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Perfect graphs

G is perfect if χ(H) = ω(H) for every induced subgraph H of G .

G is Berge if both G and G have no induced odd cycle.

Theorem [Chudnovsky, Robertson, Seymour, Thomas ’06]

G is perfect ⇔ G is Berge.

Proof strategy: every Berge graph can be constructed from some basic
graphs using some set of operations, such that:

• The basic graphs are perfect.

• These operations preserve perfection.
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More examples

Theorem [Wagner ’37]

Every edge-maximal K5-minor-free graph can be constructed from plane
triangulations and the Wagner graph by recursively gluing along K2’s and
K3’s.

Theorem [Seymour ’80]

Every Totally Unimodular matrix can be constructed from network
matrices and two basic TU matrices by recursively applying k-sum
operations.

Theorem [Bonnet, B., Geniet, Thomassé ’23]

Every pattern-avoiding permutation is the product of a bounded number
of separable permutations.
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Tame operations

Want: cannot create too complex class using our operations.

If C1 and C2 are nice, so is C1 ! C2.
Running example: graph coloring.

Definition (χ-bounded)

C – hereditary class of graphs, is χ-bounded if there is a function f such
that ∀G ∈ C, χ(G ) ≤ f (ω(G )).
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Vertex union

V (G ) = V1 ∪ V2, consider G [V1] and G [V2].

χ(G ) ≤ χ(G [V1]) + χ(G [V2]).

Order between the two sets?

• Arbitrary.

• One before the other.

Edges between the two sets?

• No (disjoint union).

• Arbitrary.

• Yes but controlled.

V

V1 V2

V

V1 V2
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Edge union

E (G ) = E1 ∪ E2, consider G [E1] and G [E2].

χ(G ) ≤ χ(G [E1]) · χ(G [E2]).

Partition or union?

Order of the graphs?

• Always the same.

• Arbitrary.

(Very powerful: all cubic graphs from
ordered matchings)
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Substitutions

Theorem [Chudnovsky, Penev, Scott, Trotignon ’13]

If C is χ-bounded, so is C.

C – class of graphs −→ C := all graphs which can be obtained by iterating
substitutions from C.

What about the order?

• Arbitrary.
• Consistent.
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Substitutions

Theorem [Chudnovsky, Penev, Scott, Trotignon ’13]

If C is χ-bounded, so is C.

C – class of graphs −→ C := all graphs which can be obtained by iterating
substitutions from C.

What about the order?

• Arbitrary.
• Consistent.

Decomposition of ordered graphs Sète 2025 7 / 17
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Substitution tree

Well-suited for ordered graphs.

Theorem [Cournier, Habib ’94], [McConnell, Spinrad ’94]

The modular decomposition can be computed in linear time.

The substitution tree is often trivial...
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Delayed substitution tree

A B C D E

A

C

D E

B

Edges between siblings are irrelevant.
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Delayed extension

C – class of graphs −→ Cd := all graphs with a delayed substitution tree
with all quotient graphs in C.

Theorem

Every graph in Cd is the edge union of two graphs in C.

Theorem

If C is χ-bounded, so is Cd .

Theorem [Bonnet, B., Geniet, Thomassé ’23]

A nontrivial delayed decomposition can be computed in time O(n +m).
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Delayed substitutions & substitutions

A B C D E
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Computing a delayed decomposition

A B C D E F G

ABCDEFG

A BCDEFG

A BC DEF G

B C D E F G

B C D E F
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Computing a delayed decomposition

A B C D E F G

ABCDEFG

A BCDEFG

A BC DEF G

B C D E F G

B C D E F

Decomposition of ordered graphs Sète 2025 12 / 17
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Right Module Partition

1 2 3 4 5 6 7 8
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Quotients?

C – class of graphs −→ CRMP := all graphs with a right module partition
with all “quotient graphs” in C.

First try: all subgraphs with at most 1 point in each independent set.

With this definition, the right extension of the class of all forests is not
χ-bounded.
Shift graphs:V (Sn) = {(i , j) : 1 ≤ i < j ≤ n}, E (Sn) = {(i , j)(j , k)}.
• Triangle-free.

• Unbounded χ.
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Quotients?

C – class of graphs −→ CRMP := all graphs with a right module partition
with all “quotient graphs” in C.

First try: all subgraphs with at most 1 point in each independent set.

With this definition, the right extension of the class of all forests is not
χ-bounded.
Shift graphs:V (Sn) = {(i , j) : 1 ≤ i < j ≤ n}, E (Sn) = {(i , j)(j , k)}.

• Triangle-free.

• Unbounded χ.

Decomposition of ordered graphs Sète 2025 14 / 17
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Shift graphs

1, 2

1, 3

2, 3

1, 4

2, 4

3, 4

1, 5

2, 5

3, 5

4, 5
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Transversal minor

1, 2

1, 3

2, 3

1, 4

2, 4

3, 4

1, 5

2, 5

3, 5

4, 5
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Right extension

C – class of graphs −→ CRMP := all graphs with a right module partition
with all transversal minors in C.

Theorem [B., Thomassé ’23]

If C is χ-bounded, then so is CRMP .

Open: does it preserve polynomial χ-boundedness?
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