An approximate Tutte-decomposition for all connectivities I: Capturing cyclic structure with flowers

Romain Bourneuf LaBRI (Bordeaux) & LIP (Lyon)

Joint work with Johannes Carmesin, Joseph Devine, Jan Kurkofka and Tim Planken (TU Freiberg)

BWAG'25

Main question: Given a k-connected graph, how to describe its structure with respect to k-separations?

• k = 0: partition into connected components

- k = 0: partition into connected components
- k = 1: block-cutvertex decomposition

- k = 0: partition into connected components
- k = 1: block-cutvertex decomposition
- k = 2: Tutte-decomposition [Tutte '61]

- k = 0: partition into connected components
- k = 1: block-cutvertex decomposition
- k = 2: Tutte-decomposition [Tutte '61]
- k = 3: Tri-decomposition [Carmesin, Kurkofka '23]

- k = 0: partition into connected components
- k = 1: block-cutvertex decomposition
- k = 2: Tutte-decomposition [Tutte '61]
- k = 3: Tri-decomposition [Carmesin, Kurkofka '23]
- k = 4: Tetra-decomposition [Kurkofka, Planken '25]

Main question: Given a k-connected graph, how to describe its structure with respect to k-separations?

- k = 0: partition into connected components
- k = 1: block-cutvertex decomposition
- k = 2: Tutte-decomposition [Tutte '61]
- k = 3: Tri-decomposition [Carmesin, Kurkofka '23]
- k = 4: Tetra-decomposition [Kurkofka, Planken '25]

What should we expect for general k?

Main question: Given a k-connected graph, how to describe its structure with respect to k-separations?

- k = 0: partition into connected components
- k = 1: block-cutvertex decomposition
- k = 2: Tutte-decomposition [Tutte '61]
- k = 3: Tri-decomposition [Carmesin, Kurkofka '23]
- k = 4: Tetra-decomposition [Kurkofka, Planken '25]

What should we expect for general *k*? What should be the basic building blocks?

Decomposition based on cutting at totally nested k-"separations".

Decomposition based on cutting at totally nested k-"separations".

 \rightarrow Basic building blocks = graphs with no totally nested k-"separations".

Decomposition based on cutting at totally nested k-"separations".

 \rightarrow Basic building blocks = graphs with no totally nested k-"separations".

Definition

G is k-angry if G is k-connected and all its k-separations are crossed.

Decomposition based on cutting at totally nested k-"separations".

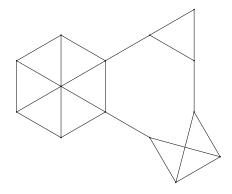
 \rightarrow Basic building blocks = graphs with no totally nested k-"separations".

Definition

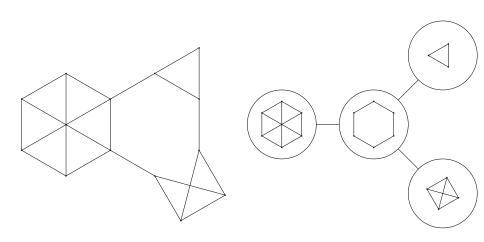
G is k-angry if G is k-connected and all its k-separations are crossed.

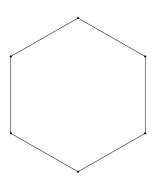
This work: characterization of approximately k-angry graphs.

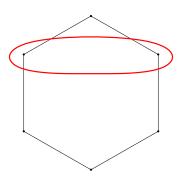
Tutte-decomposition

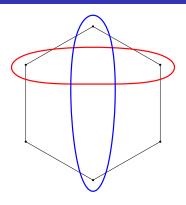


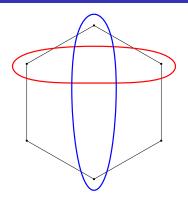
Tutte-decomposition







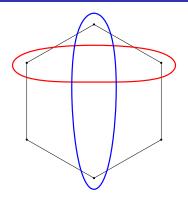




Theorem [Tutte '61]

If G is 2-connected and every 2-separation of G is crossed by another 2-separation then either G is 3-connected or G is a cycle.

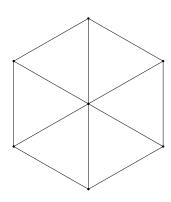
The 2-angry graphs are exactly the cycles and the 3-connected graphs.

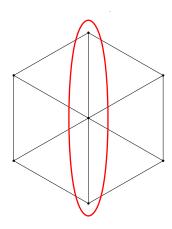


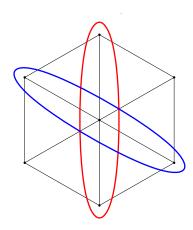
Theorem [Tutte '61]

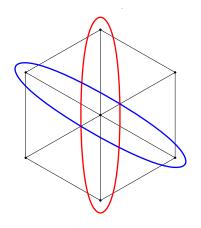
If G is 2-connected and every 2-separation of G is crossed by another 2-separation then either G is 3-connected or G is a cycle.

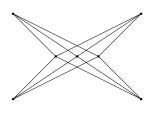
The 2-angry graphs are exactly the cycles and the 3-connected graphs. These are the basic building blocks for the Tutte-decomposition.

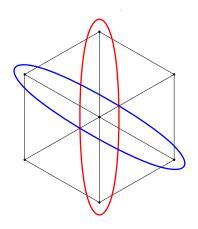


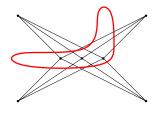


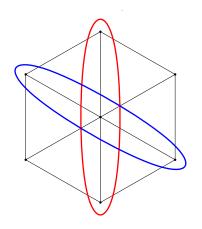


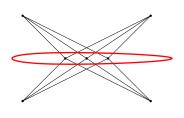


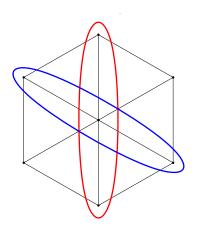


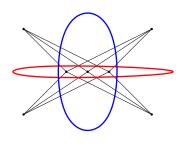


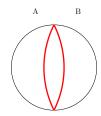




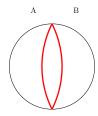






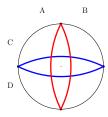


A separation (A, B) is *h-huge* if $|A \setminus B| \ge h$ and $|B \setminus A| \ge h$.



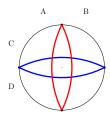
A separation (A, B) is h-huge if $|A \setminus B| \ge h$ and $|B \setminus A| \ge h$.

G is a-almost k-connected if every < k-separation has a side of size \le a.



A separation (A, B) is h-huge if $|A \setminus B| \ge h$ and $|B \setminus A| \ge h$.

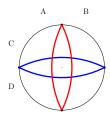
G is a-almost k-connected if every < k-separation has a side of size \le a.



A separation (A, B) is h-huge if $|A \setminus B| \ge h$ and $|B \setminus A| \ge h$.

G is a-almost k-connected if every < k-separation has a side of size \le a.

Any two separations define a center, four links and four corners.

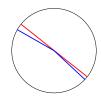


A separation (A, B) is h-huge if $|A \setminus B| \ge h$ and $|B \setminus A| \ge h$.

G is a-almost k-connected if every < k-separation has a side of size \le a.

Any two separations define a center, four links and four corners.

Two separations (A, B) and (C, D) γ -cross if all 4 corners have size $\geq \gamma$.



A separation (A, B) is h-huge if $|A \setminus B| \ge h$ and $|B \setminus A| \ge h$.

G is a-almost k-connected if every < k-separation has a side of size \le a.

Any two separations define a center, four links and four corners.

Two separations (A, B) and (C, D) γ -cross if all 4 corners have size $\geq \gamma$.

Two separations (A, B) and (C, D) are c-close if $|A\Delta C| \le c$ and $|B\Delta D| \le c$.

An angry theorem for 3-separations

"The approximately 3-angry graphs are exactly the wheels, the $K_{3,m}$'s and the 4-connected graphs."

An angry theorem for 3-separations

"The approximately 3-angry graphs are exactly the wheels, the $K_{3,m}$'s and the 4-connected graphs."

Theorem [Carmesin, Kurkofka '23]

If G is 3-connected and every 2-huge 3-separation of G is 1-crossed by another 2-huge 3-separation, then one of the following holds:

An angry theorem for 3-separations

"The approximately 3-angry graphs are exactly the wheels, the $K_{3,m}$'s and the 4-connected graphs."

Theorem [Carmesin, Kurkofka '23]

If G is 3-connected and every 2-huge 3-separation of G is 1-crossed by another 2-huge 3-separation, then one of the following holds:

- G is 1-almost-4-connected, or
- G is a wheel, or
- G is a K_{3,m}.

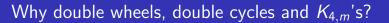
"The approximately 3-angry graphs are exactly the wheels, the $K_{3,m}$'s and the 4-connected graphs."

Theorem [Carmesin, Kurkofka '23]

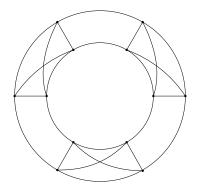
If G is 3-connected and every 2-huge 3-separation of G is 1-crossed by another 2-huge 3-separation, then one of the following holds:

- G is 1-almost-4-connected, or
- G is a wheel, or
- G is a K_{3,m}.

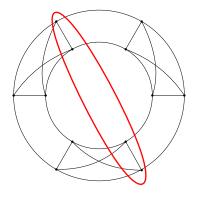
These are the basic building blocks for the tri-decomposition.



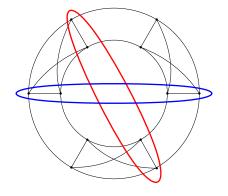
Why double wheels, double cycles and $K_{4,m}$'s?



Why double wheels, double cycles and $K_{4,m}$'s?



Why double wheels, double cycles and $K_{4,m}$'s?



"The approximately 4-angry graphs are exactly the double wheels, the double cycles, the $K_{4,m}$'s and the 5-connected graphs."

"The approximately 4-angry graphs are exactly the double wheels, the double cycles, the $K_{4,m}$'s and the 5-connected graphs."

Theorem [Kurkofka, Planken '25]

If G is 4-connected and every 2-huge 4-separation of G is 1-crossed by another 2-huge 4-separation, then one of the following holds:

"The approximately 4-angry graphs are exactly the double wheels, the double cycles, the $K_{4,m}$'s and the 5-connected graphs."

Theorem [Kurkofka, Planken '25]

If G is 4-connected and every 2-huge 4-separation of G is 1-crossed by another 2-huge 4-separation, then one of the following holds:

- G is 1-almost-5-connected, or
- G is a double-wheel, or
- G is a double cycle, or
- G is a K_{4,m}.

"The approximately 4-angry graphs are exactly the double wheels, the double cycles, the $K_{4,m}$'s and the 5-connected graphs."

Theorem [Kurkofka, Planken '25]

If G is 4-connected and every 2-huge 4-separation of G is 1-crossed by another 2-huge 4-separation, then one of the following holds:

- G is 1-almost-5-connected, or
- G is a double-wheel, or
- G is a double cycle, or
- G is a K_{4,m}.

These are the basic building blocks for the tetra-decomposition.

What about general k?

"The approximately k-angry graphs are exactly..."

What about general k?

"The approximately k-angry graphs are exactly..."

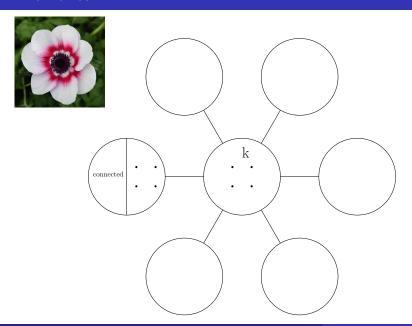
Theorem

If G is k-connected and every huge k-separation of G is crossed substantially by another huge k-separation, then G looks like one of the following:

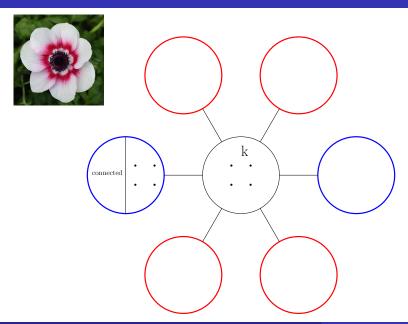
- ??
- ??

Anemones

Anemones

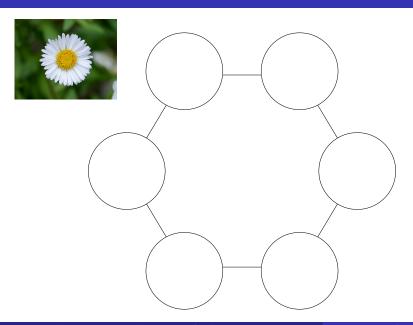


Anemones

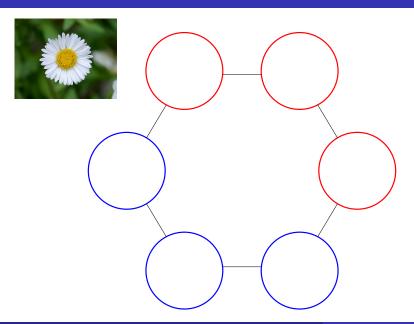


Daisies

Daisies



Daisies



"The approximately k-angry graphs are exactly the graphs described by a k-flower and the (k + 1)-connected graphs."

"The approximately k-angry graphs are exactly the graphs described by a k-flower and the (k+1)-connected graphs."

Theorem [B., Carmesin, Devine, Kurkofka, Planken 25+]

Let G be a k-connected graph and S be the set of all h-huge k-separations of G.

Suppose that S is not empty and that every separation in S is $\gamma(h, k)$ -crossed by another separation of S.

Then, there exists a k-flower F(S) of G such that every separation in S is c(h,k)-close to some induced separation of F(S).

"The approximately k-angry graphs are exactly the graphs described by a k-flower and the (k+1)-connected graphs."

Theorem [B., Carmesin, Devine, Kurkofka, Planken 25+]

Let G be a k-connected graph and S be the set of all h-huge k-separations of G.

Suppose that S is not empty and that every separation in S is $\gamma(h,k)$ -crossed by another separation of S.

Then, there exists a k-flower F(S) of G such that every separation in S is c(h,k)-close to some induced separation of F(S).

• The flower F(S) is canonical.

"The approximately k-angry graphs are exactly the graphs described by a k-flower and the (k+1)-connected graphs."

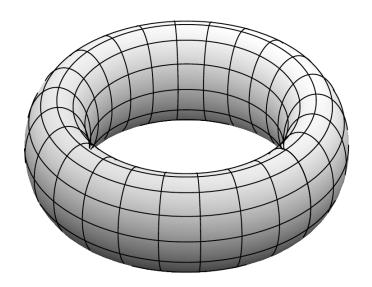
Theorem [B., Carmesin, Devine, Kurkofka, Planken 25+]

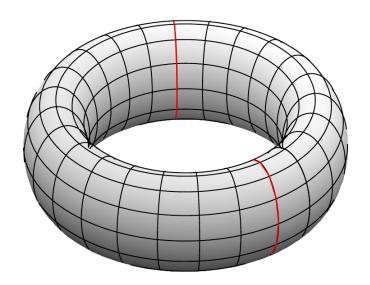
Let G be a k-connected graph and S be the set of all h-huge k-separations of G.

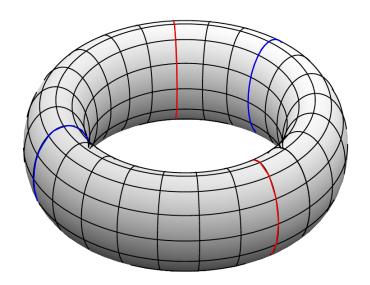
Suppose that S is not empty and that every separation in S is $\gamma(h,k)$ -crossed by another separation of S.

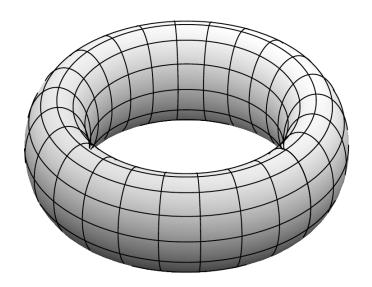
Then, there exists a k-flower F(S) of G such that every separation in S is c(h,k)-close to some induced separation of F(S).

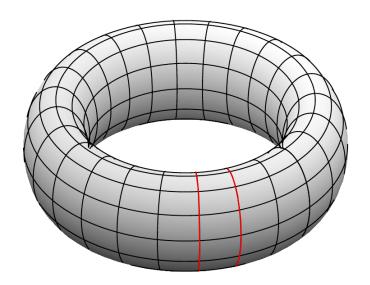
- The flower F(S) is canonical.
- We just need *G* to be *h*-almost *k*-connected.

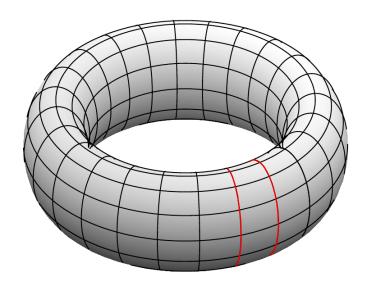


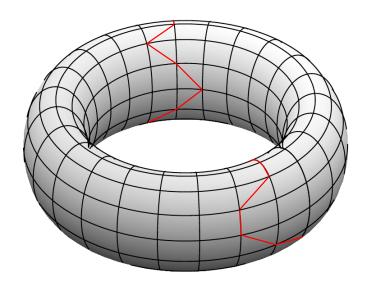


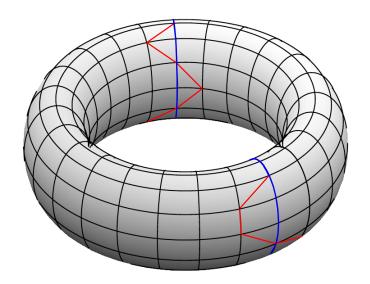


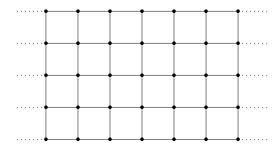


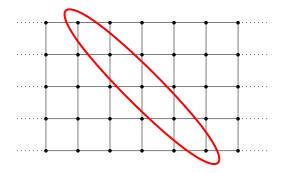


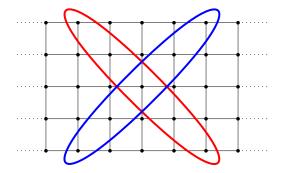


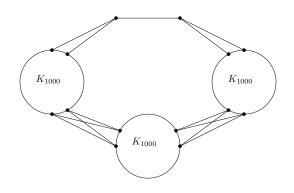


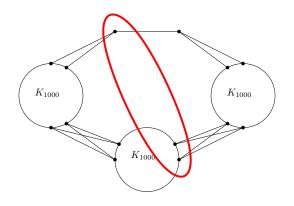


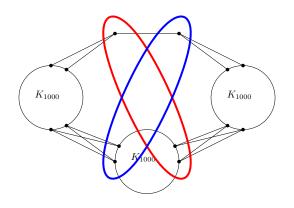












About the proof

A set S of separations is *uniformly* γ -crossing if for every $(A, B) \in S$, all separations in S which γ -cross (A, B) induce the same tri-partition of $A \cap B$.

About the proof

A set S of separations is *uniformly* γ -crossing if for every $(A, B) \in S$, all separations in S which γ -cross (A, B) induce the same tri-partition of $A \cap B$.

Key Lemma 1

Let G be a k-connected graph and \mathcal{S} be the set of all h-huge k-separations of G.

Then, S is uniformly $\gamma(h, k)$ -crossing.

About the proof

A set S of separations is *uniformly* γ -crossing if for every $(A, B) \in S$, all separations in S which γ -cross (A, B) induce the same tri-partition of $A \cap B$.

Key Lemma 1

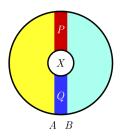
Let G be a k-connected graph and $\mathcal S$ be the set of all h-huge k-separations of G.

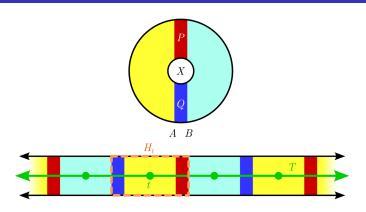
Then, S is uniformly $\gamma(h, k)$ -crossing.

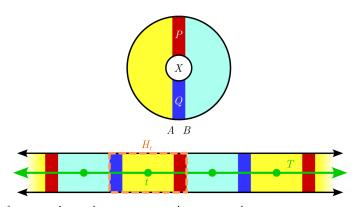
Key Lemma 2

Let G be a k-connected graph and $\mathcal S$ be a set of k-separations of G which is uniformly γ -crossing.

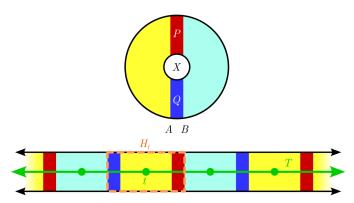
Then, there is a k-flower F(S) of G such that every separation in S is $c(\gamma, k)$ -close to some induced separation of F(S).



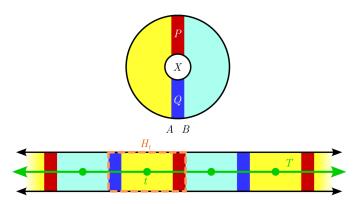




 $R \coloneqq \mathsf{all}\ \ell\text{-separations}$ that separate the two ends.

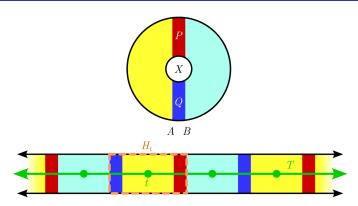


 $R := \text{all } \ell\text{-separations}$ that separate the two ends. Each separation in R is crossed by few other separations.



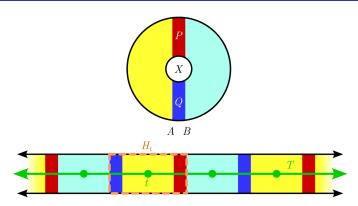
 $R := \text{all } \ell$ -separations that separate the two ends. Each separation in R is crossed by few other separations.

L :=all locally optimal separations in R.



 $R := \text{all } \ell\text{-separations}$ that separate the two ends. Each separation in R is crossed by few other separations.

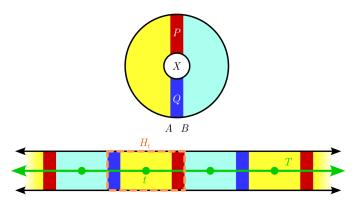
L := all locally optimal separations in R. Each separation is close to a separation in L.



 $R := \text{all } \ell$ -separations that separate the two ends. Each separation in R is crossed by few other separations.

L := all locally optimal separations in R. Each separation is close to a separation in L.

The separations in L induce a tree-decomposition of the covering, which lifts to a cycle-decomposition of G-X.



 $R := \text{all } \ell$ -separations that separate the two ends. Each separation in R is crossed by few other separations.

L := all locally optimal separations in R. Each separation is close to a separation in L.

The separations in L induce a tree-decomposition of the covering, which lifts to a cycle-decomposition of G-X. Thank you!