ -bounded. Shift graphs: $V(S_n) = \{(i, j) : 1 \le i < j \le n\}$, $E(S_n) = \{(i, j)(j, k)\}$.

• Triangle-free.

First try: all subgraphs with at most 1 point in each independent set.

With this definition, the right extension of the class of all forests is not χ -bounded.

Shift graphs: $V(S_n) = \{(i, j) : 1 \le i < j \le n\}, E(S_n) = \{(i, j)(j, k)\}.$

- Triangle-free.
- Unbounded χ .

Shift graphs

Shift graphs

Transversal minor

Transversal minor

Transversal minor

C – class of graphs $\longrightarrow C_{RMP} :=$ all graphs with a right module partition with all transversal minors in C.

C – class of graphs $\longrightarrow C_{RMP} :=$ all graphs with a right module partition with all transversal minors in C.

Theorem [B., Thomassé '23]

If C is χ -bounded, then so is C_{RMP} .

C – class of graphs $\longrightarrow C_{RMP} :=$ all graphs with a right module partition with all transversal minors in C.

Theorem [B., Thomassé '23]

If C is χ -bounded, then so is C_{RMP} .

Open: does it preserve polynomial χ -boundedness?