A logic modelling workflow for systems pharmacology

Luis Tobalina

13/07/2018

www.saezlab.org

Institute for Computational Biomedicine Heidelberg University & RWTH Aachen

- Context
- Pipeline
- Network
- Modelling
- Data
- Insights
- Summary

 Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 00, 00; doi:10.1002/psp4.12225

 © 2017 ASCPT
 All rights reserved

 TUTORIAL
 Logic Modeling in Quantitative Systems Pharmacology

Pauline Traynard¹, Luis Tobalina², Federica Eduati³, Laurence Calzone¹ and Julio Saez-Rodriguez^{2,3*}

- Systems Biology examines how cell components interact and form networks and how the networks generate whole cell functions corresponding to observable phenotypes (Palsson, 2006)
- Systems Biomedicine addresses the challenge of translating insights in biological systems to clinical application

- Systems Pharmacology is the application of the concepts of systems biomedicine to pharmacology in order to understand the full effect of a drug
- Personalised medicine aims to match each patient with their most beneficial treatment

- Identifying key drivers of a disease helps us to design targeted therapies
- Drug combinations may help in diseases driven by several altered proteins
- In diseases like cancer, we also have to address development of resistance to the applied therapy
- Not all the targets are actionable
- Not all the therapies need to target the diseased cell: immunotherapy

Melanoma patients with BRAF mutation show response to BRAF inhibitors

Importance of signalling networks

 But resistance to treatment eventually develops, leading to relapse

Figure 2 in Wagle et al. (2011) shows BRAF-mutant melanoma patient (A) before treatment, (B) after 15 weeks of therapy, and (C) after relapse, after 23 weeks of therapy.

Wagle et al., J Clin Inv, 29:22, 2011

Importance of signalling networks

 Colon cancer patients with the same mutation show resistance to treatment because of EGFR feedback loop

• Biomedical research faces different challenges:

- Noise
- Batch effects
- Small sample size
- Difficult / Expensive experiments
- Possible ways of dealing with these:
 - Well thought and designed experiments
 - Pool information from different studies
 - Use of prior knowledge
 - Development of mathematical models

Traynard et al. CPT: Pharmacometrics & systems pharmacology 2017

 The first step of modelling is to start with a biological question of interest

 Example: what are the changes in the phosphoproteomic response to the PI3K pathway when a prostate cancer cell goes from being castration sensitive to castration resistant

Lescarbeau and Kaplan *BMC Cancer* 2014, **14**:325 http://www.biomedcentral.com/1471-2407/14/325

Türei et al. Nature Methods 2016

http://omnipathdb.org

Türei, Korcsmáros & Saez-Rodriguez (2016). Nat Methods, 13(12)966-967.

- OmniPath is a comprehensive collection of literature curated human signaling pathways
- Why Omnipath?

http://omnipathdb.org/

Türei, Korcsmáros & Saez-Rodriguez (2016)

 Available via a webservice or using pypath, a Python module for molecular networks and pathways analysis

OmniPath

Türei, Korcsmáros & Saez-Rodriguez (2016)

Traynard et al. CPT: Pharmacometrics & systems pharmacology 2017

Choice of modelling formalism

The amount of details to include in the model and the **mathematical formalism** used to describe the process should be **lead by the biological question** (and by available data).

Variety of formalisms

- Boolean simulation with synchronous updates
- Constrained fuzzy logic
- Simulations with multiple time-scales
- Logic based ODEs

Phys. Biol. 9 (2012) 045003 (16pp)	doi:10.1088/1478-3975/9/4/045003
State_time spectrum of signal	
State-time spectrum of signal	
transduction logic models	

With the second seco

Based on ordinary differential equations derived from logic models using a continuous update function

$$\begin{array}{c} \mathsf{A} \\ \downarrow \\ \mathsf{B} \end{array} \quad \frac{dx_B}{dt} = \tau_B [f(x_A) - x_B] \\ \end{array}$$

DM Wittmann, et al., 2009, BMC Systems Biology F Eduati, 2017, Cancer Research

Using logic ODE as modelling formalism

- Easily interpretable parameters
 - is the life-time of species i=0 node not functional >0 higher functionality

 $\begin{array}{ll} & \text{strength of regulation j} \rightarrow \text{i} \\ \text{=0 no edge} \\ \text{>0 stronger interaction} \end{array}$

• Direct derivation from logic rules

x_1	x_2	$B(f(x_1), f(x_2)) = \dots$	
0	0	$0(1 - f(x_1))(1 - f(x_2)) +$	
0	1	$(1 - f(x_1))f(x_2) +$	
1	0	$f(x_1)(1 - f(x_2)) +$	
1	1	$f(x_1)f(x_2)$	

Generalisation for OR gates

- Objective: obtain data for training logic models
- Priority: high number of perturbations

Phospho-proteomics to look at signal transduction

Terfve C, Saez-Rodriguez J, Adv. Syst. Biol., 2012 Saez-Rodriguez J, et al. Annual Rev Biomed Eng, 2015

Image showing mass-spectrometry protocol (<u>https://upload.wikimedia.org/wikipedia/commons/1/1f/</u> <u>Mass_spectrometry_protocol.png</u>)	

Credit: By Philippe Hupé [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

https://pharmchem.ucsf.edu/research/physbio/proteomics

Normalisation challenges

- Boolean logic works with binary values, but measurements are continuous values
- CellNOpt ODE works with values between 0 and 1
- Coverage challenges
 - Not all the nodes in the model may be covered by the measurements
- Use of derived measurements
 - e.g. Kinase activities

Use data for training models

www.cellnopt.org

A flexible pipeline to model protein signalling networks trained to data using various logic formalisms.

CellNOpt packages

Documentation (model and data sets)

Publications

For Developers

(SVN, etc.)

Downloads

Contact

OVERVIEW

CellNOpt (from CellNetOptimizer; a.k.a. CNO) is a software used for creating logicbased models of signal transduction networks using different logic formalisms (Boolean, Fuzzy, or differential equations). CellNOpt uses information on signaling pathways encoded as a Prior Knowledge Network, and trains it against high-throughput biochemical data to create cell-specific models.

CellNOpt is freely available under GPL license in R and Matlab languages. It can be also accessed through a python wrapper, and a Cytoscape plugin called CytoCopter provides a graphical user interface.

CellNOpt is mainly developed at the Saez-Rodriguez group at the European Bioinformatics Institute (EBI). The project started at the groups of Peter Sorger

(Harvard Medical School) and Doug Lauffenburger (M.I.T.). There is a group of CellNOpt developers at different locations.

Broad spectrum of modelling formalism with different level of detail

Terfve C Cokelaer T MacNamara A Henriques D Gonçalves E Morris MK van Iersel M Lauffenburger DA Saez-Rodriguez J *BMC Syst Biol, 6:*133, 2012

PHONEMeS

- PHONEMeS (PHOsphorylation NEtworks for Mass Spectrometry) is a method to model signalling networks based on untargeted phosphoproteomics mass spectrometry data and kinase/phosphatasesubstrate interactions (Terfve et al. 2015 Nature communications)
- We can use it to combine high-throughput data (SWATH phospho-proteomics) with a large scale background network (e.g. Omnipath)

Assessing fitted networks

Assessing fitted networks

How to deal with incomplete prior knowledge?

Assessing fitted networks

Traynard et al. CPT: Pharmacometrics & systems pharmacology 2017

- MaBoSS is a C++ software for simulating continuous/ discrete time Markov processes, applied on a Boolean network
- Given some initial conditions, MaBoSS applies Monte-Carlo kinetic algorithm (or Gillespie algorithm) to the network to produce time trajectories. Time evolution of probabilities are estimated

Traynard et al. CPT: Pharmacometrics & systems pharmacology 2017

Example in colorectal cancer

 Can we use logic models of signalling networks to understand and target drug resistance?

Dynamic logic models provide mechanistic insight and novel biomarkers

w. N. Bluethgen & M. Garnett

Dynamic logic models provide mechanistic insight and novel biomarkers

w. N. Bluethgen & M. Garnett

Dynamic logic models provide mechanistic insight and novel biomarkers

CRC Cell lines specific models

Model-based biomarkers of drug efficacy and resistance

Model-based biomarkers of drug efficacy and resistance

Identified and validated novel biomarkers and a new combination strategy

Identified and validated novel biomarkers and a new combination strategy

Identified and validated novel biomarkers and a new combination strategy

no improved sensitivity when GSK3 is not functional

Identified and validated novel biomarkers and a new combination strategy

SB216763

CHIR-99021

synergistic combo when GSK3 is functional

no improved sensitivity when GSK3 is not functional

Traynard et al. CPT: Pharmacometrics & systems pharmacology 2017

Saez-Rodriguez group

Special thanks to:

Julio Saez-Rodriguez Pauline Traynard Laurence Calzone Federica Eduati Attila Gabor

Collaborators:

Funding:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 668858.

A logic modelling workflow for systems pharmacology

Luis Tobalina

13/07/2018

www.saezlab.org

Institute for Computational Biomedicine Heidelberg University & RWTH Aachen