
A finite presentation of graphs of treewidth
at most 3

Amina Doumane, Humeau Samuel, Damien Pous
-

LIP, ENS de Lyon

12/07/2024

Outline

Two parts:

1. Basic notions and the main result: graphs, terms, and axioms.

2. Main tools of the proof, or how to decompose graphs.

Graphs, terms, treewidth, and the main result 1/19

Graphs, terms, treewidth,
and the main result

Graphs

Graphs, terms, treewidth, and the main result 2/19

Specificities:
Hyperedges,
Numbered sources: squared
vertices, form the interface of
the graph.

Arity of a graph: number of sources.

Graphs

Graphs, terms, treewidth, and the main result 2/19

Specificities:

Hyperedges,
Numbered sources: squared
vertices, form the interface of
the graph.

Arity of a graph: number of sources.

Graphs

Graphs, terms, treewidth, and the main result 2/19

Specificities:
Hyperedges,

Numbered sources: squared
vertices, form the interface of
the graph.

Arity of a graph: number of sources.

Graphs

Graphs, terms, treewidth, and the main result 2/19

1

2

3

Specificities:
Hyperedges,

Numbered sources: squared
vertices, form the interface of
the graph.

Arity of a graph: number of sources.

Graphs

Graphs, terms, treewidth, and the main result 2/19

1

2

3

Specificities:
Hyperedges,
Numbered sources: squared
vertices, form the interface of
the graph.

Arity of a graph: number of sources.

Graphs

Graphs, terms, treewidth, and the main result 2/19

1

2

3

Specificities:
Hyperedges,
Numbered sources: squared
vertices, form the interface of
the graph.

Arity of a graph: number of sources.

Graph operations

Graphs, terms, treewidth, and the main result 3/19

Parallel operation, − ∥ −:

=∥

1

2

3 1

2

3 1

2

3

Lift operation, l(−):

=

1

2

31

2

3

l
4

Edge of arity k, a:

2

1 3

Forget operation, f(−):

=

1

2

3

f

1

2

Permutation of sources, p(−):

=

3

2

11

2

3

(31)

Empty graph of arity k, ∅:

2

1 3

Graph operations

Graphs, terms, treewidth, and the main result 3/19

Parallel operation, − ∥ −:

same arity

=∥

1

2

3 1

2

3 1

2

3

Lift operation, l(−):

=

1

2

31

2

3

l
4

Edge of arity k, a:

2

1 3

Forget operation, f(−):

=

1

2

3

f

1

2

Permutation of sources, p(−):

=

3

2

11

2

3

(31)

Empty graph of arity k, ∅:

2

1 3

Graph operations

Graphs, terms, treewidth, and the main result 3/19

Parallel operation, − ∥ −:

same arity

=∥

1

2

3 1

2

3 1

2

3

Lift operation, l(−):

=

1

2

31

2

3

l
4

Edge of arity k, a:

2

1 3

Forget operation, f(−):

=

1

2

3

f

1

2

Permutation of sources, p(−):

=

3

2

11

2

3

(31)

Empty graph of arity k, ∅:

2

1 3

Graph operations

Graphs, terms, treewidth, and the main result 3/19

Parallel operation, − ∥ −:

same arity

=∥

1

2

3 1

2

3 1

2

3

Lift operation, l(−):

=

1

2

31

2

3

l
4

Edge of arity k, a:

2

1 3

Forget operation, f(−):

=

1

2

3

f

1

2

Permutation of sources, p(−):

=

3

2

11

2

3

(31)

Empty graph of arity k, ∅:

2

1 3

Graph operations

Graphs, terms, treewidth, and the main result 3/19

Parallel operation, − ∥ −:

same arity

=∥

1

2

3 1

2

3 1

2

3

Lift operation, l(−):

=

1

2

31

2

3

l
4

Edge of arity k, a:

2

1 3

Forget operation, f(−):

=

1

2

3

f

1

2

Permutation of sources, p(−):

=

3

2

11

2

3

(31)

Empty graph of arity k, ∅:

2

1 3

Graph operations

Graphs, terms, treewidth, and the main result 3/19

Parallel operation, − ∥ −:

same arity

=∥

1

2

3 1

2

3 1

2

3

Lift operation, l(−):

=

1

2

31

2

3

l
4

Edge of arity k, a:

2

1 3

Forget operation, f(−):

=

1

2

3

f

1

2

Permutation of sources, p(−):

=

3

2

11

2

3

(31)

Empty graph of arity k, ∅:

2

1 3

Graph operations

Graphs, terms, treewidth, and the main result 3/19

Parallel operation, − ∥ −:

same arity

=∥

1

2

3 1

2

3 1

2

3

Lift operation, l(−):

=

1

2

31

2

3

l
4

Edge of arity k, a:

2

1 3

Forget operation, f(−):

=

1

2

3

f

1

2

Permutation of sources, p(−):

=

3

2

11

2

3

(31)

Empty graph of arity k, ∅:

2

1 3

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

1

a

2

a

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

1 3

a

2

la

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

1 2

a

3

(32) l a

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

1 2
b

a

3

b ∥ (32) l a

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

1 2
b

a f(b ∥ (32) l a)

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

1 2
b

a f(b ∥ (32) l a)

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

1 2
b

a f(b ∥ (32) l a)

Function giving the graph of a term noted g t.

Parsing of a graph G: term t such that g t ≃ G.

Terms

Graphs, terms, treewidth, and the main result 4/19

Corresponding grammar:

t, u ::= t ∥ u | l t | f t | p t | a | ∅,

Example: f(b ∥ (32) l a)

1 2
b

a f(b ∥ (32) l a)

Function giving the graph of a term noted g t.
Parsing of a graph G: term t such that g t ≃ G.

Multiple parsings and goal

Graphs, terms, treewidth, and the main result 5/19

When do terms parse the same graph ?

1 2
b

a f(b ∥ (32) l a)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Multiple parsings and goal

Graphs, terms, treewidth, and the main result 5/19

When do terms parse the same graph ?

1 2
b

a f((32)(32)b ∥ (32) l a)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Multiple parsings and goal

Graphs, terms, treewidth, and the main result 5/19

When do terms parse the same graph ?

1 2
b

a f((32)(32)b ∥ (32) l a)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Multiple parsings and goal

Graphs, terms, treewidth, and the main result 5/19

When do terms parse the same graph ?

1 2
b

a f (32)((32)b ∥ l a)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Multiple parsings and goal

Graphs, terms, treewidth, and the main result 5/19

When do terms parse the same graph ?

1 2
b

a f(32)((32)b∥ l a)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Multiple parsings and goal

Graphs, terms, treewidth, and the main result 5/19

When do terms parse the same graph ?

1 2
b

a f(32)(l a ∥ (32)b)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Multiple parsings and goal

Graphs, terms, treewidth, and the main result 5/19

When do terms parse the same graph ?

1 2
b

a f(32)(l a ∥ (32)b)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Multiple parsings and goal

Graphs, terms, treewidth, and the main result 5/19

When do terms parse the same graph ?

1 2
b

a f(32)(l a ∥ (32)b)
f(32)(l a ∥ (32)b)

Problem
Is there a structured list of axioms Ax such that for all terms t, u

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Treewidth

Graphs, terms, treewidth, and the main result 6/19

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Proposition
Graphs of terms t such that the maximum arity appearing in t is 4 are exactly
graphs of treewidth at most 3.

To get bounded treewidth just bound the number of sources of terms

We focus on graphs of treewidth at most 3.

Treewidth

Graphs, terms, treewidth, and the main result 6/19

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Proposition
Graphs of terms t such that the maximum arity appearing in t is 4 are exactly
graphs of treewidth at most 3.

To get bounded treewidth just bound the number of sources of terms

We focus on graphs of treewidth at most 3.

Treewidth

Graphs, terms, treewidth, and the main result 6/19

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Proposition
Graphs of terms t such that the maximum arity appearing in t is 4 are exactly
graphs of treewidth at most 3.

To get bounded treewidth just bound the number of sources of terms

We focus on graphs of treewidth at most 3.

Treewidth

Graphs, terms, treewidth, and the main result 6/19

Courcelle & Engelfriet, 2012:
infinite solution for general graphs,
open question: by restricting to graphs of bounded treewidth, can we find
finite lists of associated axioms ?

Proposition
Graphs of terms t such that the maximum arity appearing in t is 4 are exactly
graphs of treewidth at most 3.

To get bounded treewidth just bound the number of sources of terms

We focus on graphs of treewidth at most 3.

Main result and associated method

Graphs, terms, treewidth, and the main result 7/19

Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c,

a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of treewidth at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following structural
decompositions adapted to our graphs, so two sides:

Main result and associated method

Graphs, terms, treewidth, and the main result 7/19

Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c, a ∥ b = b ∥ a,

and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of treewidth at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following structural
decompositions adapted to our graphs, so two sides:

Main result and associated method

Graphs, terms, treewidth, and the main result 7/19

Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c, a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of treewidth at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following structural
decompositions adapted to our graphs, so two sides:

Main result and associated method

Graphs, terms, treewidth, and the main result 7/19

Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c, a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of treewidth at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following structural
decompositions adapted to our graphs, so two sides:

Main result and associated method

Graphs, terms, treewidth, and the main result 7/19

Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c, a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of treewidth at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following structural
decompositions adapted to our graphs,

so two sides:

Main result and associated method

Graphs, terms, treewidth, and the main result 7/19

Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c, a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of treewidth at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following structural
decompositions adapted to our graphs, so two sides:

Structural decompositions of graphs Apply them on terms using axioms

Main result and associated method

Graphs, terms, treewidth, and the main result 7/19

Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c, a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of treewidth at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following structural
decompositions adapted to our graphs, so two sides:

Structural decompositions of graphs Apply them on terms using axioms

Recursively decomposing graphs of treewidth at most 3 8/19

Recursively decomposing
graphs of treewidth at most 3

A usual decomposition in graph theory

Recursively decomposing graphs of treewidth at most 3 9/19

Reduce to more and more connected graphs by identifying separators

:
A graph is the disjoint union of its connected components:

A connected graph has a tree structure when looking only at 1-separators, or
cutvertices:

A biconnected graph still admits a canonical decomposition along its
2-separators (Tutte, 1961).

We adapt these decompositions to sourced graphs.

A usual decomposition in graph theory

Recursively decomposing graphs of treewidth at most 3 9/19

Reduce to more and more connected graphs by identifying separators:
A graph is the disjoint union of its connected components

:

A connected graph has a tree structure when looking only at 1-separators, or
cutvertices:

A biconnected graph still admits a canonical decomposition along its
2-separators (Tutte, 1961).

We adapt these decompositions to sourced graphs.

A usual decomposition in graph theory

Recursively decomposing graphs of treewidth at most 3 9/19

Reduce to more and more connected graphs by identifying separators:
A graph is the disjoint union of its connected components:

A connected graph has a tree structure when looking only at 1-separators, or
cutvertices:

A biconnected graph still admits a canonical decomposition along its
2-separators (Tutte, 1961).

We adapt these decompositions to sourced graphs.

A usual decomposition in graph theory

Recursively decomposing graphs of treewidth at most 3 9/19

Reduce to more and more connected graphs by identifying separators:
A graph is the disjoint union of its connected components:

A connected graph has a tree structure when looking only at 1-separators, or
cutvertices

:

A biconnected graph still admits a canonical decomposition along its
2-separators (Tutte, 1961).

We adapt these decompositions to sourced graphs.

A usual decomposition in graph theory

Recursively decomposing graphs of treewidth at most 3 9/19

Reduce to more and more connected graphs by identifying separators:
A graph is the disjoint union of its connected components:

A connected graph has a tree structure when looking only at 1-separators, or
cutvertices:

A biconnected graph still admits a canonical decomposition along its
2-separators (Tutte, 1961).

We adapt these decompositions to sourced graphs.

A usual decomposition in graph theory

Recursively decomposing graphs of treewidth at most 3 9/19

Reduce to more and more connected graphs by identifying separators:
A graph is the disjoint union of its connected components:

A connected graph has a tree structure when looking only at 1-separators, or
cutvertices:

A biconnected graph still admits a canonical decomposition along its
2-separators (Tutte, 1961).

We adapt these decompositions to sourced graphs.

A usual decomposition in graph theory

Recursively decomposing graphs of treewidth at most 3 9/19

Reduce to more and more connected graphs by identifying separators:
A graph is the disjoint union of its connected components:

A connected graph has a tree structure when looking only at 1-separators, or
cutvertices:

A biconnected graph still admits a canonical decomposition along its
2-separators (Tutte, 1961).

We adapt these decompositions to sourced graphs.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,
Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3
1

2 2

3

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,
Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3
1

2 2

3

1

2

3

Basic simple graphs
Paths between vertices,

Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,
Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3
1

2 2

3

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,

Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,
Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3
1

2 2

3

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,
Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3
1

2 2

3

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs

Paths without sources,
except at endpoints,
Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3
1

2 2

3

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,

Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3
1

2 2

3

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,
Full prime components,

Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

Decomposing graphs: full prime decompositions

Recursively decomposing graphs of treewidth at most 3 10/19

Consider the following graph:

1

2

3
1

2 2

3

1

2

3

Basic simple graphs
Paths between vertices,
Connected components,
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints,
Full prime components,
Proposition: for a graph G,
G ≃∥i pi lji Hi with Hi its full
prime components.

The main difficulty: forget points non-determinism

Recursively decomposing graphs of treewidth at most 3 11/19

A full prime graph of treewidth 3:

1

x y z

w

makingw a source gives a
graph of treewidth 4 (because
we would have K5),
making x a source gives a graph
of treewidth 3,
and similarly for y and z.

x, y, and z (but notw) are called forget points (shown as triangles).

The difficulty comes from graphs having many forget points: there are no
canonical choices.

The main difficulty: forget points non-determinism

Recursively decomposing graphs of treewidth at most 3 11/19

A full prime graph of treewidth 3:

1

x y z

w
makingw a source gives a
graph of treewidth 4 (because
we would have K5),

making x a source gives a graph
of treewidth 3,
and similarly for y and z.

x, y, and z (but notw) are called forget points (shown as triangles).

The difficulty comes from graphs having many forget points: there are no
canonical choices.

The main difficulty: forget points non-determinism

Recursively decomposing graphs of treewidth at most 3 11/19

A full prime graph of treewidth 3:

1

x y z

w
makingw a source gives a
graph of treewidth 4 (because
we would have K5),
making x a source gives a graph
of treewidth 3,

and similarly for y and z.

x, y, and z (but notw) are called forget points (shown as triangles).

The difficulty comes from graphs having many forget points: there are no
canonical choices.

The main difficulty: forget points non-determinism

Recursively decomposing graphs of treewidth at most 3 11/19

A full prime graph of treewidth 3:

1

x y z

w
makingw a source gives a
graph of treewidth 4 (because
we would have K5),
making x a source gives a graph
of treewidth 3,
and similarly for y and z.

x, y, and z (but notw) are called forget points (shown as triangles).

The difficulty comes from graphs having many forget points: there are no
canonical choices.

The main difficulty: forget points non-determinism

Recursively decomposing graphs of treewidth at most 3 11/19

A full prime graph of treewidth 3:

1

x y z

w
makingw a source gives a
graph of treewidth 4 (because
we would have K5),
making x a source gives a graph
of treewidth 3,
and similarly for y and z.

x, y, and z (but notw) are called forget points (shown as triangles).

The difficulty comes from graphs having many forget points: there are no
canonical choices.

The main difficulty: forget points non-determinism

Recursively decomposing graphs of treewidth at most 3 11/19

A full prime graph of treewidth 3:

1

x y z

w
makingw a source gives a
graph of treewidth 4 (because
we would have K5),
making x a source gives a graph
of treewidth 3,
and similarly for y and z.

x, y, and z (but notw) are called forget points (shown as triangles).

The difficulty comes from graphs having many forget points: there are no
canonical choices.

Decomposing graphs: anchors

Recursively decomposing graphs of treewidth at most 3 12/19

Basic simple graphs:
Cutvertices: vertices such that
removing them disconnects the
graph: (petals are parts of the graph)

Sourced graphs:
Anchors: (here for arity 2)

1 2 1 2 +1 case

Decomposing graphs: anchors

Recursively decomposing graphs of treewidth at most 3 12/19

Basic simple graphs:
Cutvertices: vertices such that
removing them disconnects the
graph:

(petals are parts of the graph)

Sourced graphs:
Anchors: (here for arity 2)

1 2 1 2 +1 case

Decomposing graphs: anchors

Recursively decomposing graphs of treewidth at most 3 12/19

Basic simple graphs:
Cutvertices: vertices such that
removing them disconnects the
graph: (petals are parts of the graph)

Sourced graphs:
Anchors: (here for arity 2)

1 2 1 2 +1 case

Decomposing graphs: anchors

Recursively decomposing graphs of treewidth at most 3 12/19

Basic simple graphs:
Cutvertices: vertices such that
removing them disconnects the
graph: (petals are parts of the graph)

Sourced graphs:
Anchors:

(here for arity 2)

1 2 1 2 +1 case

Decomposing graphs: anchors

Recursively decomposing graphs of treewidth at most 3 12/19

Basic simple graphs:
Cutvertices: vertices such that
removing them disconnects the
graph: (petals are parts of the graph)

Sourced graphs:
Anchors: (here for arity 2)

1 2 1 2 +1 case

Decomposing graphs: anchors

Recursively decomposing graphs of treewidth at most 3 12/19

1 2

Basic simple graphs:
Cutvertices: vertices such that
removing them disconnects the
graph: (petals are parts of the graph)

Sourced graphs:
Anchors: (here for arity 2)

1 2 1 2 +1 case

Decomposing graphs: anchors

Recursively decomposing graphs of treewidth at most 3 12/19

1 2

Basic simple graphs:
Cutvertices: vertices such that
removing them disconnects the
graph: (petals are parts of the graph)

Sourced graphs:
Anchors: (here for arity 2)

1 2 1 2 +1 case

Decomposing graphs: separation pairs

Recursively decomposing graphs of treewidth at most 3 13/19

Hard graph: a full prime graph
without anchors.

An example:

Basic simple graphs:
2-separators: pairs of vertices
disconnecting the graph:

Sourced graphs:
Separation pair:

1 2

Proposition
Every hard graph of treewidth at most 3 has at least one (minimal) separation pair
consisting of forget points.

Decomposing graphs: separation pairs

Recursively decomposing graphs of treewidth at most 3 13/19

Hard graph: a full prime graph
without anchors.

An example:

Basic simple graphs:
2-separators: pairs of vertices
disconnecting the graph:

Sourced graphs:
Separation pair:

1 2

Proposition
Every hard graph of treewidth at most 3 has at least one (minimal) separation pair
consisting of forget points.

Decomposing graphs: separation pairs

Recursively decomposing graphs of treewidth at most 3 13/19

Hard graph: a full prime graph
without anchors.

An example:

Basic simple graphs:
2-separators: pairs of vertices
disconnecting the graph:

Sourced graphs:
Separation pair:

1 2

Proposition
Every hard graph of treewidth at most 3 has at least one (minimal) separation pair
consisting of forget points.

Decomposing graphs: separation pairs

Recursively decomposing graphs of treewidth at most 3 13/19

Hard graph: a full prime graph
without anchors.

An example:

Basic simple graphs:
2-separators: pairs of vertices
disconnecting the graph:

Sourced graphs:
Separation pair:

1 2

Proposition
Every hard graph of treewidth at most 3 has at least one (minimal) separation pair
consisting of forget points.

Decomposing graphs: separation pairs

Recursively decomposing graphs of treewidth at most 3 13/19

Hard graph: a full prime graph
without anchors.

An example:

Basic simple graphs:
2-separators: pairs of vertices
disconnecting the graph:

Sourced graphs:
Separation pair:

1 2

Proposition
Every hard graph of treewidth at most 3 has at least one (minimal) separation pair
consisting of forget points.

Classifying hard graphs of treewidth at most 3

Recursively decomposing graphs of treewidth at most 3 14/19

What happens if a hard graph has several separation pairs ?

Theorem
Whenever a hard graph has two distinct (minimal) separation pairs whose vertices
are forget points, then it must have one of the following shapes:

Classifying hard graphs of treewidth at most 3

Recursively decomposing graphs of treewidth at most 3 14/19

What happens if a hard graph has several separation pairs ?

Theorem
Whenever a hard graph has two distinct (minimal) separation pairs whose vertices
are forget points, then it must have one of the following shapes:

An important lemma

Recursively decomposing graphs of treewidth at most 3 15/19

The proof of the last theorem requires a case analysis handling lots of possibilities.

The following lemma reduces their number:

Lemma
A graph with 3 sources either has the triangle K3 as a minor on its sources, or it has
one of the following shapes:

Graph minors: a way to see patterns in graphs, generalising the notion of
subgraphs.
This is reminiscent of the proposition stating that a graph without a cycle (i.e.
without K3 as a minor) is a tree. Our lemma is stronger.

An important lemma

Recursively decomposing graphs of treewidth at most 3 15/19

The proof of the last theorem requires a case analysis handling lots of possibilities.
The following lemma reduces their number:

Lemma
A graph with 3 sources either has the triangle K3 as a minor on its sources, or it has
one of the following shapes:

Graph minors: a way to see patterns in graphs, generalising the notion of
subgraphs.
This is reminiscent of the proposition stating that a graph without a cycle (i.e.
without K3 as a minor) is a tree. Our lemma is stronger.

An important lemma

Recursively decomposing graphs of treewidth at most 3 15/19

The proof of the last theorem requires a case analysis handling lots of possibilities.
The following lemma reduces their number:

Lemma
A graph with 3 sources either has the triangle K3 as a minor on its sources, or it has
one of the following shapes:

Graph minors: a way to see patterns in graphs, generalising the notion of
subgraphs.

This is reminiscent of the proposition stating that a graph without a cycle (i.e.
without K3 as a minor) is a tree. Our lemma is stronger.

An important lemma

Recursively decomposing graphs of treewidth at most 3 15/19

The proof of the last theorem requires a case analysis handling lots of possibilities.
The following lemma reduces their number:

Lemma
A graph with 3 sources either has the triangle K3 as a minor on its sources, or it has
one of the following shapes:

Graph minors: a way to see patterns in graphs, generalising the notion of
subgraphs.
This is reminiscent of the proposition stating that a graph without a cycle (i.e.
without K3 as a minor) is a tree. Our lemma is stronger.

Conclusion 16/19

Conclusion

Generalising ?

Conclusion 17/19

Generalising to treewidth at most 4 ?

we can go up to 3-separators but no more,
the number of analysed cases of the problem explodes,
the main tool to reduce it here is the last lemma, which would need to be
generalised for K4 instead of K3,
but such a generalisation is not possible.

Generalising ?

Conclusion 17/19

Generalising to treewidth at most 4 ?

we can go up to 3-separators but no more,

the number of analysed cases of the problem explodes,
the main tool to reduce it here is the last lemma, which would need to be
generalised for K4 instead of K3,
but such a generalisation is not possible.

Generalising ?

Conclusion 17/19

Generalising to treewidth at most 4 ?

we can go up to 3-separators but no more,
the number of analysed cases of the problem explodes,

the main tool to reduce it here is the last lemma, which would need to be
generalised for K4 instead of K3,
but such a generalisation is not possible.

Generalising ?

Conclusion 17/19

Generalising to treewidth at most 4 ?

we can go up to 3-separators but no more,
the number of analysed cases of the problem explodes,
the main tool to reduce it here is the last lemma, which would need to be
generalised for K4 instead of K3,

but such a generalisation is not possible.

Generalising ?

Conclusion 17/19

Generalising to treewidth at most 4 ?

we can go up to 3-separators but no more,
the number of analysed cases of the problem explodes,
the main tool to reduce it here is the last lemma, which would need to be
generalised for K4 instead of K3,
but such a generalisation is not possible.

Algorithmic applications ?

Conclusion 18/19

Two possible algorithmic applications:

testing treewidth at most 3,
solving the isomorphism problem for graphs of treewidth at most 3.
no polynomial algorithms are known for these problems when treewidth is
not fixed,
linear algorithms are already known for both problems and treewidth at most
3 graphs,

The classification result might be usefull to get heuristic to compute treewidth in
general.

Algorithmic applications ?

Conclusion 18/19

Two possible algorithmic applications:
testing treewidth at most 3,
solving the isomorphism problem for graphs of treewidth at most 3

.
no polynomial algorithms are known for these problems when treewidth is
not fixed,
linear algorithms are already known for both problems and treewidth at most
3 graphs,

The classification result might be usefull to get heuristic to compute treewidth in
general.

Algorithmic applications ?

Conclusion 18/19

Two possible algorithmic applications:
testing treewidth at most 3,
solving the isomorphism problem for graphs of treewidth at most 3.
no polynomial algorithms are known for these problems when treewidth is
not fixed

,
linear algorithms are already known for both problems and treewidth at most
3 graphs,

The classification result might be usefull to get heuristic to compute treewidth in
general.

Algorithmic applications ?

Conclusion 18/19

Two possible algorithmic applications:
testing treewidth at most 3,
solving the isomorphism problem for graphs of treewidth at most 3.
no polynomial algorithms are known for these problems when treewidth is
not fixed,
linear algorithms are already known for both problems and treewidth at most
3 graphs

,
The classification result might be usefull to get heuristic to compute treewidth in
general.

Algorithmic applications ?

Conclusion 18/19

Two possible algorithmic applications:
testing treewidth at most 3,
solving the isomorphism problem for graphs of treewidth at most 3.
no polynomial algorithms are known for these problems when treewidth is
not fixed,
linear algorithms are already known for both problems and treewidth at most
3 graphs,

The classification result might be usefull to get heuristic to compute treewidth in
general.

Summary

Conclusion 19/19

Reminders:
graphs with sources and hyperedges,
syntax for bounded treewidth,
axioms for treewidth at most 3,
proven by structural analysis (full prime decompositions, anchors, and
separation pairs),
two research lines: generalisation and algorithmic aspects (testing treewidth
at most 3 and the isomorphism on graphs of treewidth at most 3).

Thank you !

Summary

Conclusion 19/19

Reminders:
graphs with sources and hyperedges,
syntax for bounded treewidth,
axioms for treewidth at most 3,
proven by structural analysis (full prime decompositions, anchors, and
separation pairs),
two research lines: generalisation and algorithmic aspects (testing treewidth
at most 3 and the isomorphism on graphs of treewidth at most 3).

Thank you !

	Graphs, terms, treewidth, and the main result
	Recursively decomposing graphs of treewidth at most 3
	Conclusion

