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Abstract

We use the codensity bisimilarity framework from [8] to retreive two notions of bisimulation on weighted �nite
automata. Doing so we give a coalgebraic representation of weighted �nite automata, and a formulation of the two
bisimulation notions by greatest-�xed point of well-chosen functions. We show those notions are equivalent to the
original ones in [1] and to the ones we get from the framework.

I Introduction

The idea of bisimulation is really important when considering a system. It has been �rst introduced by Park and
Milner in [9, 10]. For example, two states of a Kripke frame are bisimilar if and only if they satisfy the same formulas
of the modal logic (see the Hennessy-Milner theorem in [2]). Intuitively, two states are bisimilar, if their behavior, i.e.
what can be seen from outside, are exactly the same. In this sense it de�nes a semantics. Often it is represented by an
equivalence relation. The greatest bisimulation is called a bisimilarity relation.

Most of the time, there is an associated game to a bisimilarity relation (many examples can be found in the main
reference of this work [8]). The game is played between Spoiler and Duplicator. In it, Duplicator asserts that two states
are bisimilar, Spoiler that they are not. These games should be de�ned in such a way that Duplicator wins if and only
if the states the game starts from are bisimilar. The advantage of introducing games is that they sometimes come with
algorithms to decide bisimilarity.

Recently there has been a rise of interest for quantitative bisimulation (starting with [3]). In this context, a
bisimulation is not a relation anymore but a pseudo-metric on the state space. The pseudo-metric bisimilarity is the
least pseudo-metric bisimulation, point-wise. Its kernel must coincide with the usual notion of relation bisimilarity
when it exists. De�ning bisimulation as a metric stresses the fact that some states, while not bisimilar, are very close
behavior-wise. In this work we will be interested in both bisimilarity relations and quantitative bisimilarity. We will
often say metric instead of pseudo-metric.

Let us look at the simple example of Kripke frames. A Kripke frame is just an unlabelled transition system, i.e.,
states with a relation:

A Kripke frame is a pair (X,R) where X is a set, called state space and R ⊆ X × X is a relation on X
called transition relation. If (x, x′) ∈ R, then it is said that there is a one step computation from x to x′.
We will note xRx′ in this case.

De�nition

Note that a Kripke frame on the state space X can equivalently be characterized as a transtition function c : X → P(X).
This is a coalgebraic representation which has proved to be well-suited (see [7]). Finding the right characterization is
a common starting point of categorical studies of systems.

For many types of system the bisimilarity relation, or the behavior, is de�ned locally, through observables (the state
being blocking or not for Kripke frame, accepting or not for deterministic �nite automata), and the behavior of the
successor states. Two states are bisimilar if their observables are the same, and their successors are again bisimilar. It
looks like an induction when considering two states. Still it is not when constructing the whole relation. The bisimilarity
relation of many systems can be expressed as the greatest �xed point of a well-chosen function. This function express
the local understanding we have of what a bisimulation is. Later we will present the codensity bisimilarity framework
(see [8]). This framework is based on a greatest �xed point de�nition of bisimilarity. We will try to focus on it.

In a Kripke frame, two states are bisimilar if and only if they have the same observables and their successor states
are again bisimilar. This de�nes a function which takes a relation and change it to a new relation containing those
states that have the same observables and whose successor states are related by the original relation. A �xed point of
this function will be a bisimulation. Take (X,R) a Kripke frame and ψR : P(X ×X)→ P(X ×X) de�ned by:

∀B ∈ P(X ×X), ψR(B) =

{
(x, y) ∈ X2

∣∣∣∣∣
{
∀x′ ∈ X, xRx′ ⇒ (∃y′ ∈ X, yRy′ ∧ x′By′)
∀y′ ∈ X, yRy′ ⇒ (∃x′ ∈ X, xRx′ ∧ x′By′)

}
Then:
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Proposition 1. ψR has a greatest �xed point.

Proof. This will be done using the Knaster-Tarski theorem: if f : L → L acts on a complete lattice L and is order
preserving, then the set of �xed points of f also has a lattice structure. Here, (P(X ×X),⊆) is a complete lattice, and
ψR is obviousy order preserving. ψR has a greatest �xed point.

The bisimilarity relation of Kripke frame (X,R) is de�ned as the greatest �xed point of ψR.
Categorical framework have been widely used in recent years to understand systems, logic, and unify similar notions

in di�erent contexts ([7, 4, 6, 5]). This work consists in the application of one of those framework, the codensity
bisimilarity one ([8], based on [11]) to a particular example, the one of weighted �nite automata, noted WFA. The way
bisimulation will be treated for WFA before applying the framework is very similar to what is done with Kripke frame
here.

Objectives

The goal of this work is to apply the codensity bisimilarity framework from [8] to weighted �nite automata (a
certain type of automaton) with linear and quantitative bisimulations ([1]). The framework de�nes an abstract notion of
bisimilation, of bisimilarity, and of associated games. It ensures good properties between the games and the bisimulation
notion. It uses a coalgebraic representation of systems, and it de�nes bisimilarity as the greatest �exd-point of a
particular functor.

Weighted �nite automata are DFA, except that state space is a vector space, and transition functions are linear
functions. The de�nition of the two bisimulations notion used in this work are �nd in [1], but they are ill-suited for the
codensity bisimilarity framework. The �rst step of our work will be to have a coalgebraic de�nition of WFA, and then
to characterise the two bisimulations in terms of �xed points in order to make them �t the framework.

Their is no proof this framework can be applied to recover known notions of bisimilarity for all types of system.
Understanding how powerful it is already is of interest. One of our goals was thus to test how expressive this framework
is by trying to recover more complex notions of bisimulations than the ones it had already been applied to. Furthermore,
as this framework allows an automatic de�nition of games associated to the bisimilarity, it could lead to new algorithms
to compute bisimilarity on WFAs, or approximation algorithms.

Moreover the codensity bisimilarity framework allows for a lot of leeway in how it can be applied (for example in
the choice of its so-called modalities), wih may lead to new notions of bisimulations. This is future work.

Outline

The section II will introduce di�erent notions needed to reach the objectives. Category theory tools used for the
codensity bisimilarity framework will be de�ned, the framework's direct background presented, and two de�ntions of
WFA given and the main part of the framework explained in two versions. The section [?] and [?] will concentrate on
retreiving two bisimulation notion on WFAs using the said framework. The �nal section [?] will conclude.

II Backgrounds

This section will introduce the di�erent tools needed to present the results on WFA: category theory de�nitions,
codensity bisimilarity framework, and weighted �nite automata.

1/ Category theory

We assume the reader is familiar with the de�nitions of category, functor, and is a bit used to categorical reasoning.
Here we need two de�nitions, coalgebra and �brations. Coalgebras are one of the main categorical frameworks for
the study of systems. It is in particular well-suited for the study of bisimulations [7]. It represents the system itself.
Fibrations can be seen as a way to organize some predicates on the state space.
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Let C a category and F : C → C an endofunctor. An F -coalgebra or just coalgebra, is given by an object
X ∈ C along with a morphism c : X → F (X). X is usually called the state space, and c the transition
function.

De�nition

To a state x ∈ X, c associates c(x) ∈ F (X). The idea is that X appears in F (X) as the succesor of x, the other
elements appearing in F (X) are side information about the system.

Recall that in our example a Kripke frame was represented by a function c : X → P(X). This is a P-coalgebra on
the category Set of sets and functions. Here there is no side information. That is because the observables is to know if
the state is blocking or not, i.e. if c(x) = ∅ or not. Deterministic �nite automata are represented by coalgebras of the
type c : X → XΣ × 2, where 2 = {0, 1} and Σ is the alphabet. The �rst part is the transition function. It requires a
letter to make the transition. Here there is side information. 2 will evaluate to 1 if the state is accepting, and to 0 if it
is not.

Fibrations require the de�nition of cartesian morphism:

Let E and B two categories, p : E → B a functor, and f : eU → eV in E. We will note f : U → V for
p(f) = f . f is a cartesian morphism if for all g : W → U in B, and h : eW → eV such that p(h) = f ◦ g and
p(eW ) = W , there is a unique morphism g : eW → eU and h = f ◦ g.

U

VW

f

f ◦ g

g

eU

eVeW

f

f ◦ g

gE

B

p

Figure 1: The diagram of the cartesian property

De�nition

Fibration are used to structure bisimulation candidates. It is de�ned on a category E, generally represented above the
category C. If X ∈ C, there is a category above X, called �ber, and noted EX . It is a subcategory of E. In our case,
it is a complete lattice above X. If P ∈ EX , it asserts �P is a bisimulation� and thus can be seen as a predicate.

Let B and E two categories and p : E→ B a functor. B is called the base category, and E the total category.
If X ∈ B and eX ∈ E such that p(eX) = X, eX is said to be above X. If f : U → V in B and f : eU → eV
in E such that p(f) = f , then f is said to be above f .
We say that p : E→ B is a �bration if, given f : U → V in B and eV above V in E, there is an object f∗eV
above U and a morphism f : f∗U → eV above f that is a cartesian morphism.
Take X ∈ B. The collection of all objects above X along with all the morphisms above the identity IdX is
called the �ber over X and is noted EX . It is a subcategory of EX .

De�nition
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Proposition 2. Let p : E→ B a �bration and f : U → V a morphism in B.
De�ne f∗ : EV → EU as the operation that sends eV ∈ EV to f∗eV ∈ EU as de�ned above. We call this operation

pullback. It can be extended to morphisms, making it a functor.

If m : e1
V → e2

V in EV , f
∗m is given by universal property of cartesian morphism as in:

U

VU

f

f ◦ IdU

IdU

f∗Y2

Y2f∗Y1

f2

m ◦ f1

f∗m
E

B

p

Figure 2: Property of cartesian morphism applied to f

In our context some particular properties are required:

A Clatu-�bration is a �bration p : E → B such that for all X ∈ B, EX is a complete lattice, and such
that all pullback functors f∗ are Clatu-morphisms, i.e. monotone morphisms that preserve all meets. The
associated order is called indistinguishability order and will be noted v. An element P ∈ E is called
indistinguishability predicate.

De�nition

The idea is that the indistinguishability order is not necessarily the usual order: P v Q is supposed to express the fact
that in Q states look more bisimilar than in P . For relation bisimulation, and object of E is a relation, or an equivalence
relation. The order is the usual one, the inclusion order. P v Q means that everything considered bisimilar by P is
also considered bisimilar by Q, but Q can contain more bisimilar states than P . For metric bisimulation, the object of
E are pseudo-metrics. The usual order is the point-wise one. Here the order will be inversed. P v Q means that states
are closer, or more bisimilar, using Q than they are using P .

Let p : E→ B a Clatu-�bration. A morphism f : U → V in B is said decent from P above U to Q above V
if there is a unique arrow f : P → Q above f .

De�nition

2/ Codensity bisimulation

Three parameters are essential in a bisimulation. One is an object that is used to compare the observables, and is
noted Ω. It can be thought as a set of truth values. It is given with the second one, a way of comparing the di�erent
truth values that is compatible with the bisimulation notion. It is noted Ω and will be in the �ber of Ω. For example
the equality relation if we want the observables to be the same, and if we are talking about relation bisimulation. The
last one is called modality, it is a morphism of type τ : FΩ→ Ω, with F the coalgebra type. It is used to accomodate
truth values with the transition structure. Those parameters are needed to understand the bisimulation notion locally.
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Let us look at DFA. They are represented by a coalgebra c : X → XΣ × 2 where X is the state space, Σ the
alphabet and 2 = {0, 1} expresses the fact the state is accepting or not. The observables is being accepting or not.
This will be compared in Ω = 2. For relational bisimulation, having the same observables is reasonable. 2 is given with
Ω = Eq2 to compare the observables. After a transition when working with truth values, we have something of the
type F (2) = 2Σ × 2. We would like a function that takes this and give back a value in 2. This is the modality. For
DFA it is the must modality: every value must be 1, meaning that for each letter, the successor states of the two states
under comparison must be bisimilar again.

The three parameters are the starting point of the bisimilarity codensity framework that will be presented here.
Then, the framework de�nes a codensity lifting of the functor F . F is de�ned in the base category of a �bration and
it is lifted to the total category.

Take a functor F : C→ C and a Clatu-�bration p : E→ C. The codensity lifting FΩ,τ : E→ E along p with
parameters (Ω, τ) where

� Ω ∈ C is the set of truth values.

� τ : FΩ→ Ω is the modality (this is an F -algebra).

� Ω above Ω is the observation domain.
is the endofunctor on E de�ned by

FΩ,τP =
l

k∈E(P,Ω)

(τ ◦ F (p(k)))
∗
Ω

on objects. On morphisms it is de�ned by mapping l : P → Q to the unique arrow above F (p(l)) that goes
from FΩ,τP to FΩ,τQ on arrows.

De�nition

The de�nition of the functor on morphisms uses the fact that F (p(l)) is decent (see [8]).
Often multiple parameters are needed. Each set of parameters is used for one computation type. For DFA, there is

actually one modality for each letter, and one for the observables. The codensity lifting of functor becomes:

Let a family of parameters {Ωa, τa}a∈A indexed by a class A. The codensity lifting is de�ned as:

FΩ,τP =
l

a∈A
FΩa,τaP =

l

a∈A

l

k∈E(P,Ω)

(τ ◦ F (p(k)))
∗
Ω

De�nition

De�ning bisimulation through a lifting of functors is a well-known methods (see [7] chapter 3). Here the lifting allows
both the de�nition of a predicate transformer whose greatest-�xed point will be the bisimilarity, and of associated
games.

P ∈ EX is an (Ω, τ)-bisimulation over the F -coalgebra c : X → FX if c is decent from P to FΩ,τP .
A predicate transformer ΦΩ,τ

c : EX → EX is de�ned by:

ΦΩ,τ
c P = c∗(FΩ,τP )

Finaly the codensity bisimilarity is the greatest �xed point of the predicate transformer and is noted νΦΩ,τ
c .

De�nition

Some good properties in [8] justify those de�nitions. For example P is a codensity bisimulation over c if and only if
P v ΦΩ,τ

c P . For relation this expresses the fact that a bisimulation is just an invariant predicate of the right predicate
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transformers. This is a very much wanted property.
Kripke frames only requires one parameter. As said above, Ω = {0, 1}. The modality used is the must one;

τ : P {0, 1} → {0, 1} is de�ned as:

τ(∅) = 1

τ({0}) = 0

τ({1}) = 1

τ({0, 1}) = 0

The Clatu-�bration goes from EqRel, the category of equivalence relations on sets, with relation preserving functions
as morphisms, to Set the category of sets and functions. On objects it associates its underlying set to a relation. On
morphisms it is the identity. The �ber on X is the category of equivalence relation on X. The order in the �ber is the
inclusion one. The bisimilarity relation this �bration de�nes through the framework is the same as the one presented
in introduction.

A great part of [8] is not presented here. The main interest of this framework is that once the right parameters is
de�ned, both the bisimulation and an associated equivalent game can be derived from it, with good properties ensured.
Finding parameters is thought to be simpler than coming up with the right game. Applying this part of the framework
to our examples with WFA is the next thing after this work.

3/ Weighted Finite Automata

Weighted �nite automata are very similar to deterministic �nite automata: each transition requires a letter, but
transition follow linear functions, a state being a point in a vector space. There are more general de�nitions of WFA,
de�ned with semirings, but here we will restrict to WFAs on real �nite vector spaces.

A WFA is a quintuple
(
V,Σ, (τσ)σ∈Σ , α, β

)
, where V is a vector space, Σ is an alphabet, τσ for σ ∈ Σ are

linear applications, α ∈ V is the initial state and β : V → R is a linear form corresponding to the �nal
weight.

De�nition

This is the de�nition given in [1]. The �rst step of our work is to give a coalgebraic characterization of WFA.

Proposition 3. A weighted �nite automata can be given by a coalgebra c : V
τ(−),β→ V Σ×R on the category of vectorial

spaces, where Σ is an alphabet and (τσ)σ∈Σ is a Σ-indexed linear transition functions family.

Through the notations the correspondance is straightforward. The only missing thing in the second de�nition is the
initial state. It is implicit. We did not add it as it is non relevant to the rest of this work.

The computation τσ : V → V of c on x ∈ V along w1 · · ·wn = w ∈ Σ∗ is given inductively by:

τε(x) = x with ε the empty word

τw(x) = τwn(τw1...wn−1(x))

A computation path is an element of Σ∞ = Σ∗ ∪ ΣN the set of �nite and in�nite words on Σ.

De�nition

Now we are going to look at bisimulation notions for WFAs. For each of those we will give the de�nition from [1], give
our characterization as greatest �xed point, and show how we applied the codensity bisimilarity framework.
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III Linear bisimulation

De�nition and characterization

Given c : V
τ(−),β→ V Σ × R a WFA, a bisimulation subspace is a subspace W ⊆ V such that:

� For all x ∈W , β(x) = 0.

� W is invariant under every τ : for all σ ∈ Σ, τσ(W ) ⊆W .
(x, y) ∈ V 2 are said bisimilar if their exists a bisimulation subspace W such that x− y ∈W .

De�nition

This notion of bisimulation distinguishes states using the obervable function β. Two states must be bisimilar if and
only if the same real number is observed on them with β, and for each computation type, i.e. for each letter, the
associated new states are again bisimilar. This gives a local undertanding of what a bisimulation is. Using this, de�ne
ψ : P(V × V )→ P(V × V ) by:

(x, y) ∈ ψ(S)⇔ β(x− y) = 0 ∧ ∀σ ∈ Σ, (τσ(x), τσ(x)) ∈ S

ψ has a greatest �xed point. This is still done using the Knaster-Tarski theorem with P(V × V ) as complete lattice
and ψ as order-preserving function. It is pretty straightforward.

The bisimilarity relation ∼c on c is de�ned to be the greatest �xed point of ψ.

De�nition

It is natural to look for the following property:

Lemma 1. x ∼c y if and only if their is a bisimulation subspace containing x− y.

In order to prove this, we will use the following characterization:

Proposition 4. The greatest �xed point of ψ is equal to:

∆ = {(x, y)|∀w ∈ Σ∗, β(τw(x)) = β(τw(y))}

meaning that the same observations are made along any computation path started on x and y.

Proof. First, let us show ∆ is a �xed point of ψ:

(x, y) ∈ ψ(∆)⇔β(x− y) = 0 ∧ ∀σ ∈ Σ, (τσ(x), τσ(y)) ∈ ∆

⇔β(x) = β(y) ∧ (∀σ ∈ Σ, ∀w ∈ Σ∗, β(τw(τσ(x))) = β(τw(τσ(y))))

⇔β(x) = β(y) ∧ (∀σ ∈ Σ, ∀w ∈ Σ∗, β(τσ.w(x)) = β(τσ.w(y)))

⇔β(x) = β(y) ∧ ∀w ∈ Σ≥1, β(τw(x)) = β(τw(y))

⇔∀w ∈ Σ∗, β(τw(x)) = β(τw(y))

⇔(x, y) ∈ ∆

∆ is a �xed point of ψ. Thus, it is included in the greatest �xed point of ψ.
Suppose (x, y) is in the greatest �xed point of ψ. Let w ∈ Σ∗. Let us prove by induction on w's length that

(τw(x), τw(y)) ∈ νψ. If |w| = 0, τw(x) = x, τw(y) = y, and (τw(x), τw(y)) ∈ νψ. Suppose |w| = n + 1 for some
n ∈ N, and that for any σ ∈ Σ∗ such that |σ| ≤ n, (τw(x), τw(y)) ∈ νψ. Then, w can be written w = w′.α with
α ∈ Σ and |w′| ≤ n. By induction hypothesis (τw′(x), τw′(y)) ∈ νψ = ψ(νψ). Thus, by de�nition of ψ, for any σ ∈ Σ,
(τσ(τw′(x)), τσ(τw′(y))) ∈ νψ. This can be rewritten, with σ = α as (τw′.α(x), τw′.α(y)) ∈ νψ, i.e. (τw(x), τw(y)) ∈ νψ.
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By induction, if (x, y) ∈ νψ then for any w ∈ Σ∗ we have (τw(x), τw(y)) ∈ νψ.
Now this means that if (x, y) ∈ νψ, then for any w ∈ Σ∗ (τw(x), τw(y)) ∈ ψ(νψ), i.e. that for any w ∈ Σ∗,

β(τw(x)) = β(τw(y)), and that (x, y) ∈ ∆. So,
νψ ⊆ ∆

and �nally,
νψ = ∆

Now let us prove the proposition:

Proof. Suppose x−y is in some bisimulation subspaceW . AsW is invariant by τσ for any σ ∈ Σ, then it also is invariant
under τw for any w ∈ Σ∗, meaning that β(x) = β(y) as x− y ∈ W but also that for any w ∈ Σ∗, β(τw(x)) = β(τw(y))
as τw(x− y) ∈W by invariance. Thus, (x, y) is in the greatest �xed point of ψ using the lemma 1.
Now, let us show that the set made by the di�erences x − y of pairs (x, y) ∈ νψ of this greatest �xed point is a
bisimulation subspace. This set will be noted B. Applying ψ one time gives that for any (x, y) ∈ νψ, β(x) = β(y). If
δ ∈ B there exists (x, y) ∈ νψ such that δ = x − y. Then β(δ) = 0 as β(δ) = β(x − y) and β(x) = β(y). νψ being a
�xed point of ψ, by de�nition, for any σ ∈ Σ and (x, y) ∈ νψ, (τσ(x), τσ(y)) ∈ νψ, i.e. for any δ ∈ B, τσ(δ) ∈ B. Thus,
τσ(B) ⊆ B.

Thus, if B is a linear subspace of V , then it is a bisimulation subspace.
Let δ1, δ2 ∈ B and λ ∈ R. There exists, by de�nition of B, x, y, z, w ∈ V such that (x, y) ∈ νψ, (w, z) ∈ νψ and

δ1 = x− y, δ2 = w − z. Then δ1 + λδ2 = (x+ λw)− (y + λz). Take a word σ ∈ Σ∗. Then

β(τσ(x+ λw)) = β(τσ(x)) + λβ(τσ(w))

= β(τσ(y)) + λβ(τσ(z))

= β(τσ(y + λz))

By the above characterization of νψ, (x+ λw, y+ λz) ∈ νψ, implying that δ1 + λδ2 ∈ B. B is a bisimulation subspace,
ending the proof.

Codensity bisimilarity framework Here we will apply the codensity framework to recover this notion of linear
bisimulation. The goal is to compute the above codensity lifting from which a notion of codensity bisimilarity and
codensity bisimilarity game can be derived using the right parameters. The bisimilarity notion should coincide with
the one presented above.

As a reference, the detailed steps are the following:

� De�ne the category we are in and recall the form of the functor F we are interested in, i.e. representing the right
kind of systems.

� De�ne the right Clatu-�bration. Its �bers should represent indistinguishability predicates on the associated objects.

� De�ne Ω the object representing the truth values.

� De�ne τ : F (Ω)→ Ω a modality representing how to ��atten� the truth values generated by F 's type.

� De�ne Ω an object above Ω representing the kind of predicates on the truth values we are interested in to de�ne
our bisimulation notion.

� Work out the codensity lifting.

� Work out the codensity bisimilarity. Show it de�nes the right notion.

A bisimulation should de�ne an equivalence relation. But here it is not enough. The �rst de�nition of linear bisimulation
we gave used bisimulation subspace. Relations de�ning a bisimulation should follow the structure existing on the
state space. Congruences on V , i.e. equivalence relations stable by linear operations, will be our indistinguishability
predicates. The categories will be the following.
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De�ne Cong(V ) the category of congruences on the real �nite vector space V with inclusion order as
morphisms.
De�ne Cong the category of congruences on real �nite vector spaces with linear functions f : V →W such
that if (x, y) ∈ R then (f(x), f(y)) ∈ S as morphism from R ∈ Cong(V ) to S ∈ Cong(W ).
Cong(V ) is a subcategory of Cong.

De�nition

If f : V →W is the linear function underlying a morphism from R to S in Cong, it will be noted f when considered in
Cong.

We need to show they are categories:

Proof. Cong(V ) is a particular case of poset. As such it is a category. Cong contains objects and morphisms. Identities
obviously exists, and composition respects the constraints on morphisms: if f : V → W and g : W → U are two linear
applications underlying morphisms from R to S and from S to T , then g ◦ f : V → U is again a linear application and
if (x, y) ∈ R, then (f(x), f(y)) ∈ S, and as such, (g(f(x)), g(f(y))) ∈ T . Composition is obviously associative as it
is induced by the usual one on linear functions. Thus, Cong contains objects and morphisms, its morphisms have an
associative composition structure, each object has an identity. So Cong is a category.

Systems are modeled by coalgebras of the form c : V → V Σ × R on the category of real �nite vector spaces. The
corresponding functor will be noted F . To an object V it associates V Σ × R. To a morphism f : V → W it associates
the morphisms from F (V ) to F (W ) given by f(τ(−))× IdR.

Before looking at the codensity lifting we still need to de�ne the Clatu-�bration and the right parameters.

Proposition 5. The functor p : Cong → V ectR which associates V to a congruence relation in Cong(V ) and f to an
arrow f : R → S in Cong where R ∈ Cong(V ) S ∈ Cong(W ), and f is the linear morphism from V to W underlying
the arrow in Cong(R), is a Clatu �bration.

Proof. p is a functor. It is well-de�ned on objects and on morphisms. If f : R→ S with R ∈ Cong(V ) and S ∈ Cong(W ),
then there is f : V → W underlying f and p(f) = f , meaning p(f) : p(R) → p(S). p has the right form. As the
composition in Cong is de�ned using the composition on V ectR, p(f ◦ g) = p(f ◦ g) = f ◦ g. By de�nition of p,
p(IdR) = IdV = Idp(R). Thus p is indeed a functor.

Let us show it is a �bration. Let V and W two real linear spaces, f : V → W a linear function, and S in Cong
above W . De�ne f∗S = {(x, y)|(f(x), f(y)) ∈ S}. It is an object of Cong(V ). Then by de�nition, f appears as a
morphism from f∗S to W . This gives the cartesian lifting of f . If the lifting has the following universal property, then
p is a �bration: for all g : U → V in V ect(R), and h : R → S in CongEq above f ◦ g, there is a unique g : R → f∗S
above g such that h = f ◦ g. The morphism g is uniquely determined, by de�nition of Cong, to be g. What needs to
be shown is that g suits the situation. Suppose (x, y) ∈ R. Then (h(x), h(y)) ∈ S, meaning (f(g(x)), f(g(y))) ∈ S. By
de�nition of f∗S, this means (g(x), g(y)) ∈ f∗S. Thus, g is indeed a morphism from R to f∗S in Cong. By de�nition
of composition in Cong, h = f ◦ g. Thus, p is a �bration.
Let us show it is a Clatu-�bration. Each �ber Cong(V ) is de�ned to be a complete lattice, with ∅ and V ×V as bottom
and top elements, ∩ as meet, and ⊕ as join. Remains to show the pullback functors preserve all meets. Here meets are
simply intersections. Take f a linear function from V to W , (Si)i∈I above W . Then,

f∗

( ⋂
i∈I

Si

)
=
{

(x, y) ∈ V 2|∀i ∈ I, (f(x), f(y)) ∈ Si
}

=
⋂
i∈I

{
(x, y) ∈ V 2|(f(x), f(y)) ∈ Si

}
=
⋂
i∈I

f∗(Si)

Thus pullbacks preserves all meets. p is a Clatu-�bration.
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The systems we are interested in are WFA. Similar to DFA they read words during their computations. Following
what we said in 2/ we will use multiple parameters. We associates one modality to each letter, plus one to the
observables. For every a ∈ Σ we de�ne Ωa = R and τa : ΩΣ

a ×R→ Ωa the projection function using a ∈ Σ, and Ωβ = R
with τβ : F (Ωβ)→ Ωβ the projection on the observables.

States should be compared in R. That is why all Ω are set to R. Projections are just a way of distinguishing the
di�erent computation types. Before computing the codensity lifting and codensity bisimilarity, one thing is missing: Ω.
Ω should represent how two values in Ω de�ne bisimilarity. As Ω = R has been chosen because observation are done in
R, and as two states should be bisimilar if and only if the same observations can be done on both of them, and on any
computation path, we chose Ω = EqΩ. Now let us compute the codensity lifting.

Proposition 6. With above notation and P ∈ Cong(V ):

FΩ,τP =
{

((σ1, o1), (σ2, o2)) ∈
(
V Σ × R

)2 |o1 = o2 ∧ (∀a ∈ Σ, σ1(a)Pσ2(a))
}

Proof. In a multiple observation domains context, the codensity lifting FΩ,τ : Cong → Cong is de�ned by, P ∈ Cong(V ):

FΩ,τP =
l

a∈Σ∪{β}

l

k∈Cong(P,Ωa)

(τa ◦ F (p(k)))
∗
Ωa

=
⋂

a∈Σ∩{β}

⋂
k : V→R linear

(x,y)∈P⇒k(x)=k(y)

(τa ◦ F (k))
∗
EqR

=
⋂

a∈Σ∩{β}

⋂
k : V→R linear

(x,y)∈P⇒k(x)=k(y)

{
(x, y) ∈ F (V )2|(τa ◦ F (k))(x) = (τa ◦ F (k))(y)

}
=

⋂
a∈Σ∩{β}

⋂
k : V→R linear

(x,y)∈P⇒k(x)=k(y)

{
((o, σ), (o′, σ′)) ∈ (V Σ × R)2|(τa ◦ F (k))(o, σ) = (τa ◦ F (k))(o′, σ′)

}
= (

⋂
a∈Σ

⋂
k : V→R linear

(x,y)∈P⇒k(x)=k(y)

{
((o, σ), (o′, σ′)) ∈ (V Σ × R)2|k(σ(a)) = k(σ′(a))

}
)

∩ (
{

((o, σ) , (o′, σ′)) ∈
(
V Σ × R

)2 |o = o′
}

)

=
⋂

k : V→R linear
(x,y)∈P⇒k(x)=k(y)

(
⋂
a∈Σ

{
((o, σ), (o′, σ′)) ∈ (V Σ × R)2|k(σ(a)) = k(σ′(a))

}
)

∩ (
{

((o, σ) , (o′, σ′)) ∈
(
V Σ × R

)2 |o = o′
}

)

=
⋂

k : V→R linear
(x,y)∈P⇒k(x)=k(y)

{
((o, σ), (o′, σ′)) ∈ (V Σ × R)2|∀a ∈ Σk(σ(a)) = k(σ′(a))

}
∩ (
{

((o, σ) , (o′, σ′)) ∈
(
V Σ × R

)2 |o = o′
}

)

=
⋂

k : V→R linear
(x,y)∈P⇒k(x)=k(y)

{
((o, σ), (o′, σ′)) ∈ (V Σ × R)2|o = o′ ∧ ∀a ∈ Σk(σ(a)) = k(σ′(a))

}

Take (x, y) ∈ V 2 such that there exists (x1, y1), · · · , (xn, yn) ∈ (V 2)n, x−y = x1 + · · ·+xn−y1−· · ·−yn, and for all
i ∈ {1, · · · , n}, xiPyi. Then, x = x1+· · ·+xn−y1−· · ·−yn+y so that by re�exitivity, xP (x1+· · ·+xn−y1−· · ·−yn+y).
But P being a congruence, x1+· · ·+xnPy1+· · ·+yn, and by re�exitivity and substraction, 0V Px1+· · ·+xn−y1−· · ·−yn
and �nally, xPy.

Now, de�ne k : V → R linear such that its kernel is exactly the subspace generated by x− y when xPy. If x− y is
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in its kernel, i.e. k(x) = k(y), necessarily, xPy using what we just showed. Using this k for a ∈ Σ, k(σ(a)) = k(σ′(a))
if and only if σ(a)Pσ′(a), showing that: Then:

FΩ,τP =
{

((o, σ) , (o, σ′)) ∈ (V Σ × R)2|o = o′ ∧ ∀a ∈ Σ, σ(a)Pσ′(a)
}

Now we would like to check that this codensity lifting gives rise to the same notion of bisimilarity than the
bisimilarity relation ∼c, i.e. the bisimulation subspace reformulated as arising from �xed points.

Proposition 7. The predicate transformer ΦΩ,τ
c is given by, c = (cβ , (ca)a∈Σ):

ΦΩ,τ
c P = c∗(FΩ,τP )

=
{

(x, y) ∈ V 2|cβ(x) = cβ(y) ∧ ∀a ∈ Σ, ca(x)Pca(y)
}

Proof. By de�nition of the pullback functor:

c∗(FΩ,τP ) =
{

(x, y) ∈ V |(c(x), c(y)) ∈ FΩ,τP
}

= {(x, y)|β(x) = β(y) ∧ (∀a ∈ Σ, τa(x)Pτa(y))}

Proposition 8. Let (x, y) ∈ V 2. x ∼c y if and only if (x, y) ∈ νΦΩ,τ
c .

Proof. ΦΩ,τ
c coincides on congruences with the de�nition of ψ in the �rst paragraph of the current section. Every �xed

point of ΦΩ,τ
c is a �xed point of ψ. On the other hand, ∼c is a congruence as the set of the di�erence x − y of pairs

such that x ∼c y is a subspace of V . Thus, ∼c is a �xed point of ΦΩ,τ
c . Both ∼c and νΦΩ,τ

c being the greatest �xed
point, they are equal.

Every codensity bisimulation is a bisimilation. That is because the predicate transformer in 7 is the same as ψ
above, but de�ned on a congruence only. But the converse is not obvious.

IV Quantitative bisimulation

De�nition and characterization We would like a quantitative version of the linear bisimulation notion that
coincides with it on the rigorously bisimilar pairs of states. Distances on vector spaces are usually de�ned using norms.
Here we want a pseudo-metric. Thus, we will use a semi-norm to de�ne it. Just as pseudo-metric, a semi-norm is a
norm that allows non zero values to be evaluated to 0:

A semi-norm on a real vector space V is a function s : V → R+ such that:
� for all x, y ∈ V , s(x+ y) ≤ s(x) + s(y).

� for all λ ∈ R and x ∈ V , s(λx) = |λ|s(x).
s induces a pseudo-metric d : V 2 → R+ on V by d(x, y) = s(x− y).

De�nition

Let c : V
τ(−),β→ V Σ × R a WFA. First we introduce the bisimulation as done in [1]. For that we need the following:

The joint spectral radius of a set (τσ)σ∈Σ of matrices (or linear applications) is de�ned by:

ρ((τσ)σ∈Σ) = lim
k→+∞

sup
w∈Σk

(||τw||)
1
k

The joint spectral radius of a WFA c is de�ned to be the one of its transition functions.

De�nition
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De�ne the following function on semi-norms:

ψγ(s)(x) = |β(x)|+ γmax
σ∈Σ
|s(τσ(x))|

Proposition 9. If γ < 1
ρ(c) then ψγ has a unique �xed point. It will be noted sγ .

This property comes from [1]. Its proof uses the Banach �xed point theorem.
We would like a de�nition that uses the Knaster-Tarski theorem. We need a complete lattice structure on the

objects representing predicates, semi-norms here. But it is obvious there is no greatest element. We slightly change the
de�nition and allow semi-norms of the form s : V → R+ ∪ {+∞}. Those are called extended semi-norms.

Proposition 10. The point-wise order then induces a complete lattice structure on the possibly in�nite semi-norms.

We reuse the function ψγ de�ned above, but on extended semi-norms. ψγ is de�ned so that both observation and
successor states are taken into account: two states are close if their observations is similar, and if on any transition
their successors are close.

The bisimulation metric parametered by γ on c is de�ned by the extended pseudo-metric induced by the
least �xed point of ψγ de�ned on extended semi-norms. It will be noted µψγ .

De�nition

This is well-de�ned by the Knaster-Tarski theorem, as ψγ is monotone and extended semi-norms have a complete lattice
structure.

We want two properties. The �rst one is that the kernel of µψγ coincide with the linear bisimulation:

Proposition 11. µψγ evaluates to 0 on x− y if and only if x ∼c y.

Proof. We will show that:
µψγ(x− y) = 0⇔ ∀w ∈ Σ∗, β(τw(x)) = β(τw(y))

First the left to right implication. The induction is done on the length of w. Suppose µψγ(x − y) = 0. If |w| = 0,
τw(x) = x and τw(y) = y. By hypotheses, µψγ(x− y) = 0 = µψγ(τw(x)− τw(y)). Now suppose the following induction
hypotheses: |w| = n + 1 for some n ∈ N, and for all w′ ∈ Σ∗ such that |w′| ≤ n, µψγ(τw′(x − y)) = 0. We can write
w = w′.α with α ∈ Σ and |w′| ≤ n. Then,

µψγ(τw′(x)− τw′(y)) = 0 (by induction hypotheses)

= |β(τw′(x)− τw′(y))|+ max
σ∈Σ
|µψγ(τσ(τw′(x)− τw′(y)))|

= |β(τw′(x− y))|+ max
σ∈Σ
|µψγ(τw′.σ(x− y))|

This implies that for all σ ∈ Σ, µψγ(τw′.σ(x− y)) = 0. In particular µψγ(τw(x− y)) = 0. By induction, for all w ∈ Σ∗,
µψγ(τw(x− y)) = 0. µψγ being a �xed point, for all w ∈ Σ∗,

µψγ(τw(x− y)) = 0

= |β(τw(x− y))|+ max
σ∈Σ
|µψγ(τσ(τw(x− y)))|

⇒
β(τw(x− y)) = 0

Thus if µψγ(x− y) = 0 then for all w ∈ Σ∗, β(τw(x)) = β(τw(y)).
Now the second implication. Suppose that for all w ∈ Σ∗, β(τw(x)) = β(τw(y)). De�ne U as the subspace of

V induced by the set {τw(x− y)|w ∈ Σ∗}. Consider U ′ another subspace such that V = U ⊕ U ′. De�ne a function
s : V → R+ ∪ {+∞} by:
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� 0 on U .

� µψγ on U ′.

Lemma 2. s is a pseudo-norm on V . Furthermore it is a �xed point of ψγ .

Proof. Take v, v′ ∈ V . They can be uniquely decomposed in v = uv + u′v and v′ = uv′ + u′v′ in U ⊕ U ′. Then,

s(v + v′) = s(uv + u′v + uv′ + u′v′)

= s(u′v + u′v′)

= µψγ(u′v + u′v′)

≤ µψγ(u′v) + µψγ(u′v′)

= s(u′v) + s(u′v′)

= s(v) + s(v′)

Subadditivity holds. Now let v ∈ V and λ ∈ R. There exists a decomposition v = u+ u′ in U ⊕ U ′.

s(λv) = s(λ(u+ u′))

= s(λu′)

= µψγ(λu′)

= λ.µψγ(u′)

= λs(u′)

= λs(u+ u′)

= λs(v)

Thus, s is indeed a pseudo-norm. Let us show it is a �xed point of ψγ . Let v = u+ u′ ∈ V decomposed in U ⊕ U ′.

ψγ(s)(v) = |β(v)|+ max
σ∈Σ
|s(τσ(v))|

= |β(u′)|+ max
σ∈Σ
|s(τσ(u′))|

= |β(u′)|+ max
σ∈Σ
|µψγ(τσ(u′))|

= ψγ(µψγ)(u′)

= µψγ(u′)

= s(u′)

= s(v)

Thus s is a �xed point.

As s ≤ µψγ and as µψγ is the least �xed point of ψγ , s = ψγ , and µψγ(x− y) = 0, as x− y = τε(x− y) ∈ U . Thus,
the �rst equivalence is proven. But its left side is a characterization of linear bisimilarity 4. Thus, x and y are linearly
bisimilar if and only if µψγ(x− y) = 0.

γ is here to ensure the metric takes only �nite values. On a path, observations can diverge. Then taking γ < 1
ρ(c)

ensure good properties. Intuitevely, The functions (τσ)σ∈Σ are limited by ρ((τσ)σ∈Σ) in how they can make a vector
grow. If γ < 1

ρ(c) the propagation of the observation through the structure will asymptotically be limited by 1.

The second property that we wanted for our characterization of the quantitative bisimulation is:

Proposition 12. If γ ≤ 1
ρ(c) the quantitative bisimilarity from [1] and the one we de�ned coincide.
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Proof. The metric from [1] has �nite values. It is a �xed point for both functors. The �rst metric must be smaller than
the second. This implies it also is a �xed point of the second functor. But this one has only one �xed point: both
metric must coincide as they both are the unique �xed point of the second functor.

Directly:

Proposition 13. If γ < 1
ρ(c) then µψγ is a pseudo-norm on R+, not R+ ∪ {+∞}.

Codensity bisimilarity framework Here we will follow the same steps as in III in the linear bisimulation part.
First, let us de�ne the category we will use to de�ne the �bration:

De�ne ESemi(V ) the category made up of the extended semi-norms on the linear space of V with point-
wise order as morphisms.
De�ne ESemiR the category made up of the semi-norms on real �nite linear spaces, with arrows given by
non-expansive linear functions.
ESemi(V ) is a subcategory of ESemiR.

De�nition

We need to show those are indeed categories:

Proof. For any �nite real linear space V , ESemi(V ) is a partialy ordered set. As such it is a category.
Take U , V , and W three �nite real linear spaces such that there are f : U → V , g : V → W linear non-expansive
functions for the extended-semi norms su, sv and sw on U , V , and W . It gives arrows in ESemiR g : W → V and
f : V → U . Then, f ◦ g : U → V is non-expansive for su and sw, and is a morphism from W to U in EsemiR. This
de�nes composition in ESemi. For every extended semi-norm su on U , IdU is of course non-expansive, and as such
gives identity in ESemiR. With the above de�nition, IdU ◦ IdU = IdU ◦ IdU = IdU . Thus, ESemiR is indeed a
category.

The functor F representing the system type remains the same: F (X) = XΣ × R.

Proposition 14. De�ne p : ESemiR → V ectR. On s a semi-norms on the real space U , p associates p(s) = U . On
f : sU → sV where sU is a semi-norm on U and sV on V , with f : V → U a linear non-expansive function from sv to
sU , p associates p(f) = f . Then, p is a functor, a �bration, and even a Clatu-�bration.

Proof. p is well-de�ned on both objects and arrows in ESemiR. Let U , V , W real linear spaces, sU , sV , sW semi-norms
on U , V , and W , f : sU → sV , g : sV → sW arrows in ESemiR

p(IdsU ) = p(IdU )

= IdU

= Idp(sU )

p(g ◦ f) = p(g ◦ f)

= g ◦ f
= p(g) ◦ p(f)

Thus, p is indeed a functor.
To show it is a �bration, we need to de�ne its pullback. Suppose U and V two real linear spaces and f : U → V

linear. Suppose sV a semi-norm on V . Then de�ne f∗sV above U by f∗sV (u) = sV (f(u)). I claim that f∗sV is a

15



semi-norm on U making f a morphism from f∗sV to sV . Indeed, if u, v ∈ U and λ ∈ R,

f∗sV (u+ v) = sV (f(u+ v))

= sV (f(u) + f(v))

≤ sV (f(u)) + sV (f(v))

= f∗U(u) + f∗U(v)

f∗sV (λu) = sV (f(λu))

= sV (λf(u))

= |λ|sV (f(u))

= |λ|f∗U(u)

Now if u ∈ U , f∗sV (u) = sV (f(u)), i.e. f is non-expansive regarding f∗sV and sV : f appears as a morphism from
f∗sV to sV in ESemiR. This gives the cartesian lifting of f . f∗sV also needs to verify a universal property. Let
g : W → U linear, sW above W , and h : sW → sV above f ◦ g. This implies that f ◦ g is none expansive regarding sW
and sV , i.e., for all w ∈W , sW (w) ≤ sV (f ◦ g(w)). But by de�nition, sV (f ◦ g(w)) = f∗sV (g(w)). Thus for all w ∈W ,
sW (w) ≤ f∗sV (g(W )), and g appears as a morphism from sW to f∗sV . There exist a morphism g above g such that
h = f ◦ g. Furthermore it is unique as by de�nition of morphism in ESemiR there is at most one morphism above a
given morphism. This shows p is a �bration.

Now we need to show it is a Clatu-�bration, i.e. that each of its �ber is a complete lattice, and that the cartesian
pullback de�ned above preserves all meet. First, a lemma:

Lemma 3. The �ber associated to the linear space V in the �bration p is exactly ESemi(V ).

Proof. The �ber above V exactly consists in every semi-norms on V . Same holds for ESemi(V ). There is a morphism
from s1 to s2 in the �ber if the identity is non expansive regarding s1 and s2, i.e. if and only if s1 ≤ s2 with ≤ the
point-wise order. But this de�nes morphisms in ESemi(V ). Thus, the �ber above V and ESemi(V ) have the same
arrows. They coincide.

Now, with this lemma we need to de�ne an order on ESemi(V ) making it a complete lattice. This indistiguishability
order should express the fact that a greater semi norm is more able to distinguish state, i.e. points of V . Thus the null
semi-norm which di�erentiate all points should be the top of the complete lattice. The order shall be the opposite of the
point-wise order. Then, meets are given by inf, joins by sup, both point-wise, bottom by the everywhere null semi-norm,
and top by the everywhere in�nity semi-norm. ESemi(V ) indeed is a complete lattice with the given structure.

Let us show that cartesian pullback preserves all meet. Take (si)i∈I an I-indexed family of extended semi-norms
above V , and f : U → V a linear function. Then, for all u ∈ U :

f∗

(
l

i∈I
si

)
(u) =

(
l

i∈I
si

)
(f(u))

= inf
i∈I
si(f(u))

= inf
i∈I
f∗(si)(u)

=
l

i∈I
f∗(si)(u)

Now we need to de�ne the right parameters. Ω remains R as it represents the space in which the observables will
be compared. There will be four modalities by letters in Σ. For every one of them Ω = |.| the absolute value. For every
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a ∈ Σ, de�ne, with (o, σ) ∈ R× RΣ,

τa,++(o, σ) = +o+ γσa

τa,+−(o, σ) = +o− γσa
τa,−+(o, σ) = −o+ γσa

τa,−−(o, σ) = −o− γσa

Note they depend on γ. But we will not express this in the notation, so that computations do not become too heavy.

Proposition 15. With the above notations and s ∈ ESemiR,

FΩ,τs(o, σ) = |o|+ max
a∈Σ
|s(σa)|

Proof. We will note M the set of all modalities for simpli�cation. Starting from the de�nition, supposing s above U :

FΩ,τs(o, σ) =
l

a∈M

l

k∈ESemiR(s,Ωa)
∀u∈U, |k(u)|≤s(u)

(τa ◦ F (p(k)))
∗
Ωa

= max
a∈M

max
k∈ESemiR(s,Ωa)
∀u∈U, |k(u)|≤s(u)

{τa ◦ F (p(k))}∗Ωa

= max
a∈M

max
k∈ESemiR(s,Ωa)
∀u∈U, |k(u)|≤s(u)

|(τa ◦ F (p(k)))(o, σ)|

= max
a∈M

max
k : U→R linear, st,
∀u∈U, |k(u)|≤s(u)

|(τa ◦ F (k))(o, σ)|

= max
a∈M

max
k : U→R linear, st,
∀u∈U, |k(u)|≤s(u)

|(τa ◦ (Id× kΣ))(o, σ)|

= max
a∈M

max
k : U→R linear, st,
∀u∈U, |k(u)|≤s(u)

|τa(o, (k(σa))a∈Σ)|

= max
a∈M

max
k : U→R linear, st,
∀u∈U, |k(u)|≤s(u)

| ± o± γk(σa)|

= max
k : U→R linear, st,
∀u∈U, |k(u)|≤s(u)

max
a∈Σ∪{β}

| ± o± γk(σa)|

= max
k : U→R linear, st,
∀u∈U, |k(u)|≤s(u)

|o|+ γmax
a∈Σ
|k(σa)|

= |o|+ γmax
a∈Σ
|s(σa)|

Now we can compute the predicate transformer:

Proposition 16. Let c = (cβ , (ca)a∈Σ). The predicate transformer ΦΩ,τ
c is given by,

ΦΩ,τ
c s(x) = |cβ(x)|+ max

a∈Σ
|s(ca(x))|

Proof. By de�nition:

ΦΩ,τ
c s(x) = (c∗(FΩ,τs))(x)

= FΩ,τs(c(x))

= |β(x)|+ γmax
a∈Σ
|s(τa(x))|
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The greatest �xed point under the indistinguishability order of ΦΩ,τ
c coincides with the previous de�nition

using the functor ψγ de�ned above.

Theorem 1

Proof. Both functors are de�ned on extended semi-norms. Furthermore their de�nitions coincide. Thus, they have the
same �xed points, and, in particular, the same greatest �xed point, which end this proof.

V Conclusion

In this work we were able to give a coalgebraic representation of WFAs, to give characterizations in terms of greatest
�xed points for two notions of bisimulations on WFAs from [1], and to retreive those notions using the right parameters
with the codensity bisimilarity framework from [8].

Doing so we saw that parameters are actually very powerful. They allow one to take into account both di�erent
computation types represented by the letters in the WFA, but also the absolute values we wanted in the predicate
transformers. The next thing to do is to apply the part of the framework that de�nes codensity games. This was done
during the internship, though space and time was lacking to include it here. From this games algorithms deciding the
bisimilarity notions, or at least approximation algorithms might be de�ned. Another interesting path would be to use
di�erent parameters to de�ne a new quantitative bisimulation notion on WFA. Indeed the one we looked at only takes
into account the successor with the greatest observation (the max in the de�nition of ψγ). That is a bit unusual. All
this is future work.
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