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Outline

Two parts:

1. Basic notions and the main result: graphs, terms, and axioms.

2. Main tools of the proof, or how to decompose graphs.
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Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.
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When do terms parse the same graph ?
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a f(b ∥ (32) l a)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?
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open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Proposition
Graphs of terms t such that the maximum arity appearing in t is 4 are exactly
graphs of treewidth at most 3.

To get bounded treewidth just bound the number of sources of terms

We focus on graphs of treewidth at most 3.
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Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c,

a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of treewidth at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following structural
decompositions adapted to our graphs, so two sides:
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Recursively decomposing
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A usual decomposition in graph theory
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Reduce to more and more connected graphs by identifying separators

:
A graph is the disjoint union of its connected components:

A connected graph has a tree structure when looking only at 1-separators, or
cutvertices:

A biconnected graph still admits a canonical decomposition along its
2-separators (Tutte, 1961).

We adapt these decompositions to sourced graphs.
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Consider the following graph:

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,
Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.
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x, y, and z (but notw) are called forget points (shown as triangles).
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canonical choices.
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Every hard graph of treewidth at most 3 has at least one (minimal) separation pair
consisting of forget points.
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Whenever a hard graph has two distinct (minimal) separation pairs whose vertices
are forget points, then it must have one of the following shapes:
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The proof of the last theorem requires a case analysis handling lots of possibilities.

The following lemma reduces their number:

Lemma
A graph with 3 sources either has the triangle K3 as a minor on its sources, or it has
one of the following shapes:

Graph minors: a way to see patterns in graphs, generalising the notion of
subgraphs.
This is reminiscent of the proposition stating that a graph without a cycle (i.e.
without K3 as a minor) is a tree. Our lemma is stronger.
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Generalising to treewidth at most 4 ?

we can go up to 3-separators but no more,
the number of analysed cases of the problem explodes,
the main tool to reduce it here is the last lemma, which would need to be
generalised for K4 instead of K3,
but such a generalisation is not possible.
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Two possible algorithmic applications:

testing treewidth at most 3,
solving the isomorphism problem for graphs of treewidth at most 3.
no polynomial algorithms are known for these problems when treewidth is
not fixed,
linear algorithms are already known for both problems and treewidth at most
3 graphs,

The classification result might be usefull to get heuristic to compute treewidth in
general.
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Reminders:
graphs with sources and hyperedges,
syntax for bounded treewidth,
axioms for treewidth at most 3,
proven by structural analysis (full prime decompositions, anchors, and
separation pairs),
two research lines: generalisation and algorithmic aspects (testing treewidth
at most 3 and the isomorphism on graphs of treewidth at most 3).
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