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France

2 INRIA, Centre de recherche INRIA de Paris, 75012 Paris, France
3 CNRS, Université Paris Diderot, IRIF, 75013 Paris, France

4 Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342 Lyon Cedex 07, France

Abstract. Biological systems involve a wide amount of different molec-
ular interactions. Each interaction can in turn present a deep level of
mechanistic details. Most modelling methods can encompass only one of
those two dimensions, that is the width or depth of biological systems.
Rule-based modelling is a powerful method in that regard as it can model
large systems with mechanistically detailed interactions. The advantage
of including mechanistic details is that they allow a clear tracking of
causal chains of events between biomolecules. This translates into a pre-
cise pinpointing of upstream regulators and a better understanding of
complex biological systems.
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1 Introduction

Interaction networks [1] are one of the most popular objects of systems biology.
They allow the representation of a very large amount of molecular interactions
on a single graph. That is, interaction networks can encompass the width of
biological systems. However, many functional relationships between biomolecules
are more complicated than what can be represented in simple graphs [2]. Such
networks can hence not depict in detail the depth of molecular interactions.

A consequence of this lack of detail is that wrong interpretations can oc-
cur when analyzing interaction networks. For example, consider the analysis of
upstream regulators of a chosen molecule. In intricate graphs like signalling net-
works, it is not uncommon to have every output downstream of every input [3].
In these conditions, ignoring mechanistic and quantitative details usually leads
to the perplexing result that the chosen molecule is regulated by all the other
molecules in the network with indistinguishable intensities.

To include more details in the description of molecular interactions, reaction-
based models like Petri nets [4] can be used. Such methods properly address the
depth of molecular interaction mechanisms. However, this comes at the cost of
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a combinatorial explosion as the system to model grows. Very large models of
biological organisms can hence not be built in a reaction-based setting.

Most organisms of interest to systems biology are large in terms of number
and complexity of their constituent interactions. Methods are hence needed to
deal with both the width and depth of biological systems simultaneously. Rule-
based modelling [5, 6] can achieve such feat.

In this work, we present a large rule-based model example. Then, we show
how causality analysis can be used to extract pathways to observables of inter-
est. Unlike upstream analysis in interaction networks, those pathways leverage
mechanistic details to provide a real causal explanation of molecular events.

2 Rule-Based Model

Rules distinguish themselves from reactions by focusing only on the parts of
molecules that change during a transition, rather than fully defining the species
involved. It allows the representation of mechanistic details while avoiding the
vast majority of combinatorial issues. The Kappa [8] rule-based modelling lan-
guage was used in this work.

Fig. 1. Graph representation of the pYnet model built with Kami [7]. On the left is a
contact map of the model, which bears resemblance to interaction networks. The inset
on the right zooms in and highlights the structural details of selected proteins.

Fig. 1 shows a graph representation of a rule-based model which goes both
wide and deep in its description of a biological system. Dubbed the pYnet,
this model depicts tyrosine phosphorylation in human cell signalling. It contains
175 different proteins and about 1800 interactions taken from the literature
and databases. For each interaction, the precise protein residues and domains
involved are specified.
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3 Causality Analysis

Causality analysis can be used to extract the upstream events which cause any
observable of interest from a rule-based model, like the activation of a chosen
protein. Since this analysis takes mechanistic details into account, it provides a
clearer and more reliable picture that upstream analysis in interaction networks.

The first step of causality analysis is to extract stories to the observable of
interest. A story consists in a graph that represents all the necessary events that
lead to a single instance of the observable of interest during an execution of the
model. Stories are extracted using either operational research techniques [9] or
heuristic approaches [10].

1 SRC (sh2[.]) FYN (sh2[.])

2 SRC (act1{t}) FYN (act1{t})

3 BMX (Y566[1]),
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4 BMX (Y566{p}) BCR (Y177[.]{p})PTK2B (Y580{p})

5 BMX (act1{t})
BCR (Y177[1]),

FES (sh2[1])
PTK2B (act{t})

6 BMX (Y216{p}) FES (act{t})
SRC (Y419[1]),

PTK2B (tyr_kin[1])
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BCR (Y283[1]),
FES (tyr_kin[1])

BCR (Y246[1]),
FES (tyr_kin[1])
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ABL1 (sh2[1])

SRC (Y419[1]),
SRC (tyr_kin[1])
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ABL1 (sh2[1])

BCR (Y246[1]),
ABL1 (sh2[1])

BCR (Y279[1]),
ABL1 (sh2[1])

10 PTK2 (act{t}) ABL1 (act{t})

11 PXN (Y118[1]),
PTK2 (tyr_kin[1])

SRC (Y419[1]),
PTK2 (tyr_kin[1])

TP73 (Y99[1]),
ABL1 (tyr_kin[1])

EGFR (Y1197[1]),
ABL1 (tyr_kin[1])

PXN (Y118[1]),
ABL1 (tyr_kin[1])

BCR (Y177[1]),
ABL1 (tyr_kin[1])
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TP73 (Y99[1]),
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EGFR (Y1197[1]),
ABL1 (sh2[1])

Fig. 2. Example of a pathway obtained from causality analysis of the pYnet model.
Node labels contain protein names in bold. Sites modified at each step are written
following the Kappa syntax [8] in normal font. The width of edges represents their
quantitative contribution.

Then, all the stories to the observable of interest are folded into a single quo-
tient graph. Proper folding requires finding the correct trade-off in the amount of
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context to consider from story events [11]. Too much contextualization leads to
unnecessarily large pathways while too few looses information. The contextual-
ization and folding steps are carried by the Python package KappaPathways [12].
The resulting graph shares a lot of similarities with biological pathways.

Fig. 2 presents an example of a pathway obtained from causality analysis
on the pYnet model. It allows a clear understanding of the steps which lead to
the phosphorylation of tyrosine 118 from protein Paxillin (PXN). In comparison,
going upstream from the node representing PXN in an interaction network would
not have allowed a distinction between the structural features involved at each
backward step. It would hence have most likely resulted in a much larger graph.

4 Conclusion

Rule-based modelling allows the construction of wide and deep models of biolog-
ical systems. Causality analysis of those models provides detailed explanations
for the occurrence of molecular events. Combining rule-based modelling with
causality analysis could be the best method to truly understand complex bio-
logical systems.
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