
Constraining rule-based dynamics with types

Vincent Danos
University of Edinburgh

Russ Harmer∗

CNRS & Université Paris Diderot / Harvard Medical School

Glynn Winskel
University of Cambridge

October 17, 2011

Abstract

A generalized framework of site graphs is introduced in order to
provide the first fully semantic definition of the side-effect-free core of
the rule-based language Kappa. This formalization allows for the use
of types either to confirm that a rule respects a certain invariant or
to guide a restricted refinement process that allows us to constrain its
run-time applicability.

1 Introduction

Rule-based modelling [2, 6] has been proposed as one possible solution to
the problem of defining and investigating the highly combinatorial micro-
scopic transition systems found in cellular signalling networks and various
models in statistical physics. Specifically, rules define rewrites of partially-
specified macroscopic patterns that can match various fully-specified micro-
scopic entities so that different instances of a rule may induce differing kinds
of microscopic transition.

In previous work, we have introduced a mathematical framework of site
graphs and embeddings in order to analyze how patterns can be refined to
more specific patterns that match fewer microscopic entities. This led to the
theory of rule refinement [7] that explains how to split a rule into subcases
which can then, if desired, be distinguished kinetically.

∗Corresponding author: russ.harmer@pps.jussieu.fr

1

The present contribution extends this previous work in several ways.
Firstly, by tweaking some of the basic definitions, we obtain a larger class
of site graphs and homomorphisms that allows for a fully general expression
of the binding, unbinding and state change actions fundamental to the rule-
based framework. Specifically, we allow for a larger class of site graphs where
sites can have internal states and where their binding state need not be given
explicitly. This is accompanied by a broader class of homomorphisms within
which we can recover our previous notion of embedding.

Secondly, unlike our previous treatment which uses a syntactic definition
of actions as lists of rewrite instructions called ‘action scripts’, we introduce
here a purely semantic definition of actions, as appropriate spans of monos,
and an associated site graph rewriting in the double-push-out style [5]. This
provides the first fully semantic definition of a rule-based language that, in
particular, captures precisely the side-effect-free fragment of Kappa.

Finally, we formalize the idea of typing site graphs with homomorphisms
into some fixed site graph, the contact graph, whose structure specifies all
the admissible links and states. This is reminiscent of categories of bundles
and, indeed, we find an adjunction associated with changing contact graph
analogous to the familiar adjunction arising from a change of base.

This leads to our main conceptual point: types can be used to constrain
the dynamics engendered by a collection of rules. Indeed, types can be used
in both a static and a dynamic manner. On the one hand, a rule may or
may not be compatible with a given contact graph so that a type can be
used statically to enforce certain invariants. On the other hand, as we will
see later, an action can be tagged with a type which will only be checked
dynamically, via the change of contact graph adjunction, in order to reject
potential events if they do not satisfy the properties demanded by the type.

2 Site graphs

First of all, we recall some basic preliminaries about the category of sets in
order to fix notation. If A is a set, we write A? for the disjoint union A+{?}
that ‘adds a point’ to A; elements of disjoint unions are tagged with either
inl or inr to identify their provenance so that an element a ∈ A is written as
inl(a) in A?.

Given a co-span A
f // C B

goo in the category Set of sets and total
functions, we fix A ×C B := {〈a, b〉 ∈ A × B | f(a) = g(b)} together with
the projections πA : A ×C B → A and πB : A ×C B → B as our canonical
choice of pull-back in Set.

2

Given a span A C
foo g // B , we fix A +C B to be the quotient of

A + B by (the reflexive, symmetric and transitive closure of) the relation
inl(a) ' inr(b) iff, for some c ∈ C, a = f(c) and b = g(c); together with the
injections ιA : A → A +C B and ιB : B → A +C B defined respectively by
a 7→ [inl(a)] and b 7→ [inr(b)], this is our canonical choice of push-out in Set.

2.1 The category of site graphs

In this section, we introduce the category of site graphs and homomorphisms
and the important full subcategory of realizable site graphs.

2.1.1 Basic definitions

A site graph G is specified by a tuple 〈AG,SG, EG, σG, εG, λG〉 where

• AG, SG and EG are finite sets (of agents, sites and states);

• σG : SG → AG assigns sites to agents and εG : EG → SG assigns states
to sites;

• λG is a symmetric relation on ((SG)? × (SG)?)− {〈?, ?〉}.

The relation λG encodes the link, or edge, structure of the graph:

• if 〈s, s′〉 ∈ λG, where s, s′ ∈ SG, then there is a link between them;

• if 〈s, ?〉 ∈ λG, so that s ∈ SG, then s has a stub.

A site s ∈ SG may have neither an incident edge nor a stub; we write this
as s 6∈ λG. This means that its binding status is unspecified.

We use a Kappa-like syntax [2] to denote site graphs textually. Briefly,
each node has an interface consisting of an agent name and a set of site
names. The two ends of a link are represented by equal numerical super-
scripts to the sites in question; a stub is represented by a ? superscript.
States are represented as subscripts to their sites. So

A(s0,1, t
1), B(s1,2,?), C(t2p, s

?), D(s?)

represents a graph with four agents: A has a site s with unspecified binding
status but two states 0 and 1, plus a site t bound to site s of B which has a
stub and is also bound to site t of C, et c. Note that a site can have multiple
links and/or a stub hence the need, compared with usual Kappa syntax, to
represent stubs explicitly rather than as simply the absence of a link.

3

A homomorphism f : G1 → G2 of site graphs is specified by a tuple of
functions 〈fA : AG1 → AG2 , fS : SG1 → SG2 , fE : EG1 → EG2〉 such that

AG1

fA
��

SG1

σG1oo

fS
��

SG1

fS
��

EG1

εG1oo

fE
��

AG2 SG2σG2

oo SG2 EG2εG2

oo

commute and the link structure of G1 is preserved:

• if 〈s, s′〉 ∈ λG1 , for s, s′ ∈ SG1 , then 〈fS(s), fS(s′)〉 ∈ λG2 ;

• if 〈s, ?〉 ∈ λG1 , so s ∈ SG1 , then 〈fS(s), ?〉 ∈ λG2 .

The existence of a homomorphism f from G1 to G2 corresponds, not to
any standard notion of embedding but rather, to a notion of matching : a
site with unspecified binding status may be mapped to a site with a stub
and/or links. However, we use the term matching only when fS is injective.

2.1.2 Basic categorical structure

We write SGrph for the category of site graphs and homomorphisms with
composition defined in the obvious component-wise fashion. The empty site
graph 0 where A0 = S0 = E0 = ∅ is an initial object; and the singleton site
graph 1 with A1 = S1 = E1 = ∅? and where the unique site has both a stub
and a self-loop is a terminal object. An arrow f is a mono if, and only if,
its three constituent functions—fA, fS and fE—are all injective; and is an
epi if, and only if, the three functions are all surjective.

Given a co-span G1
f13 // G3 G2

f23oo , we take pull-backs in Set

AG0

f02A //

f01A
��

AG2

f23A
��

SG0

f02S //

f01S
��

SG2

f23S
��

EG0

f02E //

f01E
��

EG2

f23E
��

AG1 f13A
// AG3 SG1 f13S

// SG3 EG1 f13E
// EG3

to define the span G1 G0
f01oo f02 // G2 , where the link structure of G0 is

defined by:

• 〈s1, s2〉 λG0 〈s′1, s′2〉 iff s1 λG1 s
′
1 and s2 λG2 s

′
2;

• 〈s1, s2〉 λG0 ? iff s1 λG1 ? and s2 λG2 ?.

4

The span G1 G0
f01oo f02 // G2 is our specified choice of pull-back in

SGrph; intuitively, G0 is an ‘intersection’ of G1 and G2, i.e. the largest,
and so the least general, site graph that can match any site graph that
either G1 or G2 can match—although, of course, this only makes sense in
the context of the co-span into G3. One immediate consequence of this is
that SGrph has finite products, obtained by taking pull-backs from the
terminal object.

Dually, given G1 G0
f01oo f02 // G2 , define G1

f13 // G3 G2
f23oo with

the push-outs in Set, analogous to the above pull-backs, and defining the
link structure of G3 as:

• [s] λG3 [s′] iff either, for some s1, s
′
1 ∈ SG1 , inl(s1) ∈ [s] and inl(s′1) ∈ [s′]

and s1 λG1 s
′
1; or, for some s2, s

′
2 ∈ SG2 , inr(s2) ∈ [s] and inr(s′2) ∈ [s′]

and s2 λG2 s
′
2;

• [s] λG3 ? iff either, for some s1 ∈ SG1 , inl(s1) ∈ [s] and s1 λG1 ?; or,
for some s2 ∈ SG2 , inr(s2) ∈ [s] and s2 λG2 ?.

The co-span G1
f13 // G3 G2

f23oo is our choice of push-out in SGrph;
intuitively, it is a ‘union’ of G1 and G2, i.e. the smallest, and so most
general, site graph that can match any site graph that both G1 and G2 can
match—relative to the given span from G0. This means that SGrph has
finite co-products, obtained by taking push-outs from its initial object.

2.1.3 Realizable site graphs

The structure of a site graph can be interpreted in two different ways: either
its stubs and edges specify possibilities, i.e. admissible bonds and free sites;
or they describe an actuality, i.e. a real configuration of agents.

For our purposes, this latter interpretation only makes sense for site
graphs whose link/stub and state structure is ‘deterministic’ in the following
natural sense:

• for all s ∈ SG, if 〈s, s1〉 ∈ λG and 〈s, s2〉 ∈ λG then s1 = s2;

• the state map εG is injective.

The idea is that each site is a resource that, at any given time, can have at
most one state and be dedicated to at most one task, i.e. it can be free (a
stub) or bound (linked to another site) but not both and, if bound, only to
one thing. We call such site graphs realizable.

5

If f : G1 → G2 and G2 is realizable then G1 need not be realizable,
e.g. there is an obvious homomorphism mapping G1 := A(s1,2), B(t1, t2) to
G2 := A(s1), B(t1). (We are implicitly defining the homomorphism with our
choice of ‘names’ for nodes and sites: the node named A in G1 is mapped to
the node named A in G2, the sites named t in G1 are both mapped to the
site named t in G2, et c.) However, if fS is injective, i.e. f is a matching,
then G1 must be realizable too since fS being injective would force any link
non-determinism in G1 to be propagated to G2.

In fact, given that G2 is realizable, f being a matching is a sufficient,
but not necessary, condition for G1 to be realizable. However, the follow-
ing weaker condition, that ‘f is V -preserving ’, is equivalent to G1 being
realizable: if s λG1 s1, s λG1 s2 and s1 6= s2 then fS(s1) 6= fS(s2). This
condition allows the obvious homomorphism from A(s1), B(t1), A(s2), B(t2)
to A(s1), B(t1), which is non-injective on sites, while still disallowing the
homomorphism from A(s1,2), B(t1, t2).

We write rSGrph for the full subcategory of SGrph whose objects
are realizable site graphs. The category rSGrph inherits pull-backs from

SGrph: given a co-span G1
f13 // G3 G2

f23oo , the pull-back of f13 and

f23, considered as arrows of SGrph, yields a span G1 G0
f01oo f02 // G2

where f01 and f02 are injective on sites, since pull-backs preserve monos, so
that G0 is realizable. This span is also the pull-back in rSGrph.

The situation is more complicated with regard to push-outs. Firstly,
push-outs need not exist since the construction in SGrph does not guarantee
that G3 is realizable, even if G0, G1 and G2 all are, e.g. if a site has different
states in G1 and G2. Secondly, even if a push-out exists, it may not be the
same as in SGrph, e.g. if G0 = A(s) and G1 = G2 = A(s1), B(t1) then
G3 = A(s1), B(t1) in rSGrph but G3 = A(s1,2), B(t1), B(t2) in SGrph.

2.2 Typing site graphs

In rule-based modelling, our main interest is in realizable site graphs as
they represent actual configurations of agents and connected components.
However, we can also use arbitrary, i.e. not necessarily realizable, site graphs
to type (realizable) site graphs: a homomorphism from a (realizable) site
graph G to an arbitrary site graph C guarantees that all edges and stubs in
G also occur in C, so C could be taken as a specification of admissible stubs
and edges that is satisfied by G, i.e. as a type. We formalize this intuition
with the standard notion of a slice category over C before introducing the
subcategories of interest to us here, SGrphC and rSGrphC .

6

2.2.1 Categories over C

The slice category SGrph/C over a site graph C has, for objects, all arrows
h : G→ C of SGrph into C; we think of these as witnesses that ‘G has type
C’. We refer to C as the contact graph and h : G → C as a contact map.
Note that many different Cs could act as contact graphs for G. Moreover,
we require no particular properties of C; its status as a contact graph is
bestowed by fiat.

An arrow f : h1 → h2 between h1 : G1 → C and h2 : G2 → C is an
arrow f : G1 → G2 of SGrph making h1 = h2 ◦ f . In other words, a
homomorphism from G1 to G2 that preserves typing.

The category SGrphC is obtained as a subcategory of SGrph/C by
restricting the objects to be those contact maps h : G→ C that are locally
injective on sites: no two sites of the same agent of G can map to the same
site of C. This means that each agent a of G has at most one copy of each
site of its corresponding agent h(a) of C, i.e. agents have sets, not multi-sets,
of sites. As an immediate consequence, all arrows f : h1 → h2 are locally
injective on sites. If, moreover, f is injective on agents then it is injective on
sites too; however, the converse is not true in general, e.g. there is a natural
arrow from G1 := A(s), A(t) to G2 := A(s, t).

The basic categorical structure of SGrph carries over largely unchanged
to SGrphC , the exception being that the terminal object is now the identity
1C : C → C on C. Given contact maps hi : Gi → C, the pull-back of

h1
f13 // h3 h2

f23oo is constructed by taking the pull-back in SGrph

G0
f02 //

f01
��

G2

f23
��

G1
f13
// G3

and defining h0 := h1 ◦ f01 = h2 ◦ f02. This is well-defined since, for any
agent, site or state x of G0, f13(f01(x)) = f23(f02(x)) and so h1(f01(x)) =
h3(f13(f01(x))) = h3(f23(f02(x))) = h2(f02(x)). The push-outs of SGrph
carry over to SGrphC in analogous fashion.

2.2.2 The subcategory rSGrphC

The situation is rather more interesting in rSGrphC , the full subcategory
of SGrphC containing only (contact maps from) realizable site graphs.

7

An arrow of rSGrphC is still a mono if, and only if, its three constituent
maps are all injective. However, the characterization of epis requires some
care. Specifically, an arrow f : h1 → h2 is an epi if, and only if, every
connected component of G2 contains at least one agent in the image of f .
This follows from the following rigidity lemma that depends on G1 and G2

being realizable and their contact maps h1 and h2 being locally injective.

Lemma [rigidity] Let h1 : G1 → C and h2 : G2 → C be objects of
rSGrphC . If G1 is connected then the least partial function fA : AG1 ⇀
AG2 sending a1 to a2 extends to at most one arrow f : h1 → h2 of rSGrphC .

Proof. The proof is iterative; for the base case, we need a2 ∈ h−12 (h1(a1)).
There is then, by local injectivity of h1 and h2, at most one way to define fS
on a1’s sites; and, by injectivity of EG2 , at most one way to define fE on a1’s
states. If all this succeeds and all stubs of a1 are also preserved, we have a
‘partial homomorphism’ f defined on a1. We now iterate, assuming such a
partial f that preserves all links between the agents of dom(fA). Let us con-
sider any a1 ∈ AG1 − dom(fA) having links to a non-empty set S of sites in
dom(fS). Since G2 is realizable, there can be at most one a2 ∈ h−12 (h1(a1))
(possibly already in the image of f) that has links to all the s ∈ fS(S). If
this a2 exists then, by local injectivity of h1 and h2 and by injectivity of EG2 ,
there is at most one way to extend fS and fE . If all stubs of a1 are preserved
in a2, we continue; otherwise f does not extend to any homomorphism.

The point of this lemma is that, given a ‘seed’, it extends in at most one
way to a homomorphism. This is a synergistic consequence of realizability
of the Gis and local injectivity of the contact maps; dropping either of these
constraints immediately invalidates rigidity. An important consequence of
rigidity is that, for any arrow f2 : h2 → h3 of rSGrphC , if we know how
just one agent of each connected component of G2 maps into G3, we know
the whole mapping f2. Therefore, f1 : h1 → h2 is an epi if, and only if, at
least one agent of each connected component of G2 is in its image.

Another useful consequence of rigidity is that any arrow f : h1 → h2
of rSGrphC decomposes uniquely (up to automorphisms) into an epi f ′ :
h1 � h′2, where h′2 : G′2 → C, and the unique arrow !G′′2 : 0 → G′′2 from the
initial object:

G1
∼= //

f

��

G1 + 0

f ′+!G′′2
��

G2
∼= // G′2 +G′′2

8

There is a special class of objects h : G→ C in rSGrphC , which we call
mixtures, characterized as those h that are

• locally surjective: every agent a of G displays the same sites as its
counterpart hA(a) in C;

• definite: if s 6∈ λG then hS(s) 6∈ λC ; and if ε−1G (s) = ∅ then ε−1C (hS(s)) =
∅.

In words, a mixture is a site graph where every agent displays every site it
possibly can, if a site has a state in C then it must also in G and if a site
has a stub and/or incident edge in C then it must have one or the other in
G too. In effect, a mixture is a fully-specified site graph with respect to C.

2.2.3 Change of contact graph

Given a homomorphism h : C → C ′, we can define functors between the
slice categories SGrph/C and SGrph/C ′. The mapping from SGrph/C
to SGrph/C ′ is immediate:

• an object h1 : G1 → C becomes h∗(h1) := h ◦ h1 : G′1 → C ′;

• an arrow f : h1 → h2 becomes h∗(f) := f : h ◦ h1 → h ◦ h2.

The reverse mapping relies on the existence of pull-backs in SGrph:

• an object h′1 : G′1 → C ′ becomes h∗(h′1) := h1 : G1 → C as defined by
the pull-back

G1
h′ //

h1
��

G′1

h′1
��

C
h
// C ′

• an arrow f ′ : h′1 → h′2 becomes h∗(f ′) := f : h1 → h2

G1

f

h1

��

f ′◦h′

$$
G2

h2
��

h′′ // G′2

h′2
��

C
h
// C ′

by applying universality of the pull-back to the outer commuting
square.

9

It is then straightforward to show that h∗ : SGrph/C → SGrph/C ′ is
left adjoint to h∗ : SGrph/C ′ → SGrph/C. The right adjoint h∗ can be
used to re-visualize a site graph according to the contact graph C rather
than C ′. As we will see later, this can be exploited to verify dynamically
whether or not an instance of a rule respects its declared type.

It is important to note that the h∗ functor does not in general restrict to
a functor from rSGrph/C ′ to rSGrph/C: the pull-back of h and h′1—even
from realizable G′1—need not yield realizable G1. However, if h is injective
on sites then, since pull-backs preserve monos, h′ and h′′ are both injective
on sites, so G1 and G2 are realizable. Moreover, if f ′ is an arrow of rSGrph
then f ′ ◦ h′ is injective on sites, so f is also injective on sites and thus
an arrow of rSGrph. Finally, if we also have that h′1 and h′2 are locally
injective on sites, then clearly h1 and h2 are also locally injective on sites,
i.e. they are objects of rSGrphC . In summary, provided h is injective on
sites, h∗ does restrict to a functor from rSGrph/C ′ to rSGrph/C and, if
additionally h′1 and h′2 are locally injective on sites, then h∗ further restricts
to a functor from rSGrphC′ to rSGrphC .

More generally, if h is V -preserving then so are h′ and h′′ whereupon G1

and G2 are both realizable. Moreover, if h′1 and h′2 are locally injective on
sites then h1 and h2 also are, i.e. they are objects of rSGrphC . However,
f ′ ◦ h′ need not be injective on sites so, in general, neither is f .

2.3 Rewriting site graphs

In this section, we introduce actions, the semantic analogue of action scripts,
and use them to define rewriting of site graphs in the double-push-out (DPO)
style. This is largely a straightforward exercise but does require a little care
to identify an appropriate class of actions for which DPO rewriting works
correctly.

2.3.1 Actions as spans

The most general possible definition of action is as a span in SGrph

G0xx
xx &&

G` Gr

with intuitive reading that G` is rewritten into Gr while the common part of
G` and Gr matched by G0 remains unchanged. Indeed, this is an instance
of the general approach of building (bi-)categories of partial maps out of
categories of total maps [8].

10

It would be possible to develop a theory of ‘untyped’ site graph rewriting
by restricting actions to a smaller class. For the purposes of this paper, how-
ever, we prefer to work in the typed setting of rSGrphC from the outset as
this has the advantage of coming with an intrinsic notion of mixture. More-

over, a span h` h0
α`oo αr // hr in rSGrphC comes with the additional

guarantee that h` ◦α` = h0 = hr ◦αr meaning that the contact information
of everything in G0 is the same on both sides of the span.

It makes sense to additionally ask for αr to be a mono, as we do not wish
to express actions that ‘merge’ agents, and for the span to be extremal : if
there is an epi α0 : h0 � h′0 and arrows α′` : h′0 → h` and α′r : h′0 → hr
making

h0
��

α`

��

��

αr

��

α0����
h′0��

α′`��

��

α′r ��
h` hr

commute then α0 is an isomorphism. Intuitively, this means that nothing
more can be added to h0, i.e. h` and hr consist of an exact copy of h0 plus
(possibly) additional connected components. Note that any span from the
empty site graph 0 is extremal.

2.3.2 Double push-out rewriting

Let us now investigate the class of actions that we can use in order to express
site graph rewriting as an instance of the general double-push-out (DPO)
approach. The essential difficulty of DPO rewriting comes in the first step
where, given the left leg of the span and a matching into some mixture M ,
we must “complete the push-out” via an intermediate M0:

G0}}
α`

}}

G0

��

}}
α`

}}
G`

m
��

// G`

m
��

M0

}}
M M

(To lighten notation, we write just G0, et c., rather than the more accurate
h0 : G0 → C.)

11

Let us first consider the special case where G0 is the empty site graph 0
which corresponds to a situation where G` is to be completely excised from
M and replaced by Gr—since G0 is everything of G` to be preserved by
the action. In this case, since a push-out from an initial object is always a
co-product, we know that, if M0 exists, then M ∼= G` + M0. In effect, this
means that G` does not merely match M but that it is literally contained in
M ; so an action that removes and/or adds agents can only remove and/or
add entire connected components of/to M , i.e. mixtures with respect to the
ambient contact graph C:

M ∼= G` +M0 Gr +M0
∼= M ′

This restriction enforces a ‘no side-effects’ condition that guarantees that all
things in M that are modified by the action are explicitly mentioned by the
action, just as is the case for multi-set rewriting.

In the general case, where G0 may be non-empty, we first decompose α`
uniquely (up to isomorphism) into an epi α′` : G0 � G′` and !G′′` : 0→ G′′` , so
that G` ∼= G′` +G′′` . It is then sufficient to be able to complete the push-out
for α′` and the restriction m′ := m ◦ ιG′` of m to G′`; the missing mixture G′′`
can be dealt with afterwards as per the above special case.

We construct an M0 by setting AM0 := AM , SM0 := SM and defining
the interesting part of its structure according to the standard DPO-style
prescription of ‘add to G0 everything that is in M but not in G′`’:

• EM0 := EM − (EG′` − EG0);

• λM0 := λM − (λG′` − λG0).

We cannot define AM0 or SM0 in this more subtle way as this could lead to
‘orphaned’ sites, states and links, e.g. a site might not be attached to any
agent. It is easy to see that this always gives rise to a commuting square with
the inclusions from G0 to M0 and M0 to M . However, unless α′` is surjective
on agents and sites, this square cannot be a push-out in general since any
agent or site of G′` not also in G0 will be duplicated by the push-out.

Intuitively, this condition enforces the idea that G0 contains everything
that is preserved by the action; in particular, the existence of the agents
and sites of G′` is not in question. This condition plays an analogous role to
the dangling condition in DPO rewriting of normal graphs although, rather
than using it as a means to reject certain matchings, we instead use it to
constrain our notion of valid action.

12

Technically speaking, now that this push-out has been constructed, it is
always possible to complete the DPO rewrite:

G0

��

}}
α′`

}}

G0

��

}}
α′`

}}

""

""
G′`

m′

��

M0

}}

// G′`

m′

��

M0

}} !!

G′r

��
M` M` Mr

However, in order forMr to be a mixture, we need some additional properties
of αr. Firstly, that it is also surjective on agents and sites so that there is a
bijection between the agents and sites of G′` and G′r. Secondly, for all sites
s of G′`, s 6∈ λG` if, and only if, s 6∈ λGr (where we have slightly abusively
reused s to denote the counterpart of s in G′r). In other words, unspecified
binding statuses must be preserved by actions.

These conditions rule out non-deterministic rules, e.g. sending s 6∈ λG`
to s λGr ?, and guarantee that actions are always reversible, i.e. the span

G0}}
α′r

}}

!!
α′`

!!
G′r G′`

is also an action—which is in fact just another way of saying that actions
cannot have side-effects. Indeed, in full Kappa, there are only two kinds
of rule that violate reversibility—deletion of only part of a connected com-
ponent; and undoing a wild-card-binding—both of which also induce side-
effects (due to the implicit deletion of links not mentioned by the action).
Our restriction on actions rules out the former and the latter cannot even
be expressed with the present formulation of site graphs; so our formalism
allows us to express only side-effect-free Kappa.

In summary, a valid action, or rule, is an action where α′` and α′r are
bijections on agents and sites, the eliminated G′′` and introduced G′′r are
mixtures and where sites with unspecified binding status must be preserved
by the rule and its reverse. We should stress that these are sufficient, but not
necessary, conditions on actions for them to be compatible with DPO-style
rewriting; more general conditions could undoubtedly be formulated but,
for our present purposes, they strike a convenient balance that is sufficient
for side-effect-free Kappa since all actions expressible therein are valid.

13

2.3.3 Static constraints on actions

The explicit typing of site graphs with a contact graph allows us to express
certain invariants as static constraints on rules. For example, the rule

r1 := A(s1), B(s1) −→ A(s•), B(s•)

cannot be expressed as a span over the contact graph

T1 := A(s1,•), B(s1,2), C(s2,•)

since its RHS does not respect the typing constraints of T1. Specifically, the
lack of a stub on B’s site s means that s must always be bound, preventing a
rule such as r1 that destroys this invariant. A careful choice of contact graph
can therefore enforce fairly subtle constraints, e.g. the ‘bond displacement’
rule

r2 := A(s1), B(s1), C(s•) −→ A(s•), B(s1), C(s1)

can be expressed as a span over T1 since it does preserve the invariant.
Note that this use of contact graphs only determines the validity, or

otherwise, of a rule with respect to a type: the rule is either accepted or
rejected. In the next section, we show how to use types to constrain the
dynamics engendered by rules.

3 Rule-based dynamics

In this section, we assume a collection of rules R valid with respect to a
contact graph C. Each rule r ∈ R has a real-valued rate constant kr and may
also have its own personal type Cr accompanied by a homomorphism hr :
Cr → C which we will use, in conjunction with the change of contact graph
adjunction, to reject certain instances of r dynamically. However, before
getting to that, we first briefly recall the standard notion of continuous-time
Markov chain (CTMC) which underlies the stochastic semantics of R.

A CTMC has a set S of states and a set T of transitions between distinct
states, i.e. no self-loops. Each transition τ from s is assigned a real number
Aτ (s) known as its activity ; each state s acquires a total activity, defined as
the sum A(s) :=

∑
τ Aτ (s) of the activities of all its outgoing transitions.

The dynamics of a CTMC depends on the waiting time in, and transition
probabilities from, each state s. The former is described by the exponential
random variable p(δt) := A(s)·e−A(s)δt, the minimum of the family pτ (δt) :=
Aτ (s) ·e−Aτ (s)δt of independent random variables, i.e. the time until the first
transition; and, for the latter, each transition τ from s naturally acquires
the probability Aτ (s)/A(s) of being chosen.

14

3.1 The stochastic semantics of R

In order to instantiate this general scheme to the specific case of our system
R of rules, we must define the states, transitions and activities thereof that
R induces. It turns out that the states are straightforward to define—they
are just mixtures with respect to the contact graph C—but the definition
of transitions is more subtle.

To see why, let us first consider the world of multi-set rewriting, i.e.
reactions operating on a multi-set of named, structureless molecular species.
In this setting, the notion of event, or transition, is fairly straightforward:
the choice of a multi-set of reactants that are to be replaced by the multi-
set of products. The only subtle point comes about when dealing with
reactions having symmetries between reactants, e.g. A + A −→ A2; is an
event an ordered or an unordered pair of As?

The answer, conceptually, depends on whether the reaction is intended to
represent the formation of an asymmetric or a symmetric dimer, the former
proceeding twice as fast as the latter. However, the relative paucity of the
formal language of reactions makes it impossible to express this distinction
syntactically. The difference between these two reactions must therefore be
encoded in the rate constant—given a semantic convention fixing whether
one considers an event as an ordered or an unordered pair by default.

In the case of rules, this question acquires new potency since we are
now working in a far richer syntactic medium: not only do ‘molecular
species’, or complexes, have internal structure—agents, sites, links, et c.—
but the rules need only partially specify those complexes. In particular, we
can now express the distinction between symmetric and asymmetric homo-
dimerization:

rs := A(s•), A(s•) −→ A(s1), A(s1)

ra := A(`•, r•), A(`•, r•) −→ A(`•, r1), A(`1, r•)

They each have a non-trivial automorphism of their LHS, suggesting perhaps
that our notion of event should be that of an unordered pair. However, what
happens if either rule is matched to a pair of non-isomorphic complexes? Or,
indeed, if an asymmetric rule is applied in a symmetric context?

Ultimately, the question being posed is: when should two matchings of
the LHS of a rule into a mixture be considered indistinguishable from the
rule’s point of view? Any non-trivial automorphism of that LHS may give
rise to such indistinguishability—but only if it survives the action of the
rule. If an automorphism is destroyed by the action, the two matchings can
be distinguished post hoc and correspond to two distinct ‘reaction centres’.

15

In the case of rs and ra above, rs preserves the non-trivial symmetry and,
as such, defines a symmetric binding mechanism which cannot distinguish
between two complexes that match it, even if they are actually different. On
the other hand, ra breaks the symmetry and, as such, defines an asymmetric
binding mechanism that induces two distinct reaction centres and can even
distinguish identical complexes that match it.

In general, for a rule r, we therefore define an r-event to be a matching
of the LHS of r up to automorphisms of the LHS preserved by the action of
r, cf. [1]. We write Er(M) for the set of all r-events in the mixture M ; this
is always a finite set. Note that any matchings identified by this quotient
necessarily provoke exactly the same rewrite of the mixture; moreover, any
other matching would perform a different microscopic rewrite, so our notion
of event is the coarsest possible quotienting of matchings that ensures that
an event induces a unique microscopic transition.

We can finally complete our description of the CTMC defined by R. The
set of transitions from a mixture M is the union T :=

⋃
r Er(M) of all events

in M . The activity of each r ∈ R in M is defined as Ar(M) := kr · |Φr(M)|
so that the activity of any given r-event is simply kr. This convention for
activity is known as the mass-action rate law.

3.2 Dynamic rejection of events

We now turn to the question of rejecting events dynamically. We write rL
(resp. rR, rP) for the LHS (resp. RHS, preserved zone) of r ∈ R; hL : rL →
C, hP : rP → C and hR : rR → C for the static typing of r by the contact
graph C; and αL : hP � hL and αR : hP � hR for the action of r.

We also assume that each r ∈ R is accompanied by a finite collection of
refined types Cr,i, each with a mono hr,i : Cr,i � C to the overall contact
graph C. We require that, for each hr,i, there exist arrows hL,i : rL → Cr,i,
hP,i : rP → Cr,i and hR,i : rR → Cr,i making the obvious triangles commute:

rL
hL,i

}}

hL

rP
hP,i

}}

hP

rR
hR,i

}}

hR

Cr,i

hr,i
// C Cr,i

hr,i
// C Cr,i

hr,i
// C

This ensures that Cr,i is still a valid static type for r. Each hr,i thus specifies
a (potentially) more stringent requirement for r to be applied. The idea is
that an r-event will be accepted if, and only if, it respects at least one of
the Cr,is. Note that this is a property of an instance of r, not of r itself; it
is verified with the change of contact graph adjunction.

16

In order to define precisely what we mean by an instance of the rule r,
recall that a matching f : rL → M of r into a mixture M decomposes into
an epi fM : rL �MrL and an arrow from the initial object 0 to the rest of
M (which we ignore); for the sake of readability, we are writing rL rather
than the more correct hL. We call the graph MrL a ground refinement of
rL. We obtain the ground refinements, MrP and MrR , of rP and rR by
the DPO-rewriting of MrL according to the action of r. We obtain a new
action defined by αL,f : MrP � MrL and αR,f : MrP � MrR . In effect, we
slide the rule r along the matching f to obtain a specific, fully-instantiated
instance of r in the mixture M .

For each refined type Cr,i, we now use h∗r,i to change contact graph from
C to Cr,i:

MP,i

αL,i

||

αR,i

##
MrL

��

ML,i
oo

��

MR,i

��

//MrR

��
C Cr,i

hr,i
oo Cr,i

hr,i
// C

Since hr,i is a mono, ML,i, MR,i and MP,i are realizable. The resulting span

ML,i MP,i
oo //MR,i defines an action that refines the original rule r,

i.e. it describes the same rewrite as r but with a (potentially) more stringent
test which matches fewer mixtures with respect to C. However, in general,
one or other (or both) of ML,i and MR,i need not be a mixture with respect
to Cr,i; such a refinement does not respect the typing constraint Cr,i. If, for
some i, ML,i and MR,i are both mixtures with respect to Cr,i then we say
that the (original) matching satisfies the refined type Cr,i; otherwise it is a
null event.

For example, consider the rule r

r := A(d•), D(a•) −→ A(d1), D(a1)

with contact graph C, further constrained by contact graphs C1 and C2:

C := A(d1,•, b2,3,•), B1(a
2,•), D(a1,•), B2(a

3,•)

C1 := A(d•, b1), B1(a
1,•), D(a•)

C2 := A(d2,•, b3,•), D(a2,•), B2(a
3,•).

17

The ground refinement

Mr := A(d•, b1), B1(a
1), D(a•) −→ A(d2, b1), B1(a

1), D(a2)

is a null event as neither ML,2 nor MR,2 respects C2 (because C2 does not
contain B1) and, although ML,1 respects Cr,1, in MR,1 as defined by the
pull-back

A(d, b1), B1(a
1), D(a) //

��

MrR

��
Cr,1 // C

A’s site d and D’s site a have opposing binding statuses in C1 and MrR and,
as such, acquire unspecified binding status in the pull-back; so MR,1 is not
a mixture with respect to Cr,1. Intuitively, Cr,1 and Cr,2 express the logical
constraint that ‘B1, but not B2, blocks D’s access to A’, a phenomenon
known to biophysicists as steric occlusion which arises when (i) one protein
physically blocks the access of a second to its desired binding site; and (ii)
the second protein could have bound if the first were not there.

We could alternatively use the Cr,is as a growth policy [7] to generate
statically the collection of rules that refine r and respect the Cr,is. We prefer
not to do this since, in general, it leads to an explosion in the number of
rules and, as we will see in the next section, we can easily obtain the same
effect through dynamic rejection of events. However, the principal advantage
of enforcing constraints dynamically, rather than refining rules explicitly is
that it allows us to make a clean separation of the essential mechanism
from more incidental problems such as steric occlusion: it is not the fault
of the binding mechanism if it fails only because some other agent is ‘in the
way’. Of course, rules can always be massaged to enforce such constraints
but such rules are fragile and difficult to modify and/or incorporate into
larger rule sets that may not be aware of its ‘built in’ assumptions. It seems
more prudent, and scalable, to keep the rule simple and document its steric
demands, et c., separately.

3.3 Overestimating activity

In the previous section, we have seen how certain transitions of our CTMC
built out of R may be rejected during simulation. When this happens, the
state s of the CTMC does not change—it is as if there were a self-loop—so,
in particular, the activity Ar(s) of each rule r and the total activity A(s)
remain unchanged.

18

This requires a modification of the dynamics of the CTMC since the
existence of a self-loop tends to increase the waiting time in that state.
Specifically, the waiting time in state s becomes the time until a real event
occurs. It is well-known that the time for n ≥ 1 events to occur in a Poisson
process is described by the Gamma random variable

Γn,A(s)(δt) = (A(s)n · δtn−1/(n− 1)!) · e−A(s)δt

so, if the probability of a null event occurring in state s is q(s), the total
waiting time in state s is distributed as

p(δt) =

∞∑
n=0

q(s)n(1− q(s)) · Γn+1,A(s)(δt).

In the case of our CTMC derived from R, the probability qM for each
state M is not known statically; however, whenever a transition t from M is
chosen, we can then detect whether or not it is a null event. Given that the
chosen event is some r-event, the fact that r-events are chosen uniformly
at random means that the probability qr(M) that ‘the chosen r-event is a
null event’ is just the number of null r-events divided by the total number
|Er(M)| of r-events. The overall probabilility that ‘the chosen event is a
real r-event’ is therefore A′r(M)/A(M). In effect, M has a true activity
A′(M) =

∑
r(1− qr(M)) · Ar(M) underestimating its usual activity.

It follows that the probability that ‘the chosen event is null’ is q(M) =∑
r qr(M) · Ar(M)/A(M) = (A(M) − A′(M))/A(M) and the probability

that ‘the next real event is an r-event’ is (A′r(M)/A(M))/(A′(M)/A(M) =
A′r(M)/A′(M). Finally, we instantiate the above equation to obtain

p(δt) = A′(M) · e−A(M)δt ·
∞∑
n=0

(A(M)−A′(M))n · δtn/n!

= A′(M) · e−A′(M)δt.

In summary, the waiting time in, and transition probabilities from, state
M depend only on the (unknown!) true activitiesA′r(M) and so the modified
CTMC behaves exactly as if it were actually the true CTMC with no self-
loops obtained by statically generating all rules satisfying the growth policy
Cr. This argument is a more general case of the technique for dealing with
null events arising for reasons of implementation efficiency [3, 9].

19

4 Conclusions

In this paper, we have given the first fully semantic definition of a rule-based
language which encompasses a large fragment of Kappa, the only restriction
being the forbidding of side-effects. This has clarified the connection between
the notion of site graph rewriting, as expressed by rules in Kappa, and more
traditional graph rewriting that has long used the double-push-out technique
to formalize rewriting.

We have also investigated for the first time the possibility of typing rules
to express invariants hidden in a rule or enforce constraints on the dynamics
engendered by a rule set. This approach should usefully complement the
analyses made with abstract interpretation [4], some of which address similar
issues. However, this initial investigation remains purely mathematical; the
important question remains as to how a powerful and pragmatically useful
type system for rules should be defined and implemented.

Acknowledgements. We would like to thank Eric Deeds, Jérôme Feret,
Walter Fontana and Jean Krivine for many discussions on topics related to
the subject of this paper.

References

[1] M. L. Blinov, J. Yang, J. R. Faeder, and W. S. Hlavacek. Graph theory
for rule-based modeling of biochemical networks. Lect. Notes Comput.
Sci., 4230:89–106, 2006.

[2] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based
Modelling of Cellular Signalling. Lecture Notes in Computer Science,
4703:17–41, 2007.

[3] V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable Simulation
of Cellular Signaling Networks. Lecture Notes in Computer Science,
4807:139–157, 2007.

[4] V. Danos, J. Feret, W. Fontana, and J. Krivine. Abstract Interpretation
of Cellular Signalling Networks. Lecture Notes in Computer Science,
4905:83–97, 2008.

[5] H. Ehrig, M. Pfender, and H. Schneider. Graph-grammars: an alge-
braic approach. In 14th Annual Symposium on Switching and Automata
Theory, pages 167–180. IEEE, 1973.

20

[6] W. Hlavacek, J. Faeder, M. Blinov, R. Posner, M. Hucka, and
W. Fontana. Rules for Modeling Signal-Transduction Systems. Science’s
STKE, 2006(344), 2006.

[7] E. Murphy, V. Danos, J. Feret, R. Harmer, and J. Krivine. Rule-based
modelling and model refinement. Elements of Computational Systems
Biology. Wiley Book Series on Bioinformatics, 2009.

[8] E. Robinson and G. Rosolini. Categories of partial maps. Information
and computation, 79(2):95–130, 1988.

[9] J. Yang, M. Monine, J. Faeder, and W. Hlavacek. Kinetic Monte Carlo
method for rule-based modeling of biochemical networks. Physical Re-
view E, 78(3):31910, 2008.

21

