Les Modes Normaux de Vibration

Prérequis

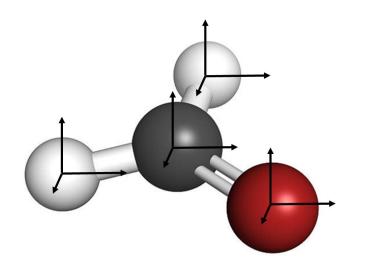
- symétrie moléculaire/ théorie des groupes (GPS)
- produits directs de RI, opérateurs de projection....

Objectif

- Intégrer les notions de degrés de liberté, modes de translation/rotation, mode normal de vibration
- -savoir choisir une base de représentation Γ appropriée au problème étudié
- -en extraire une décomposition en RIs correspondants aux différents MNV
- -relier étiquettes de symétrie de ces RIs aux déformations de la molécule dans un MNV donné

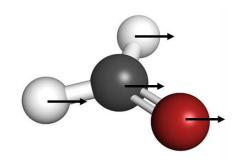
Degrés de liberté d'une molécule

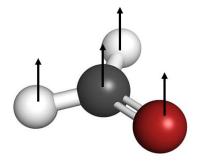
• Mouvement de chacun des atomes, à priori libre dans trois dimensions de l'espace

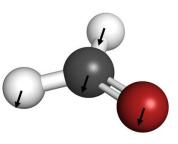


*La molécule dispose donc de 3N degrés de liberté.

• 3 de ces degrés correspondent à un mouvement coordonnée des atomes dans la même direction de l'espace: on parle de translation (T selon x,y ou z)

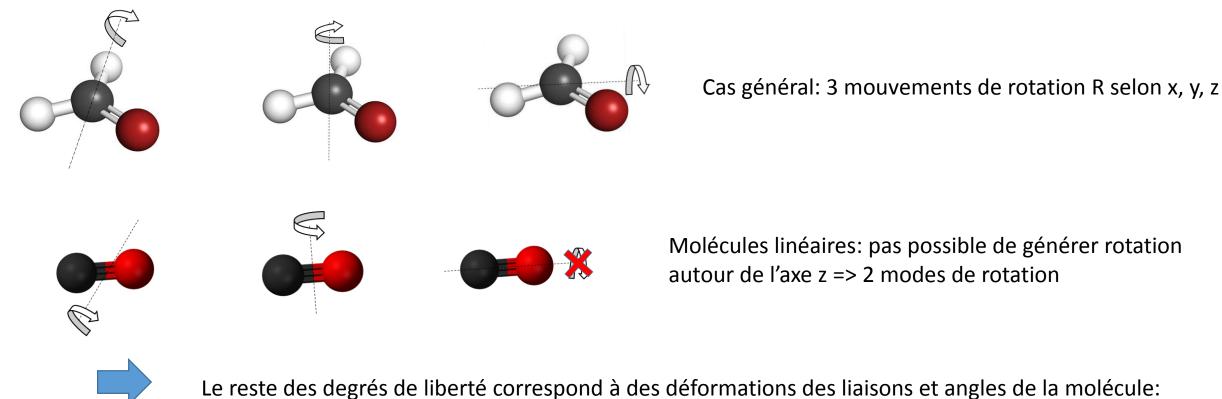






Degrés de liberté d'une molécule

 On peut également combiner ces degrés de liberté atomiques afin de générer un mouvement de rotation de la molécule autour de ses axes d'inertie

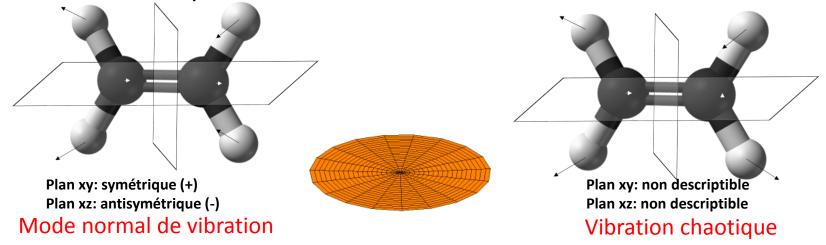


M1: Une molécule de N atomes possède 3N-6 MNV, 3N-5 dans une molécule linéaire

Modes normaux de vibrations MNV

Modes normaux de vibration

- Un MNV correspond à une vibration « harmonique » de la molécule
 - => Tous les atomes présentent un mouvement en phase, homogène par rapport aux éléments de symétrie de la molécule



- -Vibration considérée dans le repère de la molécule: déplacement atome doit préserver le centre de masse
- -les mouvements atomiques sont proportionnées à la masse des atomes en déplacement
 - => en réalité très faible en amplitude (fléches constituent un indicateur visuel)
- -représentations du mvt réel des atomes: peuvent être simplifiées si on s'intéresse uniquement à description de la symétrie

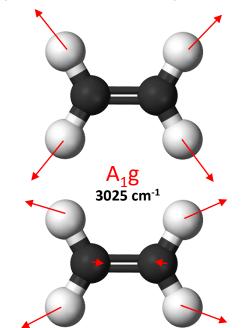


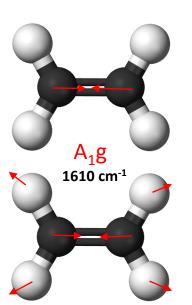
Analyse simplifiée

Cas des MNV de même symétrie

- Les MNV de même symétrie : « mélange » = couplage partiel des mouvements des atomes
- Degré de mélange dépend: arrangement des atomes, énergétique des vibrations associées: traitement matriciel complexe « méthode GF » (Cotton)
- Exemple simple de l'ethylene

Analyse simplifiée



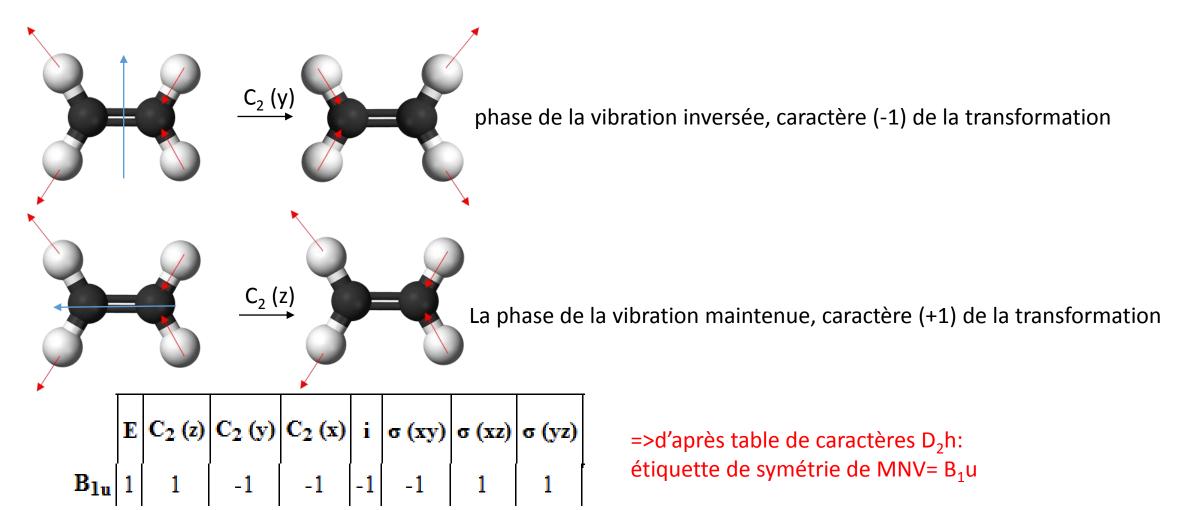


vibration de même symétrie « s'affectent » mutuellement => influence sur mvt atomique & énergies

Vision plus réaliste

MNV et représentations irréductibles

 M2: Chaque MNV possède un comportement propre / éléments de symétrie => peut être désigné par RI



M3: Apport de la théorie des groupes:

- Possibilité de constituer une base de dimension 3N représentant le déplacement des atomes
- On peut étudier les transformations de cette base sous l'effet des différentes opérations de symétrie dans le GPS de la molécule=> Γ tot
- Décomposition en RI
- Parmi cette décompositions, 3 modes de translation et 3 (ou2) rotations: étiquettes de symétrie connue, on soustrait les RI correspondantes à Γ tot!
- Nouvelle base de dimension 3N-6 associée à décomposition en représentation irréductible $\Gamma_{\rm vib}$
- Attribution des différentes symétries / représentation des mouvements atomiques

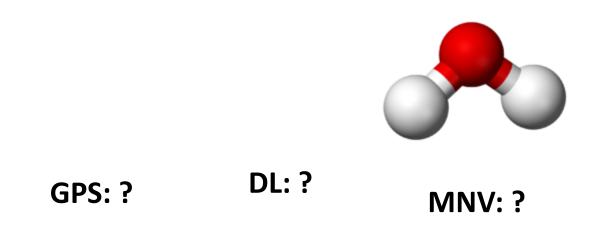
Exemple de résultat possible, dans le cas d'une molécule de 5 atomes =>9 MNV

$$\Gamma_{\text{vib}} = 3A_1 + 3E$$

3 MNV de même symétrie, mais énergie différente

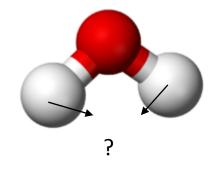
6 MNV de même symétrie, Dégénérés deux à deux en énergie

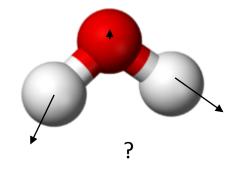
Exemple applicatif n°1: une molécule simple: H2O

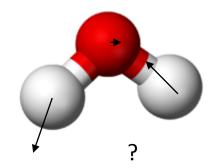


$$\Gamma_{\text{tot}}$$
 (= Σ_{RI}): ?

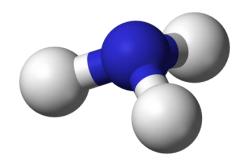
 Γ_{vib} : ?







Exemple n°2: plus difficile, molécule C₃v l'ammoniac



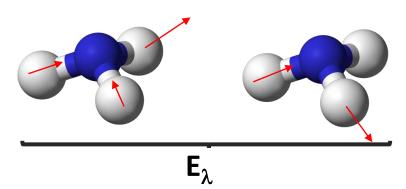
=> Même procédure que pour H20

=> Facile!

$$\Gamma_{\text{vib}} = 2A_1 + 2E$$

=>Comment gérer les modes E => dégénérescence **double**, bases à **3** liaisons et **3** angles....

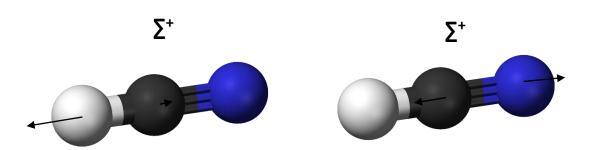
Par commodité, représentation simplifiée!

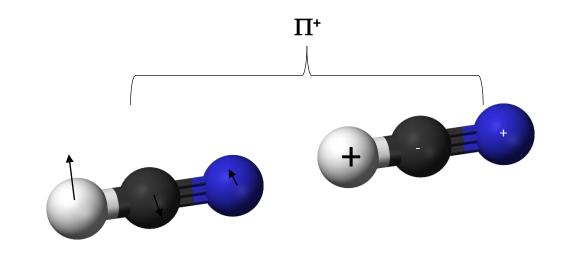


Exemple n°3: plus difficile, groupe ∞ (c_{∞_v}) acide cyanhydrique

=> Pb: gérer des calculs avec une infinité d'opération de symétrie sur une infinité de RI!!!!

On trouve assez facilement finalement que Γ_{vib} =2 Σ^+ + Π^+

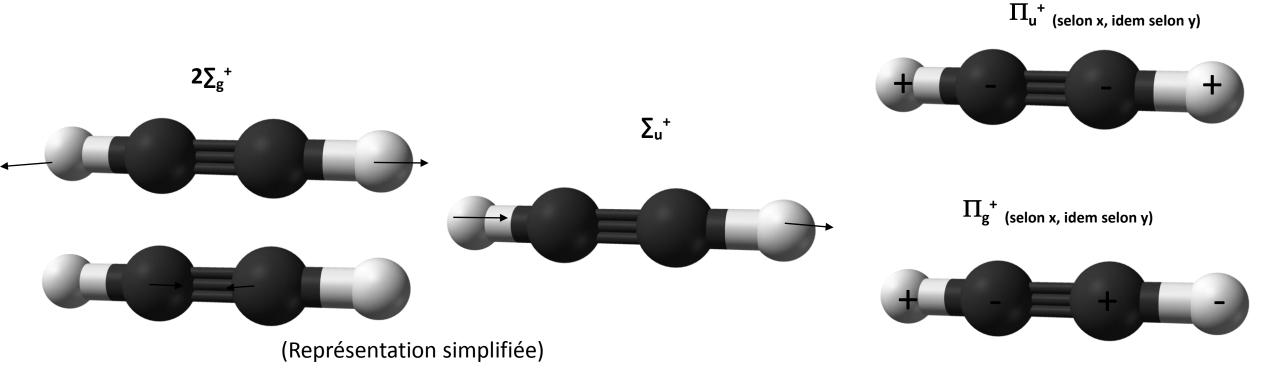




Modes non-dégénérés: mvt des atomes uniquement selon z: trivial

Mode dégénéré: déformation angle HCN, selon x ou y

Exemple n°4 : cas le plus difficile, le groupe $D_{\infty h}$



Solution alternative (cf TD MNV, exercices 1&2)

- Choisir une base appropriée en dimension, correspondant au phénomène à étudier (ex: élongation de n liaisons CH)
- Appliquer la procédure classique d'étude des transformations de cette base dans le GPS de la molécule, et sa décomposition en nRI
- La méthodes des opérateurs de projections permet d'accéder à une représentation de chacun des n MNV associés

• M4: c'est la méthode dite « par fragments » idéale pour des questions simples, mais sources d'erreurs si base difficile à identifier (déformation angle dièdres par ex.)

Spectroscopies IR et Raman

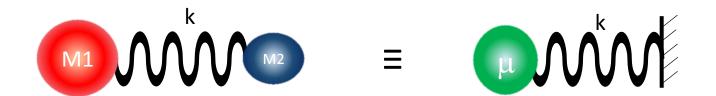
Prérequis

- Mécanique du point: l'oscillateur
- GPS!!

Objectifs

- Quantifier les énergies associées aux différentes transitions vibrationnelles associées à ces deux spectroscopies
- Percevoir les analogies mais surtout les différences et complémentarités entre les deux techniques
- Comprendre les paramètres influençant la probabilité d'une transition donnée
- Savoir prédire le nombre (précisément!!) et la position (approximativement) des bandes observées
- Savoir utiliser un spectre IR/Raman dans le cadre d'une élucidation structurale

Vibration d'une molécule: cas simple d'un diatomique



• L'équation du mouvement s'apparente à celle du ressort (oscillateur harmonique)

Potentiel harmonique de forme E= 1/2kx²

On peut poser

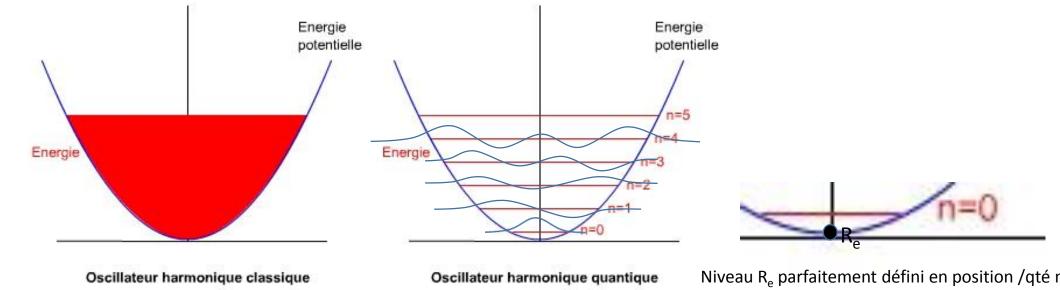
$$\left(\frac{d_x^2}{{d_t}^2}\right) = -\left(\frac{k}{\mu}\right)x$$

Cette équation différentielle admet pour solution expression de la forme $x=xo\cos(\omega t+\Phi)$

Avec «
$$\omega = \sqrt{\frac{k}{\mu}}$$
 » fréquence propre de l'oscillateur

Oscillateur harmonique: une formulation quantique

- Oscillateur classique: oscille à fréquence constante, mais amplitude x indéterminée (dépend de l'énergie imprimée au système)
- Oscillateur quantique: amplitude oscillation ne peut prendre que des valeurs propres, multiples de la fréquence de résonnance ν par quanta de Planck/Dirac \hbar et par le nombre quantique de vibration ν



Source modifiée: diffusion ENS

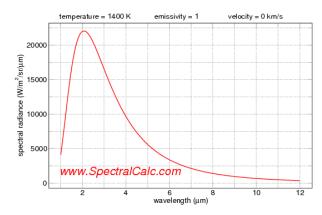
Niveau R_e parfaitement défini en position /qté mvt => Non autorisé pour un système quantique

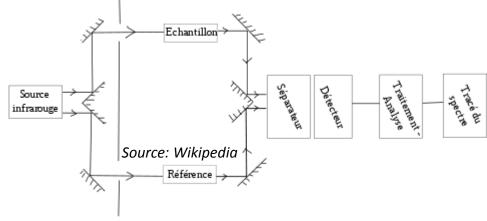
@ 3xplus.com

$$\mathsf{M5:} \ E_{(v)} = h \nu (v + \frac{1}{2})$$
 Soit en cm⁻¹ $G_{(v)} = \overline{\omega_e} (v + \frac{1}{2})$ Lié au principe d'incertitude

spectroscopie IR vibrationnelle: principe et règles

- Une lumière IR polychromatique (Si-C, « corps noir » à 1400K) est envoyée sur l'échantillon
- Certains MNV entrent en résonnance avec fréquences spécifiques de la lumière => absorption
- Le signal résultant est comparé au signal_iincident: on obtient une liste des fréquences soustraites





détails sur l'appareillage: voir ici

Conditions de résonnance:

$$E_{photon} = E_{vibr} = hv$$

$$|R_v|^2 \neq 0$$

Si on prend une déformation uniaxiale:

$$|R_{v}| = \int \psi_{v}' \, \mu \, \psi_{v}'' \, dx$$

$$\mu = \mu_e + (\frac{d\mu}{dx})x$$

$$\left(\frac{d\mu}{dx}\right) \neq 0$$

M6, D2: On montre que
$$|R_v| = \left(\frac{d\mu}{dx}\right) \int \psi_v' x \psi_v'' dx \neq 0$$

$$\int \psi_{v}' x \psi_{v}'' dx \neq 0 \Rightarrow \Delta v = +1$$

spectroscopie IR vibrationnelle: principes et règles

- Raisonnement fait sur une liaison (mvt selon axe x), valable pour une molécule selon x,y,z
- Vibration active en IR seulement

$$\int \psi'_{v} \, \mu_{x} \, \psi''_{v} \, dx \neq 0 \qquad \qquad \Gamma_{v'} \otimes \Gamma_{x} \otimes \Gamma_{v''} \supset A_{1} \, (ou \, A_{g})$$
ou
$$\int \psi'_{v} \, \mu_{y} \, \psi''_{v} \, dy \neq 0$$
ou
$$\int \psi'_{v} \, \mu_{z} \, \psi''_{v} \, dz \neq 0$$

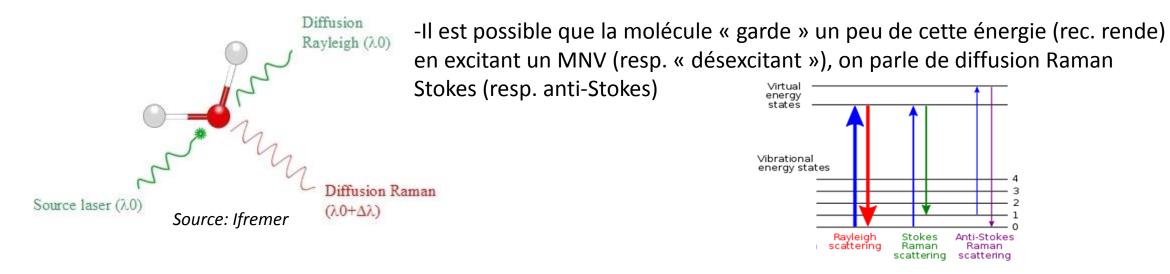
$$\Gamma_{v'} \otimes \Gamma_{x} \otimes \Gamma_{v''} \supset A_{1} \, (ou \, A_{g})$$

$$\Gamma_{v'} = \Gamma_{x} \, et/ou \, \Gamma_{y} \, et/ou \, \Gamma_{z}$$

$$\Gamma_{v'} \otimes \Gamma_{x} \otimes \Gamma_{v''} \supset A_{1} \, (ou \, A_{g})$$

Spectroscopie Raman vibrationnelle: principes et règles

- -Une lumière IR (1064 nm) ou UV (514 nm) est envoyée sur l'échantillon=> diffusion d'une partie des photons
- -Diffusion peut être vue comme une absorption/réémission instantanée d'un photon vers / à partir d'un état « virtuel »



-de même que probabilité d'absorption est liée à moment dipolaire (tenseur premier ordre μ), probabilité de diffusion lié à polarisabilité (tenseur d'ordre deux α)

$$|R_{v}| = \int \psi'_{v} \alpha \psi''_{v} dx \qquad |R_{v}| = \left(\frac{d\alpha}{dx}\right) \int \psi'_{v} x \psi''_{v} dx \neq 0 \qquad \int \psi'_{v} x \psi''_{v} dx \neq 0 \Rightarrow \Delta v = \pm 1$$

M6': règles de sélection similaires à IR, excepté que polarisabilité remplace moment dipolaire

Spectroscopie Raman vibrationnelle: principes et règles

Tout comme

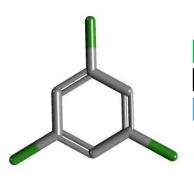
$$\mu = \begin{vmatrix} \mu_x \\ \mu_y \\ \mu_z \end{vmatrix}$$

$$\alpha = \begin{bmatrix} \alpha_{xx} & \alpha_{yx} & \alpha_{zx} \\ \alpha_{xy} & \alpha_{yy} & \alpha_{zy} \\ \alpha_{xz} & \alpha_{yz} & \alpha_{zz} \end{bmatrix}$$

Par analogie avec spectro IR, Vibration active en IR seulement

$$\Gamma_{v'} = \Gamma_{\alpha ij}$$

1,3,5 trichlorobenzene



D_{3h}	I	$2C_3$	$3C_2$	σ_h	$2S_3$	$3\sigma_v$		
A'_1	1	1	1	1	1	1		$\alpha_{xx} + \alpha_{yy}, \alpha_{zz}$
A_2'	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(T_x, T_y)	$(\alpha_{xx}-\alpha_{yy},\alpha_{xy})$
A_1''	1	1	1	-1	-1	-1		
A_2''	1	1	-1	-1	-1	1	T_z	
$E^{\prime\prime}$	2	-1	0	-2	1	0	(R_x,R_y)	$(\alpha_{xz},\alpha_{yz})$
	A'_{1} A'_{2} E' A''_{1} A''_{2}	A'_{1} 1 A'_{2} 1 E' 2 A''_{1} 1 A''_{2} 1	A'_{1} 1 1 A'_{2} 1 1 A''_{2} 1 1 A''_{1} 1 1 A''_{2} 1 1 1 A'''_{2} 1 1	A'_1 1 1 1 1 A'_2 1 1 -1 A''_1 1 1 1 A''_2 1 1 1 -1 A''_2 1 1 1 -1	A'_1 1 1 1 1 1 A'_2 1 1 -1 1 A''_1 1 1 1 1 A''_2 1 1 1 1 1 -1 A''_2 1 1 1 -1 -1	A'_1 1 1 1 1 1 1 A'_2 1 1 -1 1 A''_1 1 1 1 1 A''_2 1 1 1 1 -1 -1 A''_1 1 1 1 -1 -1 A''_2 1 1 1 -1 -1	A'_1 1 1 1 1 1 1 1 1 A'_2 1 1 1 -1 1 1 -1 A'_2 1 1 1 1 -1 1 1 A'_3 1 1 1 1 1 1 1 1 A'_4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4 cas de figure / MNVs

-non-actifs IR et Raman

-actif IR, pas Raman

-actif Raman, pas IR

-actif IR et Raman

Cas particulier des molécules centrosymétriques

 \circ

	D_{2h}	I	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$	
	A_g	1	1	1	1	1	1	1	1	$\alpha_{xx}, \alpha_{yy}, \alpha_{zz}$
	B_{1g}	1	1	-1	-1	1	1	-1	-1	$R_z \alpha_{xy}$
Ö	B_{2g}	1	-1	1	-1	1	-1	1	-1	$R_y \alpha_{xz}$
	B_{3g}	1	-1	-1	1	1	-1	-1	1	$R_x \alpha_{yz}$
	A_u	1	1	1	1	-1	-1	-1	-1	
	B_{1u}	1	1	-1	-1	-1	-1	1	1	T_z
	B_{2u}	1	-1	1	-1	-1	1	-1	1	T_{y}
	B_{3u}	1	-1	-1	1	-1	1	1	-1	T_x

Vibrateurs diatomiques: position et intensité

• Position d'une bande (nbre d'onde généralement noté v si élongation!)

$$v_i = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$
 $v_i \uparrow \text{lorsque } \mu \downarrow$

=> Pour un vibrateur C-X

$$\nu_{\text{C-H}}$$
 (2700-3100 cm⁻¹) > $\nu_{\text{C-C}}$ (1300 cm⁻¹) > $\nu_{\text{C-O}}$ (1200 cm⁻¹) > $\nu_{\text{C-Br}}$ (600 cm⁻¹)

$$\nu_i \uparrow lorsque k \uparrow$$

=> On peut approximer $k_{double} \approx 2 k_{simple}$, $k_{triple} \approx 3 k_{simple}$

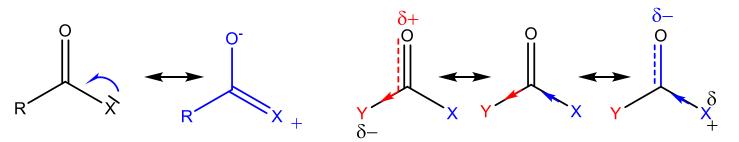
$$\nu_{\text{C-N}}$$
 (1250 cm-1) < $\nu_{\text{C=N}}$ (1750 cm⁻¹) < $\nu_{\text{C=N}}$ (2150 cm-1)

Vibrateurs diatomiques: position et intensité

• Autres facteurs influençant la fréquence de vibration

=>Paramètres de substitution, effets inductifs et mésomères

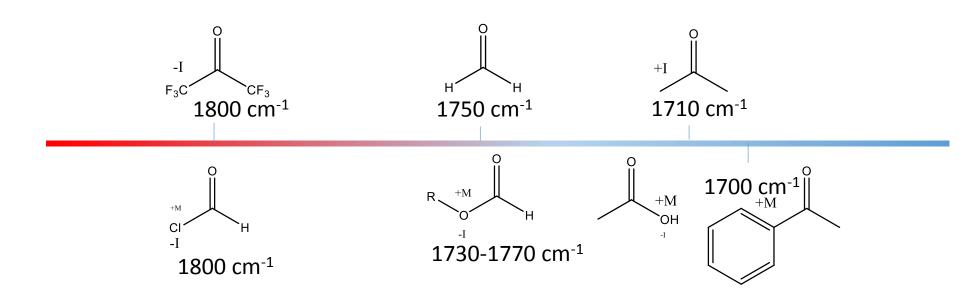
L'exemple du carbonyle



- Effet +M, +I: diminution force liaison

- Effet -I: augmentation force liaison

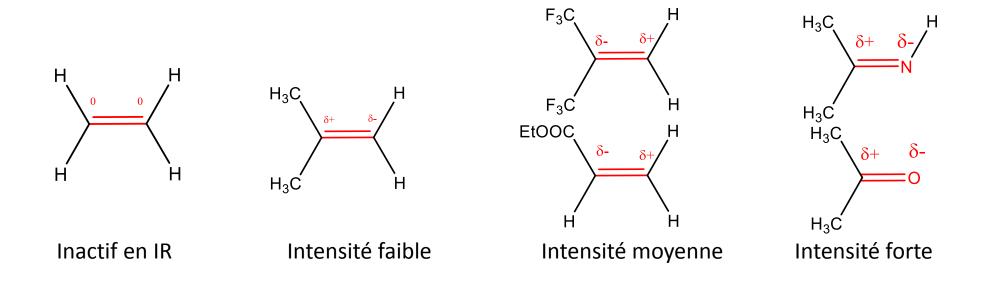
IR des composés en phase gaz



Intensité de l'absorption dans le cas d'un diatomique

• Est reliée au carré du moment de transition

$$|R_v| = \int \psi_v' \, \mu \, \psi_v'' \, dx$$
 — Nous avons vu que terme maximisé pour fort $\Delta \mu$



De même intensité relative

C-C

C-H

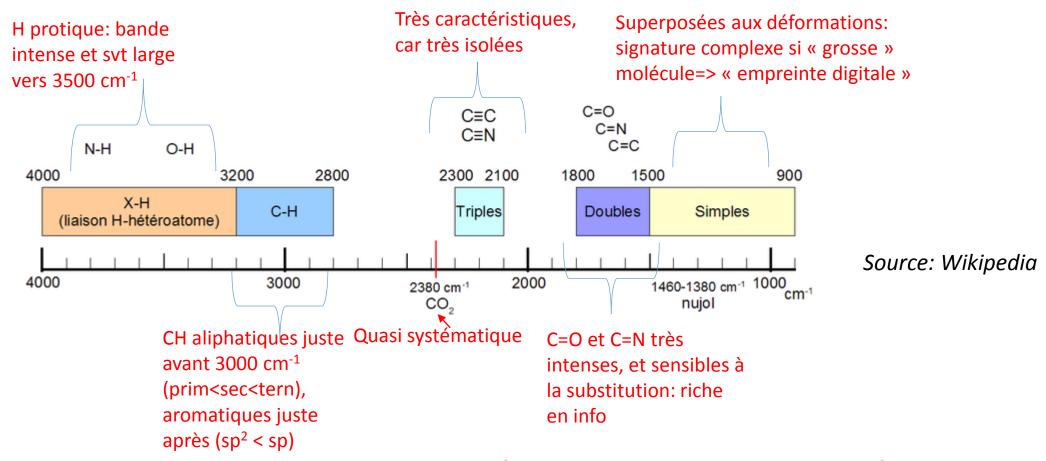
< C-Cl, I, Br

<

C-O, N

Tables de fréquences caractéristiques d'élongation

- Pas infaillible, mais utile!! (cf annexe en fin de poly)
- On peut très grossièrement simplifier ce schéma



M8:la position des bandes de vibrateurs diatomiques (ainsi que leur intensité relative f, m, F) est déterminable et tabulée

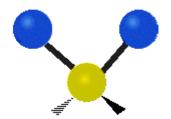
Les déformations

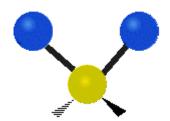
- Fréquences et intensités plus difficilement appréciables par calcul simple
- Dans les molécules carbonées, chaque déformation porte un nom précis, généralement évocateur

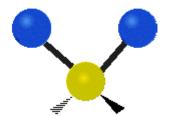
Scissoring = cisaillement

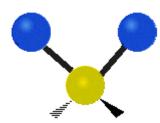
Wagging = agitation

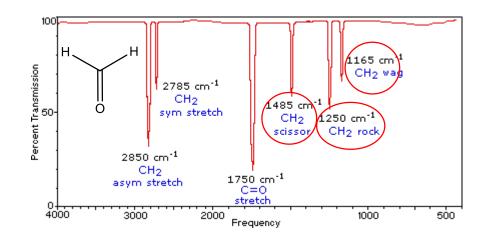
twisting = torsion







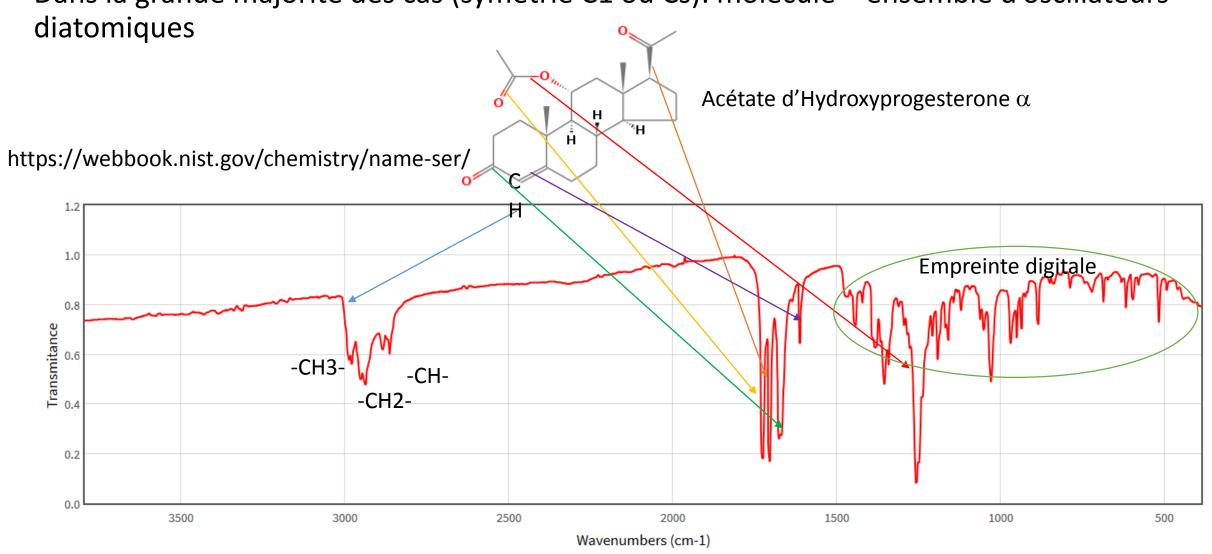




Q: mais où est donc le twisting ???

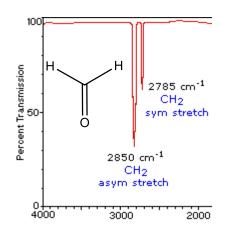
Résolution de structures

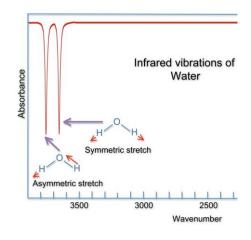
• Dans la grande majorité des cas (symétrie C1 ou Cs): molécule ≈ ensemble d'oscillateurs

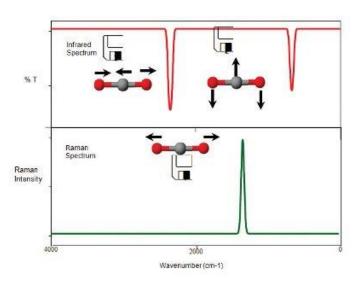


Vibrations collectives d'oscillateurs

- Molécules polyatomiques possédant plusieurs vibrateurs identiques
 - => TdG permet d'identifier les MNV de vibration possibles ET actifs
 - => aucun renseignement a priori sur les énergies/intensités relatives des différents MNV: multicritères dépendant, seul calcul complexe permet résolution
 - => De manière générale, retenir que les élongations asymétriques interviennent à plus haute énergie et plus forte intensité que les symétriques en IR 'TD: complexe de molybdene)(

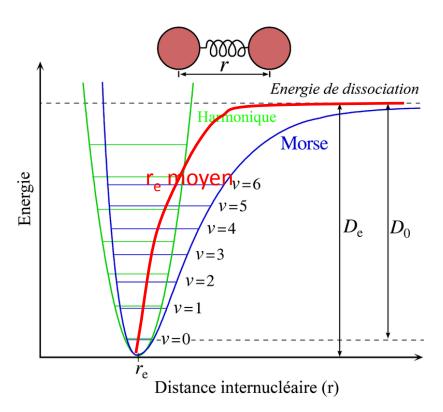






L'anharmonicité: cas d'un vibrateur diatomique

- La liaison chimique n'est pas un ressort (et non!!).
- Potentiel harmonique= approximation valable seulement à faible amplitude de vibration
- Potentiel semi-empirique de Morse : plus réaliste (« diatomique ») exprimé par



$$V_r = V_{re} + De (1 - e^{-a(r - r_e)})^2$$

*2 conséquences:

-relâchement des règles de sélection

 $\Delta v = +1 \Rightarrow +2, +3$ (harmoniques ou overtones; très peu intenses)

-abaissement progressif de l'écart entre niveaux consécutifs

D, M8:
$$G_{(v)} = \boldsymbol{\omega}_{e} \left(v + \frac{1}{2} \right) - \boldsymbol{\omega}_{e} x_{e} \left(v + \frac{1}{2} \right)^{2}$$

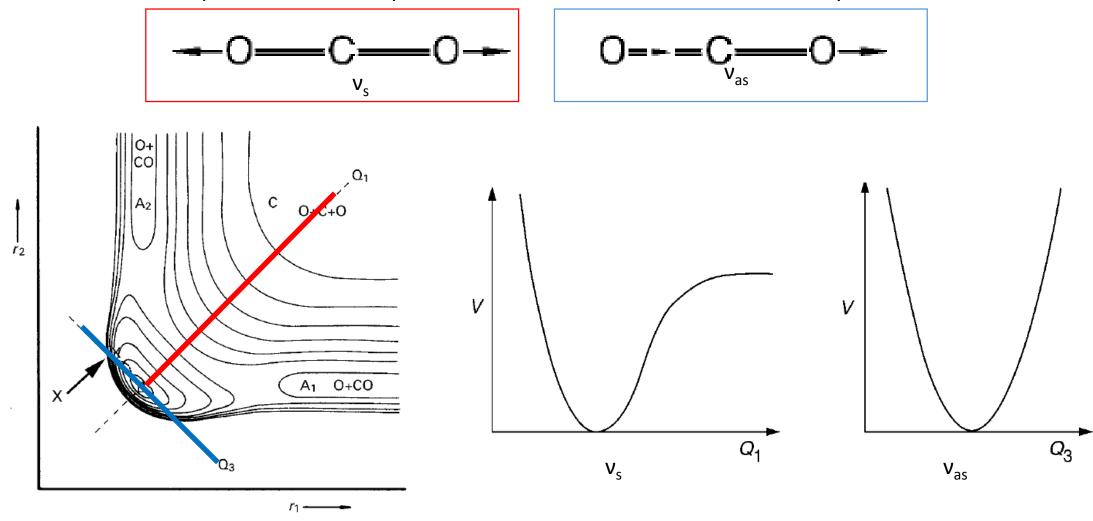
 $m x_e$ permet d'approximer De selon $D_{
m e} \simeq {\omega_{
m e}^2 \over 4\omega_{
m e} x_{
m e}}$

M9: anharmonicité = diminution de la fréquence caractéristique de bande apparition de bandes overtones

TD: combinaison de ces deux effets permet mesure De d'un diatomique en comparant v fondamentale et harmonique dans un spectre

L'anharmonicité: cas d'un vibrateur couplé

• Potentiel de Morse pas un bon descripteur: anharmonicité différente suivant symétrie vibration



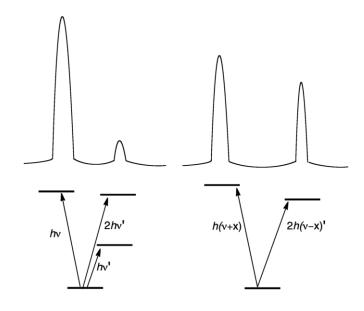
AH transition non-dissociative (asymétrique) < AH transition dissociative (symétrique)

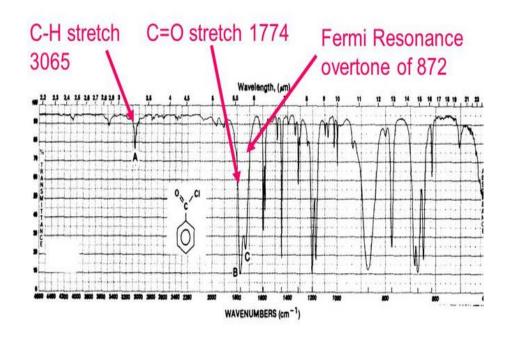
Résonnance de Fermi

• « Mélange quantique » de deux MNV i/ de même symétrie ii/ d'énergie proche, mais dont une est un « overtone »

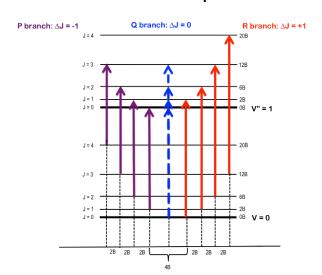
\Rightarrow 2 conséquences :

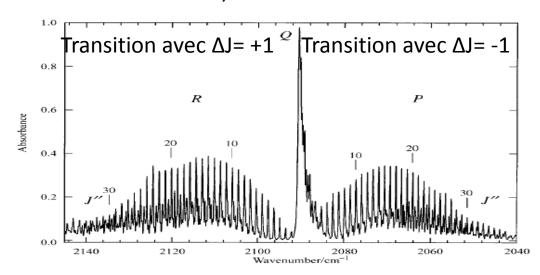
- Décalage des deux bandes vers
- Transfert de probabilité de la fondamentale vers l'harmonique





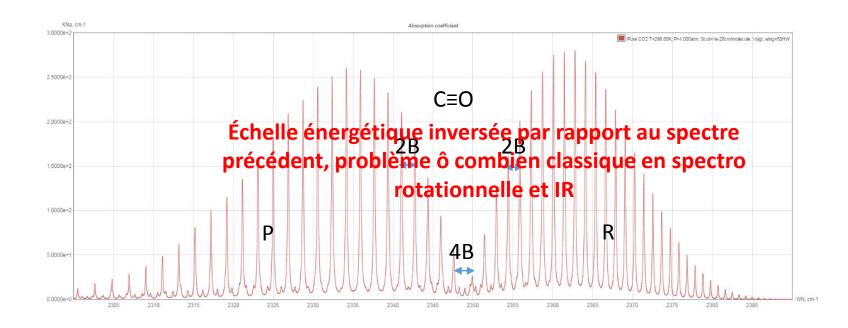
- La transition entre deux niveaux vibroniques peut s'accompagner d'un changement de niveau rotationnel
- Les règles de sélection quantiques propres à chacune des deux spectroscopies sont maintenues
 - $\Delta v = \pm 1$ liée à la condition de non nullité de $\int \psi_v' x \psi_v'' dx$
 - $\Delta J = \pm 1$ liée à la conservation du moment cinétique total du système (mais $\Delta J = 0$ peut être observé spécialement dans le cas de molécules non-linéaires)

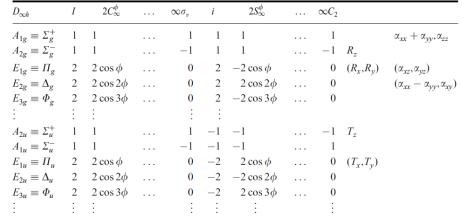




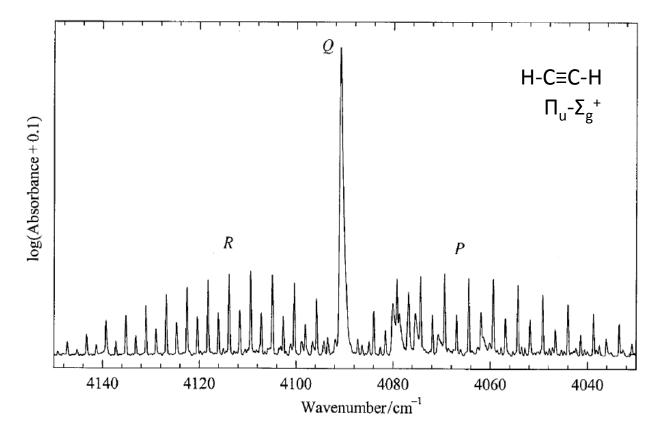
M10: combinaison de phénomènes ro-vibrationnels => massifs P (Q) et R séparés de 2B entre chaque transition

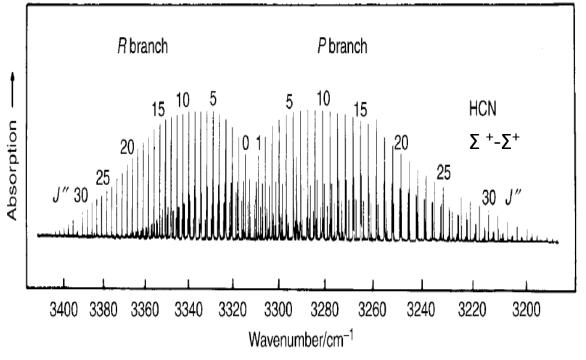
- Cas des diatomiques
 - Règle ΔJ= ±1 stricte => bande Q jamais observée
 - Séries de deux massifs avec écart entre massifs ≈4B et écart entre bandes de massifs ≈2B



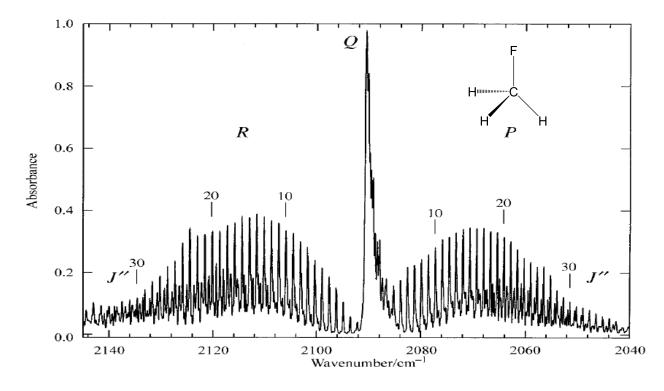


- Cas des molécules linéaires
 - La règle ΔJ= ±1 dépend de la multiplicité du terme spectroscopique excité



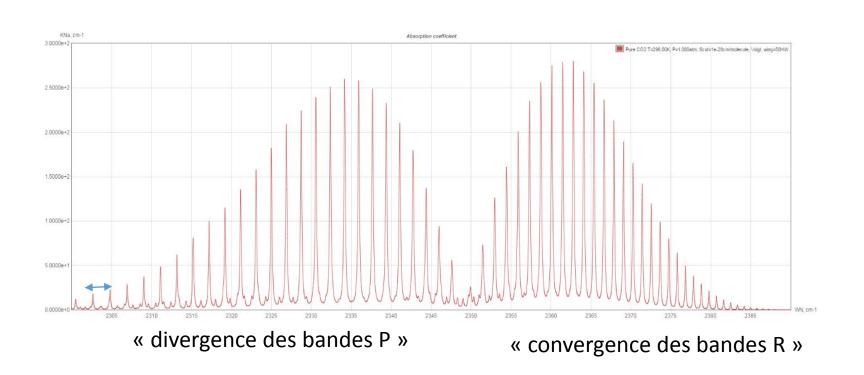


- Cas général (non linéaire)
 - Les transitions rovibrationnelles impliquant ΔJ=0 et ±1 sont toutes impliquées, en premier abord, le spectre (cas d'une toupie symétrique ou sphérique)ressemble à celui d'une molécule linéaire



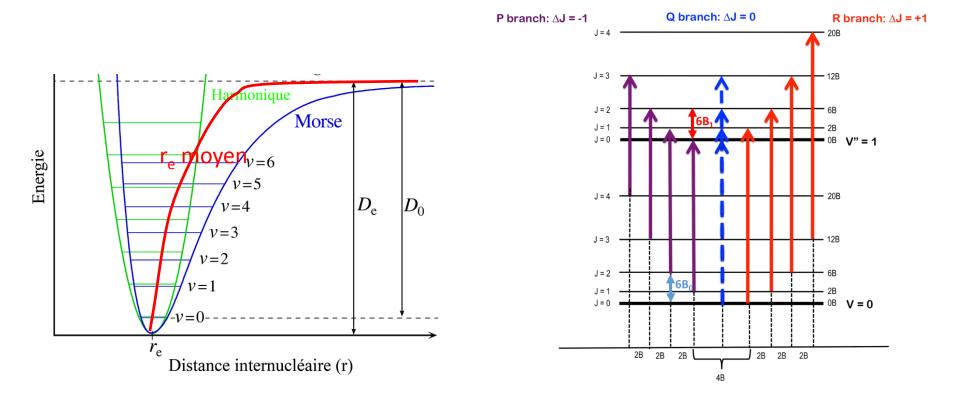
Influence du niveau vibrationnel sur le terme B

• Nous avons pour l'instant approximé que $B_0 = B_1 = B$, auquel cas espacement régulier 2B entre chaque bande



Influence du niveau vibrationnel sur le terme B

• En réalité $B_v \approx B_e - \alpha(v+1/2) =>$ peut on « déconvoluer » B0 et B1



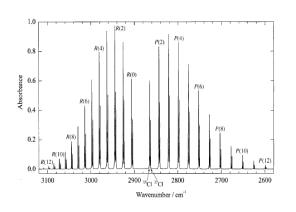
M11: la méthode dite de combinaison de différences permet de distinguer termes rotationnels associés aux niveaux de v

Influence du niveau vibrationnel sur le terme B

- Application pratique: détermination de longueur moyenne de liaison aux différents états vibrationnels et à l'équilibre
 - ⇒ Re non accessible par une mesure directe (principe d'incertitude)
 - ⇒En remontant à Be, on peut exprimer, pour un diatomique

$$R_e = \sqrt{\frac{h}{8\pi^2 c\mu B_e}}$$

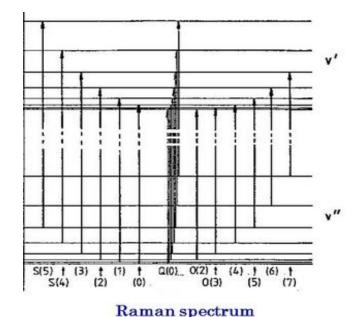
$$R_e = \sqrt{\frac{h}{8\pi^2 c\mu [B_v + \alpha(v + \frac{1}{2})]}}$$



Exemple: Pour H³⁵Cl, on mesure par MCD un B₀=10,440 cm⁻¹ et un B₁=10,136 cm¹ soit α = 0,304 cm⁻¹ et Be=10,592 cm⁻¹ soit R_e=127 pm

Rovibrationnel Raman (notions générales)

- De la même manière que pour les transitions vibrationnelles IR, les bandes Raman pourront montrer une sous-structure rotationnelle
 - périodicité différente (π) de l'elipsoide de polarisabilité/ moment dipolaire
 => Régle de sélection en ΔJ=±2



 $\Delta J = 0$, ± 2

La combinaison de différence nous permet de trouver

$$(S_{J-1}) - (O_{J+1}) = 4B_0 (2J+1)$$

$$(S_J) - (O_J) = 4B_1(2J+1)$$

Graphiquement, on peut aussi accéder à la valeur de B_0 et B_1 par $(Q)-(O_2)=6$ B_0 et $(S_0)-(Q)=6$ B_1

Conclusions

- M1: Une molécule de N atomes possède 3N-6 MNV, 3N-5 dans une molécule linéaire
- M2: Chaque MNV possède un comportement propre / éléments de symétrie => peut être désigné par RI
- M3: Dans le cas d'oscillations collectives, la TdG permet de retrouver à la fois la symétrie et la représentation des différents MNV en examinant les déplacements atomiques
- M4: alternativement, une méthode par fragment peut permettre d'accéder à des informations « base par base » en considérant succesivement: élongations de liaisons, déformation d'angles, etc...
- M5: l'expression quantique (nbre d'onde) de l'énergie vibrationnelle d'une moélcule à son niveau électronique fondamental est donnée par $G_{(v)} = \overline{\omega_e}(v + \frac{1}{2})$ avec pour un OD $\overline{\omega_e} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$
- M6: règles de sélection $\Delta v = {}^{+}1$ et $\left(\frac{d\mu}{dx}\right) \neq 0$ (IR) ou $\left(\frac{d\alpha}{dx}\right) \neq 0$
- M7: le caractère autorisé ou permis des MNV dans un groupe donné peut être trouvé dans sa table de caractères; pour les molécules CS, les règles de sélection Ir et Raman sont mutuellement exclusives
- M8:la position des bandes de vibrateurs diatomiques (ainsi que leur intensité relative f, m, F) est déterminable et tabulée
- M9: l'anharmonicité (fonction de Morse comme descripteur de l'oscillateur diatomique) entraine une diminution de la fréquence caractéristique de bande et l'apparition de bandes overtones; dans certains cas, ces bandes faibles pêuvent être éxacerbées par des résonances de Fermi.
- M10: En IR comme en Raman, il est parfois possible pour des échantillons en phase gaz dilué d'observer une structure rovibrationnelle
- M11: cette structure est riche en information: il est possible de quantifier l'anharmonicité du système et la dépendance de la longueur de liaison moyenne en fonction du niveau vibrationnel

Annexe: table de fréquences caractéristiques

C-I valence	C-Br valence	C-Cl yalence		135 deformation	animimothe artist			C _H -II aremanduc	p-dismistrate adjointation		m-disubstitue adjornation		P	monosubstitué	C _{ttl} -H aromatique déformation	C-P valence	C-C valence	C-0 valence	(4)		u amide d	C+N valence	Maco	N-O	C=C aromatione valence	C=C valence	C=O acide valence		Among a country		C=O chlorure d'acyle vulence	C=O anhydride valence	C=N valence	CmC valence	O-Hacide carboxylique valence	yde		Sans			N-Hamide valence	imino vinceso	N_Hamine indexes	
500-600	600-750	700-800	4	810 - 865		000 000	010 200	770-800	900 - 900	337 - 12	200 - 500	735-770		690 - 770	730-770	1000 - 1040	1000-1250	1050-1450		1415-1470	ALE		59E.1 - 5EE.1	1600 1600	1450 - 1600	1 625 - 1 685	1680-1710	analoguem ne 20 a 20 cm	000 1 000 1	1,700 - 1,740		- 55	2 120 - 2 260	2 100 - 2 250	2 500 - 3 200	2750-2900	2 800 - 3 000	3 030 - 3 080	3.000 - 3.100	3 380 - 3 310	3 100 - 3 500	the state of proper	0051 - 0011	3,700 - 3,000
F	F	Ŧ	- Assert Control of	F:2 bandes	E CT III 1 2 GRITICS	Date - Should	Action of the last of	Ferm: 2 bandes		-	Figure 7 to mind	70			F;2 bundes	*91	71	F	F;2 bandes	TI.	Poum	F	Commo ** 1	E. 7 handar	variable : 3 ou 4 handes	В	T			v, "1	-	F; 2 bundes	Foam	•	Fam; luge		F	=		mouf	F		The second	F: line