
Innocent game semantics

Russ Harmer
CNRS & PPS, P7

August 2, 2006

1 Introduction

Game semantics, in its “modern” form, arose in the early 90s in the wake of
sequential algorithms, process calculus and the geometry of interaction. The
historical context of game semantics revolved around the long-standing prob-
lem of “full abstraction for PCF”, PCF being an idealized functional language.
After Plotkin’s domain model (which he showed to be not fully abstract for
PCF due to the presence of parallel functions) and Berry’s stable model (also
not fully abstract thanks to the Gustav function) came a radically different
model: concrete data structures (CDSs) & sequential algorithms. This model
is distinguished by being non-well-pointed: a category of CDSs and sequential
algorithms exists, is a CCC, but its arrows are not functions. Game semantics
shares this property; its arrows are strategies for playing in certain games.

At about the same time, Milner and Hoare were developing the first process cal-
culi: CCS and CSP. While differing on many details, both calculi emphasize the
importance of interaction as a mechanism for abstraction, represented syntac-
tically as parallel composition, and of hiding as a way of making certain actions
“internal” to a process (and hence invisible outside of that process), represented
syntactically by a restriction operator. Game semantics borrows these ideas to
define a notion of composition of strategies as parallel composition plus hiding
which is associative and has identities, thus forming a category of games and
strategies.

A little while later, Girard introduced linear logic via a decomposition of Berry’s
stable model. Shortly after, he introduced the geometry of interaction as a
dynamic semantics of cut elimination (in fragments of linear logic, System F,
etc.). Blass subsequently built a rudimentary game model of MLL which suffered
from various problems, all more or less directly related to polarities. Kleene
& Gandy’s work on unimonotone functions used an extensional quotient on
oracles, kinds of sequential algorithms, to define a class of sequential functions.
The construction has a game-like flavour: the bracketing condition makes its first
appearance here, long before the game models of PCF. Abramsky & Jagadeesan
reworked the geometry of interaction in a categorical setting, leading to a game-
like setting with composition based on parallel composition plus hiding. Finally,
two game models of MLL appeared, one for MLL plus Mix due to Abramsky &
Jagadeesan, the other due to Hyland & Ong for pure MLL.

1

The models of MLL marked the first appearance of game semantics in its mod-
ern form, but the three models that appeared shortly later—all fully abstract
models of PCF—have been far more influential on the subsequent development
of the field. These models are CCCs but not well-pointed, like the sequential al-
gorithms model, but they easily give rise to well-pointed CCCs, where the fully
abstract model really lives. Game semantics and sequential algorithms share
the property that they model functional programs (as in PCF), not as mathe-
matical functions, but as processes. Processes take time, they perform actions;
a process typically has a context. Game semantics formalizes these ideas:

Imagine we have an as yet unspecified “game” with two protagonists, Opponent
and Player. Player will represent our processes, Opponent their contexts. Each
protagonist can play moves, some of which may depend on other moves. Once we
have specified the moves and the dependencies between them, we have defined
a game. Opponent and Player can now “play” in this game; we could require
that Opponent starts and that they subsequently alternate. We model this as a
sequence of moves called a play. A play thus represents one possible interaction
between Opponent and Player. A strategy for Player consists of a set of plays:
a “crib book” where Player “looks up” what move to play next as a function of
“the move Opponent just played” or of “the whole of play to date”, etc.

We develop these basic intuitions formally in the next section. Subsequent sec-
tions treat various subclasses of strategies of interest, starting with the innocent
strategies that lie at the heart of the original PCF models.

2 The ambient SMCC

We employ standard notation and terminology for strings over an alphabet. We
write si for the ith occurrence of s (provided it has one) and sω for its last
occurrence. Also be aware that we make no notational distinction between an
element of the alphabet, an occurrence in a string of said element and the string
consisting only of that element.

2.1 Pointing strings

Let Σ be a countable set. A pointing string over Σ is a string s ∈ Σ? with
pointers between the occurrences of s such that, if si points to sj then j < i,
i.e. pointers always point back to earlier occurrences, and we have at most one
pointer from any given occurrence of s. [The latter can probably be relaxed.]
We write |s| for the length of (the underlying string of) s.

If Σ′ ⊆ Σ then we write s � Σ′ for the restriction of s to Σ′, i.e. the pointing
string obtained by removing those occurrences of s from Σ−Σ′ and manipulating
the pointers as follows: if si ∈ Σ′ points to sj ∈ Σ′ in s then we keep the same
pointer in s � Σ′; otherwise, we follow the pointer from sj to some sk and
inductively apply the same reasoning. In other words, if a pointer points into
the “forbidden zone” we keep following pointers until we either reemerge by
pointing to some sz ∈ Σ′, in which case si points to sz in s �Σ′, or we run out
of pointers, in which case si has no pointer in s�Σ′.

2

2.2 Arenas

An arena A is a tuple 〈MA, λA, IA,`A〉 where

• MA is a countable set of tokens.

• λA : MA→{O,P} × {Q,A} labels each m ∈ MA as belonging to Opponent
or to Player and as a Question or an Answer. We write λOP

A (resp. λQA
A)

for the composition with first (resp. second) projection and λPO
A for the

“inverted” OP-labelling (first projection then exchange of O and P).

• IA is a subset of λ−1
A (OQ) known as the initial moves of A.

• `A is a binary enabling relation on MA satisfying

(e1) if m `A n then λA(m) 6= λA(n)

(e2) if m `A n where λQA
A (n) = A then λQA

A (m) = Q

The notion of arena provides an abstract setting in which to talk about pointing
strings. Specifically, a play in an arena A is a pointing string s, over alphabet
MA, which satisfies

• OP-alternation: λOP
A (si) 6= λOP

A (si+1) for 0 ≤ i < |s|

• if sj points to si then si `A sj .

A legal play is a play where, for 1 ≤ i ≤ |s|, if si has no pointer then si ∈ IA.

Each occurrence in a legal play s is an element m of MA together with its
pointer (unless m ∈ IA); we call m plus its pointer a move of s. If sj points to
si we say that si justifies sj or simply that sj points to si; more generally,
if following pointers back from sj arrives at si, we say that si hereditarily
justifies sj . The first move of a legal play must be initial (since it cannot point
to any previous move!) and hence is an O-move and so OP-alternation just
means: λOP

A (si) = O if, and only if, i is odd.

We write LA for the set of all legal plays for the arena A. The prefix ordering
on strings extends obviously to legal plays so that LA can be viewed as a partial
order with least element ε, the empty string. For s, t ∈ LA, we write s v t (resp.
s vO t, resp. s vP t) when s is a (resp. O-ending, resp. P-ending) prefix of t.
We fix the convention that ε vP s for any s ∈ LA.

We write s ∧ t for the longest common prefix of s and t, ip(s) for the im-
mediate prefix of non-empty s and, provided sω has a pointer, jp(s) for the
justifying prefix of s, i.e. that prefix of s ending with the move that justifies
sω. We write ie(s) for the set of immediate extensions of s. Finally, if s ∈ LA

and m ∈ MA such that sω `A m, we write s ·m for the legal play obtained by
adding m to the end of s, pointing to sω.

The empty arena 1 is defined to be 〈∅, ∅, ∅, ∅〉 so that L1 = {ε}. A flat
arena has a single O-move and a set (possibly empty) of P-moves, all of which
are enabled by the O-move. For example, the boolean arena bool has moves
{q, t, ff} where λbool(q) = OQ, λbool(t) = λbool(ff) = PA, Ibool = {q} with the
enabling relation q `bool t and q `bool ff. We can similarly define ⊥⊥⊥, com and
nat as the flat arenas over ∅, {t} and {0, 1, 2, . . .} respectively.

3

2.3 Constructors on arenas

The product A×B of arenas A and B is defined by:

• MA×B = MA + MB

• λA×B = [λA, λB]

• IA×B = IA + IB

• `A×B = `A + `B

This clearly respects the requirements for an arena. Note how all the structure
of A×B is inherited from its constituent arenas; we place the arenas side-by-side
with no possibility of “interaction” between them.

In contrast, the second major construction on arenas, the par A O B, adds in
some new moves and structure. As for the product, the moves come from the
disjoint union of those of A and B, but with the addition of a new set of initial
moves; moves previously initial (in A or B) lose this status in A O B:

• MAOB = (IA × IB) + (MA + MB)

• λAOB(inl(〈iA, iB〉)) = O;
λAOB(inr(m)) = [λA, λB](m)

• IAOB = IA × IB

• inl(〈iA, iB〉) `AOB inr(m) iff iA `A m or iB `B m;
inr(m) `AOB inr(n) iff m `A n or m `B n

The arrow A ⇒ B is defined in terms of the par and the half lift operation
which adds a new initial move, enabling all previously initial moves, and inverts
the labelling in A:

• M↓A = {?}+ MA

• λ↓A(inl(?)) = O;
λ↓A(inr(m)) = λPO

A (m)

• I↓A = {?}

• inl(?) `↓A inr(m) iff m ∈ IA;
inr(m) `↓A inr(n) iff m `A n

We now define A ⇒ B as (↓A) O B. Note that the (previously) initial moves
of A become P-moves of A ⇒ B enabled by the initial moves of B. Clearly this
still satisfies the axioms of an arena. The negation ¬A abbreviates A ⇒⊥⊥⊥.

The only difference between the arena bool defined above and (⊥⊥⊥ ×⊥⊥⊥) ⇒ ⊥⊥⊥
lies in the labelling of the P-tokens as Questions (instead of as Answers). Note
that we also have an arena ⊥⊥⊥ ⇒ (⊥⊥⊥ ×⊥⊥⊥), a kind of “upside-down version” of
bool, and more generally A ⇒ (A×A), so we cannot think of arenas as (trees
or) forests in general—even though all arenas in the simple type hierarchy over
a collection of flat arenas are trees.

4

2.4 Strategies

So far, we’ve defined the notions of pointing string and arena in order to define
the concept of “legal play” and seen that an arena A can be viewed as just a set
of legal plays. When modelling a programming language with game semantics,
arenas correspond to types. We thus consider a type as nothing more than a
given set of admissible traces.

To give a game semantics to a program P of type T , we specify a subset [[P]] ⊆
[[T]] of those admissible traces that the program can actually perform. More
precisely, we associate to P a set of P-ending plays with intended interpretation
that, if sab ∈ [[P]], then P continues by playing b (with appropriate pointer) if O
continues by playing a (with appropriate pointer unless a is initial) after s. In
other words, a strategy describes the deterministic behaviour of P parametrized
by all deterministic, but unknown, possible behaviours of O. By convention, all
programs contain the empty play ε as “starting point”.

A strategy σ for an arena A, written σ : A, is a non-empty set of P-ending
legal plays of A which satisfies

• prefix-closure: if s ∈ σ and s′ vP s then s′ ∈ σ

• determinism: if s ∈ σ and t ∈ σ then s ∧ t ∈ σ.

The second condition amounts to asking for s∧ t to end with a P-move; so only
O can “branch” nondeterministically. We write dom(σ) for the domain of σ
defined to be

⋃
s∈σ ie(s), all the O-ending plays of A accessible to σ.

Set-theoretic inclusion ⊆ determines a partial ordering on the set of all strategies
for any given arena. Moreover, the union of a directed set of strategies yields
its lub (w.r.t. the inclusion order above) so our partial order is a CPO. If we
drop the second condition (of determinism), we can even take the union of an
arbitrary set of strategies, i.e. we have a complete lattice of nondeterministic
strategies. However, we will make little use of nondeterministic strategies in
these notes.

Let us recap the development to date. The notion of arena corresponds to
what we called a “game” in the introduction. However, historically, a game was
defined to be an arena plus a (prefix-closed) subset of its legal plays, the idea
being that only these valid plays could be played by a strategy for that game. In
this document, we don’t use this approach, instead using an “arena only” setting
where we seek to constrain the behaviour of strategies directly, with explicitly
given (and analysed) constraints, rather than relying on the valid plays of a
game to restrict play.

2.5 Composition of strategies

Suppose we have strategies σ and τ for arenas A and ¬A respectively. The
response of τ (if any!) to the initial Question q must be some initial move of A
and thus this P-move of τ can also be seen as an O-move for σ. The response
of σ (if any!) to this can be seen as a new input for τ and so on. In other
words, (with the exception of the initial move of ¬A) σ behaves as O for τ and
τ behaves as O for σ.

5

Note, however, that we don’t seem to have any way of stopping the interac-
tion: every time a strategy plays a move, it immediately gets considered as the
next input to the other; so either one strategy (eventually) fails to respond,
thus bringing the whole interaction to a halt, i.e. deadlock; otherwise, the two
strategies must engage in “infinite chattering”, i.e. livelock.

We can avoid this problem by allowing partial interaction between strategies:
rather than having σ and τ on arenas A and ¬A respectively, we generalize to
σ and τ on A ⇒ B and B ⇒ C. Interaction only takes place in the “no man’s
land” of B and each strategy has a “private” region (A for σ, C for τ) where
moves can be played without influencing the other strategy. In particular, if τ
plays a move in C, the next O-move is not the responsibility of σ but of the
external Opponent. On the other hand, if τ plays in B, this becomes a new
input for σ in exactly the same way as before.

Such an idea is easily formalized with the notion of a legal interaction for
arenas A, B and C: a pointing string u over alphabet MA + MB + MC such
that u � A,B ∈ LA⇒B , u � B,C ∈ LB⇒C and u � A,C satisfies OP-alternation.
(It easily follows that u �A,C ∈ LA⇒C .) We write I(A,B,C) for the set of all
legal interactions for A, B and C (in that order).

By keeping track of who moves next in each component of a legal interaction, we
obtain the following diagram that exposes the structure underlying interaction.
We start in state OOO, i.e. O to play next in A ⇒ B, B ⇒ C and A ⇒ C.

A ⇒ B B ⇒ C A ⇒ C

O P P

O O O

P O P

?

6
C

?

6
A

�-

B

	

�

�

B

This shows that a legal interaction consists of a sequence of sandwiches of
the form “O-move of A ⇒ C, followed by moves of B, followed by a P-move of
A ⇒ C”: if the number of B-moves is odd, one of the outer moves comes from
A and the other from C whereas, if the number of B-moves is even, both outer
moves come from the “same side”. If u ∈ I(A,B, C) ends in state OOO, we
define jp(u) to be the shortest prefix of u that witnesses jp(u�A,C) and trnct(u)
to be the shortest prefix of u witnessing ip(u�A,C).

Of the three permissible states, only OOO corresponds to an even-length outer
projection (O to move next in A ⇒ C)—but, since both inner projections also
have even length in this state, we see that an even-length play in A ⇒ C always
comes from even-length plays of A ⇒ B and B ⇒ C. The other two states,
i.e. POP and OPP, correspond to having one even- and one odd-length inner
projection, thereby yielding an odd-length outer projection: once Opponent
makes a move in the outside, the interaction oscillates between these two states
until such time as it “reemerges” from B with a Player move of A ⇒ C, taking
us back to the OOO state.

6

The composite of σ : A⇒B and τ : B ⇒ C is defined by setting

σ ‖ τ = {u ∈ I(A,B,C) | u�A,B ∈ σ ∧ u�B,C ∈ τ}

and then σ ; τ = {u�A,C | u ∈ σ ‖ τ}. In words, σ ; τ consists of the external
projections of all interactions that σ and τ mutually accept. Note that all
actual interaction between σ and τ gets excised from their composite, leaving a
sequence of external responses, by P in A ⇒ C, to moves of O in A ⇒ C—the
“bread” of the sandwiches.

Proposition 2.5.1 If σ and τ are nondeterministic strategies for A ⇒ B and
B ⇒ C respectively then σ ; τ is a nondeterministic strategy for A ⇒ C.

Proof Any s ∈ σ ; τ has a witness u ∈ I(A,B, C) satisfying u � A,B ∈ σ
and u �B,C ∈ τ so u is in the OOO state. Any even-length prefix t of s must
then witnessed by a prefix v of u which will also be in the OOO state, hence
v �A,B ∈ σ and v �B,C ∈ τ and so t ∈ σ ; τ . �

This establishes that nondeterministic strategies compose; we now need to verify
that determinism is preserved by composition. If we interact deterministic σ
and τ for A and ¬A respectively, a single interaction is traced out: O can never
branch since no “no man’s land” exists. In the more general case, where σ and
τ are strategies for A ⇒ B and B ⇒ C respectively, O can branch (in A ⇒ C)
and so more than one interaction becomes possible. However, each possible
interaction witnesses a different play when projected to A ⇒ C.

Lemma 2.5.2 (unique witness) If σ and τ are strategies for A ⇒ B and
B ⇒ C respectively then, for all s ∈ σ ; τ , there exists a unique u ∈ I(A,B,C)
such that s = u�A,C, u�A,B ∈ σ and u�B,C ∈ τ .

Proof If s ∈ σ ; τ has two distinct witnesses u1 and u2 then they must differ
only in B. Set v = u1 ∧ u2; it must therefore be the case that v is in state
OPP (resp. POP). But then τ (resp. σ) violates determinism at v �B,C (resp.
v �A,B) which cannot happen, by assumption. �

Proposition 2.5.3 If σ and τ are strategies for A ⇒ B and B ⇒ C respec-
tively then σ ; τ is a strategy for A ⇒ C.

Proof Suppose we have s, t ∈ σ ; τ with unique witnesses u and v but where
r = s∧t has odd length. Let w = u∧v, an interaction that must be in state OPP
or POP, so that r = w � A,C. The longest prefix of w in state OOO uniquely
witnesses the longest even-length common prefix of s and t and so either τ or σ
would have to violate determinism at w. �

2.6 Arenas and strategies as a category

We can organize the above development into a category G: objects are arenas,
arrows f : A → B are strategies σf : A ⇒ B. Given arrows f : A → B and
g : B → C, represented by strategies σf : A ⇒ B and σg : B ⇒ C, we define
g ◦ f : A → C to be σf ; σg, the composite of σf and σg. We’ve just seen that
this is well-defined. To complete the construction of our category, we must now
verify that we have an identity arrow for each object and that composition is
associative.

7

Identities For an arena A, a typical play of idA : A⇒A looks like:

q

q

...
m

m

...
`

`

Every time O makes a move, P echoes that move with the same justification
pointer on the “other side” of the arrow, the only exception being if O plays an
initial move q. In this case, P responds with q on the left hand side, pointing to
the q just played by O. An elementary proof establishes that, for any strategy
σ : A⇒B, we have idA ; σ = σ = σ ; idB . So we have identities.

Associativity Suppose now that we have strategies σ : A⇒B, τ : B⇒C and
υ : C ⇒D. We wish to show that (σ ; τ) ; υ = σ ; (τ ; υ). To this end, consider
any s ∈ (σ ; τ) ; υ. The play s comes from a unique witness u ∈ I(A,C,D)
where u �C,D ∈ υ and u �A,C ∈ σ ; τ . In turn, u �A,C comes from a unique
v ∈ I(A,B,C) where v �A,B ∈ σ and v �B,C ∈ τ .

We need to combine u and v in order to construct a witness for s in σ ; (τ ; υ).
In order to do this, we extend the notion of legal interaction to four arenas:
w ∈ I(A,B,C, D) iff w �A,B, w �B,C and w �C,D are legal in A ⇒ B, B ⇒ C
and C ⇒ D respectively, and w � A,D satisfies OP-alternation. (Indeed, the
notion of legal interaction naturally extends to any finite list of arenas.)

Let w ∈ I(A,B, C, D). In between any two consecutive moves of w � A,C, we
can have moves entirely from B or entirely from D but we cannot have moves
from B and D. This can most easily be seen by deriving the extended state
diagram for legal interactions:

A ⇒ B B ⇒ C C ⇒ D A ⇒ D

P O O P

O P O P

O O P P

O O O O

?

6
D

?

6
C

?

6
B

�-

A

	

�

�

A

8

A B-move can be played from states POOP and OPOP while a D-move only
from OOOO and OOPP. Thus, in between any B-move and D-move of w, there
must be an move from A or C. We call this property locality of transfer since
it means that σ cannot directly “pass control” to υ; it must go via τ .

Lemma 2.6.1 (zipping) Given u ∈ I(A,C,D) and v ∈ I(A,B,C) such that
u � A,C = v � A,C, there exists a unique w ∈ I(A,B,C, D) such that u = w �
A,C,D and v = w �A,B,C.

Proof Induction on |u�A,C|. If u � A,C = ε then u plays only in D so
w = u. Otherwise, let a be the final move of u �A,C. We apply the inductive
hypothesis to u′ = u<a and v′ = v<a, yielding unique w′ ∈ I(A,B, C, D) such
that u′ = w′ �A,C,D and v′ = w′ �A,B,C.

If a is a P-move of A ⇒ C, u could continue with moves in D after a but a must
be the final move of v. Dually, if a is an O-move of A ⇒ C, v could continue in
B but u is in the POP state making D inaccessible. So the last move of u�A,C
is also the last move of at least one of u and v. We can thus extend our w′ with
a followed by the “tail” of u or v as appropriate, yielding w ∈ I(A,B,C, D)
such that u = w �A,C, D and v = w �A,B,C. �

Clearly, the “mirror image” of this result—zipping u ∈ I(A,B,D) with v ∈
I(B,C,D)—is proved in the same way. Associativity now follows:

Proposition 2.6.2 If σ : A⇒B, τ : B ⇒ C and υ : C ⇒D then (σ ; τ) ; υ =
σ ; (τ ; υ).

Proof Let s ∈ (σ ; τ) ; υ. We apply zipping to the (unique) u ∈ I(A,C,D)
and v ∈ I(A,B,C) witnessing s ∈ (σ ; τ) ; υ and u �A,C ∈ σ ; τ . This yields a
(unique) w ∈ I(A,B,C, D) such that u = w �A,C, D and v = w �A,B,C. So
w �A,B ∈ σ, w �B,C ∈ τ and w �C,D ∈ υ.

By locality of transfer, we have that w �B,D OP-alternates, hence w �B,C,D ∈
I(B,C,D). So w � A,B ∈ σ and w � B,D ∈ τ ; υ witnessing s ∈ σ ; (τ ; υ),
the reverse inclusion being proved in the same way (using the “mirror image”
zipping lemma). �

This completes the proof that G does indeed form a category as claimed above.
We sometimes refer to G as the ambient category since it provides the most
general setting for “doing” game semantics. In the next section, we show how
G can be seen as an SMCC. All subsequent models can be considered as sub-
categories of G where this symmetric monöıdal closed structure often restricts
to a Cartesian closed structure.

We already know that all homsets of G are CPOs. A straightforward argument
establishes that composition of strategies is both monotone and continuous with
respect to this CPO structure; so G “is” a CPO-enriched category.

2.7 Monöıdal closed structure

We extend the × constructor on arenas to a bifunctor on G as follows. Given
arrows σ : A⇒B and σ′ : A′⇒B′, define σ × σ′ : A×A′⇒B ×B′ to be

{s ∈ L(A×A′)⇒(B×B′) | s�A,B ∈ σ ∧ s�A′, B′ ∈ σ′}.

9

This definition makes sense since any s ∈ σ×σ′ respects the following simplified
version of the state diagram for legal interactions, i.e. the switching condition
as a property of strategies rather than of games:

A ⇒ B A′ ⇒ B′ overall

P O P

O O O

O P P

?

6
σ′

?

6
σ

If we additionally have strategies τ : B⇒C and τ ′ : B′⇒C ′, a legal interaction
u ∈ I(A×A′, B ×B′, C × C ′) where u �A,B ∈ σ, u �A′, B′ ∈ σ′, u �B,C ∈ τ
and u � B′, C ′ ∈ τ ′ can be split into u � A,B, C ∈ σ ‖ τ ⊆ I(A,B,C) and
u�A′, B′, C ′ ∈ σ′ ‖ τ ′ ⊆ I(A′, B′, C ′).

Lemma 2.7.1 (zipping) Given u ∈ I(A,B,C), u′ ∈ I(A′, B′, C ′) and s ∈
L(A×A′)⇒(C×C′) where s�A,C = u�A,C and s�A′, C ′ = u′ �A′, C ′, there exists
a unique w ∈ I(A×A′, B ×B′, C × C ′) such that s = w � A×A′, C × C ′,
u = w �A,B,C and u′ = w �A′, B′, C ′.

Proof A typical zipping argument. �

This “vertical zipping” lemma yields bifunctoriality of × much as associativity
of composition follows from “horizontal zipping” in the previous section.

Proposition 2.7.2 Let σ : A⇒ B, σ′ : A′⇒ B′, τ : B ⇒ C and τ ′ : B′⇒ C ′

be arrows of G. Then we have (σ × σ′) ; (τ × τ ′) = (σ ; τ)× (σ′ ; τ ′).

Proof If s ∈ (σ ; τ) × (σ′ ; τ ′) then s � A,C ∈ σ ; τ (witnessed by some u ∈
I(A,B, C)) and s�A′, C ′ ∈ σ′ ;τ ′ (witnessed by some u′ ∈ I(A′, B′, C ′)). Apply-
ing lemma 2.7.1 yields unique v ∈ I(A×A′, B ×B′, C × C ′) such that s = v �
A×A′, C × C ′, u = v �A,B, C and u′ = v �A′, B′, C ′. So v �A×A′, B ×B′ ∈
σ×σ′ and v �B ×B′, C × C ′ ∈ τ×τ ′ so s = v �A×A′, C × C ′ ∈ (σ×σ′);(τ×τ ′).

If s ∈ (σ × σ′) ; (τ × τ ′) with witness u ∈ I(A×A′, B ×B′, C × C ′) then
u � A,B ∈ σ and u � B,C ∈ τ which implies that u � A,B,C ∈ I(A,B,C) and
u � A,C ∈ σ ; τ . Similarly u � A′, B′, C ′ ∈ I(A′, B′, C ′) and u � A′, C ′ ∈ σ′ ; τ ′.
Hence s = u�A×A′, C × C ′ ∈ (σ ; τ)× (σ′ ; τ ′). �

The unit object for × is the empty arena 1 equipped with the evident copycat
strategies λA : 1×A ⇒ A and ρA : A× 1⇒ A. The fact that 1 is a terminal
object of G means that we can build projections from A×B by π` = (idA×!B) ;
ρA : A×B ⇒ A and πr = (!A × idB) ; λA : A×B ⇒ B.

The re-tagging natural isomorphisms (MA + MB) + MC
∼= MA + (MB + MC)

and MA + MB
∼= MB + MA in Set induce the associativity and commutativity

maps αABC : (A×B)× C ⇒A× (B × C) and γAB : A×B ⇒B ×A in G.

10

Finally, since the only difference between (A × B) ⇒ C and A ⇒ (B ⇒ C)
again lies in the tagging of the disjoint unions, G(A × B,C) ∼= G(A,B ⇒ C),
the familiar currying isomorphism which we write as Λ(−). Uncurrying (for
all A and B) idA⇒B yields εAB : (A ⇒ B)×A⇒B, the (family of) evaluation
map(s) of G such that, for any σ : A×B ⇒ C, we have

σ = (Λ(σ)× idB) ; εBC .

This establishes that G is an SMCC (symmetric monöıdal closed category).
In an SMCC, each object B can be associated to a functor (×B) by defining
(×B)A = A × B and (×B)f = f × idB . The property of being an SMCC can
then equivalently be stated as: for all objects B, the functor (×B) has a right
adjoint. This implies a natural isomorphism

(×B)A → C
===========
A → (B ⇒)C

where (B ⇒) is the (specified) right adjoint of (×B). So, when we define the
notion of an SMCC, we don’t use × as a bifunctor; we only use the derived
family of functors, one for each object. As a result, the definition of SMCC
guarantees a family of right adjoints but doesn’t directly specify a “bifunctor”
related to the family of right adjoints as × is related to the family (×B).

This bifunctor does always exist however: for f : A → B and g : C → D, f ⇒ g
maps an arrow h : B → C to f ; h ; g. In the particular case of our category
G, we extend the ⇒ constructor (on arenas) to strategies in the following way
[V. Danos, private communication]:

Given σ : A⇒B and υ : C ⇒D, define

σ 9 υ = {u ∈ I(A,B,C, D) | u�A,B ∈ σ ∧ u�C,D ∈ υ}

and for u ∈ I(A,B,C, D), define a legal play u∗ of (B ⇒ C) ⇒ (A ⇒ D)
by (trivial relabelling of moves and) replacing all pointers from initial moves of
A by their pointers in u � A,D. Now define σ ⇒ υ : (B ⇒ C) ⇒ (A ⇒ D) by
{u∗ | u ∈ σ 9 υ}. This construction defines a functor from Gop ×G to G, i.e. a
bifunctor of “mixed variance”, contravariant on the left, covariant on the right:

Suppose we additionally have σ′ : A′ ⇒ B′, τ : B ⇒ C and τ ′ : B′ ⇒ C ′. If
s ∈ (σ′ ⇒ τ) ; (σ ⇒ τ ′), it has some witness u ∈ I(C ⇒ A′, B ⇒ B′, A ⇒ C ′).
Since u � C ⇒ A′, B ⇒ B′ ∈ σ′ ⇒ τ , it must have the form u∗1 for some u1 ∈
I(B,C,A′, B′). In a similar way, u�B ⇒ B′, A ⇒ C ′ has the form u∗2 for some
u2 ∈ I(A,B,B′, C ′) such that u1 � B,B′ = u2 � B,B′. A mundane zipping,
inserting u1 into u2, yields a legal interaction in I(A,B,C, A′, B′, C ′) which, by
hiding B and B′, in turn yields the v ∈ I(A,C, A′, C ′) such that s = v∗. So
s ∈ (σ ;σ′) ⇒ (τ ;τ ′). The same reasoning “going backwards” proves the reverse
inclusion.

2.8 Single-threaded strategies

We’ve already seen that the empty arena 1 is a terminal object of the category
G. So, for any σ : A⇒ B, !A = σ;!B , i.e. all strategies commute with the !As.

11

We also have, for any arena A, a “comultiplication” strategy ∆A : A⇒ A×A
which interleaves the two copies of A on the RHS into the one copy on the LHS:

A ⇒ A × A
q

q

...
m

m

...
q

q

...
n

n

...
m

m

...

We want to characterize those strategies that commute with comultiplication,
i.e. those σ : A⇒ B satisfying σ ; ∆B = ∆A ; σ × σ, since such strategies form
a Cartesian closed subcategory of G (for which the family of strategies ∆A

becomes a natural transformation).
A thread t of A is a legal play with at most one initial move so that t is either ε
or some s ∈ LA whose only initial move is its first move. A legal play s ∈ LA is
well-opened iff no initial move is ever repeated (so we can have several different
initial moves). Beware that this definition conflicts with much of the literature
of game semantics which conflates the concepts of thread and well-opened play.
We write Lwo

A for the set of all well-opened plays of A.
Let s ∈ LA and consider that initial move m of s that hereditarily justifies
the last move of s. The subsequence of all moves hereditarily justified by m—
the “connected component” of s relative to m and the justification pointers—is
called the current thread of s and written dse. The current thread need not
be a legal play. We say that s ∈ LA is well-threaded iff, for all s′ vP s, s′ω
is justified by some move of dip(s′)e; in words, P never changes thread. The
current thread of a well-threaded play is always legal.
If we have a well-threaded strategy σ (i.e. all s ∈ σ are well-threaded) let dσe be
{dse | s ∈ σ}. This defines a set of even-length legal plays closed under prefixes.
In the other direction, if T is a coherent (i.e. for any t1, t2 ∈ T , t1 ∧ t2 has even
length) set of even-length threads of A, define

ST0(T) = {ε}
STi+1(T) = {sab ∈ LA | s ∈ STi(T) ∧ dsabe ∈ T}

ST(T) =
⋃
i∈N

STi(T).

12

It can readily be shown that σ ⊆ STdσe and dST(T)e ⊆ T . If σ = STdσe,
we say that σ is a single-threaded strategy and if T = dST(T)e, we say that
T is a thread function. We can additionally establish that STdσe is always
the least single-threaded strategy containing well-threaded σ (and dually that
dST(T)e is the greatest thread function contained in T) which implies a one-
2-one correspondence between single-threaded strategies and thread functions:
σ = STdσe and dST(T)e = T .

An elementary (but quite long) proof establishes that single-threaded strategies
correspond exactly to those σ commuting with !A and ∆A.

A

σ

��

∆A // A×A

σ×σ

��

A

σ

��

!A

��>
>>

>>
>>

>

B
∆B

// B ×B B
!B

// 1

For general reasons, the lluf subcategory of G consisting of arenas and single-
threaded strategies is Cartesian closed. For σ and τ composable single-threaded
strategies, the threads of their composite (which determine the actual composite
σ ;τ) come from interaction between threads of τ and plays of σ: dσ ; τe = σ ;dτe.

3 Innocent strategies

The behavour of strategies as defined above may depend arbitrarily on the
entire history of play; we can think of them as “strategies of total information”.
Single-threaded strategies impose the restriction that the strategy’s behaviour
depend only on the current thread—what we might call a “strategy of partial
information”. In this section, we introduce a more subtle class of restricted
strategies whose behaviour depends only on a subsequence of the current thread
(determined by the justification pointers) called the P-view. These innocent
strategies form a subcategory I of G where, as for single-threaded strategies,
the monöıdal structure becomes a bona fide product and it follows that I is a
CCC.

3.1 P-views and P-visibility

The P-view of non-empty play s ∈ LA, noted psq, is defined in two stages.
First we extract a subsequence of s with pointing structure defined only on
(non-initial) O-moves:

• psq = sω, if sω is an initial move

• psq = pjp(s)q · sω, if sω is a non-initial O-move

• psq = pip(s)q sω, if sω is a P-move

In words, we trace back from the end of s, following pointers from O-moves,
excising all moves under such pointers, and “stepping over” P-moves, until we
reach an initial move (whence we stop).

13

In general, a P-move m ∈ s can “lose its pointer”: if its justifier n lies (strictly)
underneath an O-to-P pointer in ps<mq then n does not occur in ps<mq. We
nonetheless complete the definition of P-view by specifying that, if the justifier
of a P-move in psq gets excised in this way, it has no justifier in the P-view (and
so psq 6∈ LA); otherwise it keeps the same justifier as in s.

We say that a legal play s ∈ LA satisfies P-visibility iff psq ∈ LA. In words,
no P-move of psq loses its pointer. Note that this implies that a P-move of ptq
may lose its pointer for t some proper prefix of s. We lift the definition of P-
visibility pointwise to strategies: σ satisfies P-visibility iff all s ∈ σ do. Note
that, for s in P-vis σ as opposed to arbitrary P-vis s, all t vP s do in fact satisfy
P-visibility—since σ is closed under P-ending prefixes—so ptq ∈ LA for all the
P-prefixes t of s.

A move in a legal interaction u ∈ I(A,B, C) is a generalized O-move (resp.
generalized P-move) in component L (resp. R) iff it is an O- (resp. P-)move
of A ⇒ B (resp. B ⇒ C). So an O-move of A ⇒ C or any move of B is a
generalized O-move (in the appropriate component) while a P-move of A ⇒ C or
any move of B is a generalized P-move (in the appropriate component). A move
in B is thus a generalized O-move in one component and a generalized P-move
in the other. Note that a generalized P-move is always immediately preceded
by a generalized O-move in the same component. Finally, we say that moves
from A and C are external moves of u and that moves from B are internal
moves of u.

We extend the notion of P-view to legal interaction u ∈ I(A,B,C) with the
following inductive definition.

punq = n, if n is an initial move of C;
pumvnq = pumq · n, if n is an external O-move of u justified by m;

pumq = puqm, if m is a generalized P-move.

Recall that a legal interaction can be viewed as a sequence of sandwiches: O-
move of A ⇒ C, moves of B, P-move of A ⇒ C. The P-view of a legal interaction
thus consists of a subsequence of sandwiches determined by the pointers from
external O-moves of u. Each sandwich of u is either removed entirely or left
untouched in the P-view.

Just as the P-view of a legal play can lose pointers from P-moves and so need not
itself be a legal play, puq can lose pointers from its generalized P-moves and so
need not be a legal interaction. However, if u results from the interaction of two
P-vis strategies, i.e. all P-ending prefixes of both internal projections u � A,B
and u�B,C satisfy P-visibility, then the following lemma guarantees that puq is
legal:

Lemma 3.1.1 If u ∈ I(A,B,C) such that u � A,B ∈ σ and u � B,C ∈ τ
for P-vis σ and τ , and m is a generalized P-move of u in component∗ X, then
pu6mq ∈ I(A,B,C).

Proof By induction on the length of u6m; two cases, depending on the move
n immediately preceding m in u.

∗We use X as a metavariable ranging over {L,R} when we neither know nor care which
of the two components is being referred to, whence we use Y to denote the other component.

14

If n is a generalized P-move of u (necessarily in component Y), we apply the
inductive hypothesis to get pu<mq ∈ I(A,B, C). If n is an O-move of A ⇒ C,
either it’s initial (in which case the claim is trivial—this encompasses the base
case) or it’s justified by `, in which case we apply the inductive hypothesis to
u6` to get pu<mq = pu6 q̀ · n ∈ I(A,B, C). So pu<mq ∈ I(A,B,C).

By P-visibility, m points in pu<m � Xq. The last move of this, n, points to a
generalized P-move m′ in X which occurs in pu<mq. In turn, m′ is immediately
preceded by a generalized O-move in X, n′, which also occurs in pu<mq. If we
continue in this way, we find that pu<m �Xq is a subsequence of pu<mq. Hence
we can attach m to the end of pu<mq with correct justification pointer, yielding
pu6mq ∈ I(A,B,C) as required. �

Note that, for u ∈ I(A,B,C) satisfying the hypotheses of this lemma, puq �
A,C = pu � A,Cq. So, as an immediate corollary of this lemma, we have that
P-visibility is preserved by composition: the composite of P-vis σ : A⇒ B and
τ : B ⇒ C is again a P-vis strategy since, if s ∈ σ ; τ , its unique witness u ∈
I(A,B,C) satisfies the hypotheses of the above lemma; hence puq ∈ I(A,B, C)
and so psq = puq�A,C ∈ LA⇒C .

The fact that P-vis strategies compose illustrates (in one particular case) how
the arena-only approach to game semantics [advocated here] loses none of the
generality of the arena-plus-plays approach:

A typical game (in the latter approach) consists of an arena together with its
set of P-vis plays; this suffices to describe models of PCF, FPC or Idealized
Algol, with or without control operators. In such a game, we can only play
P-vis plays; in other words, P-visibility is enforced by the objects. In the arena-
only setting, we restrict attention to the subcategory of P-vis strategies, but
keeping the same underlying objects, i.e. just arenas. So, while non-P-vis plays
could still be played in principle, they are never played by P-vis strategies; here
P-visibility is enforced by the arrows.

3.2 Innocence defined by a Galois connection

If we upgrade the notion of view to being a property of plays—s is a P-view
iff s = psq—then we can speak unambiguously of “a set of P-views”. A (resp.
nondeterministic) strategy containing only P-views is sometimes called a view
function (resp. view relation). If V is a set of P-ending P-views, define

T0(V) = {ε}
Tn+1(V) = {s ∈ LA | ip(ip(s)) ∈ Tn(V) ∧ ∃t ∈ V. psq = t}

tr(V) =
⋃

n∈N

Tn(V)

This builds a (potentially nondeterministic) strategy whose response to an O-
ending play s depends only on its P-view psq. In other words, every play of tr(V)
is an interleaving of P-views in V that only interleaves “OP pairs” of moves (so
as to preserve OP-alternation). We call this an OP-interleaving . Conversely, a
P-vis strategy σ induces a view relation pσq = {psq | s ∈ σ}. In general, pσq may
be nondeterministic, even if σ is deterministic, but we always have σ ⊆ tr(pσq).

15

If s, t ∈ LA where s ends with a P-move, satisfies P-vis and pip(s)q = ptq then
we denote by match(s, t) the unique extension of t satisfying psq = pmatch(s, t)q,
i.e. extend t by sω with the “same” pointer as in s. We can do this since sω

points in pip(s)q = ptq (by assumption).

A deterministic P-vis strategy σ for which σ = tr(pσq) is called an innocent
strategy. Such strategies can be directly characterized by

s ∈ σ ∧ t ∈ dom(σ) ∧ pip(s)q = ptq ⇒ match(s, t) ∈ σ.

In words, the response of an innocent strategy depends only on the current P-
view, cf. the above definition of tr. One can go on to show that ptr(V)q ⊆ V and
hence that tr and fn form a Galois connection. So tr ◦ fn is a closure operator
(returning the smallest innocent strategy containing its input) and fn ◦ tr is an
interior operator (returning the largest view function contained in its input). In
this way, we establish a one-to-one correspondence between view functions and
innocent strategies.

A view function represents the minimum information, the set of P-views, that
determines an innocent strategy. We could redefine the category of innocent
strategies using view functions as arrows—an innocent strategy for A ⇒ B is
a view function for the same arena—but the restatement of the definition of
composition in terms of view functions makes the accompanying proofs much
more intricate and difficult to understand.

In some sense, a view function perfectly captures the idea of an innocent strategy
in isolation, i.e. a term all by itself, but to compose innocent strategies with the
usual “parallel composition plus hiding” definition (as opposed to a “view by
view” definition), we need more information in our arrows than is contained in
a view function: in general, we need to close under OP-interleaving, i.e. apply
tr(−), e.g. when Opponent plays a move such as the last moves of

q q

q q

q q

q

t

with no pointer or which points beyond the immediately preceding move, the
resulting play cannot be a P-view and so, from the parallel-composition-plus-
hiding perspective, a view function could never respond.

3.3 Innocent strategies

In the previous section, we have shown a way of defining innocent strategies
as being those (necessarily) P-vis strategies entirely determined by their view
function, i.e. those strategies (that can be) generated by “completing” a P-vis
strategy (by applying the closure operator of the previous section). We also
noted an equivalent characterization: a P-vis strategy σ is innocent iff

s ∈ σ ∧ t ∈ dom(σ) ∧ pip(s)q = ptq ⇒ match(s, t) ∈ σ

16

In this definition, the play s ∈ σ could be any legal play but in fact it suffices to
consider just P-views (since match(s, t) = match(psq, t)). This observation leads
to a third, perhaps simpler, characterization of innocence as P-visibility plus

s ∈ LA ∧ ip(s) ∈ dom(σ) ∧ psq ∈ pσq ⇒ s ∈ σ.

To see the equivalence of these two definitions, let σ be a P-vis strategy for
A. If σ satisfies the first definition, suppose we have some s ∈ LA such that
ip(s) ∈ dom(σ) and psq ∈ pσq. So, for some t ∈ σ, ptq = psq and hence s =
match(t, ip(s)) ∈ σ as required. For the other direction, if s ∈ σ, t ∈ dom(σ)
where pip(s)q = ptq then match(s, t) ∈ LA, ip(match(s, t)) = t ∈ dom(σ) and
pmatch(s, t)q = psq ∈ pσq. Hence match(s, t) ∈ σ as required.

The next lemma plays a vital role in the proof that innocent strategies compose.

Lemma 3.3.1 If u ∈ I(A,B,C) such that u � A,B ∈ σ and u � B,C ∈ τ
for P-vis σ and τ , and m is a generalized O-move of u in component X, then
pu6m �Xq = ppu6mq�Xq.

Proof By induction on the length of u6m. If m is an initial move of u � X
then pu6m �Xq = m = ppu6mq�Xq. Otherwise, m is either an O-move of A ⇒ C
or a generalized P-move in component Y . In either case, the justifier n of m
occurs in pu6mq.

We finish by calculating

ppu6mq�Xq = ppu6nq�Xq ·m
= ppu<nq�Xqn ·m
= pu<n �Xqn ·m
= pu6n �Xq ·m
= pu6m �Xq

using the inductive hypothesis and the definition of P-view. �

Essentially, this lemma says that puq not only witnesses pu � A,Cq but that it
contains all the information needed for two interacting innocent strategies to
build a witness for pu�A,Cq.

This allows us to extend the function match to legal interactions. Suppose we
have u, v ∈ σ‖τ ⊆ I(A,B, C) where σ and τ are innocent strategies, u witnesses
s ∈ σ ; τ and v is the minimum witness of t ∈ dom(σ ; τ)—a legal interaction
ending with an external O-move. Suppose further that pvq = ptrnct(u)q where
trnct(u) is that legal interaction obtained by removing the “tail” of generalized
P-moves from u, i.e. the minimum witness of ip(s).

Let X be the component where the last move of v occurs. By the above lemma,
we know that pv �Xq = ppvq �Xq = pptrnct(u)q �Xq = pu �Xq. Since σ and τ are
innocent, the response (in component X) to pv � Xq is the same as to pu � Xq.
This reasoning can be iterated, alternating between the two components, to
extend v with the same “tail” of generalized P-moves that was removed from u
to get trnct(u). We thus end up with a legal interaction match(u, v) witnessing
that t′ ∈ ie(t) such that pt′q = psq.

17

Proposition 3.3.2 If σ : A ⇒ B and τ : B ⇒ C are innocent strategies then
so is their composite σ ; τ : A⇒ C.

Proof We use the third (and final) characterization of innocence. Suppose
s ∈ LA⇒C where ip(s) ∈ dom(σ ; τ) and psq ∈ pσ ; τq. Then we have some
t ∈ σ ; τ , witnessed by v ∈ σ ‖ τ , such that ptq = psq. Moreover, we have a
minimum witness u for ip(s).

So puq � A,C = pip(s)q = pip(t)q = ptrnct(v)q � A,C and, by the unique witness
lemma 2.5.2, we conclude that puq = ptrnct(v)q. Hence match(v, u) witnesses
match(t, ip(s)) = s ∈ σ ; τ . �

We have now established that innocent strategies compose and so form a sub-
category I of G. It can easily be checked that G’s SMCC structure carries
over to I. More importantly, this SMCC structure in fact restricts to a CCC
structure on I:

Given innocent strategies σ : A⇒B and τ : A⇒C, the strategy 〈σ, τ〉, defined
as ∆A ; (σ × τ), clearly satisfies 〈σ, τ〉 ; π` = σ and 〈σ, τ〉 ; πr = τ and is unique
(among innocent, or even single-threaded strategies) in doing so. The closed
structure of G carries over immediately so that I is a CCC.

3.4 Typically non-innocent behaviours

A deterministic P-vis strategy σ can violate innocence in two quite different
ways. In the arena (com⇒ com) ⇒ com, the strategy ccc defined by (taking the
even-length prefix closure of) the plays

q

q

t

t

q

q

q

t

fails to be innocent since the second play could be extended with the Answer
t (in the middle), yielding the same view as the first play, yet the strategy
would fail to respond. This implies a sensitivity to information unavailable in
the view, in this case whether the argument (of type com) to the input (of type
com→ com) has been tested for convergence or not.

Note how this differs from a strictness test: strictness (or otherwise) depends
on the input, not on the input’s argument(s). We can detect strictness with
λfµα (conv (f)[α]t ff) of type (com→ com) → bool, a standard (and perfectly
innocent) idiom of µPCF:

q

q

t

ff

q

q

q

t

Our second example of a (deterministic P-vis) strategy, with behaviour sensitive
to information unavailable in the P-view, lives in the arena (com⇒ com) ⇒ nat.

18

The strategy ccn doesn’t merely depend on whether or not the argument to its
input converges, but how many times it is asked to converge:

q

q

t

0

q

q

q

t

t

1
q

q

q

t
q

t

t

2

etc. This kind of behaviour, unthinkable in PCF, corresponds to the following
“copy counting” idiom of Idealized Algol:

new v := 0 in (f (inc v; t)); !v

How does this violation of innocence differ from the first example above? In
that example, we find that the view relation pcccq is in fact a view function
whereas pccnq really is a relation. In particular, this implies that ccc, unlike ccn,
can be “completed” to an innocent strategy.

This suggests that ccc remains fairly close to innocence. Indeed, whenever ccc
has to play a move, its choice of move depends only on the P-view—just as an
innocent strategy—but the decision of whether or not to play the move at all
depends on more than the view: an innocent strategy must respond to a P-view
in the domain of its view function, but ccc in the same situation may choose to
“give up”—an “error” or “deadlock” rather than divergence.

However, for strategies like ccn, not only the question of whether (or not) to
reply but the choice of move itself may depend on information lying outside of
the view, this “loss of information” manifesting itself as nondeterminism in the
view function. This suggests that the passage from PCF to Idealized Algol could
go via an intermediate language of “PCF with refusals” corresponding to those
non-innocent strategies whose view relations are nonetheless deterministic. It
doesn’t seem too far-fetched to imagine a connection with the “λ-calculus with
multiplicities” (where refusal would signal the exhaustion of a resource).

19

3.5 I as a CPO-enriched category

Given an arena A, we define an order on the set of all innocent strategies for A
by setting, for all σ and τ for A,

σ ≤ τ iff pσq ⊆ pτq.

This clearly defines a partial order with least element the “undefined” strategy
{ε}. In fact, this ordering coincides with the usual subset-inclusion ordering:
σ ⊆ τ if, and only if, pσq ⊆ pτq. Moreover, if σ1 and σ2 are composable innocent
strategies and σ2 ≤ σ′2, then any s ∈ σ1 ; σ2 will also be in σ1 ; σ′2, from which
it immediately follows that composition of strategies is monotone with respect
to our ordering.
Let ∆ be a directed set of innocent strategies for A. The lub of ∆ defined by⊔

∆ =
⋃

σ∈∆

σ

can easily be seen to be an innocent strategy. So the set of all innocent strategies
for an arbitrary arena A is a CPO. To see that composition is continuous with
respect to these lubs, suppose we have an innocent strategy σ : A ⇒ B plus
a directed set ∆ of innocent strategies for B ⇒ C. We wish to establish that
σ ;

⊔
∆ =

⊔
(σ ; ∆). Since, for all τ ∈ ∆, we have σ ; τ ≤ σ ;

⊔
∆ we must also

have
⊔

(σ ; ∆) ≤ σ ;
⊔

∆. For the other direction, if s ∈ σ ;
⊔

∆ then s ∈ σ ; τ
for some τ ∈ ∆ hence s ∈

⊔
(σ ; ∆) and so σ ;

⊔
∆ ≤

⊔
(σ ; ∆) as required.

We can concisely summarize the discussion so far by saying that I, our CCC,
“is CPO-enriched”. We can go further, showing that homsets are ω-algebräıc
CPOs (have bases of compact elements).
Recall that an element x of a CPO X is compact iff, for all directed subsets
∆ of X, if x ≤

⊔
∆ then x ≤ z for some z ∈ ∆. We write K(X) for the

compact elements of X. Our CPO X is algebräıc iff, for all x ∈ X, the set
Dx = {k ∈ K(X) | k ≤ x} is directed and x =

⊔
Dx. An algebraic CPO with

countable K(X) is called ω-algebraic.
We would like to characterize those innocent strategies that are compact in
a given homset. To this end, let ∆ be an arbitrary directed set of innocent
strategies for arena A. We begin by remarking that any innocent σ with finite
view function pσq is compact: for each s ∈ pσq, we must have s ∈ pσsq for some
σs ∈ ∆ and, since directed sets have upper bounds for any finite subset, we infer
a τ ∈ ∆ such that σ ≤ τ as required.
The converse also holds: if σ is compact then it must have finite view function.
To see this, consider the set Dσ of all innocent τ with finite view function such
that τ ≤ σ. This is a directed set and σ is obviously an upper bound, so⊔

Dσ ≤ σ. But, for each s ∈ σ, we have an innocent strategy σs induced by
closing {s′ ∈ LA | s′ veven s} with tr ◦ fn. This strategy has finite view function
and hence lies in Dσ, so s ∈

⊔
Dσ implying that σ ≤

⊔
Dσ.

In words, any innocent σ can be expressed as the lub of a directed set of innocent
strategies with finite view functions. This means that no strategy with infinite
view function can possibly be compact and, putting this together with the above,
we see that the compact elements are precisely those innocent strategies with
finite view function. This proves that the CPO of innocent strategies for A is
ω-algebräıc.

20

3.6 The O-visibility condition

The long O-view of s ∈ LA, noted bsc, is defined dually to the P-view: we
follow pointers from P-moves so this time O-moves can lose pointers:

• bεc = ε

• bsc = bjp(s)c · sω, if sω is a P-move

• bsc = bip(s)c sω, if sω is an O-move

In contrast to a P-view which always has a unique initial move, a long O-
view may contain many initial moves. A play s ∈ LA satisfies O-visibility iff
bsc ∈ LA—so we lose no O-pointers in bsc—and satisfies simply visibility iff it
satisfies P- and O-visibility.

Lemma 3.6.1 Let σ : A ⇒ B and τ : B ⇒ C be P-vis strategies and suppose
that u ∈ σ ‖ τ such that, for all external O-moves o of u, we have that u6o �A,C
satisfies O-visibility. Then, for a non-initial external move m in component X,
bu6m �Y c extends bjp(u6m)�Y c.

Proof By induction on the length of u6m (for m an external move). The
base case for m a P-move consists of a single sandwich which has the required
property by P-visibility in X. The base case for m an O-move consists of a
sandwich plus an external O-move which trivially has the required property.

If m is an external P-move in component X, its justifier occurs in pu<m �Xq. If
we trace back bu<m �Y c, it starts out just like pu<m �Xq until this latter steps
back onto an external O-move o in X. At this point, we can apply the inductive
hypothesis to u6o so that bu6o �Y c extends bjp(u6o)�Y c. (In other words,
following back the O-view of u6o �Y can never jump past the justifier of o.) If
we continue in this way, we eventually arrive at the last move of jp(u6m) � Y
and so bu6m �Y c extends bjp(u6m)�Y c as required.

If m is an external O-move in component X, external O-visibility implies that its
justifier lies in bu<m �A,Cc. As we trace back bu6m �Y c, we apply the inductive
hypothesis to u6p for all the external P-moves p of bu<m �A,Cc (in component
X) that lie between m and its justifier. This establishes, at each such point,
that bu6p �Y c extends bjp(u6p)�Y c. Hence bu6m �Y c extends bjp(u6m)�Y c as
required. �

This lemma basically says that the pointers from external moves in component
X constrain the pointers in component Y , even though external moves in X
cannot be seen from Y !

In a P-vis strategy, not all plays necessarily satisfy O-visibility. However, in
order to build a category of P-vis strategies, we have no need for this extra
generality: when P-vis σ and τ interact, σ appears O-vis from τ ’s point of view
and τ appears O-vis from σ’s point of view, so we can safely ignore all plays
violating O-visibility:

Lemma 3.6.2 Let σ : A ⇒ B and τ : B ⇒ C be P-vis strategies and suppose
that u ∈ σ ‖ τ such that, for all external O-moves o of u, we have that u6o �A,C
satisfies O-visibility. Then, for any generalized O-move m of u in component
X, we have that u6m �X satisfies O-visibility.

21

Proof If m is an external move, it’s either initial (whence we have nothing
to prove) or it points in bu<m �A,Cc in component X. For each P-move of
bu<m �A,Cc in component Y , we apply the above lemma, thus establishing
that m points in bu<m �Xc as required.

Otherwise, m is a generalized O-move in X which is also a generalized P-move
in Y and so, by P-visibility, points in pu<m �Yq. We apply the above lemma to
each external O-move of pu<m �Yq, thus establishing that m points in bu<m �Xc
as required. �

This implies, for innocent (or just P-vis) strategies σ : A ⇒ B and τ : B ⇒ C,
that any s ∈ σ ; τ that happens to satisfy O-visibility necessarily comes from
an interaction between O-vis plays of σ and τ . So, if we write O(σ) for the
set of all O-vis plays of P-vis σ, we can build a category [G. McCusker, private
communication]:

Proposition 3.6.3 We have a category with arenas as objects and strategies
satisfying (P-visibility and) σ = O(σ) as arrows.

Proof We define the composite τ ◦ σ of such σ : A ⇒ B and τ : B ⇒ C by
O(σ ; τ) and the identity arrow 1A by O(idA). Clearly, 1B ◦σ = σ = σ ◦ 1A. For
associativity, if we additionally have υ : C ⇒D, we calculate:

υ ◦ (τ ◦ σ) = O(O(σ ; τ) ; υ)
= O(O(σ ; τ) ;O(υ))
= O((σ ; τ) ; υ)
= O(σ ; (τ ; υ))
= O(O(σ) ;O(τ ; υ))
= O(σ ; (υ ◦ τ))
= (υ ◦ τ) ◦ σ

using associativity of ; and lemma 3.6.2. �

This defines a category of P- and O-vis strategies which, qua category, differs
inessentially from the category of P-vis strategies. However, when we look at
the concrete representations of the arrows, we see a clear difference: a strategy
satisfying σ = O(σ) cannot interact with a non-P-vis strategy whereas a strategy
satisfying only P-vis remains capable of interacting with a non-P-vis strategy.
This relates to a rather deep property of game semantics:

Game semantics has defined a hierarchy of models of (idealized) programming
languages. Most of these models contain the (fully abstract) game semantics
for PCF and, by relaxing various constraints placed on that model, we find
(fully abstract) models for a range of extensions of PCF. However, the inter-
pretation of a PCF term remains unchanged in the passage from one model
to another. Indeed, the semantics of a PCF term contains many superfluous
plays—superfluous for the purposes of presenting the fully abstract model of
PCF—but when we relax a given constraint on the PCF model, some of these
previously superfluous plays may become relevant: the fewer the constraints
we place on P, the more P can observe of the behaviour of O. So rather than
“superfluous” we should perhaps say “invisible”; and a play “invisible” for PCF
may well be “visible” in an extension of PCF.

22

3.7 The annotated O-view

Earlier on, we defined the function match(s, t) to formalize what we intuitively
mean by “extend t with the last move of s”. We now define a new function
match?(s, t) for P-ending, P-vis s ∈ LA and t ∈ LA such that pjp(s)q = ptq:
match?(s, t) denotes the extension of t with that suffix of the P-view of s that
lies underneath the pointer from sω to jp(s)ω. In other words, instead of adding
just the last move of s to t, this adds the last “chunk” of the P-view of s to t.

The annotated (long) O-view of P- and O-vis s ∈ LA, written bs̃c, is defined
inductively:

• bε̃c = ε

• bs̃c = bĩp(s)csω, if sω is an O-move

• bs̃c = match?(s, bj̃p(s)c), if sω is an P-move

In words, the annotated (long) O-view traces back the (long) O-view but, instead
of excising all moves underneath each P-to-O pointer, it retains that suffix of
the current P-view “enclosed” by the pointer:

· · · ◦ • ◦ . . . • ◦ •

The assumption of O-visibility for s implies that bs̃c ∈ LA. So bs̃c in fact
consists of an interleaving of P-views of A. If s ∈ σ for an innocent σ then bs̃c
exposes what input P-view σ requires in order to produce bsc as output O-view.

We previously defined match(u, v) to formalize what we mean by “extend v with
the tail of generalized P-moves of u”. In order to define match?(u, v), consider
u ∈ σ ‖ τ (for P-vis σ : A ⇒ B and τ : B ⇒ C) and v ∈ I(A,B,C) such that
pjp(u)q = pvq. We define match?(u, v) to be the extension of v with the last
“chunk” of the P-view of u, i.e. extend v with the suffix of puq lying underneath
the pointer from uω.

The P-view of a legal interaction picks out a subsequence of sandwiches accord-
ing to the following scheme: track back through the current sandwich until we
reach an external O-move o; then follow o’s pointer and recursively apply, until
we reach an initial O-move. The (long) O-view [defined below] of a legal interac-
tion u picks out its subsequence of sandwiches differently: it applies the above
procedure (for the P-view) but only until we reach that external O-move o that
justifies the last move of u—assumed to be an external P-move; then move to
the external P-move immediately preceding o and recursively apply.

Suppose that our u ∈ σ ‖ τ additionally satisfies external O-visibility: for all
external O-moves o of u, we have u6o � A,C ∈ LA⇒C . We define the (long)
O-view of u, written buc, inductively:

• bεc = ε

• buc = bip(u)cuω, if uω is an external O-move

• buc = match?(u, bjp(u)c), if uω is an external P-move

23

Note that buc is an interleaving of P-views of legal interactions just as bs̃c
is an interleaving of P-views of legal plays. External O-visibility guarantees
that buc ∈ I(A,B, C). Moreover, puq is a subsequence of buc and buc clearly
witnesses bũ�A,Cc.

4 Game semantics of PCF

The game semantics of PCF is always presented in a “categorical style” so that
a typed term-in-context x1 : T1, . . . , xn : Tn ` M : T is modelled as an arrow
[[M]] : [[T1]]× · · · × [[Tn]]→ [[T]] in our CCC. (We cannot model the above term as
a strategy for [[T]] parametrized by an environment mapping the free variables
xi to strategies in [[Ti]] since I is not well-pointed: we have no way of building
the interpretation of a λ-abstraction.) The CCC structure of I guarantees us a
model of the simply typed λ-calculus over our choice of base types: a variable
is modelled by the appropriate projection from its context, λ-abstraction by
currying and application by the eval map. In what follows, we use base types
com, bool and nat modelled by the flat arenas com, bool and nat.

4.1 Arithmetic strategies

The base type constants of PCF, such as

Γ ` t : bool Γ ` ff : bool

for the booleans, are modelled by strategies that never play in Γ. Instead, they
respond immediately to the initial Question with the appropriate Answer:

q

t

q

ff

PCF typically contains a few constructs for manipulating nats and bools. A
fairly minimal choice consists of “successor”, “predecessor” and “test for zero”:

Γ ` M : nat

Γ ` (succ M) : nat

Γ ` M : nat

Γ ` (pred M) : nat

Γ ` M : nat

Γ ` (zero? M) : bool

In all three of these rules, the term M is modelled as a strategy for [[Γ]] ⇒ nat.
We wish to define [[(succ M)]], [[(pred M)]] and [[(zero? M)]] as compositions of
[[M]] with appropriate strategies on nat ⇒ nat (for succ and pred) or nat ⇒
bool (for zero?).

The strategy succ : nat⇒ nat is the innocent strategy generated by the view
function containing all plays of the form

q

q

n

Sn

24

where n is not a move but a variable ranging over moves and Sn stands for the
move following n; e.g. if n stands for the move 2 then Sn stands for the move
3. Similarly, the strategy pred : nat ⇒ nat is induced by the view function
containing

q

q

0

0

q

q

Sn
n

and zero? : nat⇒ bool is induced by

q

q

0

t

q

q

Sn

ff

so we can define:

• [[(succ M)]] = [[M]] ; succ

• [[(pred M)]] = [[M]] ; pred

• [[(zero? M)]] = [[M]] ; zero?

4.2 Control-flow strategies

We next consider the if construct of PCF which, without loss of generality, we
can restrict to choosing between two terms of base type:

Γ ` M : bool Γ ` N : B Γ ` L : B

(if M N else L) : B

In order to model this, we need an innocent strategy if : bool×B ×B ⇒ B
that interrogates its boolean in order to decide whether to behave as first or
second projection:

(bool B B) B

q

q

t
q

b

b

(bool B B) B

q

q

ff
q

b

b

Given [[M]] : [[Γ]]⇒ bool, [[N]] : [[Γ]]⇒ [[B]] and [[L]] : [[Γ]]⇒ [[B]], we thus define

• [[(if M N else L)]] = 〈[[M]], [[N]], [[L]]〉 ; if

25

In a similar way, we define the semantics of the case construct of PCF

Γ ` M : nat Γ ` ~N : B Γ ` L : B

(case M ~N else L) : B

by composition with case : nat× [[~B]]× [[B]] ⇒ [[B]], the generalization of if to
handle branching on the first k natural numbers (the terms ~N) plus a default
case (the term L) if the natural number returns k or more:

(nat Bk B) B

q

q

n(< k)
qn

b

b

(nat Bk B) B

q

q

n(≥ k)
q

b

b

The if and case constructs both evaluate one distinguished term (of type bool
or nat as appropriate) in order to choose, from a given collection of terms,
which to evaluate next. Note, however, that the value used to make that choice
does not get passed to the chosen continuation. In contrast, the let construct
of PCF only has one possible continuation after evaluation of its distinguished
term; but the value obtained is passed to the continuation:

Γ ` M : B1 Γ, x : B1 ` N : B2

Γ ` (let x = M in N) : B2

In order to define the semantics of let, we first define, for base types B1 and
B2, the “delayed copycat” µB1B2 : [[B1 ⇒ B2]]⇒ [[B1 ⇒ B2]] as:

((B1 B2) B1) B2

q

q

b1

q

q

b1

((B1 B2) B1) B2

q

q

b1

q

b2

b2

If we have a strategy σ : [[Γ]]⇒ [[B1 ⇒ B2]], it may interrogate its argument B1

multiple times. If we compose σ with µB1B2 , this has the effect of “linearizing”
σ in B1: the delayed copycat first evaluates the argument in B1 “once and for
all”; each time σ subsequently requests that argument, µB1B2 simply repeats
the value already computed.

Given [[M]] : [[Γ]]⇒ [[B1]] and [[N]] : [[Γ, B1]]⇒ [[B2]], we define

• [[(let x = M in N)]] = 〈[[M]], (ΛB1 [[N]]) ; µB1B2〉 ; evalB1B2

In words, we linearize N in B1 and then apply it, in the usual way, to M .

26

4.3 Recursively defined PCF terms

To define recursive processes, PCF provides, at all types T , a special form
fixptT taking an input of type T → T and returning its least fixed point:

Γ ` M : T → T

Γ ` (fixpt M) : T

Given [[M]] : [[Γ]] → [[T → T]], we construct an ω-chain of strategies in [[Γ]] → [[T]]
with the following inductive definition

• f0 = ⊥Γ→T

• fn+1 = 〈idΓ, fn〉 ; Λ−1([[M]])

and then set [[Γ ` (fixpt M) : T]] =
⊔

i∈N fi. Essentially, this definition just
computes the limit of the ω-chain ⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ · · ·

4.4 Example PCF processes

Nesting Suppose we wish to compute f(f(x)) for some function f and initial
input x. The obvious PCF term

λfx (f (f x)) : (bool→ bool) → bool→ bool

doesn’t evaluate x until the control stack, representing the nested applications
of f , has been built. This process can be seen in the structure of the strategy
denoting this term, in particular the way that the pointers associating Answers
with Questions get longer and longer:

q

q

q

q

q

q

b

b

b′

b′

b′′

b′′

Sequencing An alternative to pushing control stack instead evaluates x straight
away, applies f to that and then reapplies f to that. While avoiding the need
for a stack, this requires intermediate names for each “step” in the sequence:

λfx (let z = x in (let z = (f)z in (f)z)).

27

This term describes an inside-out version of the previous strategy:

q

q

b
q

q

b

b′

q

q

b′

b′′

b′′

Base type recursion In PCF, we never need recursion to define processes
of base type. However, we can extend of PCF with an erratic choice operator
M or N that chooses nondeterministically between M and N ; we exploit this
to give a first example of the use of fixpt that builds a base type process:

Typical interactions between fixptnat and λx(0 or (succ x)) look like

q

q

0

0

q

q

q

q

0

0

1

1

q

q

q

q

q

q

0

0

1

1

2

2

so that (fixpt λx (0 or (succ x))) denotes that process of type nat that may
return any natural number. However, this process doesn’t terminate if or,
unknown to us, always selects its right-hand input. This matches the pessimistic
assessment of may&must testing that this program may diverge.

On the other hand, if or uses a fair coin to decide, at run-time, which of
its two arguments to interrogate, the probability of divergence in the above
example is nil: as far as probabilistic testing is concerned, our program always
converges. In general, “qualitative” (or with may&must testing, i.e. an unfair
coin with probabilistic testing) and “quantitative” (a fair coin with probabilistic
testing) nondeterminism describe completely different situations: the first can
be seen as “interacting with a deterministic but unknown Opponent” whereas,
in the second case, Opponent really is nondeterministic: Opponent’s choices are
resolved at run-time and nobody knows in advance what’s going to happen.

28

The double function A play in the strategy for

dbl = λfx (case x 0 else (succ (succ (f (pred x)))))

follows one of these two templates:

q

q

0

0

q

q

Sn
q

q

q

m

Pm
x

SSx

In words, the process begins by evaluating the head variable x: if this gives 0, it
returns result 0; otherwise it applies f to (pred x), finally returning that value
plus two.

The application of f to (pred x) results in reevaluation of x, even though we
just evaluated it, even though the value just computed for x lies in the view!
(Compare the “shape” of the above strategy with that of cft defined earlier.)

This makes the lack of any uniformity assumption highly relevant: the second
time x gets evaluated, it may in principle return a different result to the first
time. It turns out that this cannot happen in any PCF (indeed µPCF) context
but such behaviour expresses the very essence of PCF extended with references
(if only at base types) or nondeterminism of any kind.

Nonuniformity raises another question: the second value of x (the occurrence
m) could be 0—but what value do we choose for P0? Typically it’s defined to
be 0 but one could equally well argue for “undefined” or “error”.

In any case, let’s calculate the semantics of (fixpt dbl) by supplying [[dbl]] to
fixpt. We build the set of plays interpreting (fixpt dbl) inductively, starting
with input 0. In this first interaction, we make no recursive calls (hence T2

never gets used) and merely copycat between T0 and (the first copy of) T1:

q

q

q

q

0

0

0

0

29

The interaction becomes more interesting if Opponent instead supplies a non-
zero input at the first time of asking and either 0 or 1 the second time:

q

q

q

q

Sx

Sx
q

q

q

q

q

q

0/1

0/1

0

0

0

0

2

2

The initial non-zero input provokes a recursive call which opens a second copy of
dbl whose (eventual) input is pred of the second input. In the above example,
this means that the inner copy of dbl gets input 0 which “bottoms out” the
recursion, yielding 2. Note that, even if the first input were 2, 3 or 2004, if the
second input is less than 2, the recursion bottoms out∗—and the final result
doesn’t depend on the inputs received but only on the number of recursive calls
made. In general, if the nth input is strictly less than n, this causes the recursion
to bottom out and apply succ 2(n− 1) times to 0.

In general, the game semantics of (fixpt dbl) looks like:

q

q

0

0

q

q

n > 0
q

m < 2
2

∗This depends on the choice that (pred 0) evaluates to 0.

30

q

q

n > 0
q

m > 1
q

` < 3
4

etc. Recall that, in the absence of nonuniformity, every input will be the same.
This means that we supply a “constant stream” such as 1, 1 or 2, 2, 2 or 3, 3, 3, 3
with the effect that input stream n, n, ..., n (of length n + 1) sets up n recursive
calls, the n+1th input causes the recursion to stop and the result 2((n+1)−1) =
2n is eventually returned.

In the presence of nonuniformity, strange things can happen. For example, the
application (fixpt dbl)(0 or 2) can evaluate to 0, to 4 but also to 2 (if the
first input were 2 but the second 0). Similar possibilities exist in an Algol-like
language with references at base type.

cft revisited Recall the “count for true” term defined earlier:

f : bool→ nat, x : bool ` (if x 0 else (succ (f x))) : nat

λ-abstracting x and f and applying fixpt yields a process that repeatedly
asks x for input until such time as x receives t, whence the process terminates
returning the number of ffs received before the t:

q

q

t

0

q

q

ff
q

t

1

q

q

ff
q

ff
q

t

2

31

etc. This process exhibits subtle behaviour in the presence of nonuniformity (in
the form of nondeterminism or state). However, in PCF or µPCF, x always
receives the same input. Under such circumstances, we may as well evaluate x
once and for all (i.e. use the µ-transformed version of cft) which makes it clear
that, as far as PCF/µPCF are concerned, cft behaves the same as

λx (if x 0 else Ω).

double revisited Unlike “count for true” (which remains rather uninteresting
in the absence of nonuniformity) the “double” function would, if anything, make
more sense once µ-transformed:

q

q

0

0

q

q

Sn
q

q

n
x

SSx

Notice in particular that the application of f to (pred x) in the else clause no
longer reevaluates x (cf. the example of µ-transforming cft) and so, by taking
the fixed point of

dbl2 = λfx (let z = x in (case z 0 else (succ (succ (f (pred z))))))

(i.e. the term corresponding to the µ-transformed [[dbl]]), we get a much more
intuitive semantics of the double function where the input is evaluated exactly
once:

q

q

n

2n

This strategy can therefore be defined in PCF (if extended with let) by a
perfectly finitary term, despite our earlier concerns that it would have required
an infinite case form. It follows from “uniformity” that (fixpt dbl2) cannot be
distinguished from (fixpt dbl) by any context of PCF or µPCF—but, in the
presence of any kind of nonuniformity, these terms can easily be distinguished:
e.g. (fixpt dbl2)(0 or 2) cannot evaluate to 2.

Mutual recursion The program below (in vanilla R5RS Scheme) computes
bn, exploiting the ability of letrec to define od? and ev? in a mutually recursive
fashion.

32

(define (fastexp b n)
(letrec

((od? (lambda (x)
(if (= x 0) #f (ev? (- x 1)))))

(ev? (lambda (x)
(if (= x 0) #t (od? (- x 1)))))

(sqr (lambda (x) (* x x)))
(exp (lambda (n)

(if (= n 0) 1 (if (ev? n)
(sqr (exp (/ n 2)))
(* b

(exp (- n 1))))))))
(exp n)))

How can such a program be written in PCF? Or, more precisely, how can od?
and ev? be expressed in terms of fixpt alone? We begin, by analogy with the
use of fixpt in defining the function double, by introducing two free variables,
f and g, standing for od? and ev? respectively:

F f g = λz (let x = z in (if (zero? x) ff else (g (pred x))))
G f g = λz (let x = z in (if (zero? x) t else (f (pred x))))

The use of let avoids reevaluation of x in the else continuation, cf. double.
We next eliminate the two free variables, f and g, by taking appropriate fixpts.
We can start by eliminating f (as in F ′) or g (as in G′):

F ′ g = (fixpt λf (F f g))
G′ f = (fixpt λg (G f g))

We model these as strategies on (nat → bool) → (nat → bool). For example,
a play in [[G′]] follows one of these two templates:

q

q

0

t

q

q

Sn
q

q

n
v

v

Note that, since g doesn’t occur in G, the fixpt actually does nothing except
eliminate g.

In the second step, we eliminate the remaining free variable:

F = (fixpt λf (F f (G′ f)))
G = (fixpt λg (G (F ′ g) g))

33

The subterm (F f (G′ f)) (resp. (G (F ′ g) g)) introduces the second base case
in F (resp. G):

q

q

0

ff (resp. t)

q

q

S0

t (resp. ff)

q

q

SSn
q

q

n
v

v

The terms F and G can then easily be seen to define the functions od? and
ev? as desired. The mutually tail recursive nature of od? and ev? facilitates
the process of “eliminating a free variable with fixpt” since a recursive call to
one of the functions can easily be converted to a call to the other, e.g. a call to
(ev? 3) gets replaced by (od? 2). More generally, any collection of mutually tail
recursive functions describes a finite state automaton; each function corresponds
to a state, each tail call to a state transition.

A slightly more subtle example of mutual recursion, which doesn’t fit the above
pattern of mutual tail recursion, can be found by rephrasing the Lucid-style
dataflow definition

fib = 0 fby aux
aux = 1 fby fib+aux

(fby meaning “followed by”) of the Fibonacci series as two mutually recursive
functions

(letrec
((fib (lambda (n)

(if (= n 0) 0 (aux (- n 1)))))
(aux (lambda (n)

(if (= n 0) 1 (+ (fib (- n 1))
(aux (- n 1)))))))

...)

where fib remains tail recursive but aux, in referring to itself and to fib, sets
up a more complex interdependency.

34

As for odd/even, we have two terms, each with two free variables, and eliminate
mutual recursion in two steps. However, unlike odd/even, the two fixed points
F and G describe qualitatively different processes: eliminating fib from aux
yields the “standard” tree recursive definition of Fibonacci (albeit starting from
1 and 1) whereas eliminating aux from fib engenders a rather subtle process
(since aux refers to itself) that computes Fibonacci starting from 0 and 1.

Accumulating paramaters Consider a simple programming problem such
as adding two natural numbers (using only “test for zero” plus succ and pred).
The natural recursive solution

(define (add1 x y)
(let ((z x))
(if (zero? z) y (succ (add1 (pred z) y)))))

rather redundantly passes its second argument y all the way through the wind-
ing up of the recursion, only to repeatedly increment it during the unwinding
phase. Unfortunately, under a call-by-name evaluation discipline, this second
argument is accessed for the first time by the innermost recursive copy of add1;
this provokes a “cascade” of Questions, terminated by a request for the second
argument at the “top level”, which serves only to pass the “top level” input all
the way back to the innermost copy [that triggered the original cascade]. Only
then can the control stack unwind, calculating result 5 for (add1 2 3) in our
particular example.

At first sight, the following slight variation

(define (add2 x y)
(let ((z x))
(if (zero? z) y (add2 (pred z) (succ y)))))

seems to avoid the need for a control stack—the current continuation always
being trivial. However, under a call-by-name evaluation strategy, even this
(syntactically) tail recursive term only evaluates its second argument when it
hits the base case (i.e. when x becomes zero). In effect, once the base case is
reached, we know how many times we need to apply succ but we don’t know
what value this stack of succs should be applied to. As such, the process
engendered by add2 cannot reasonably be considered iterative, despite its tail
recursive appearance. On the other hand, the tail recursive nature of add2 does
allow a certain optimization: once the innermost copy receives the value 5 for
its second argument, this can be returned directly to the top level.

A properly iterative solution requires neither a control stack nor an implicit stack
of succs. This avoids the Question cascades of add1 and add2 by accumulating
the second argument: at the moment that the innermost recursive copy of add3
asks for its argument y, it has already calculated the desired result!

(define (add3 x y)
(let ((z1 x) (z2 y))
(if (zero? z1) z2 (add3 (pred z1) (succ z2)))))

35

((nat3 nat3 nat2) nat2 nat2 nat1) nat1 nat1 nat0

q

q

q

q

2

2
q

q

q

q

1

1
q

q

q

q

0

0
q

q

q

q

q

q

3

3

3

3

3

3

3

3

4

4

5

5

Figure 1: a trace of fixpt vs. λfyµx(case x y else (succ (f)(pred x)y))

36

((nat3 nat3 nat2) nat2 nat2 nat1) nat1 nat1 nat0

q

q

q

q

2

2
q

q

q

q

1

1
q

q

q

q

0

0
q

q

q

q

q

q

3

3

4

4

5

5

5

5

5

5

5

5

Figure 2: a trace of fixpt vs. λfyµx(case x y else (f)(pred x)(succ y))

37

((nat3 nat3 nat2) nat2 nat2 nat1) nat1 nat1 nat0

q

q

q

q

2

2
q

q

3

3
q

q

q

q

1

1
q

q

4

4
q

q

q

q

0

0
q

q

5

5

5

...
5

Figure 3: a trace of fixpt vs. λfµxy(case x y else (f)(pred x)(succ y))

38

4.5 The importance of justification pointers

In the (relatively) simple examples seen so far, the use of pointers may seem
minimal, perhaps even unnecessary. In general, however, they play an essential
disambiguating role. For example, compare the infamous λ-term of Kierstead
Kx = λF (F)λx(F)λy(x) with its close cousin Ky = λF (F)λx(F)λy(y), viewed
as strategies on ((⊥ → ⊥) → ⊥) → ⊥:

q q

q q

q vs. q

q q

q q

q q

The only difference between these two strategies lies in the target of the final
pointer: does it point to the first or second copy of the input? And yet these
terms can exhibit quite different behaviours. For example, it turns out that
Kx and Ky are contextually equivalent in unary PCF but are distinguishable in
just about any conceivable extension of this language. A contextual separation
becomes possible in unary µPCF with

[] λfµα(conv (f)[α]t Ω)

or in unary PCF with an error [boolean PCF where all else clauses are just ff
so we think of ff as an error value that can only be propogated] with

[] λf(if (f)t (if (f)ff Ω else ff) else ff)

and in boolean PCF, they can be strictly separated, i.e. the following context
sends Kx to t and Ky to ff:

[] λf(if (f)t (if (f)ff ff else t) else (if (f)ff t else t)).

The fact that Kx and Ky cannot be distinguished in unary PCF should not be
taken to mean that pointers play no role in that language. To see this, consider
the difference between

X1X2 = λF (F)λx1x2(F)λy1y2(conv x1 x2)

and
X1Y2 = λF (F)λx1x2(F)λy1y2(conv x1 y2)

when interacting with a nested context such as

[] λf(f)((f)tΩ)((f)Ωt).

The game semantics of X1X2 and X1Y2 differ only in the pointers determining
the choice between x2 and y2 (in the bodies of the seq forms) and yet placing
X1X2 in this context results in divergence while X1Y2 happily converges. This
happens because X1Y2 only ever looks at the left input of the inner-left copy of
f and at the right input of the inner-right copy of f (both of which are defined)
whereas X1X2 performs a more systematic “search” of its context, in particular
looking at the right input of the inner-left copy of f .

39

5 Definability and full abstraction for PCF

5.1 Definability

Most “full abstraction” results use the same basic idea: establish that all finite
elements of the model are definable in the language in question; then show that
any two semantically distinct terms M and N can be separated by some finite
context C; conclude that the term defining C distinguishes M from N . In
this section, we present such finite definability results, firstly for all innocent
strategies, then for “well bracketed” innocent strategies (no non-local control
flow) and finally for “rigid” innocent strategies (no local control flow).

5.1.1 Classical Böhm trees

Below we present Herbelin’s [2] convenient language, based on λµ-calculus and
known as CBT, for defining compact innocent strategies.

F ::= λ~xµα(E)

E ::= Ω | [α]t | [α]ff | if (x)~F E else E

For the sake of a simple syntax, we consider the finitary version of the language
with base type bool plus constants t and ff and the if-then-else form. This
can easily be extended to base type nat plus constants and a case form. Terms
E, called executables, we type as sequents Γ ; ∆ ` E and terms F we type as
Γ ; ∆ ` F : T where Γ is a list of variable-simple type pairs, ∆ is a list of
name-base type pairs and T is a simple type. We assume a divergent executable
Ω, available regardless of the syntactic context.

CBT

Γ ; ∆ ` Ω Γ ; ∆, α : bool ` [α]t Γ ; ∆, α : bool ` [α]ff

Γ ; ∆ ` F1 : T1 · · · Γ ; ∆ ` Fn : Tn Γ ; ∆ ` E0 Γ ; ∆ ` E1

Γ, x : T1 → · · · → Tn → bool ; ∆ ` (if (x)~F E0 else E1)

Γ, x1 : T1 . . . xn : Tn ; ∆, α : bool ` E

Γ ; ∆ ` λ~xµα(E) : T1 → · · · → Tn → bool

Theorem 5.1.1 Every compact innocent strategy σ on an arena A interpreting
a simple type (over bool) is definable in CBT.

The theorem is easily proved by induction on the size of the view function of
σ; see [1, 2] for more details. The two base cases—no response or immediate
answer to the initial question of A—correspond to basic executables. Otherwise,
σ splits into two substrategies, args(σ) and cnts(σ) standing for “arguments to
σ” and “continuations from σ”, both of which have size strictly smaller than σ
(and so are CBT-definable by inductive hypothesis) and which can be combined
by the if form to recover the original σ.

40

5.1.2 Intuitionistic Böhm trees

The passage from µPCF to PCF invokes Hyland & Ong’s bracketing condition to
prevent precocious answers from being played. Specifically, if s ∈ dom(σ) then
the pending question of s is the first Opponent question encountered while
tracing back the P-view of s. A strategy σ is well-bracketed iff, for all t ∈ σ
ending with a Player answer, the justifier of that answer is the pending question
of t. Equivalently, the answer points in that suffix of the P-view terminated by
the pending question.

The following play violates the bracketing condition since its final occurrence
points past the pending question (the third question played), instead answering
the initial question directly.

q

q

q

t

A simplified version of the argument for P-visibility establishes that composing
well-bracketed σ and τ always yields well-bracketed σ ;τ . Well-bracketed strate-
gies thus form a subcategory of I (the identities always being well-bracketed)
which is again a CCC. Unlike the general case of an innocent strategy, in a
well-bracketed σ, the substrategy args(σ) must pass control to the other sub-
strategy cnts(σ); we cannot pre-empt cnts(σ) by throwing a value direct to
the “top level” (as does the non-bracketed example above).

The bracketing condition thus renders the µ-binder and the naming construct
redundant, the following simplified language IBT being sufficient to establish
definability for well-bracketed compact innocent strategies.

F ::= λ~x(E)

E ::= Ω | t | ff | if (x)~F E else E

We type executables E by sequents Γ ` E : bool and terms F as before.
Alternatively, one could type executables as in CBT but with the requirement
that ∆, the list of name-base type pairs, has (at most) one entry.

IBT

Γ ` Ω : bool Γ ` t : bool Γ ` ff : bool

Γ ` F1 : T1 · · · Γ ` Fn : Tn Γ ` E0 : bool Γ ` E1 : bool

Γ, x : T1 → · · · → Tn → bool ` (if (x)~F E0 else E1) : bool

Γ, x1 : T1 . . . xn : Tn ` E : bool

Γ ` λ~x(E) : T1 → · · · → Tn → bool

Theorem 5.1.2 Every compact, well-bracketed innocent strategy σ on an arena
A interpreting a simple type (over bool) is definable in IBT.

41

5.1.3 Rigid Böhm trees

We’ve already seen how the bracketing condition rules out any use of non-local
control operators. In this section, we introduce a “dual” constraint which limits
the use of local control operators (such as if-then-else or case) to defining
unary functions: continuations of case statements cannot themselves be cases.

Analogously to the above definition of the pending question of s, define the
extant answer of s to be the first OA-occurrence encountered while tracing back
the P-view. This induces a suffix of psq which we call the rigid view. A strategy
σ is rigid iff, for all t ∈ σ ending with a question, the justifier of that question
occurs in the rigid view. Thus, a violation of rigidity corresponds to the guts of
an if-then-else or case form:

q

q

t
q

The extant answer of the view qqt is clearly its last occurrence t yet the strategy
responds with a question pointing beyond that, to the initial question. In an
arena where only questions can enable, being rigid implies that once an answer
is given, no more questions can be asked. In other words, each view of a rigid
strategy contains either no answers at all, exactly one Player answer (its final
occurrence) or one Opponent and one Player answer (the last two occurrences).

As for the bracketing condition, a simple reworking (see [1]) of the argument
for P-visibility establishes that we have a subcategory of rigid strategies. The
grammar below picks out that fragment of CBT, called RBT, that corresponds
to this subcategory—those terms of CBT with no “cascaded” cases:

F ::= λ~xµα(E)

E ::= C | if (x)~F C else C

C ::= Ω | [α]t | [α]ff

We type continuations C and executables E in the same way as executables in
CBT.

RBT

Γ ; ∆ ` Ω Γ ; ∆, α : bool ` [α]t Γ ; ∆, α : bool ` [α]ff

Γ ; ∆ ` F1 : T1 · · · Γ ; ∆ ` Fn : Tn Γ ; ∆ ` C0 Γ ; ∆ ` C1

Γ, x : T1 → · · · → Tn → bool ; ∆ ` (if (x)~F C0 else C1)

Γ, x1 : T1 . . . xn : Tn ; ∆, α : bool ` E

Γ ; ∆ ` λ~xµα(E) : T1 → · · · → Tn → bool

Theorem 5.1.3 Every compact, rigid innocent strategy σ on an arena A in-
terpreting a simple type (over bool) is definable in RBT.

42

Unlike the bracketing condition which, as we’ve seen, restricts the behaviour
of args(σ), rigidity constrains cnts(σ): when an answer is received, rigidity
prevents σ from posing a new question—so the continuation C either diverges
or immediately plays an answer.

5.1.4 The bracketing–rigidity diamond

We’ve now seen, in isolation, how bracketing and rigidity restrict the definitional
power of innocent strategies. We can organize these results into the diamond
(where B = bracketed, R = rigid, I = all innocent) of subcategories induced by
imposing all combinations of B and R:

I

R

77pppppppp
B

ggNNNNNNNN

B ∧R

77ppppppp

ggNNNNNNN

So the category B corresponds to the IBT language, R to the RBT language
and I evidently to CBT. The base of the diamond corresponds to another Böhm
tree language with a particularly simple interpretation: computation consists
of asking a sequence of questions and then answering them in reverse order,
i.e. RBT without the possibility of skipping questions. More generally, this
category harbours a fully abstract model of the simply typed λ-calculus (over
some collection of base types) extended with constants for values of base type
and primitive unary functions between base types.

This classification of innocent strategies as a diamond allows us to judge the
“nature” of strategy by examining in which of the four categories it lives. For
example, if a strategy lives in B but not in R, all its plays are well-bracketed
but it must contain non-rigid plays. So, if a strategy lives only in I, we deduce
that it contains (at least) one play violating bracketing and another violating
rigidity. However, this does not necessarily mean that, during interaction with
another strategy, both bracketing and rigidity will be violated. Indeed, since one
constraint applies only to answers and the other only to questions, we cannot
simultaneously violate both. Nonetheless, it can happen that, for some s ∈ σ,
we have prefixes sr v s and sb v s where sr (resp. sb) violates rigidity (resp.
bracketing). In such circumstances, we have few qualms about placing σ in
I. On the other hand, we could easily construct a strategy τ which begins by
interrogating a Boolean argument and subsequently violates B iff that argument
evaluated to t and violates R iff it evaluated to ff. Clearly τ never violates B
and R in the course of a single interaction with its context, yet τ only lives in
category I since it obviously violates the entry requirements for B and R.

In summary, the diamond of categories can help us to better understand some,
but not all, aspects of the behaviour of innocent strategies: it can guarantee the
“good behaviour” of a strategy and can warn of possible “bad behaviour”. This
“map” of innocence could be usefully complemented by an analysis, as hinted
above, where we focus on the behaviour of a strategy in a given context, rather
than in all contexts.

43

References

[1] V. Danos and R. Harmer. The anatomy of innocence. In Proceedings, Tenth
Annual Conference of the European Association for Computer Science Logic.
Springer Verlag, 2001.

[2] H. Herbelin. Games and weak-head reduction for classical PCF. In
P. de Groote and J. R. Hindley, editors, Third International Conference on
Typed Lambda Calculi and Applications, TLCA ’97, Nancy, France, April
2-4, 1997, Proceedings, volume 1210 of Lecture Notes in Computer Science,
pages 214–230. Springer, 1997.

44

