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Many proteins are composed of structural and chemical features—“sites” for short—characterized
by definite interaction capabilities, such as noncovalent binding or covalent modification of other
proteins. This modularity allows for varying degrees of independence, as the behavior of a site
might be controlled by the state of some but not all sites of the ambient protein. Independence
quickly generates a startling combinatorial complexity that shapes most biological networks, such
as mammalian signaling systems, and effectively prevents their study in terms of kinetic
equations—unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to
the system’s behavior, eliminating it will prevent, not facilitate, understanding. A more adequate
representation of a combinatorial system is provided by a graph-based framework of rewrite rules
where each rule specifies only the information that an interaction mechanism depends on. Unlike
reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular
species. Although the stochastic dynamics induced by a collection of rules on a mixture of mol-
ecules can be simulated, it appears useful to capture the system’s average or deterministic behavior
by means of differential equations. However, expansion of the rules into kinetic equations at the
level of molecular species is not only impractical, but conceptually indefensible. If rules describe
bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of
dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by
the rules. We call these variables “fragments” and the process of identifying them “fragmentation.”
Ideally, fragments are aspects of the system’s microscopic population that the set of rules can
actually distinguish on average; in practice, it may only be feasible to identify an approximation to
this. Most importantly, fragments are self-consistent descriptors of system dynamics in that their
time-evolution is governed by a closed system of kinetic equations. Taken together, fragments are
endogenous distinctions that matter for the dynamics of a system, which warrants viewing them as
the carriers of information. Although fragments can be thought of as multisets of molecular species
�an extensional view�, their self-consistency suggests treating them as autonomous aspects cut off
from their microscopic realization �an intensional view�. Fragmentation is a seeded process that
depends on the choice of observables whose dynamics one insists to describe. Different observables
can cause distinct fragmentations, in effect altering the set of information carriers that govern the
behavior of a system, even though nothing has changed in its microscopic constitution. In this
contribution, we present a mathematical specification of fragments, but not an algorithmic imple-
mentation. We have described the latter elsewhere in rather technical terms that, although effective,
were lacking an embedding into a more general conceptual framework, which we here provide.
© 2010 American Institute of Physics. �doi:10.1063/1.3491100�

Central to the rise of modern chemistry was the defini-
tion of a formal language for expressing the modular ar-
chitecture of organic molecules and the rules of reaction
between their constituent atoms and functional groups.
In molecular biology, a similar modularity characterizes
many of the proteins participating in molecular interac-
tion networks that underlie cellular behavior. These pro-
teins can be viewed as consisting of “sites” that abstractly
represent specific capabilities of interaction, such as bind-
ing or modifying other proteins. Interactions between
sites occur, to varying extents, independently of other
sites, giving rise to a vast number of potential interactions
that cannot be tracked by standard chemical kinetics, as

the latter requires an explicit list of all possibilities. Yet,
such systems are compactly described in a rule-based for-
mat that keeps these vast possibilities implicit by only
mentioning those aspects of molecules that mechanisms
are known (or hypothesized) to care about. We show that
such a system of rules admits a corresponding determin-
istic dynamical system cast in terms of coarse-grained
variables. These new variables, which we call “frag-
ments,” are entirely determined by static analysis of the
rules. Fragments constitute the effective information car-
riers of a system in that they are those features that the
system of rules can collectively distinguish on average.
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I. INTRODUCTION

A. Rules: A linguistic turn

New instruments, new experimental methods, and a new
language were among the tools that removed the intellectual
obstruction checking the progress of chemistry in the 18th
century.1,2 This new language became necessary, not only to
remove ambiguities and anachronisms, but also to accommo-
date the increasing number of newly discovered elements
and their combinations. In reforming chemical language to
reflect more systematically the compositional nature of com-
pounds, Lavoisier3 was inspired by a powerful idea—due to
Étienne Bonnot, Abbé de Condillac—that “languages are
true analytical methods.” Here we sketch the transposition of
this idea to molecular biology and discuss a resultant change
in perspective on the dynamics of complex interaction net-
works.

During the process that transformed alchemy into chem-
istry, the naming of compounds evolved from proper nouns,
as in Fig. 1�a�, to systematic naming schemes �1b� and sym-
bolic expressions at different levels of granularity ��1c�–
�1g��. Chemical notation often emphasizes the compositional
structure of molecules, not only in terms of atoms but also
functional groups ��1d� and �1f��. These are sets of atoms
distinguished by characteristic reactions with other such
groups, reflecting modular mechanisms that produce chemi-
cal changes local to each group. For example, a reaction of
alanine, CH3CHNH2COOH, with methanol, CH3OH, may
affect only their carboxy and alcohol groups, respectively.
This is an instance of a general schema according to which
these groups interact in a specific manner regardless of the
wider molecular context. A schema is expressed by a rule
that makes explicit only that upon which the mechanism ac-
tually depends,

R −

O

�

C − OH + R� − OH → R −

O

�

C − OR� + H2O.

A single reaction schema compactly represents an infin-
ity of possible reactions, depending on how the placeholders
R and R� are instantiated. Although a chemical transforma-
tion is typically localized to reacting functional groups, the
behavior of the latter can be controlled by other groups
present in the same molecule. Thus, a bulky ligand of the

nitrogen in Fig. 1�f� might affect the velocity and repertoire
of reactions available to the COOH group. To account for
such dependencies, a reaction schema would have to be re-
fined into subschemata.

Many proteins contain modules with characteristic local
interaction capabilities, much like functional groups in or-
ganic chemistry. These generally consist of either structurally
autonomous domains that bind specific epitopes on other
proteins, or short peptide motifs that undergo covalent modi-
fications, such as phosphorylation and dephosphorylation.
We shall refer to these loci of action as sites. The modular
character of protein-protein interactions justifies a represen-
tation in terms of rules analogous to reaction schemata in
chemistry. Because proteins are typically large molecular ob-
jects, their basic identity is not altered by these �reversible�
interactions. Thus, rather than thinking of proteins as under-
going chemical transformations, biochemists think of them
as undergoing state changes at their sites.

A language for expressing rules of protein-protein inter-
action will therefore treat proteins formally like “atoms” and
protein complexes like “molecules.” As in organic chemistry,
a protein-protein interaction rule only specifies which
changes occur and the sites on which these changes depend;
nothing else is mentioned at all. However, unlike in chemis-
try, such a rule is not necessarily informed by any theory of
the mechanism being described: it is purely descriptive—
empirical or hypothetical in origin. Indeed, the formal nature
of rules gives us license to write whatever mechanisms we
please, irrespective of physical plausibility or even possibil-
ity. Rules need not talk about physical events, such as elec-
tronic rearrangements; instead, they operate at a higher level
of abstraction where formal “bonds” can be formed, or bro-
ken, without need for explicating what constitutes the bond
physically.

In this way, rules relieve us from the need for a com-
plete, microscopic understanding of what makes an interac-
tion between macromolecules possible. Instead, we can di-
rectly represent the observed consequences of incompletely
understood mechanisms, i.e., empirical knowledge, as rules
operating at this more formal level. Clearly, having theoret-
ical knowledge does not disbar us from using rules to repre-
sent it—we certainly could represent organic reaction sche-
mata with rules—but side-stepping its necessity greatly
expands the scope of what we can describe and even allows
us to mix theoretical mechanisms with purely empirical
knowledge.4,5 A rule is thus, at its most general, a formal
mechanistic hypothesis, perhaps at least partially grounded in
theoretical understanding—but forever subject to refinement
and revision in the light of new data or improved theoretical
explanation.

B. Dynamic consequences of combinatorial
complexity

This formal representation of molecules uncovers an un-
comfortable gap between the rules that express the chemistry
and the equations—deterministic or stochastic—used to ex-
press the chemical kinetics �i.e., the changes in the abun-
dance of molecular species resulting from their chemistry�.
While rules reference the structure of molecules, kinetic

FIG. 1. Chemical names of different granularity: �a� proper noun, �b� sys-
tematic name, �c� empirical �sum� formula, �d� structural formula, �e� con-
nectivity formula, �f� stereo formula, and �g� simplified molecular input line
entry system string, which expresses the same information as �f�.
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equations are stuck in the alchemical naming scheme of
proper nouns, as every possible molecular species must be
assigned a unique variable at the outset. Although names of
variables may be structured, this has no formal significance;
we can rename variables arbitrarily, as long as we do so
consistently.

Because rules describe mechanisms of a local nature,
they generally only weakly constrain the overall states of the
agents they apply to. As a consequence, they can elegantly
describe systems—such as those often found in molecular
biology6–8—with very large state spaces: if a rule only tests
one site out of ten, each of which has two possible binding
partners, it simply does not care which of the 39=19 683
possible states the agent is in, and even a small number of
such rules rapidly give rise to a system with astronomical
state space. The traditional extensional view of kinetics
therefore prevents us from studying the dynamic conse-
quences of this kind of combinatorial complexity, simply be-
cause we cannot even write down the system, let alone inte-
grate it numerically.

An intensional solution to this could be to forgo an ex-
plicit kinetic description and simulate the stochastic dynam-
ics induced by a set of rules on an initial mixture. This ap-
proach, while still in its early stages, permits significant
forays into the dynamics of combinatorially complex inter-
action networks.4,5,9,10 However, such direct simulation does
not provide any general insight for determining the critical
variables that shape the dynamics. In identifying these vari-
ables of a complex system, we are presumably seeking in a
principled way its “carriers of information”—a set of vari-
ables that constitutes the effective units of dynamics; some-
thing that a given set of rules collectively observes. If the
idea of a rule-based representation of interactions is
warranted—as argued in this section—and given that the
whole point of a rule is to ignore everything known �or hy-
pothesized� to be irrelevant to the mechanism it describes, it
stands to reason that most molecular species �the objects on
which reactions are defined� are not meaningful units of dy-
namics: some species are indistinguishable simply because
the system of rules is not capable of telling them apart. This
raises the question whether it is possible to formally derive a
sound system of units and their kinetic equations directly
from the set of rules.

We should stress that such a coarse-graining is deter-
mined entirely from the rule set and, although it generally
results in a much-reduced set of variables, it should be dis-
tinguished from a practice of model simplification that con-
sists in aggregating molecular species from the outset, i.e., in
the very description of the model. Such an approach risks
missing crucial insight by simply not incorporating sufficient
complexity in our description: we cannot simplify in a prin-
cipled manner if we have not represented the system in full
complexity in the first place. There do exist formal and nu-
meric model reduction techniques7,11,12 that exploit, for ex-
ample, separation of time scales and conservation con-
straints. However, these techniques are near powerless when
it comes to combinatorially complex systems, since they re-
quire the explicit �and thus unattainable� system of kinetic
equations as input. Feasibility aside, our goal fundamentally

differs from these techniques by seeking units of dynamics
that are grounded in mechanism. �In fact, once such a system
of units has been identified, classical reduction techniques
might actually become feasible.�

In a situation where mechanisms are highly local and
molecular species so numerous, an intrinsic coarse-graining
of the state space with respect to the actual observational
capabilities of the rules is therefore not only a pragmatic
boon but a conceptual necessity: the information in a state
space of astronomical size must surely be elsewhere than in
the microscopic states.

C. Structure of the paper

In this paper, we investigate the requirements for such a
coarse-graining to be valid. While certain aspects of this dis-
cussion are generic, we focus primarily on the coarse-
graining of the deterministic semantics of rules, i.e., on av-
erage time-evolution. We introduce the concepts of
“fragment”—a partially specified molecular species—and
“fragmentation”—the process of identifying a self-consistent
set of fragments for coarse-grained dynamics, meaning that
the �average� time-evolution of a fragment depends only on
other fragments. We also discuss the interpretation of �sets
of� fragments as the information carriers of dynamical sys-
tems in the sense that they expose, even for highly combina-
torial networks where extensional intuition and technique
breaks down, what their dynamics is about.

II. RULE-BASED SYSTEMS: THE BASICS

Two sustained efforts at a rule-based framework for mo-
lecular biology have taken shape independently over the past
few years, resulting in comparable languages. The biological
network generator language �BNGL� originated among com-
putational biologists,4,6,13,14 while Kappa �or �-language�
hatched from computer scientists.5,9,15,16 The convergence of
these efforts onto the same level of abstraction and a similar
syntax is reassuring. In this section, we review the math-
ematical framework of Kappa, including a fully detailed ac-
count of how one passes from rules to structureless reactions,
which is the reference level for conventional representations
of chemical kinetics. In Sec. II C we briefly discuss differ-
ences between Kappa and BNGL with a view on how they
impact fragmentation.

In Kappa, the notion of “agent” refers to a basic unit
�e.g., a protein� that can be combined into well-formed com-
plexes according to a grammar. Such a grammar will be rela-
tively unconstrained, since proteins do not possess “va-
lences” determined by fundamental laws. The interaction
capabilities of protein-agents are described by hypothetical
or empirically grounded rules. Such a level of abstraction
emphasizes process rather than structural detail, although the
latter deeply informs the former.

A. Site graphs

The basic components of rules are graphs �Fig. 2�, more
precisely site graphs, as defined by the following data:
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�1� a finite set V of nodes �or agents�;
�2� a function � :V→A assigning a name to each node;
�3� a function � :V→P�S� assigning a set of sites to each

node, where P� · � denotes the power set;
�4� a symmetric relation � on �v�V��v� saying which sites

are connected by edges.

Site graphs fall into two major classes: contact maps and
patterns �Fig. 2�.

A contact map is characterized by every node having a
different name, i.e., the function � is injective. A pattern is
characterized by their being at most one edge emanating
from every site, i.e., the relation � is an irreflexive partial
pairing. A contact map is a summary statement that specifies
which agents are allowed to bind each other via which sites.
In a contact map, it is therefore perfectly legitimate for one
site to have edges to many others, including itself; this means
that multiple possible bindings may compete for that site. A
pattern is intended to represent a realizable site graph. It can
have multiple nodes with the same name, representing dif-
ferent individuals of the same kind, but each site can sustain
at most one bond at a time.

We use contact maps to classify patterns: a pattern P is
said to respect a contact map C if there exists a function
f :VP→VC, from the nodes of P to those of C, satisfying

�1� for all v�VP, the name of v is the same as that of f�v�
and the sites displayed by v are a subset of those dis-
played by f�v�;

�2� if there is an edge from v1 to v2 in P, there must be an
edge from f�v1� to f�v2� in C.

Such a function is a typical homomorphism of site graphs,
analogous to the familiar concept of graph homomorphism.
Note that distinct nodes of P that share the same name need

not display the same sites; but they must all display a subset
of the sites displayed by the corresponding node of C. Also,
many nodes of P may map to the same node of C, i.e., the
function f is not generally injective; if f is injective, we say
that it is a monomorphism. If every node of P displays ex-
actly the same sites as its counterpart in C, we say that P is
a mixture. A connected component of a mixture is known as
a complex species or just a complex.

B. Rules

A rule specifies the modification of a site graph by the
addition/removal of nodes and edges. This is represented by
two site graphs—the “before” �left-hand side �LHS�� and the
“after” �right-hand side �RHS��—together with sufficient in-
formation to identify which nodes have persistent identity,
i.e., are neither added nor removed by the rewriting—
although they may gain or lose edges from their sites. �For
the sake of simplicity, we do not consider internal states of
sites in this paper, but the framework presented here gener-
alizes straightforwardly to deal with that. Moreover, we as-
sume that only complexes can be added or removed; this
avoids the technical complication of side effects where re-
moval of a node causes all its incident edges to be removed
too.� The sum total of modifications effected by the rule is
called its action.

This idea is rigorously defined by a span of monomor-
phisms, i.e., two monomorphisms f1 :G→Gl and f2 :G→Gr,
where the left target Gl is the rule’s LHS pattern, the right
target Gr is the modified pattern, and the source G is the
subgraph of Gl that remains invariant under the rewrite, Fig.
3. We need injectivity to ensure that persistent nodes are
unambiguously located in both Gl and Gr.

Given a rule with LHS pattern P, how do we know
where to apply it in a mixture M? It is not enough to take a
monomorphism from P to M as a possible location as there
may be additional edges in M that invalidate the pattern P.

CCB
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A
s

d

B
s

Ad A
s

s

C P

A(d1,1, s2,3), B(s2), C(s3) A(d1, s0), A(d1), B(s0), A(s2), C(s2)

FIG. 2. �Color� Site graphs. A contact map C �left� is a site graph that
exhibits all agent types, their full complement of sites, and possible binding
interactions, as determined by a set of rules. A pattern P �right� is a site
graph where each site engages in at most one bond. These graphs can also
be expressed using an equivalent textual notation. The simple grammar de-
fining such graphs forms a language known as Kappa �Refs. 5 and 15�. Each
agent �node� is represented by its name followed, in parentheses, by an
unordered list of sites exposed by the agent. Agents are separated by com-
mas to indicate that they can be shuffled without altering the underlying
graph. Bonds are identified by a superscript at their end points. The label,
usually a number, is arbitrary and appears exactly twice. In a pattern, like P,
each site can have at most one superscript, as it can participate in at most
one bond; in a contact map, like C, a site may have more than one super-
script, because it may be the end point of several possible bonds. A self-loop
on a site, such as d of A in C, indicates that two agents of the same type can
bind one another on the same site. A contact map is meant to summarize the
binding possibilities specified by a set of rules, while a pattern is meant to
define a realization of these possibilities.
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FIG. 3. �Color� Actions as spans. A rule rewrites the pattern Gl on the left
into the pattern Gr on the right. Since agents can be created and destroyed,
additional information relating agents in Gl to agents in Gr must be provided
to unambiguously determine the action of a rule. This information is given
by the �maximal� subgraph G defined to remain invariant across the rule,
along with two maps, f1 and f2, mapping each agent in G to a unique agent
in Gr and Gl, respectively. In the case shown, the rule destroys the first agent
B in Gl and shifts the bond. Without the span G, f1, and f2, the action of the
rule might conceivably consist of destroying all agents on the left and then
recreating them on the right. We omit G whenever the intended action of the
rule is obvious.

037108-4 Harmer et al. Chaos 20, 037108 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



Instead, we require a stricter notion of embedding—
analogous to the concept of induced subgraph—which is a
monomorphism where the free sites of every node of P re-
main free in M �Fig. 4�. The set of embeddings from G1 to
G2 is written �G1 ;G2�.

A rule application is thus determined by a choice of em-
bedding of its LHS pattern into the mixture. The result of a
rule application is to rewrite, according to the action of the
rule, that part of the mixture targeted by the embedding
�Fig. 5�.

An embedding from a site graph G to itself is called an
automorphism or just a symmetry of G; we often write
Aut�G� for �G ;G�. If G has n connected components Gi, the
total number of symmetries �Aut�G�� decomposes into the
product of the individual or intra-symmetries of each Gi with
the number

inter�G� ª �Aut�G��	

i=1

n

�Aut�Gi��

of inter-symmetries between the Gis.
The above formalizes the action of a rule and how it can

be applied to a mixture. This purely qualitative information
must be complemented by a non-negative real number, the
rate constant of the rule. By convention, we use micro-
scopic, i.e., “per collision,” rate constants and, as such, the
choice of rate constants depends on the desired volume of
reaction vessel.

C. Kappa and BNGL

The language we just defined bears substantive similari-
ties with BNGL, a well-developed independent approach that
aims at supporting the specification and execution of biologi-
cal models.4,6,13,14 Yet, BNGL and Kappa exhibit subtle dif-
ferences, reflective of their distinct origins. Kappa was con-
ceived by computer scientists as a minimalist framework
conducive to developing both models and theory.

There are two principal technical differences between
Kappa and BNGL. First, within an agent, BNGL allows for
identically named sites whereas Kappa insists that sites must
be unique �Sec. II A, item 3�. Second, BNGL uses two syn-
tactic operators, + �plus� and · �dot�, to combine site graphs,
whereas Kappa uses the �,� �comma� only. These may seem
like superficial differences but they have consequences
which we now discuss briefly.

1. Identical sites
BNGL allows agents with multisets of sites for the pur-

pose of representing symmetric proteins that contain multiple
copies of the same domain. There appear to be few instances
of monomeric proteins of this type. In BNGL, such a protein
with two copies of a domain would be expressed as C�c ,c�,
whereas a Kappa representation would require two bound
agents, C�c ,x1� ,C�c ,x1�, with no dissociation rule. Three or
more identical sites can be encoded by an unbreakable ring
of identical agents, giving rise to an “effective” agent with an
apparent multiset of sites. Alternatively, one can use the
meta-language for Kappa,17 which allows the expression of
generic rules that apply uniformly to multiple sites �dis-
tinctly named� of the same agent once automatically trans-
lated into Kappa.

The use of multisets necessitates a more complex treat-
ment of homomorphisms �and embeddings� since they must
specify not only how nodes are mapped across the homomor-
phism, but also how sites are mapped. This complicates the
detection of embeddings since, in general, backtracking will
be necessary in order to check all possible ways of embed-
ding one site graph into another; in contrast, no backtracking
is required for Kappa site graphs. It also affects the notion of
symmetry in that a single node can have nontrivial automor-
phisms. In Kappa, only complexes can have nontrivial auto-
morphisms.

A
s

d

B
s

Ad
s

B
s

A d Ad A d

P1 P2

M

FIG. 4. �Color� Embeddings of graphs. An embedding from P into M must
preserve not only agent types but also the state of each site in P. For
example, P1 has two embeddings into M, depending on whether the first
agent A of P1 is mapped to the first or second agent A in M. In contrast, P2

does not embed into M, since site d of A is unbound in P2, whereas it is
bound in either agent A of M.
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A s Bs A s Bs
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d

B

s
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s
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s
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LHS

FIG. 5. �Color� Rule application. The action of a rule �top� induces a cor-
responding change in the mixture �bottom�. The location at which the rule
applies in M is determined by the choice of an embedding of the rule’s LHS
in M. In the case shown, the LHS can embed in two distinct ways. The total
number of embeddings in �a typically much larger� mixture M is one factor
in the rate �probability� with which the rule fires. A further factor is the rate
constant associated with each rule, usually declared following an @-sign.
Finally, symmetries in the LHS give rise to combinatorial factors, as ex-
plained in Sec. II D.
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2. Agent composition operators
The �,� �comma� operator of Kappa gives rise to a syntax

where an expression denotes a specific site graph. In a given
mixture, that site graph �which need not mention all possible
sites of each agent� may embed in many different ways into
many different complex species �which are site graphs too�.
In particular, a disconnected site graph may embed into a
connected site graph. This may happen because Kappa’s ba-
sic syntax has no way of expressing the “relative locations”
of agents. A binding rule, such as A�x� ,B�y�
→A�x1� ,B�y1�, may instantiate as a unimolecular reaction �a
ring closure� or a bimolecular reaction. BNGL makes use of
the + and · operators to intrinsically express whether or not a
disconnected site graph may embed, or not, a connected site
graph: the + operator prevents this, the · insists upon it, with-
out requiring a specification of the connection. The distinc-
tion is important from a kinetic viewpoint, since bimolecular,
unlike unimolecular, rate constants have an inverse volume
dependence. While the BNGL operators express nonlocal
constraints directly at the level of rules, Kappa-rules can be
annotated to enforce restricted types of embeddings by the
simulation engine. For example, a Kappa-rule can be anno-
tated with two rate constants and the simulation engine9 ex-
ecutes mono- and bimolecular reaction instances with the
proper stochastic chemical kinetics. BNGL’s mixing of local
and nonlocal information in the same rule expression has a
subtle consequence: the syntactic expressions of BNGL do
not denote individual site graphs: the expression A+B de-
notes the two site graphs, A and B, together with some in-
formation on what a valid embedding of them must satisfy;
the same is true of A ·B. In effect, the + and · operators are
syntactic patterns that only make sense in the context of a
mixture; moreover, they may mean different things in differ-
ent mixtures.

Since the present contribution is aimed at facilitating ac-
cess to the broader shape of our ideas, we shall restrict our-
selves to situations in which Kappa expressions have no am-
biguity with respect to molecularity, that is, disconnected
components of a site graph embed into disconnected compo-
nents of the host site graph. This is ensured by a restriction to
acyclic contact maps. An acyclic contact map is a site graph
in which no cyclical path exists that touches the sites it con-
tains only once. Thus, the object C in Fig. 2 is acyclic, the
loop notwithstanding, as site d of A is touched twice. If
agents B and C had another bond between them, e.g.,
A�d1,1 ,s2,3� ,B�s2 ,p4� ,C�s3 ,p4�, the contact map would still
be acyclic because the cyclical path through agents A, B, and
C touches site s of agent A twice. If, in addition, agents B
and C were to bind A at distinct sites, e.g.,
A�d1,1 ,s2 ,q3� ,B�s2 ,p4� ,C�s3 ,p4�, the contact map would
be cyclic. An acyclic contact map admits no rings as realiz-
able patterns �Sec. II A�.

General contact maps and proofs are the subject of a
forthcoming paper. We should note, however, that our cur-
rent implementation of fragmentation,18,19 summarized as the
annotated contact map strategy in Sec. V C, is not restricted
to acyclic contact maps.

D. Reaction rules and reactions

We have seen that a rule is characterized by its LHS
pattern and the rewrite action it performs. In the context of a
fixed contact map, a rule may therefore apply to many �com-
binations of� complex species; this follows from the very fact
that a pattern need not specify all sites of an agent. A rule
whose LHS pattern is actually a mixture is called a reaction
rule �or ground rule� as it consumes and produces only com-
plex species.

It is always possible to expand a rule to its underlying
multiset of reaction rules that enumerates all possible �com-
binations of� complex species to which the rule can
apply.13,14 A rule set therefore induces a multiset of reaction
rules which, in general, may be infinite although, in this pa-
per, we restrict ourselves to the case where this remains finite
�acyclic contact maps�. The reaction rules are then easily
translated into a system of structureless reactions and then to
the corresponding system of ordinary differential equations
�ODEs� describing the deterministic kinetics of each species.
This expansion is the most fine-grained description compat-
ible with a given set of rules and a contact map. Although
such an expansion4 is precisely what we would like to avoid,
its explication introduces the ground-level object with whose
behavior our system of new variables has to “commute” in
order to qualify as sound. Some of the concepts we shall
encounter in the process will be useful later on and foster a
sharper appreciation of what rules are.

The expansion of a rule proceeds by identifying, for each
connected component of the LHS pattern, the set of complex
species that it matches. Each reaction rule is then determined
by a choice of one complex species per connected compo-
nent. To identify a complex species matching a connected
component c, we grow c in all ways compatible with the
contact map, until it only contains nodes that display all their
possible sites.

In the following example, refer to Fig. 6 to get a sense
for the translation between graphical and textual expressions
�labeled by roman numerals�, so we can liberally use the
latter thereafter. Given the contact map C from Fig. 2, if we
start with the pattern

A s Bs A s Bs
d

A s Bs
d

A
d

A s Bs
d

A
d

s

A s Bs
d

A
d

s Bs C

A s Bs
d

A
d

s s

I II III

IV V VI

FIG. 6. �Color� Graphical Kappa expressions. A graphical presentation of
the Kappa expressions mentioned in the refinement example.
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I A�s1�,B�s1� ,

we must add to A its second site d. This site is either free or
bound to a second A,

II A�s1,d�,B�s1� ✓

III A�s1,d2�,B�s1�,A�d2� .

The first of these is already a valid complex species �flagged
by a checkmark�. The second still lacks the site s of the
second A; so its expansion must continue, yielding

IV A�s1,d2�,B�s1�,A�d2,s� ✓

V A�s1,d2�,B�s1�,A�d2,s3�,B�s3� ✓

VI A�s1,d2�,B�s1�,A�d2,s3�,C�s3� ✓

All nodes now display all sites so the expansion of
A�s1� ,B�s1� concludes here with a total of four complex
species.

The dissociation rule

A�s0�,B�s0� → A�s�,B�s� �1�

thus expands to four reaction rules. This is called a refine-
ment of the original rule, because each reaction rule is a more
specific instantiation of the rule. The activity of a rule, with
LHS pattern P and rate constant k, in the mixture M is de-
termined by mass action,

��P;M�� · k/�Aut�P�� .

The division by automorphisms in the definition of activity is
justified by the fact that a rule is a mechanistic hypothesis: if
we postulate a symmetric binding mechanism, this means it
cannot distinguish between two complexes that match it,
even if those complexes are actually different when taking
into account the wider context that the mechanism ignores;
similarly, if a postulated unbinding is symmetric, it has no
way of telling if it is actually being applied to an asymmetric
complex. Conversely, if we postulate an asymmetric binding
mechanism, it can distinguish even between identical com-
plexes that match it; and if a postulated unbinding is asym-
metric, its application to a symmetric complex completely
ignores that symmetry.

The refinement of a rule must be neutral, meaning that
the overall behavior of the family of reaction rules must be
dynamically indistinguishable from that of the original rule.
A refinement is neutral if, in any mixture, the activity of the
rule is the same as the sum of the activities of the cases that
constitute the refinement. This requires a little care, because
the neutral refinement of a rule to its reaction rules must
correct the rate constants for cases where a reaction rule has
lost or gained symmetry with respect to the original rule. In
our example, the LHS P of rule �1� has no nontrivial auto-
morphisms; however, one of the four reaction rules does
have one and thus would find its contribution to the total
refinement activity to be penalized by a factor of 2. To obtain
a neutral refinement, we must correct for this by multiplying
its rate constant by two,

A�s1,d�,B�s1� → A�s,d�,B�s� @ k ,

A�s1,d2�,B�s1�,A�d2,s�

→ A�s,d2�,B�s�,A�d2,s� @ k ,

A�s1,d2�,B�s1�,A�d2,s3�,B�s3�

→ A�s,d2�,B�s�,A�d2,s3�,B�s3� @ 2k ,

A�s1,d2�,B�s1�,A�d2,s3�,C�s3�

→ A�s,d2�,B�s�,A�d2,s3�,C�s3� @ k .

In general, if the original rule has LHS pattern P and rate
constant k, the induced reaction rule with LHS M has rate
constant

kM ª k · �Aut�M��/�Aut�P�� .

We can further convert the reaction rule to a traditional re-
action in which complex species are replaced by unique
proper nouns. These names are formally structureless; they
refer to what we call plain species or simply species.
�Throughout this paper we use combinations of slanted lower
case letters to name species and upright typewriter font for
expressions that formally represent the internal structure of
objects.� Although we might name species cleverly to encode
a reference to the object they name, that information is non-
existent to the mechanism itself. As a consequence, the pas-
sage from complex to plain species eliminates all intra-
symmetries and so necessitates further surgery on rate
constants.

Continuing the above derivation, if M consists of n con-
nected components Ci, its structureless version has rate con-
stant

ks ª kM	

i

�Aut�Ci�� .

In our example, the gain of symmetry of the third reaction
rule is due to an intra-symmetry; so the passage to structure-
less reactions cancels out the need to amplify its rate con-
stant,

ab → a + b @ k ,

aba → aa + b @ k ,

abab → aba + b @ k ,

abac → aca + b @ k .

It is now straightforward to write down the system of ODEs
by gathering together, for each species, all the terms that
consume and produce it. We refer to the fully expanded sys-
tem of reaction rules �or reactions� and their corresponding
complexes �or species� as the ground system.

III. THE PERFECT WORLD

In this section, we illustrate and discuss the idea of frag-
mentation with a simple example of the kind studied in mul-
tivalent ligand/receptor interactions.20 We assume a central
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“hub” agent H with n sites s1 , . . . ,sn and n distinct types of
“spoke” agents S1 , . . . ,Sn, each with a single site h. We have
n straightforward reversible rules,

ri,ri
�:H�si�,Si�h� � H�si

0�,Si�h0� @ ki
+,ki

−, �2�

where ri
� names the rule opposite �reverse� to ri; ki

+ and ki
− are

single-site association and dissociation rate constants, re-
spectively. These rules give rise to the contact map shown in
Fig. 7. An agent H can exist in any of 2n possible states, each
of its n sites being either bound or unbound. This system of
n reversible rules corresponds to a ground system of 2n+n
species—one for each possible state of H plus the n unbound
spokes Si�h�.

The salient aspect of Eq. �2� is that each of the rules
observes exactly one site of H and so there is no overlap in
what they depend on. We might say that the rules are inde-
pendent of each other, e.g., firing one of the binding rules has
no effect on the possibility �or not� of firing any of the oth-
ers; indeed, it only affects one of the unbinding rules—its
own reverse. This is a purely static notion of independence,
based on the mechanisms expounded by the rules.

Static independence must be kept distinct from the more
familiar notion of dynamic independence, which asserts the
absence of certain correlations during simulation, e.g., a
bivalent molecule might exhibit a correlation between its oc-
cupancy states, despite there being no apparent mechanistic
�i.e., static� dependency, because both of its ligands indepen-
dently require the molecule to adopt the same conformation
in order to bind.

In this simple situation, it is easy to see that each rule is
incapable of discriminating species that differ only on the
sites it does not observe. This suggests that the following 3n
patterns might be sufficient to fully capture the dynamics of
the system. These patterns are of an intensional nature; how-
ever, they can also be viewed extensionally as sets of species
that are indistinguishable from the vantage point of the rules,

Si�h�; H�si�; Si�h0�,H�si
0� .

Let us examine exactly what we mean by this, as it will help
clarify the conditions that must be met for it to be true in

general and inform our procedure for identifying suitable
sets of fragments for arbitrary rule sets where it is no longer
practical to do it “by hand.”

First of all, we must specify our semantics of
reference—the ground expansion of this rule set that gives
rise to n ·2n−1 reversible reactions acting on the 2n+n species
described above, each rule instantiating to 2n−1 reactions �all
with the same rate constant� as depicted for n=4 in Fig. 8. To
avoid unwieldy notation, we enumerate these reactions for
the case of n=2; the generalization to arbitrary n should be
evident,

s1 + h�
k1

−

k1
+

s1h, s1 + s2h�
k1

−

k1
+

s1s2h ,

s2 + h�
k2

−

k2
+

s2h, s2 + s1h�
k2

−

k2
+

s1s2h .

We have made the arbitrary choice to name the four species
as s1s2h for an H with both partners bound; s1h �respectively
s2h� for an H with just S1 �respectively S2� bound; and h for
an H with neither partner bound. In standard fashion, these
reactions give rise to the following system of ODEs; we use
square brackets to denote concentrations and � to denote
time-derivatives,

�s1�� = k1
−��s1h� + �s1s2h�� − k1

+�s1���h� + �s2h�� ,

�s2�� = k2
−��s2h� + �s1s2h�� − k2

+�s2���h� + �s1h�� ,

�h�� = k1
−�s1h� + k2

−�s2h� − �h��k1
+�s1� + k2

+�s2�� ,

�s1h�� = k1
+�s1��h� + k2

−�s1s2h� − �s1h��k1
− + k2

+�s2�� ,

�s2h�� = k1
−�s1s2h� + k2

+�s2��h� − �s2h��k1
+�s1� + k2

−� ,

�s1s2h�� = k1
+�s1��s2h� + k2

+�s2��s1h� − �s1s2h��k1
− + k2

−� .

The trajectories obtained by solving this system of equations
are our semantics of reference which must be perfectly pre-
served by the fragmentation process.

S1
h

H
s1 s2

si

sn

S2
h

Si
h

Sn
h

FIG. 7. �Color� The contact map of a hub-and-spoke system, Eq. �2�.

FIG. 8. �Color� The figure depicts the ground reaction network for species
that is implied by the rule system �2�, which has the contact map shown in
Fig. 7. For the sake of a less cluttered picture we omit the free ligand-agents
that participate in each reaction. Each of the n reversible rules in Eq. �2�
expands into 2n−1 reversible reactions with the same color.
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Next, we need to specify the result of fragmentation.
According to the above proposal, we have six fragments,
corresponding to a linear change of variables,

S1�h� ª s1,

H�s1� ª h + s2h ,

S1�h0�,H�s1
0� ª s1h + s1s2h ,

S2�h� ª s2,

H�s2� ª h + s1h

S2�h0�,H�s2
0� ª s2h + s1s2h .

We can think of each fragment as a multiset of species. In
this case, every species belongs to at least one fragment and
some species belong to several; moreover, no species appears
more than once in any given fragment although this is pos-
sible in general. The fragmentation has thus defined a cover-
ing, not a partition, of the set of species. In general, a frag-
mentation need only be a partial covering of the species, i.e.,
not every species need belong to a fragment.

Let us note that this is a very extensional view of frag-
ments in the sense that it defines them, as macroscopic spe-
cies, in terms of the microscopic species. Note that, in this
example, the fragments viewed as site graphs have no over-
lap and yet induce overlapping sets of �microscopic� species;
this betrays the extensionality of defining fragments in terms
of species, a point we will return to below.

We now return to the question of how this abstraction
can properly account for the dynamics of the original system
of ODEs. Each of the reactions of the ground expansion
causes an update in the numbers of species; for example,

s1 + h � s1h

consumes one s1 and one h and produces one s1h when ap-
plied from left-to-right; consumption and production are ex-
changed when it is applied right-to-left.

According to the extensional perspective on fragments,
the firing of this reaction potentially affects the number of
instances of every fragment that contains at least one of these
three species. As might be expected, S1�h� and H�s1� are
decremented �assuming a left-to-right firing� while
S1�h0� ,H�s1

0� is incremented. However, one of the other
fragments is also affected, specifically H�s2�. At first sight,
this is a little counterintuitive since the reaction being fired is
a ground instance of a rule that does not even mention s2.
But, on closer inspection, we see that this “blindness” of the
rule is precisely reflected in the fact that, while h is decre-
mented, this is cancelled out by the increment of s1h: in other
words, although the numbers of the specific species change
upon firing the reaction, the overall number of instances of
the fragment is unchanged.

So the firing of this reaction leads to an update in the
numbers of instances of each fragment. Those that gain in-
stances are said to be produced by the rule; conversely, those
that lose instances are consumed. The other fragments—such
as H�s2�—remain unchanged overall and although, as we

have seen, there may �or may not� have been a redistribution
of the relative abundance of their constituent species. From
the intensional point of view �where a fragment is considered
simply as a site graph�, it is obvious in this example that
H�s2� is completely unaffected by any firing of r1, cf. Eq.
�2�; guaranteeing this property in general is the principal
technical difficulty of fragmentation.

It is possible, but by no means necessary, that all reac-
tion instances of the rule lead to the same update on frag-
ments. If this is the case, as it is in this example, we say that
the rule induces an unambiguous update. This places a fun-
damental limit on how coarse-grained fragments can be. For
example, if we add s2h to H�s2�, the update becomes am-
biguous because only one of the two instances of r1 updates
s2h. Moreover, it places a limit on how fine-grained frag-
ments can be; we cannot remove s1h from H�s2� for the same
reason. This sits comfortably with the idea that fragments
express all, but only, that which rules collectively observe. If
all rules induce unambiguous update, we have a “perfect”
fragmentation in the sense that the fragments express exactly
�including stochasticity� what the rule set observes. A quick
inspection shows us that this is true for our present example.
However, we will see later more complex situations where it
fails.

We conclude this example with a few remarks about the
fragmented system of ODEs,

�S1�h��� = k1
−�S1�h1�,H�s1

1�� − k1
+�S1�h���H�s1�� ,

�S2�h��� = k2
−�S2�h1�,H�s2

1�� − k2
+�S2�h���H�s2�� ,

�H�s1��� = �S1�h���,

�H�s2��� = �S2�h���,

�S1�h1�,H�s1
1��� = − �S1�h���,

�S2�h1�,H�s2
1��� = − �S2�h���.

First of all, it is a self-consistent system in the sense that the
derivative of each fragment is expressed only in terms of
fragments. Unlike the property of unambiguous update dis-
cussed above, self-consistency is an absolute requirement of
any valid fragmentation; indeed, we will take this as the
abstract definition of what fragmentation is. This is important
because it allows us to definitively abstract away from spe-
cies and think purely in terms of fragments; without this,
fragmentation might be able to tell us something interesting
about at least some of the information carriers of a system,
but it would have no practical application to exact model
reduction as one would still need to maintain information
about species. More conceptually, a self-consistent set of
fragments is a purely intensional object that makes no refer-
ence to, and has no dependency on, microscopic species.

Second, we see here that fragmentation does in general
lead to model reduction: we replace 2n+n species with 3n
fragments which yields an actual reduction once n�2. Inter-
estingly, although the case where n=1 is essentially trivial—
the fragments are just the species—the case of n=2 that we
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have considered gives no reduction in the number of vari-
ables but does produce a nontrivial fragmentation which
identifies the system’s information carriers.

This leads to a final point: does fragmentation intrinsi-
cally prevent us from reconstructing the dynamics of indi-
vidual species out of those fragments? Even in our current
simple example, the change of variables that defines our
fragments has no inverse; so we cannot recover species from
fragments by inverting this fragmentation. However, the in-
dependence of the rules discussed previously suggests a non-
linear reconstruction of the trajectories of species: if we set
�H� ��ª �H�s1��+ �S1�h0� ,H�s1

0��= �H�s2��+ �S2�h0� ,H�s2
0��,

the fraction of Hs that are fully bound is

�s1s2h�/�H� �� ,

while the fraction of Hs with at least S1 bound is

�S1�h0�,H�s1
0��/�H� �� .

The fraction of H with at least S2 bound is defined similarly.
If the independence of the two binding rules is truly reflected
in the dynamics of the system, we would expect

�s1s2h� · �H� �� = �S1�h0�,H�s1
0�� · �S2�h0�,H�s2

0�� �3�

always to hold. In other words, the correlation measure

� ª �s1s2h� · �H� �� − �S1�h0�,H�s1
0�� · �S2�h0�,H�s2

0��

should be zero everywhere—and, indeed, this follows imme-
diately from the closed formula

�� = − � · �k1
+�S1�h�� + k2

+�S2�h�� + k1
− + k2

−�

for the derivative of �, provided that �=0 in the initial con-
ditions. Concretely, this means that we can reconstruct the
species s1s2h as we have a closed formula defined only in
terms of fragments. The other species can be similarly recov-
ered.

It should be noted, however, that the purpose of frag-
mentation is exact model reduction and/or the identification
of information carriers, not to abstract away from species
only then to reconstruct them. This is opportune because, as
we will see in Sec. IV, it is often impossible to exactly re-
construct certain species due to correlations coming, not
from the mechanisms hypothesized by the rule set, but from
dynamical dependencies that cannot be deduced statically
from the rules. If ��0 in the initial conditions, we can no
longer exactly reconstruct all species, but the fragment dy-
namics remains sound as it only abstracts away correlations
that the rules cannot observe. By dynamic independence, we
mean that, in a population of molecules undergoing reactions
conforming with a given set of rules, the occupancy of one
site of H tells us nothing about the likelihood that the other
site is occupied. That is to say, the joint occupancy probabil-
ity is induced by the marginals for each site. We will illus-
trate in Sec. IV that just because a rule set satisfies static
independence, it does not mean it satisfies dynamic indepen-
dence.

The converse is not true either: a rule set may exhibit
dynamic independence while being not at all statically inde-
pendent. As an extreme example, we could take the ground
expansion of our rule set into reaction rules �not structureless

reactions� so that every rule explicitly mentions the binding
state of every site of H. This means that the firing of a rule
now affects most of the other rules in the system; the system
is, in some sense, maximally statically dependent. However,
the shift from the original rule set to its underlying set of
reaction rules is dynamically transparent, a neutral refine-
ment: the two rule sets define exactly the same continuous-
time Markov chain. In particular, the correlation measure �
remains invariantly zero. This may seem mysterious but is
explained by noting that static �in�dependence is a property
of the mechanisms hypothesized by the rules, whereas dy-
namic independence is a property of the transition system
engendered by them. So the change from the original rule set
to the set of reaction rules amounts to a sea-change in the
binding mechanisms we are hypothesizing. It should be
noted that the system of reaction rules has many more rate
constants that can be chosen to access a far greater repertoire
of dynamic behaviors. Mimicking the original system is just
one possibility, which is realized by inheriting the rate con-
stants from the original rules, corrected �when necessary� by
appropriate symmetry factors �Sec. II D�.

IV. THE REAL WORLD

The simple example of the previous section had two
pleasing properties: �i� that rules unambiguously updated the
fragments and �ii� a correspondence between static and dy-
namic independence. In this section, we examine these two
properties in greater detail, in particular showing how even
small changes to the rule set can destroy them.

A. Dynamic correlation

In Sec. III, we showed that the independence of the bind-
ing rules, as hypothesized by their mechanisms, was indeed
reflected in the dynamics of the system: the correlation mea-
sure � was everywhere zero, implying no correlation be-
tween the occupancy of the sites si of H. However, as we
shall see, a small change to the rule set suffices to break this
invariant. Despite being initially 0, � transiently takes on
positive values, indicating a positive correlation between the
occupancy of H’s binding sites. When this is the case, frag-
mentation leads to an unrecoverable loss of information and
the species dynamics can no longer be reconstructed exactly.
Yet, in the following modification of the example discussed
in Sec. III, the system of fragments preserves both self-
consistency of the fragments and the unambiguous update
property and so the fragments, which remain unaffected by
the modification, retain their status as perfect information
carriers.

We modify the rule set ri, given in Eq. �2�, by adding the
rule

rH: → H�s1,s2� @ kH

for the dynamic creation of H-agents. Note that this is no
way compromising the static independence of r1 and r2;
however, the derivative of the correlation measure

� = �s1s2h� · �H� �� − �H�s1
1�,S1�h1�� · �H�s2

1�,S2�h1��

changes since
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�H� ��� = kH

instead of 0. This yields

�� = kH · �s1s2h� − � · �k1
+�S1�h�� + k2

+�S2�h�� + k1
− + k2

−� ,

which is not everywhere 0, even if �=0 at t=0. This means
that there is a positive correlation of the occupancy of sites
s1 and s2. In effect, knowing that a given H is bound on one
of its sites reveals information about how recently it was
created which, in turn, affects how likely it is to be bound on
its other site. This means that the nonlinear reconstruction of
�s1s2h�, Eq. �3�, is inexact; it underestimates the true value
although, in this example, the discrepancy tends to diminish
�the correlation tends to 0� as H swamps the system, diluting
out S1 and S2. Nonetheless, the dynamics of the fragment-
level ODEs are still exact. What has been lost is the corre-
spondence between static and dynamic independence—and
this happens precisely because the rules are unable to ob-
serve the dynamic correlation. A finer-grained choice of frag-
ments might recover the ability of reconstructing species ex-
actly. For this example, it would be necessary—as is always
possible—to use the underlying set of species as fragments.
However, unless the rule set was refined to reaction rules as
well, this choice would destroy the unambiguous update
property and is neither a scalable nor insightful strategy, as
discussed previously.

In summary, this example demonstrates how, even if two
mechanisms are hypothesized to be independent, they might
become dynamically correlated under some conditions.
Moreover, the potential for this cannot be determined stati-
cally from the rules �or indeed the reactions� defining a
system.

B. Degrees of observation

In between a rule set and its expansion to reaction rules
�Sec. II D�, there is in general an entire spectrum of interme-
diate “granularities” of �in�dependence where some but not
all rules depend on other rules. As one sweeps across this
spectrum, the fragmentation process produces quite different
results: a system of reaction rules can only have �complex�
species as its fragments, whereas rule sets with less static
dependency will generally produce smaller and fewer frag-
ments.

Let us illustrate this with a simple variant of our running
example. We consider the case of n=3, leaving r2 and r3

untouched, but replacing rule r1 by

r1a,r1a
� : H�s1,s2�,S1�h� � H�s1

0,s2�,S1�h0� ,

r1b,r1b
� : H�s1,s2

1�,S1�h�,S2�h1� � H�s1
0,s2

1�,S1�h0�,S2�h1� ,

with the forward and backward rate constants for r1a given
by k1a

+ ,k1a
− and for r1b by k1b

+ ,k1b
− . This change makes the

binding state of s2 visible to rule r1 with several important
consequences.

First of all, we have modified our hypothesis of the �un-
�binding mechanism of S1 to H. Previously, it was assumed
not to depend on whether or not S2 �or S3� were already
bound; with this change, only independence of S3 remains.
This means that the unchanged rule r2, for S2 �un�binding H,

now impacts upon r1a and r1b: binding an S2 deactivates r1a

and activates the previously inactive r1b. Clearly, if the rate
constants of r1a and r1b are chosen so as to furnish a neutral
refinement of r1 �Sec. II D�, this will have no effect on the
dynamics of the system; any other choice of rate constants
yields a system with a more complex dependency between
S1 and S2.

Second, the fact that r1a and r1b now observe site s2

means that the previous triple of fragments

H�s1�; S1�h�; H�s1
1�,S1�h1�

is no longer valid. This is because we have no way of know-
ing what proportion of, say, H�s1� is a target of r1a as op-
posed to r1b. Specifically, if we were to write an ODE for
H�s1�, it would be of the following form:

�H�s1��� = ¯ − k1a
+ · �H�s1,s2�� · �S1�h��

− k1b
+ · �H�s1,s2

1�,S2�h1�� · �S1�h�� .

But if we knew only �H�s1��, we could not solve this equa-
tion unless k1a

+ =k1b
+ , i.e., the case where r1a and r1b constitute

a neutral refinement of r1; this is a more subtle example of
dynamic independence despite static dependence. With any
other choice of rate constants, we need to additionally keep
track of the relative rates of r1a and r1b over time; this forces
us to refine our fragments to

H�s1,s2�; H�s1,s2
1�,S2�h1�; H�s1

1,s2�,S1�h1�

H�s1
1,s2

2�,S1�h1�,S2�h2�; S1�h�

that enumerate the joint binding state of s1 and s2. It should
be noted that this is somehow the dual of the problem of
ambiguous update: that is the situation where two reaction
instances of the same rule update a fragment differently;
whereas here, we have two different rules updating different
instances of a single �candidate� fragment. The former does
not invalidate the fragmentation, but the latter clearly invali-
dates the candidate fragment, H�s1�, and necessitates a finer-
grained fragmentation. Note, however, that the new fragmen-
tation is still coarser-grained than the set of species: the triple
of fragments

H�s3�;S3�h�; H�s3
1�,S3�h1�

is completely unaffected by the modification of r1. If r1 were
further modified to observe s3 as well as s2, this would result
in the fragments becoming the species.

Finally, we note a tension between r1a/b and r2 in that the
refined fragments demanded by r1a/b lead to ambiguous up-
date for r2: some instances of r2 update H�s1 ,s2� while oth-
ers update H�s1

1 ,s2� ,S1�h1�. This has arisen due to the asym-
metric conditions for S1 and S2 binding H: S1 depends on S2

but not vice versa. Clearly, refining r2 into the analogous r2a

and r2b would restore unambiguous update with respect to
the set of refined fragments. However, it is important to note
that the triple

H�s2�; S2�h�; H�s2
1�,S2�h1�

remains a perfectly valid set of fragments for the rule set
with r1a/b and r2 and, moreover, all the rules have unambigu-
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ous update with respect to them. This tells us something
interesting: these three fragments are information carriers
that self-consistently describe, not the full system but, a sub-
system thereof. This means that they define a module in the
sense that their behavior is isolated from the surrounding
context. While in this case, modularity arises rather obvi-
ously from the asymmetric dependency—and could have
been deduced by hand—fragmentation provides a general
way of identifying this kind of situation.

More generally, by identifying information carriers in a
�sub�system, fragmentation provides a measure of how com-
plicated the system hypothesized by the rules actually is. A
rule set inducing very few information carriers obviously
describes a simple system; perhaps more importantly, it also
implies that the system is rather inflexible. For example, the
rule set of Sec. III cannot accommodate any regulation of the
binding of H to its Si ligands; the refinement of r1 to r1a/b
increases the number and size of fragments, a sign that the
system has become more sophisticated. Indeed, this slight
change in the mechanism of S1’s binding to H allows the
system to regulate their association as a function of S2’s
presence—either positively or negatively, depending on the
choice of rate constants for r1a and r1b. On the other hand, a
system with very many information carriers may well be
hypothesizing an unrealistic degree of self-observation that
violates the local character of interactions between macro-
molecules. It seems that, for a system to be both realistic and
flexible, it needs to find an appropriate middle ground be-
tween too many and too few information carriers.

V. FRAGMENTATION

A. The nature of fragments

Let us review the preceding examples and summarize
what we have learned from them. We have seen that two
contrasting perspectives can be taken of fragments: the ex-
tensional, which defines and discusses fragments in terms of
microscopic species; and the intensional, which adopts a
more abstract point of view that, incidentally, has certain
pragmatic benefits in a world where there are typically an
astronomical, if not infinite, number of possible species.
There is an irrevocable tension between these two points of
view, as is well-illustrated by the decoupling, in general, of
static and dynamic independence that we saw in Sec. IV A:
aside from the problem of combinatorial complexity, the dis-
tinction between extensional and intensional remains fairly
anodyne until such time as one can no longer recover the
former from the latter. When this breaks down, we might feel
we are “losing something” by adopting the intensional per-
spective. We advocate here the contrary: since that which is
lost cannot be observed by the system, nothing important can
actually depend on it: far from losing anything, we are gain-
ing clarity by ignoring, in a principled manner, unnecessary
complexity engendered by the extensional viewpoint.

A related point concerns the property of unambiguous
update. Initially, we formulated this in extensional terms but
it is clearly a fundamentally intensional notion. Indeed, a

fragment enjoying unambiguous update with respect to the
ambient rule set is rather indifferent to its underlying set of
microscopic species: the actual dynamic make-up of the frag-
ment can be in continual flux due to the action of apparently
unrelated rules, but at the serene macroscopic level of the
fragment, none of this frenetic activity will ever be seen.
Only when a rule is fired that explicitly depends on the in-
formation represented by the fragment does this effect any
real change to the system; moreover, the resulting change is
entirely effected at the macroscopic level and requires no
microscopic knowledge.

However, we have also seen that this property is not
necessary for fragmentation; this is because it is a special
case of self-consistency and, as such, guarantees more than is
strictly necessary. Specifically, unambiguous update allows
for a coarse-graining of the stochastic semantics of the rule
set; it thus proposes information carriers for a world where
mechanisms themselves are stochastic. The �much� weaker
property of self-consistency only suffices to give a self-
consistent set of information carriers that “average out”
mechanistic stochasticity, in essence making the assumption
that—despite microscopic stochasticity—the system is inher-
ently trying to implement something deterministic. It is con-
ceivable that both kinds of information carrier are important
in signaling networks.

B. Self-consistency

As we have seen, the only truly non-negotiable aspect of
fragmentation is the requirement that it produces a self-
consistent set of patterns whose average concentrations can
be tracked by a system of ODEs. Moreover, fragmentation
must be sound: first converting species concentrations into
fragment concentrations at time t0 and subsequently letting
the �macroscopic� fragment dynamics evolve to a time t� t0

must get us exactly to the same place as first allowing the
�microscopic� species dynamics to evolve to time t and then
converting the species concentrations into fragment concen-
trations. In this section we sketch the construction of a self-
consistent set of patterns. The proof that this construction is
sound will appear in a forthcoming paper; but see
Sec. V C.

Conceptually, it is convenient to consider two stages: �i�
the writing of ODEs for any patterns—typically representing
observables we are interested in—in terms of species, and
�ii� an iterative process of pattern construction that starts
with the desired observables and saturates the set of patterns
with respect to the rules. The resulting set will be self-
contained, in the sense that no reference to any pattern out-
side that set is required for tracking the average time-
evolution of the initially posited observables.

The first stage consists in identifying, for any pattern F,
all the ways in which the application of a rule r can consume
or produce it. Let us discuss the slightly simpler case of
consumption. The example depicted in Fig. 9 shows two pat-
terns, F and P. Let P be the LHS of rule r; so an embedding
of P into M identifies a reaction instance of r. An embedding
of F into M identifies an occurrence of F in the mixture; this
may, or may not, overlap—in the mixture—with our reaction
instance. If it does, firing this instance of r will consume this
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instance of F. To know how the instantaneous activity of rule
r affects the instantaneous consumption rate of F, we there-
fore need to count all the pairs �p , f� of embeddings �of P
and F, respectively, into M� that overlap in this way. We will
do this using the concept of a gluing which, for a given F
and P, identifies the pattern G whose embeddings correspond
exactly to the �p , f� pairs of interest.

To construct the gluing of two patterns F and P, we need
to specify two pieces of information. First, we need an over-
lap region O �Fig. 9� on which the patterns agree and on the
basis of which we can combine them. This is specified by a
span F←O→P of embeddings that fix exactly how O fits
into F and P. Note that, for given F and P, there could be
many such spans. Second, we need a larger region G into
which F and P both embed. This is specified dually by a
cospan F→G←P. A potential gluing is then the choice of a
span and a cospan giving rise to a commuting square of
embeddings—as in Fig. 9. In order to correctly count our
�p , f� pairs, we cannot take just any such span and cospan;
the cospan must be appropriately minimal, otherwise G
might be overly restrictive—so its extension would not be as
large as possible—and we would end up undercounting the
consumed instances of F. We have a little more flexibility in
choosing the span although care must still be taken to avoid
overcounting; the easiest way to achieve this is to always use
the �unique� maximal span.

Let us now formalize consumption and production with
respect to a rule r, Fig. 10. Consumption of F �pattern F1 in
Fig. 10� happens if the gluing G of r’s LHS with F is modi-
fied by the action of r; this clearly destroys an instance of F
and, for a given mixture M, can happen in ��G ;M�� ways. We
call G a left-gluing of F and r. Conversely, production of F
�pattern F2, unrelated to F1, in Fig. 10� happens if the gluing
of r’s RHS with F is modified by the action of r. To know in
how many ways this can happen, we need to count not
��G ;M��, but ��G� ;M��, where G� is what G looked like be-
fore the rule was applied. We call G� a right-gluing of F and
r. In the simple example of Sec. IV B, this would lead us to
write for FªS1�h�,

�S1�h����M� = − k1a
+ · �H�s1,s2�,S1�h�;M�

− k1b
+ · �H�s1,s2

1�,S2�h1�,S1�h�;M�

+ k1a
− · �H�s1

1,s2�,S1�h1�;M�

+ k1b
− · �H�s1

1,s2
2�,S1�h1�,S2�h2�;M� .

Note, however, that in this differential equation the site
graphs must be understood as names of variables;
H�s1� ,S1�h� could equally well be renamed x. Moreover,
�H�s1� ,S1�h� ;−� must be understood as a function from site
graphs to real numbers; applying this function to M yields
precisely �H�s1� ,S1�h� ;M�, the instantaneous average con-
centration value taken on by the variable named
H�s1� ,S1�h�.

Let F be a set of patterns; we write �F ;−� for the vector
space spanned by the set of functions �F ;−� for all F�F.
We say that F is self-consistent with respect to the rule set R
if, for all F�F and all r�R, the functions �G ;−� and
�G� ;−� tracking the left-gluing and right-gluing, respectively,
of F and r are in �F ;−�.

In order to obtain a self-consistent set of patterns, it is
necessary to saturate a seed set F by left- and right-gluing
the elements F of F in all possible ways to the LHSs and
RHSs of the rules. In our example, if we seed with just
F1ªS1�h�, we obtain

F2 ª H�s1
1,s2�,S1�h1�

by right-gluing it with r1a
� and

S2 h Hs2 s1 S1h

H s1
s3

S3
h

H s1

S2 h Hs2 s1 S1h
s3

S3
h

O

GF

P

FIG. 9. �Color� Gluing. A gluing is a diagram asserting that two patterns, P
and F, can be joined into a pattern G on the basis of a region O they have in
common. See text for details.

S2 h Hs2 s1 S1h
s3

s4

S4
h

S3
h

S2 h Hs2 s1 S1h S2 h Hs2 s1 S1h

H s1
s3

S3
h

H s1

S2 h Hs2 s1 S1h
s3

S3
h

H s1 S1h
s4

S4
h

H s1 S1h

S2 h Hs2 s1 S1h
s4

S4
h

S2 h Hs2 s1 S1h
s3

s4

S4
h

S3
h

S2 h Hs2 s1 S1h
s4

S4
h

LHS RHS

F1 F2

M M ′

Ol Or

Gl Gr

G′
r

FIG. 10. �Color� Production and consumption of patterns by rules acting on
a mixture. The action of a rule LHS→RHS �black arrow at top� transforms
the mixture M into M� �stylized at the bottom�. The resultant instantaneous
rate of consumption of pattern F1 is determined by the number of embed-
dings in the mixture M of the gluing Gl �“left-gluing”�, as given by the
joining of F1 with the LHS of the rule �square diagram of red arrows on the
top left�—provided the shared region Ol is modified by the rule. Similar for
the production of a pattern F2 �top right square diagram; unrelated to F1�,
except that we must undo the action of the rule in the gluing Gr �“right-
gluing”�, resulting in pattern Gr� whose embeddings in M determine the rate
of production of F2. The mixture M �M�� highlights a particular molecular
configuration �among the greyed-out remainder of the mixture� that exem-
plifies an embedding instance for LHS, Gl and Gr�. Site and agent names
correspond to our simple running example, as depicted in Fig. 7.
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F3 ª H�s1
1,s2

2�,S1�h1�,S2�h2�

by right-gluing it with r1b
� ; we then get

F4 ª H�s1,s2�

by right-gluing F2 with r1a and finally

F5 ª H�s1,s2
1�,S2�h1�

by right-gluing F3 with r1b. No left- or right-gluing of these
five candidate fragments with r2 and r3 generates new can-
didates; so the saturation process terminates here.

By construction, this process always produces a self-
consistent set of patterns; in this particular case, they allow
us to track the average concentration of S1�h� over time,
exactly as described in Sec. IV B. We call the elements of
this set the fragments and note that any connected compo-
nent of a rule LHS that intersects a fragment must—if that
intersection is modified by the rule—be contained within the
fragment.

The result of the saturation process obviously depends
on its seed. It may also produce redundant fragments, ex-
pressible as a convex combination of others and so elim-
inable. For example, seeding our example with S1�h� and
S2�h� produces the four fragments above plus

S2�h�; S2�h1�,H�s2
1�; H�s2� .

The latter two can be eliminated by noting that

H�s2� ª H�s1,s2� + H�s1
1,s2�,S1�h1� ,

S2�h1�,H�s2
1� ª S2�h1�,H�s1,s2

1�

+ S2�h1�,H�s1
2,s2

1�,S1�h2� .

As mentioned in Sec. IV B, there is an asymmetric depen-
dency between S1’s association with H and S2’s: the refine-
ment of r1 to r1a/b is of no interest to S2. If we were to seed
saturation with only S2�h�, we would obtain—and be content
with—the simple triple of fragments. This optimization
could be performed automatically. However, we stress that
the fragmentation procedure presented here is a mathemati-
cal procedure, a specification. In particular, although satura-
tion always terminates for systems with acyclic contact map,
a naive implementation need not terminate for more general
systems. In Sec. V C, we describe an efficient, implemented
procedure that closely approximates this specification and,
moreover, does not depend on acyclicity.

C. Current art and the future

Our current implementation, as described in Refs. 18 and
19, does not calculate fragments exactly according to the
specification in Sec. V B; instead, it efficiently approximates
this ideal by applying a dependency analysis to the rule set
�Table I� which it then uses to produce an annotated contact
map �aCM�.

The annotations are of two kinds: sites are grouped into
covering classes with the requirement that every site belongs
to at least one class; and edges are either solid or dotted.
These annotations are derived by a static analysis of the rule
set reminiscent of dependency analyses for detecting unsafe

information flows, e.g., higher-security variables that depend
on lower-security variables, or the use of Bayesian networks
in statistical modeling. A fragment is then read off by picking
a starting node of the contact map, choosing a covering class
to specify which sites are to be displayed and picking, for
each of these sites, a binding state. When a bound state is
chosen, the procedure continues recursively if the chosen
bindee is connected via a solid edge of the aCM; it termi-
nates if the edge is dotted. The set of fragments is generated
by an exhaustive enumeration over all possible choices.

This construction of fragments via annotation of the con-
tact map generally leads to a highly efficient model reduc-
tion. However, it does have one significant drawback that is
being addressed in current work: fragments are sometimes
unnecessarily fine-grained. We consider the following rules
defined on the agents of Fig. 2:

A�d�,A�d� → A�d0�,A�d0� ,

A�d1,s�,A�d1�,B�s� → A�d1,s0�,A�d1�,B�s0� .

If we seed the generic fragmentation procedure with B �s�,
we obtain

A�d1,s�,A�d1�

by left-gluing it to the second rule; then

A�d,s�;A�d�

by right-gluing that to the first rule. Note the need for a
left-gluing to get the process started; this is because our seed
is only consumed in this oversimplified example, no rule
produces it. This defines a self-consistent set of fragments
that cannot be generated by any annotation of the contact
map: the second rule tests A’s site d and modifies s so they
must be in the same covering class—which forces fragments
to unnecessarily enumerate the binding state of site s on

TABLE I. Fragmentation of test models using an annotated contact map
�Refs. 18 and 19�. The models are rule-based representations of molecular
signaling pathways described in the literature. The columns list the number
of rules in the model, the number of distinct molecular �ground� species that
can be generated by the rules given the initial mixture, the number of frag-
ments resulting from our automated procedure, the time �in seconds� for
generating the full system of ODEs for the ground species �s-ODE�, and the
time for generating the full set of ODEs for the fragments �f-ODE�. �Half
the indicated time is spent on writing a LaTeX output and generating an
input file for numerical integration with OCTAVE or MATLAB.�

Model Rules Species Fragments
s-ODE

�s�
f-ODE

�s�

EGFa 39 356 38 2.85 0.13
INS1b 76 2899 208 27 0.72
INS2c 74 2899 88 27 0.28
SFBd 69 �2�1019 �2�105 Unfeasible 871

aModel of early events in the epidermal growth factor �EGF� path-
way �Ref. 21�.
bModel of cross-talk between insulin and EGF receptors �Ref. 22�.
cSame as INS1, but removing certain dependencies in unbinding
rules to study the effect on fragmentation �Ref. 18�.
dPilot study of a larger slice of the EGF pathway �Refs. 5, 21, 23,
and 24�.
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both sides of the A dimer,

A�d1,s2�,A�d1,s�,B�s2�;A�d1,s2�,A�d1,s3�,B�s2�,B�s3� .

In essence, aCM-based fragmentation forces us to make a
purely local choice when picking a covering class; so the two
occurrences of A are treated homogeneously whereas the
rules treat them heterogeneously. A refinement of the aCM-
based approach is currently being developed where nonlocal
context can be exploited in order to define a heterogeneous
growth procedure; this will better handle cases like the above
producing smaller and, in general, fewer fragments.

D. Soundness

Let us finally illustrate numerically the soundness19 of
our approach, meaning that first following the microscopic
dynamics and then aggregating molecular species as pre-
scribed by fragmentation will yield exactly the same out-
come as first coarse-graining and then following the coarse-
grained dynamics �as prescribed by fragmentation�. This is
shown in Fig. 11 for the simple example of Sec. V C, whose
fragmentation leads to a system of four ODEs,

�B�s��� = k2�B�s���A�d1,s�,A�d1�� ,

�A�d1,s�,A�d1��� = 2k1�A�d,s���A�d��

− k2�B�s���A�d1,s�,A�d1�� ,

�A�d,s��� = − 2k1�A�d,s���A�d�� ,

�A�d��� = − 2k1�A�d��2,

where �A�d ,s�� and �A�d�� are closely related: if they ever
become equal, they will forever after remain so. Note also
the combinatorial factor of 2 in the second equation; it arises
from there being two distinct ways of gluing A�d1 ,s� ,A�d1�

on the RHS of the first rule. The other factors of 2 come
about for similar reasons.

VI. EPILOGUE

The concept of “collective variables” is fundamental to
many areas of theoretical physics, such as superfluidity, fer-
romagnetism, and hydrodynamics to mention a few. These
variables are often associated with new collective properties
that a many-body system acquires as a result of a phase
transition. Some of these properties can be stable to the point
of being “universal,” i.e., independent of the details of the
material in which they occur. When collective variables fully
determine each other’s dynamics, a description has been
achieved that is independent of the underlying microscopic
definition of the system. This autonomy justifies phrases
such as “new level of description” or “emergence.” Under-
standing such emergence of organized behavior means clari-
fying the process by which new kinds of collective variables
spring from low-level dynamics.25

Fragments share with collective variables the property of
self-consistency—being a set of mutually sufficient higher-
level descriptors of system dynamics. Yet, they differ from
collective variables in that, starting from a set of rules rep-
resenting local mechanisms of interaction, we distill a self-
consistent set of fragments proceeding purely by static ex-
amination of the rule set; no observation of the dynamics is
involved. In contrast, collective variables are typically justi-
fied by virtue of dynamics. Nonetheless, as discussed in Sec.
V D, this does not compromise soundness of fragmentation
with respect to dynamics.

Importantly, fragments differ from collective variables
by an intriguing “instability.” Fragmentation is a seeded pro-
cess that depends on a starter set of fragments, which might
be desired observables. It proceeds iteratively by left- and
right-gluing already-identified fragments with rules, as de-
scribed in Sec. V B. At the fixed point, we can express the
dynamics of each fragment, in particular the initially de-
clared observables, in terms only of other fragments. Frag-
mentation tells us the granularity that suffices to exactly de-
scribe the dynamics of the chosen observables, regardless of
how the microscopic system evolves. Any further fine-
graining would not add actionable information from the sys-
tem’s vantage point. It is in this sense that fragments are
information carriers and the dynamical system of fragments
defines what we mean when we say that a system “processes
information.”

If we change the observables, fragmentation will pro-
duce different fragments, even though the underlying micro-
scopic system has not changed at all. In our toy example of
Sec. V B, choosing S1�h� as an observable returns four frag-
ments whereas choosing S2�h� returns just three, “blanking
out” a whole subsystem that never touches S2�h��. But who
is doing the observing? It is the system itself, such as when a
signal is intercepted by a receptor. �If we insist on an external
observer, the system must be amended by the rules that de-
scribe the observation mechanism.� Depending on which sig-
nal is observed, different fragmentations are induced. To a
molecular biologist, the microscopic system has not changed
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FIG. 11. �Color� Soundness. The microscopic dynamics of the system de-
fined by the two rules discussed in Sec. V C is simulated with a continuous
time Markov chain algorithm �Ref. 9�. The time traces of the five possible
species are then aggregated according to the fragmentation: B�s�;
A�d1 ,s� ,A�d1�; A�d ,s�; A�d�. These aggregated stochastic traces are shown
in the plot as wiggly curves. �Given the initial condition, the trace for frag-
ment A�d� is identical to that of A�d ,s�, as indicated in the text.� The
smooth curves are the output of the ODE system of Sec. V D, as generated
by fragmentation. Fluctuations aside, the curves match, illustrating sound-
ness as defined in the text. Parameters: k1=k2=0.001; at t=0, B�s� and
A�d ,s� have 1000 particles each. The model can be executed online
�Ref. 16�.
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constitution; same players, same interactions. However, the
concentration profiles of molecular species are changed in
response to the signal, but the meaning of these changes
might remain inscrutable unless we realize that the way the
system processes information has changed.
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