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Abstract

This work’s aim is to define the Wasserstein and Kantorovich liftings of functors
in a categorical setting, using fibrations and quantales enriched categories, and
to compare both liftings, generalizing the Kantorovich-Rubinstein duality. The
latter is studied for both relations and pseudometrics defined on a quantale.
On relations we generalize a well-known inequality between the two liftings and
prove that duality either cannot hold either is trivial for polynomial functors.
Some of these results are extended to pseudometrics. For the latter we devise
a general but non-systematic method to prove that duality holds in particular
cases. We apply it on different functors solving duality for the constant, coprod-
uct involving, identity, powerset, and diagonal functors. Our method rests on a
particular lemma that we name “technical lemma”.
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Introduction
Systems. Different kinds of systems are used throughout computer science. In many
cases a system is made of states, represented by a set, and of different other data used in
transition structures or as observables. Those data are encapsulated in diverse mathe-
matical structures and are regarded as the syntax of systems. Syntax implies semantics.
A way of giving a semantic to a state-based system is by considering equivalent states.
The idea is that two states with equivalent data attached to them will be considered
the same, because information one has on the system cannot distinguish the two states.
Another way of stating this is that a minimal version of the system will send both states
to the same minimal state.

Category theory. All those notions are formalized in category theory. (Transition)
systems through coalgebras, i.e. maps of the form c : X Ñ FX for some functor F . The
object X is interpreted to be the state space, and F to be the type of the system, i.e.
a mathematical structure on X that potentially contains other data. Coalgebras can
be used to model a large variety of transition systems. For examples, nondeterministic
systems are modeled by X Ñ PX with P the powerset functor; finite deterministic
automata are modeled by X Ñ XΣ ˆ t0, 1u where Σ is the alphabet, and t0, 1u an
observable encoding whether the state is final or not. Equivalence of states are modeled
by bisimulations. They can be defined using final coalgebras (see Section 1.1 or [7,
Chapter 3]). Coalgebra theory was introduced by the seminal paper [11].

Quantitative systems. More recently a great interest was shown toward quantita-
tive systems. If the observables are not discrete but continuous, one want to replace
equivalences of states by pseudometrics expressing that two states can be close even
though they are not equivalent. The papers [3, 4] introduce two ways of defining pseu-
dometrics on coalgebras through two liftings of functors from the category Set of sets
and functions to the category of pseudometric spaces with nonexpansive maps: the
Kantorovich and the Wasserstein liftings. Those liftings have been generalized to a
more general setting using fibrations in respectively [2] and [5]. This generalization
is suited to model equivalences of states, pseudometrics, and more exotic notions of
distance.

Relations on a quantale. The general framework we use represents distances be-
tween states as particular relations on quantales. The origin of this representation is
Lawvere’s work [10]. This will be presented in full generality in the sequel. For now,
let us show how usual pseudometrics can be represented as categories enriched over
the quantale pR`,`, 0q. A pseudometric r : X ˆ X Ñ R` is a map that is reflexive,
symmetric, and that verifies the triangle inequality. A category enriched over R` is a
set of object X, and for each pair px, yq P X ˆ X a homobject in R`. Those homob-
jects define a map r : XˆX Ñ R` and are subject to usual category axioms, replacing
identities by rpx, xq, and composition by the operation `. Thus, unit laws translate
to rpx, xq ` rpx, yq “ rpx, yq ` rpy, yq “ rpx, yq, and thus for all x P X, rpx, xq “ 0.
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Definition of composition gives rpx, yq ď rpx, zq ` rpz, yq for all x, y, z P X. These
R`-enriched categories are called generalized metrics. In particular pseudometrics are
generalized metric that are symmetric. In general simple maps r : XˆX Ñ V replacing
R` by any quantale are called V-relations, and transitive, reflexive, and symmetric such
relations are calles V-pseudometrics.

Contributions. It is noted in [3, 4] that those two liftings have very different prop-
erties. However in some cases they coincide generalizing the Kantorovich-Rubinstein
duality, and giving a canonical definition of metrics on coalgebras as in [3, 4]). The goal
of the present paper is to investigate this generalized Kantorovich-Rubinstein duality.
We studied it for both V-relations and V-pseudometrics. On V-relations we generalize
a well-known inequality between the two lifting, prove that for some functors (constant
map and weak-pullbacks preserving) duality is trivial, and generalize this result for
polynomial functors. Understanding that duality on V-relations is not that interesting,
we restrict the liftings to V-pseudometrics and stufy duality there. Some properties we
showed on V-relations still hold, but overall duality is much more difficult to treat for
V-pseudometrics. We give a method to study it on some cases. This method is general
though not systematic. We use it to solve the duality problem on diverse functors:
constant, identity, powerset, diagonal functors, and functors involving coproducts.

Outline. The liftings will be defined in [5]’s setting. This fibrational setting is in-
troduced in section 1 along with some categorical refreshers and useful lemmas, such
as what we call the Technical lemma. This lemma will be used in Section 2 to prove
the Kantorovich lifting is fibred and in Section 3 on different duality results. Section
1 concludes with the general definition of liftings and of well-behaved evaluation maps.
The Kantorovich and Wasserstein liftings are defined in Section 2. Some elementary
properties are given. Finally the corresponding duality is studied in Section 3.

Notations. Thereafter, the word “metric” will often be understood as “pseudometric”.
When considering a Set endofunctor F , X a set, and t1, t2 P X, we name coupling of
t1 and t2 an element t P F pX ˆXq such that Fπ1ptq “ t1 and Fπ2ptq “ t1.

Given a set X and a unital quantale V , that is a structured set with a distringuished
unit object I, we will denote by κX : X Ñ V the function constant and equal to I.

1 Categorical preliminaries

1.1 Systems with coalgebras

As mentioned above, a great number of systems can be modeled using coalgebras. This
is not actually of use in the rest of this work. Still it is important to remember the
liftings of Section 2 are defined to lift the functor of some coalgebras as in [3], and
that functors of Section 3 are used to model particular systems using coalgebras. For
a more complete account on coalgebras see [7] or [11]. Here we define coalgebras in
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general, their morphisms, final coalgebras, and we explain how the latter can be used
to define bisimulations. Throughout this Section, C will denote an arbitrary category
and F : C Ñ C an arbitrary endofunctor.

Definition 1. An F -coalgebra is a data made of:

• an object X P C;

• an arrow c : X Ñ FX.

Coalgebras are generally represented using only the arrow c : X Ñ FX.

With C “ Set the category of sets and functions, we recover the presentation made of
coalgebras in the introduction.

As most objects considered in category theory, there is a corresponding notion of
morphism:

Definition 2. Let c : X Ñ FX and d : Y Ñ FY be two F -coalgebras. A morphism of
F -coalgebras from c to d is a morphism f : X Ñ Y in C such that the following diagram
commutes:

X Y

FX FY

f

dc

Ff

in C. It is noted f : cÑ d.

Proposition 1. The data made of:

• F -coalgebras as objects;

• F -coalgebra morphisms as arrows,

is a well-defined category. It is called the category of F -coalgebras and noted F -Coalg.

A notion of behavior equivalence can be defined using final coalgebras :

Definition 3. Let F : C Ñ C be an endofunctor. A final F -coalgebra is a terminal
object of F -Coalg, i.e. an F -coalgebra γ such that for any other F -coalgebra c : X Ñ

FX there is a unique coalgebra morphism J´Kc : cÑ γ.

Relations, bisimulations, and bisimilarity relations are defined on a category under mild
assumptions. To make things simpler and because bisimulations are not the point here,
we only consider the case of Set. The interested reader may look at Chapter 3 and
Chapter 4 of [7].
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Definition 4. Suppose that C “ Set and a final F -coalgebra γ exists. Let c : X Ñ FX
an F -coalgebra. A bisimulation relation on c is a relation b Ď X ˆX such that,

px, yq P bñ JxKc “ JyKc

The bisimilarity relation on c is the greatest of all bisimulations for the inclusion order.

As mentioned in the introduction, two elements linked by a bisimulation are interpreted
to have the same behavior. Still here we are interested not in behavior equivalences but
in behavioral metrics. Instead of considering usual relations, we will consider relations
using more exotic truth values through quantales (Sections 1.2 and 1.3). Expressing
how relations on a quantale relate to coalgebras modeling systems (Section 1.1) is done
using fibrations (Section 1.4) and then by lifting functors from Set to the category of
relations on the said quantale (Section 1.6). Well-behaved liftings are defined using
evaluation functions (Section 1.5).

1.2 Quantales

As mentioned above, we will consider not bisimulations nor behavioral pseudometrics,
but relations using exotic truth values defined by quantales, that is complete lattices
with some more structure. In this Section quantales are defined and two important
examples are given. Then we retrieve intuitive properties we may want on quantales
and give conditions for them to hold. Note that thereafter the word “suplattice” replaces
“complete lattice”. That is because morphisms of complete lattices preserve meets and
morphisms of suplattices preserve joins.

Definition 5. A quantale V is a suplattice with an associative operation b : VˆV Ñ V
which is distributive over arbitrary joins.

When b is commutative, V is called symmetric. When b has a unit element, V is
said unital. The unit object is generally noted I.

In this context, given r P V , we note:

• Ò r “ tv P V | v ě ru, i.e. the subset of V made of elements “more true” than r;

• truer : Ò r ãÑ V the inclusion morphism;

• u P F pÒ rq for F : SetÑ Set a functor, when u is in the image of F ptruerq.

Being posets, suplattices are preorder categories. In this interpretation b : V ˆ V Ñ V
is a bifunctor and K,J P V are respectively initial and final objects. Following this
categorical interpretation:

Proposition 2. A unital quantale is equivalently a closed monoidal suplattice pV ,b, Iq.
In particular, for all x P V, xb´ then has a right adjoint rx,´s called the left internal
hom functor, and so does ´ b x whose adjoint Jx,´K is called the right internal hom
functor. In the case V is symmetric, the internal hom functors coincide and are equal
to r´,´s : Vop ˆ V Ñ V a bifunctor that is contravariant (resp. covariant) in its first
(resp. second) argument and called the internal hom functor.
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Example 1. Two quantales are of importance as they are used to retrieve equivalence
relations and usual pseudometrics. Both are symmetric and unital.

• p2,^, 1q with 2 “ t0, 1u the usual boolean algebra. Here rx,´s “ x Ñ ´. Usual
relations are maps of the form f : X ˆ X Ñ 2. Requiring those maps to be
symmetric, reflexive, and transitive gives equivalence relations.

• pR`,`, 0q the extended reals with reversed order. Here rx, ys “ y´x “ max ty ´ x, 0u
is the truncated substraction. Similarly, “relations” on this quantale are maps
f : X ˆ X Ñ R`. Requiring them to be symmetric, reflexive, and that the tri-
angle inequality holds gives pseudometrics. We will see in Section 1.3 that the
triangle inequality is a kind of transitivity. The quantale order will always be
denoted ď whereas the usual order on the reals will be noted ďR. By definition
ď“ěR.
More generaly one can consider quantales of the form pr0,Js,min t`,Ju , 0q, giv-
ing similar though slightly different properties.

In the rest of this Section, V will always denote a unital symmetric quantale.
An easy result to prove is the following. Its interpretation is that b and r´,´s are

“pseudo-inverse” to one another. It generalizes the inequality py´xq ` x ěR y on reals.
Its categorical meaning is simply that the counit of the adjunction between rx,´s and
´b x is a natural transformation from rx,´s b x to the identity.

Lemma 1. For all x, y P V,
rx, ys b x ď y

The next result is still simple but already more interesting. Its interpretation is that b
adds falseness, or equivalently that rx, ys is like adding x’s truthness to y.

Lemma 2. The following propositions are equivalent:

1. I “ J;

2. @x, y P V , x ě xb y;

3. @x, y P V , ry, xs ě x;

4. @x P V , rx, xs “ J.

Proof. 2 ñ 1; in particular, I ě I b J “ J and as J ě I we get I “ J.
2 ô 3; consider x, y P V . Because ry,´s is a right adjoint to ´b y, x ě xb y if and

only if ry, xs ě x.
1 ñ 4; suppose I “ J. Let us consider x P V . Because of the adjoint situation

between xb´ and rx,´s, and as xb I ď x, rx, xs ě I “ J so that by definition of J,
rx, xs “ J.

4 ñ 2; suppose that for all x P V , rx, xs “ J. Let us consider x, y P V . Still using
the adjoint situation and because rx, xs ě J, x ě x b J, and, as J ě y and x b ´ is
monotone, x ě xb y.
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Example 2. In the quantales 2 and R`, I “ J, as 1 “ J and 0 “ J respectively.

We can now consider predicates and relations defined on a quantale, and give a gener-
alization of equivalence relations and pseudometrics for any quantale.

1.3 V-predicates, V-relations, and V-pseudometrics

Now that a structure (quantales) has been introduced to represent truth values we
want a generalization of notions used for behavior equivalences or behavioral metrics:
predicates, relations, generalized metrics, pseudometrics, and metrics. This way of
representing pseudometrics originates in Lawvere’s work [10]. In this Section are defined
V-valued predicates and relations, particular properties of V-valued relations such as
reflexivity, transitivity, or symmetry, and finally V-pseudometrics and metrics. This
first part follows the presentation of V-structures that is made in [5]. In the second part
of this Section we define a particular V-relation that will be used in the definition of the
Kantorovich lifting: the euclidean relation; some of its properties are given. Finally, we
introduce the Technical lemma that will be particularly important in the study of the
Kantorovich-Rubinstein duality. Throughout this Section, V will denote an arbitrary
quantale. When considering maps, the order on V will be extended pointwise:

@f, g : X Ñ V , f ď g ô p@x P X, fpxq ď gpxqq

Definition 6. A V-valued predicate on a set X is a map p : X Ñ V .

Proposition 3. The data made of:

• objects: V-valued predicates p : X Ñ V;

• morphisms: maps f : X Ñ Y such that p ď q ˝ f from p : X Ñ V to q : Y Ñ V,

is a well-defined category noted V-Pred and called the category of V-valued predicates.

Definition 7. A V-valued relation on a set X is a map r : X ˆX Ñ V .

Proposition 4. The data made of:

• objects: V-valued relations r : X ˆX Ñ V;

• morphisms: maps f : X Ñ Y such that r ď s ˝ pf ˆ fq from r : X ˆ X Ñ V to
s : Y ˆ Y Ñ V,

is a well-defined category noted V-Rel and called the category of V-valued relations.

The condition defining morphisms of V-relations can be seen as a generalization of
inclusion for usual relations, or nonexpansiveness for functions between pseudometric
spaces.

Usual properties of V-relations are now defined:
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Definition 8. Let X be a set and r, s : X ˆX Ñ V be two V-valued relations.

• The composition of r with s is defined by

r¨s : X ˆX Ñ V
px, yq ÞÑ

ł

trpx, zq b spz, yq | z P Xu

• The diagonal V-valued relation on X is given by

diagX : X ˆX Ñ V

px, yq ÞÑ

#

I if x “ y

K else

• The symmetry morphism is

symX : X ˆX Ñ X ˆX

px, yq ÞÑ py, xq

• The V-relation r is said

– reflexive if r ě diagX ;

– transitive if r¨r ď r;

– symmetric if r “ r ˝ symX .

Those properties allow generalizations of pseudometrics and metrics to be defined:

Definition 9. A reflexive, transitive, and symmetric V-relation will be called a V-
pseudometric. When symmetry does not hold, the relation is called a generalized V-
metric. A V-pseudometric r : X ˆ X Ñ V will be called a V-metric whenever for all
x ‰ y P X, rpx, yq ‰ J.

Example 3. With:

• 2, pseudometrics are equivalence relations;

• R`, pseudometrics are usual pseudometrics, metrics usual metrics.

Proposition 5. The data made of the part of V-Rel with generalized V-metric is a
full subcategory of V-Rel noted V-Cat. If the relations are V-pseudometrics we also
get a full subcategory noted V-Catsym. If the relations are V-metrics, we again get a
full subcategory noted V-Catmet.

Proposition 6. Equivalently V-Cat is the category of small V-enriched categories.
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The enriched character of this construction is not really of interest here. The interested
reader may look at [8] for an introduction to enriched category theory.

The Kantorovich lifting that will be defined in Section 2 was originally introduced
for the quantale R` only. This first definition (see [3, 4]) made use of the extended
euclidean distance de : R` ˆ R` Ñ R`. In order to define the Kantorovich lifting for
any symmetric unital quantale, we introduce the euclidean relation that coincides with
the extended euclidean distance for the quantale R`.

In the rest of this Section V will always denote a symmetric unital quantale.

Definition 10. The euclidean relation on V is noted de : V ˆ V Ñ V and defined as:

@x, y P V , depx, yq “
ľ

trx, ys, ry, xsu

Example 4. With

• 2, depx, yq “

#

1 if x “ y

0 else
;

• R`, de is the extended euclidean distance.

Let us comment the intuitive meaning of de. The operation b on V corresponds,
intuitively, to adding x’s and y’s falseness. We would like de to measure the difference
of x’s and y’s truthness. The adjoint of x b ´ given by the internal hom r´, xs is the
closest thing we can find that would define an inverse of b, i.e. a difference. Because
we do not know which one of x or y is the “most true”, we take the meet over rx, ys and
ry, xs.

For 2 and R`, de is a V-metric. We are going to prove that this holds whenever
I “ J.

Proposition 7. The euclidean relation de is a V-metric.

Proof. Note that by definition de is always symmetric. The three following lemmas end
the proof.

Lemma 3. The euclidean relation is reflexive.

Proof. Let x P V . Then,
depx, xq “ rx, xs

As x ě x “ xb I, we get rx, xs ě I, meaning depx, xq ě I.

Lemma 4. If r´,´s is transitive as a V-relation, then so is de.
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Proof. By definition of de we know that rx, zs ě depx, zq, and rz, ys ě depz, yq, so that
rx, zsb rz, ys ě depx, zqbdepz, yq and as r´,´s is transitive, rx, ys ě depx, zqbdepz, yq.
Similarly ry, xs ě depy, zq b depz, xq and as de and b are both symmetric,

depy, zq b depz, xq “ depx, zq b depz, yq

proving that depx, yq ě depx, zq b depy, zq and that de is transitive.

Lemma 5. The V-relation r´,´s is transitive.

Proof. Let x, y, z P V . Then, using the fact b is monotone and the lemma 1 we get

xb rx, zs b rz, ys ď z b rz, ys

ď y

Using the adjoint situation between xb´ and rx,´s, we get

rx, ys ě rx, zs b rz, ys

This being being true for all z, we get that

rx, ys ě
ľ

trx, zs b rz, ys | z P Vu

and thus,
r´,´s ě r´,´s ¨ r´,´s

proving r´,´s is transitive.

We give a last result on the euclidean relation that will be useful:

Lemma 6. For all x, y P V,

depx, yq “ J ñ x “ y

If furthermore I “ J then
depx, yq “ J ô x “ y

Proof. Whenever I “ J we know using the lemma 2 that rx, xs “ J meaning depx, xq “
J. Suppose depx, yq “ J. This means that rx, ys “ ry, xs “ J “ I. Using the fact
rz,´s and z b ´ are adjoints for any z P V , this implies x ě y and y ě x meaning
x “ y.

We know give a result we call the Technical lemma that will be used extensively in
Sections 2 and 3 (see Propositions 22, 26, 27, 32). It is our main tool to study the
Kantorovich-Rubinstein duality on particular functors (see Section 3.2). It depends on
the following lemma stating that under the right hypotheses, we can always extend a
morphism in V-Rel.
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Lemma 7. Let r : X ˆ X Ñ V a V-pseudometric, and i : Y ãÑ X an injective map.
We will note i˚r “ r ˝ pi ˆ iq and i˚f “ f ˝ i for f : X Ñ V. Then for all morphisms
g : i˚prq Ñ de in V-Pred there exists an “extension” of g to r. More precisely there
exists f : r Ñ de such that

g “ i˚pfq

Remark 1. The notation i˚ comes from a functor defined later (Definition 13).

Proof. We will identify Y with its image in X. We define f : r Ñ de by the following:

@x P X, fpxq “
ł

tgpuq b rpx, uq | u P Y u

We have to prove that f is a well-defined morphism from r to de in V-Rel and that
i˚pfq “ g.

First, let us show f is well-defined, i.e. that

r ď de ˝ pf ˆ fq

Let us consider z, w P X,

fpzq “
ł

tgpuq b rpz, uq | u P Y u

fpwq “
ł

tgpuq b rpw, uq | u P Y u

Then, r being transitive, for all u P Y ,

rpu, zq ě rpu,wq b rpw, zq

which gives,
gpuq b rpu, zq ě rpu,wq b rpw, zq b gpuq

which, by taking the join gives,

fpzq ě fpwq b rpw, zq

which is equivalent to
rfpwq, fpzqs ě rpw, zq

By inverting z and w roles,
rfpzq, fpwqs ě rpz, wq

and finally by symmetry of r and definition of de,

de ˝ pf ˆ fqpw, zq ě rpw, zq

This being true in any case, f is a well-defined morphism from r to de.
Now let us prove i˚pfq “ g, i.e., identifying Y with irY s,

@y P Y, fpyq “ gpyq
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Consider y P Y . By definition,

fpyq “
ł

tgpuq b rpy, uq|u P Y u

Let us fix u P Y . We know that g is a morphism from i˚prq to de.

rpy, uq ď depgpyq, gpuqq

By definition of de this implies that

rpy, uq ď rgpuq, gpyqs

and using the adjoint situation between r´,´s and b,

rpy, uq b gpuq ď gpyq ď gpyq b rpy, yq

as r is reflexive. Thus fpyq “ gpyq b rpy, yq “ gpyq and f is indeed an extension of g to
r.

Lemma 8 (Technical lemma). Let r : X ˆ X Ñ V be a V-pseudometric. Given a
map ∆: Hompr, deq Ñ V, if there exists an injective map i : Y ãÑ X and a morphism
g : i˚prq Ñ de in V-Rel such that

@f : r Ñ de, pi
˚
pfq “ gq ñ p∆pfq “ sq

for some s P V, then there exists f : r Ñ de such that ∆pfq “ s.

Proof. This is a direct application of the lemma 7.

Remark 2. Note that the condition ∆pfq “ s could be replaced by any property on
f . However, for our use, this is all we need.

1.4 Fibrations

When considering behavior equivalences, or behavioral metrics on the objects of a
category, one can regard the structure expressing this behavior notion as above this
category. Here, V-relations above the category Set. This could be expressed through
forgetful functors (as in [3]), but following [5] fibrations are more suited. For a full
introduction to fibrations see [6]. We give the definitions of cartesian liftings, fibrations,
and of some properties of the latter such as split fibrations and bifibrations. We mention
the reindexing functor associated to a fibration, and the direct image functor associated
to a split fibration. Finally we take a look at the bifibrations defined on the categories
V-Pred and V-Rel. Thus, V will denote an arbitrary quantale in this Section. We
give more or less the same presentation of fibrations than in [5]. At first, p : E Ñ B
will denote a functor from a category E to a category B.

Cartesian liftings of morphisms are necessary to define fibrations:
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Definition 11. Let f in B be a morphism. A cartesian lifting of f : X Ñ Y with
regard to p is a morphism rf : S Ñ R in E such that pp rfq “ f , which is universal in the
following way: for any morphism u : QÑ R in E with ppuq “ f ˝ g for some g : Z Ñ X

in B, there is a unique v : Q Ñ S with ppvq “ g such that u “ rf ˝ v, i.e. we have the
following diagram:

Q

S R

Z

X Y

u
v

rf

p

f˝g

g

f

Definition 12. The functor p : E Ñ B is called a fibration if for all f : X Ñ Y in B,
and R P E with ppRq “ Y , there is a cartesian lifting ĂfR : f˚pRq Ñ R of f . We say
that:

• Q P E is above Z P B when ppQq “ Z, and similarly for morphisms;

• E is the total category;

• B is the base category;

• the subcategory EX of E made of objects above X and morphisms above IdX is
the fibre above X.

From now on and until the end of this Section, p : E Ñ B will always denote a fibration.
The idea is that the fibre EX above X represents some predicates over X. The

cartesian liftings then expresse a kind of precondition semantics, allowing one to make
the predicates work with the transition structure of the system that will be defined in
the base category B. The operation sending R to f˚pRq is actually more than a map
of objects:

Proposition 8. Given a fibration p : E Ñ B and a morphism f : X Ñ Y in B, the
data made of

• the map f˚ : R P EY ÞÑ f˚pRq P EX on objects;

• the map f˚ on morphisms of EY sending m : R Ñ S to v the unique morphism
above IdX such that by cartesian property of rfS, rfS ˝ v “ ĂfR ˝m,

is a functor f˚ : EY Ñ EX .
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Definition 13. The previously defined functor f˚ : EY Ñ EX is called the reindexing
functor along f .

Remark 3. Note that cartesian liftings are unique up-to isomorphism, so that the
definition of f˚ actually requires a choice on morphisms. Thus a reindexing functor
always exists if and only if the axiom of choice is supposed true. Sometimes this choice
can be made in a way that is coherent. That is the meaning of the next definition.

Definition 14. The fibration p : E Ñ B is called split when for all morphisms f and g
compatible,

pgfq˚ “ f˚g˚

Fibrations that we will consider are all split and of a particular kind:

Definition 15. The fibration p : E Ñ B is called a bifibration when both p and pop are
fibrations.

There is a nice and useful characterization of bifibrations (see [6, Lemma 9.1.2]).

Proposition 9. The fibration p is a bifibration if and only if the reindexing functor f˚
has a left-adjoint functor noted Σf and called the direct image functor along f .

As said earlier, we want V-valued predicates and relations to correspond to behavior
structures. Note V-Rel i

ãÑ V-Pred. We consider the following fibrations:

Proposition 10. The forgetful functor U : V-Pred Ñ Set defines a bifibration. Fur-
thermore, through the diagonal functor ∆: Set Ñ Set sending X to X ˆ X and
f : X Ñ Y to f ˆ f : X ˆ X Ñ Y ˆ Y , we get the following situation in Cat the
category of (small) categories, with a pullback corresponding to a change-of-base situa-
tion,

V-Rel V-Pred

Set Set

i

∆

wich yields another bifibration on V-relations. For p : X Ñ V, q : Y Ñ V, r : X ˆX Ñ

V, s : Y ˆ Y Ñ V, and f : X Ñ Y ,

f˚pqq “ q ˝ f ; Σf ppqpyq “
ł

 

ppxq | x P f´1
pyq

(

and

f˚psq “ s ˝ pf ˆ fq ; Σf prqpy, y
1
q “

ł

 

rpx, x1q | px, x1q P pf ˆ fq´1
py, y1q

(

Now let us see how to construct liftings, but before we introduce the last important
notion necessary to our study: evaluation maps.
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1.5 Data, modality, evaluation with algebras

In categorical computer science algebras have been widely used to represent finite data
(see [7, Section 2.4] for a general presentation). Here they are used as evaluation maps
for behavioral metrics. They are the dual (in a categorical sens) of coalgebras. We only
give the one definition.

Definition 16. Let C be a category and F : C Ñ C be an endofunctor. An F -algebra
is a data made of:

• an object X P C;

• an arrow a : FX Ñ X in C.
Algebras are usually represented using their arrow a : FX Ñ X only.

Given a fibration p : E Ñ B and a functor F : B Ñ B, a lifting of F will be another
functor rF : E Ñ E that looks a lot like F , but in E . Such liftings will be first defined
for the fibration on V-Pred and then for the one on V-Rel. It so happens that some of
those liftings are characterized by particular algebras of the form a : FV Ñ V and are
used to define the Wasserstein lifting. The idea is to define rF “ a ˝ F on V-predicates.
Furthermore, algebras are used in [3] in the definition of the Kantorovich lifting, and
our definition follows the same scheme. For all those reasons such algebras are quite
important here.

We will name evaluation map or evaluation function an algebra of the form FV Ñ V ,
and note it ev : FV Ñ V with a possible subscript. Evaluation maps are a way to
“smash” the values in FV to simple truth values in V in a way that is coherent.

In the literature evaluation maps are also called modalities and noted τ : FΩ Ñ Ω
for Ω an object of truth values (see [9] for example).

1.6 Liftings on V-Pred

This Section gives a general presentation of liftings of functors on fibrations. Doing so
will enable us to define the objects of our study in the next Section: the Wasserstein
and the Kantorovich liftings. In this Section we define liftings in general, fibred liftings,
and we give a characterization of fibred liftings on V-Pred using evaluation maps.
Then we introduce different classes of evaluation maps that are of importance: the
canonical evaluation map, behaved, and well-behaved evaluation maps. This Section is
very similar to the presentation of liftings made in [5]. Still we link it to [3]’s version
through the lemma 9. Throughout this Section, B, B111, E and E 111 will be categories,
F : B Ñ B111 a functor, p : E Ñ B and p1 : E 111 Ñ B111 fibrations, and V a quantale.

Definition 17. A lifting of F for the fibrations p and p1 is a functor rF : E Ñ E 111 such
that the following diagram commutes

E E 111

B B111

rF

p1p

F
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Remark 4. In general liftings will be noted rF . Liftings to E “ E 111 “ V-Pred will be
noted pF .

Particular liftings are of importance in this study:

Proposition 11. Let rF : E Ñ E 111 be a lifting of F and f : X Ñ Y a morphism in B.
Then there are canonical morphisms

@R P EY , rF ˝ f˚pRq Ñ pFfq˚ ˝ rF pRq

which are the components of a natural transformation rF ˝ f˚ ñ pFfq˚ ˝ rF .

Definition 18. The lifting rF is called a fibred lifting when the natural transformation
rF ˝ f˚ ñ pFfq˚ ˝ rF is a natural isomorphism.

From now on, B “ B111 “ Set, F is a Set endofunctor, and E “ E 111 “ V-Pred. We
focus on V-Pred liftings.

In order to define the Wasserstein lifting in Section 2, we want a way to construct
liftings from Set to V-Pred. In this prospect we have the following result [5, Proposi-
tion 12] that makes use of monotone evaluation maps.

Definition 19. Let ev : FV Ñ V an evaluation map. We say that ev is monotone when
it is monotone along the relation lifting (see [7, Chapters 3 and 4]) of the order ď of V ;
more precisely the relation lifting ! of ď is defined by,

@x1, x2 P FV , px1 ! x2q ô pDr P F ď, Fπ1r “ x1 ^ Fπ2r “ x2q

and ev being monotone is expressed by,

@x1, x2 P FV , px1 ! x2q ñ pevpx1q ď evpx2qq

Remark 5. A priori the relation ! is not an order nor even a preorder. What we do
know is that if F preserves weak pullbacks then ! is a preorder (see [1]).

Proposition 12. There is a one-to-one correspondence between:

• fibred liftings pF of V-Pred;

• monotone evaluation maps ev : FV Ñ V.

In particular, when pF is fibred, pF ppq “ ev ˝ F ppq.

Remark 6. Note that whenever ev is not monotone, ev ˝ F cannot define a V-Pred
lifting. The setting in which the Wasserstein and the Kantorovich liftings of Section
2 will be compared implies the use of a lifting to V-Pred defined using an evaluation
map. Thus we will always use a monotone evaluation map.

17



In [5] a particular evaluation map is considered and gives good properties (see [5,
Proposition 22]). We give its definition here, but we will show (Proposition 33) that in
general it does not yield good properties regarding the Kantorovich-Rubinstein duality.

Definition 20. The canonical evaluation map associated to F and V is given by

evcan : FV Ñ V
u ÞÑ

ł

tr | u P F pÒ rqu

Whenever this map is monotone it gives rise to a fibred lifting of F called the canonical
V-Pred lifting of F and noted pFcan; with p : X Ñ V and u P FX,

pFcanppqpuq “
ł

tr | F ppqpuq P F pÒ rqu

Following [5, Lemma 43] we give a condition for the monotonicity of the canonical
evaluation map.

Proposition 13. With the previous setting, if F is a weak pullback-preserving functor
then evcan is monotone.

Other more general classes of evaluation maps that we will use are the following (see
[5, Theorem 21]).

Definition 21. An evaluation map ev : FV Ñ V is called behaved if F preserves weak
pullbacks and if

• it is monotone;

• the associated fibred V-Pred lifting pF is such that for all V-predicates p and q,
pF ppb qq ě pF ppq b pF pqq.

If, furthermore, the evaluation map is such that for all X, pF pκXq ě κFX , then it is
called well-behaved.

Remark 7. This notion of well-behavness is different from the one that can be found
in [3], even though there are clear similarities.

The second condition of behavness with r0,8s as a quantale will translate to partic-
ular functional inequalities. For example, with the identity functor (see Section 3.2.2),
it will be equivalent to

@x, y P R`, evpx` yq ďR evpxq ` evpyq

and well-behaved evaluation maps will exactly be monotone subadditive functions such
that evp0q “ 0.

Through the next result we link our notion of well-behavness with the one in [3, Defi-
nition 4.3] defined on ev : F r0,Js Ñ r0,Js for J P p0,8s by:
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• ev is monotone;

• for all t P F pr0,Js ˆ r0,Jsq a coupling of t1 and t2,

depevpt1q, evpt2qq ě pF pdeqptq;

• ev´1rt0us “ FirF t0us for i ãÑ t0u Ñ r0,Js the inclusion map.

Note that the element J in r0,Js corresponds, in our interpretation to the element
K of V as the order in reversed. The third condition implies our third condition of
well-behavness. The following lemma links the second condition of the two definitions.

Lemma 9. Suppose F is a weak pullback-preserving Set endofunctor. Let t P F pVˆVq
be a coupling of t1 “ Fπ1t and t2 “ Fπ2t and ev : FV Ñ V be a behaved evaluation
map. Then,

depevpt1q, evpt2qq ě pF pdeqptq

where pF is the fibred lifting associated to the monotone evaluation map ev.

Proof. First, let us rewrite the first term of the inequality; using ti “ Fπit and pF “

ev ˝ F , one gets,

depevpt1q, evpt2qq “ depev ˝ Fπ1ptq, ev ˝ Fπ2ptqq

“ dep pFπ1t, pFπ2tq

“
ľ

!

r pFπ1t, pFπ2ts, r pFπ2t, pFπ1ts
)

Note that by definition of meet,
ľ

!

r pFπ1t, pFπ2ts, r pFπ2t, pFπ1ts
)

ě pF pdeqptq

ô

@pi, jq P tp1, 2q, p2, 1qu , r pFπit, pFπjts ě pF pdeqptq

Using the adjoint situation rx,´s % xb´,

r pFπit, pFπjts ě pF pdeqptq

ô

pF pdeqptq b pFπiptq ď pFπjptq

Now, using lemma 1 it is immediate to prove that,

de b πi ď πj

Applying pF ,
pF pde b πiq ď pFπj

and ev being behaved,
pF pde b πiq ě pF pdeq b pF pπiq

yielding, through all the equivalences and equalities,

depevpt1q, evpt2qq ě pF pdeqptq
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2 The Kantorovich and Wasserstein liftings
This Section is devoted to the definitions and study of the Wasserstein (Section 2.1)
and Kantorovich liftings (Section 2.2). Both are liftings from the category Set to
the category V-Rel of V-relations for a given quantale V . The first part defines the
Wasserstein lifting and gives some of its properties. It mainly comes from [5] even
though a property of [3] have been adapted to our setting. Aside from the definition
of the Kantorovich lifting, the goal of the second part is to find conditions for it to
have the same properties as its counterpart. This is a prerequisite to the study of
the Kantorovich-Rubinstein duality in Section 3. In particular those conditions imply
restricting both liftings to V-pseudometrics. Throughout this section, V will denote an
arbitrary symmetric unital quantale and F : SetÑ Set an arbitrary Set endofunctor.
The Wasserstein lifting can be defined for arbitrary quantales, but the Kantorovich
lifting uses the euclidean relation and thus requires a symmetric unital quantale.

2.1 The Wasserstein lifting

The first defined lifting is the Wasserstein lifting. It should be seen as a generalization of
relation liftings as found in Chapter 4 of [7]. This Section starts with the construction
of the Wasserstein lifting, and ends with some of its properties. Conditions for this
lifting to be fibred and to restrict to the category V-Catsym of V-pseudometrics and
V-Catmet of V-metrics are given.

First, let us take a look at relation liftings. Consider the category RelpSetq of usual
relations as objects and relation preserving pairs of maps as morphisms. Note that the
restriction of RelpSetq to relations r Ď X ˆX for some set X and pairs of maps f ˆ f
is the category V-Rel for the quantale 2 presented in Example 1. There is a fibration
p : RelpSetq Ñ Set ˆ Set. The goal is to define a functor rF : Rel Ñ Rel lifting of F
(more correctly of F ˆ F ) to RelpSetq along p.

Note our category RelpSetq is different from the usual category Rel in which rela-
tions are morphisms, not objects.

To define the lifting of F for a relation r Ď X ˆ Y , the goal is to define a relation
rFr Ď FX ˆ FY . Obviously, it should make use of F . The functor F applies to sets
and maps only. The first step is thus to consider r as an injective map r : R ãÑ X ˆ Y
for some set R. Then, Fr is a map from FR to F pX ˆY q. To end the definition of the
relation lifting, it is sufficient to find a map from F pXˆY q to FXˆFY . The image of
the projection maps by F are suited to do that. On relations, the lifting rFr is defined
by the monomorphism of the epi-mono factorization of xFπ1, Fπ2y ˝ Fr. A proof that
this definition makes rF a lifting of F can be found in [7, Proposition 4.4.2.].

The construction of the Wasserstein lifting is very similar to this definition of relation
lifting. The goal is, starting on a V-relation r : X ˆ X Ñ V , to get a V-relation
rFr : FX ˆ FX Ñ V . Note that V-relations are not injective maps as usual relations
were above, so that applying F to r only gives a map from F pX ˆ Xq Ñ FV . Post-
composing by an evaluation map defines a map F pX ˆ Xq Ñ V . More generally it
suffices to consider a V-predicate lifting to get a map pFr : F pX ˆ Xq Ñ V . Finally,
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the transition from F pX ˆXq Ñ V to a V-relation FX ˆ FX Ñ V is done using the
projection maps as for the lifting to RelpSetq above.

Let us note that the change-of-base situation in Proposition 10 yields isomorphisms
iX : V-RelX Ñ V-PredXˆX on fibres. The projection maps give morphisms in Set
of the form λX : F pX ˆ Xq Ñ FX ˆ FX by xFπ1, Fπ2y. They yield, through the
direct image functor of the bifibration on V-Pred, functors ΣλX : V-PredF pXˆXq Ñ
V-PredFXˆFX . Now that notations are set, let us get to the actual definition (see [5,
Section 5.2]).

Definition 22. Given pF : V-Pred Ñ V-Pred a V-predicate lifting of F , the Wasser-
stein lifting of F along pF is the data F Ó : V-RelÑ V-Rel made of

• a map on objects; if r P V-RelX , F Óprq is defined by

F Óprq “ i´1
FX ˝ ΣλX ˝

pFXˆX ˝ iXprq;

• a map on morphisms; if f : r Ñ s is a morphism in V-Rel, then

F Óf “ Ff .

From now on, pF will denote an arbitrary V-predicate lifting of F .
With this definition (see [5, Proposition 17]),

Proposition 14. The Wasserstein lifting is a well-defined lifting of F to V-Rel. In
particular, with r P V-RelX and t1, t2 P FX,

F Óprqpt1, t2q “
ł

!

pF prqptq | t P F pX ˆXq, Fπiptq “ ti

)

Now we give a few properties of the Wasserstein lifting (see [5, Proposition 17, Theorem
21]),

Proposition 15. If F preserves weak-pullbacks and pF is fibred, then F Ó is fibred.

Proposition 16.

• F Ó preserves symmetric V-relations;

• whenever F preserves weak-pullbacks and pF is fibred associated to a behaved eval-
uation map, F Ó preserves transitive V-relations;

• when furthermore the evaluation map is well-behaved, F Ó preserves reflexive V-
relations.

Thus when pF is fibred associated to a well-behaved evaluation map, F Ó restricts to both
a V-Cat and a V-Catsym lifting of F .
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The two next properties will be used to find counterexamples to the Kantorovich-
Rubinstein duality. The second one (see [3, Proposition 4.8]) describes situations in
which the Wasserstein lifting preserves V-metrics. The first one (see [5, Proposition
22]) helps finding such situations. Whenever the Kantorovich lifting does not preserve
V-metrics the liftings cannot be equal and duality cannot hold.

Proposition 17. If F preserves weak-pullbacks, then evcan is well-behaved.

The next proposition is slightly different from the one found in [3]; a proof is provided
here, even though it is the exact same than in [3], replacing R` by V .

Proposition 18. Let ev be an associated well-behaved evaluation map, and r be a V-
metric. If F is weak pullback preserving, if ev is such that

ev´1
rtJus “ FκtJurF ptJuqs (1)

and if every join in the formula of F Ór is a maximum, then F Ór is a V-metric.

Proof. Let us note !X : X Ñ tJu the uniquely defined map, and ∆X “ ∆X “ tpx, xq|x P Xu.
Because r is a V-metric (i.e. its kernel is exactly ∆X), and using condition 1, one

gets the two following weak pullbacks:

∆X tJu F tJu tJu

X X ˆX V FV V

e

!∆X

i F i

!FtJu

i

π1

π2
r ev

Because F preserves weak-pullbacks, we get the following situation where all three
squares are weak-pullbacks

F∆X F tJu tJu

FX FX ˆX FV V

Fe

F !∆X

Fi

!FtJu

i

Fπ1

Fπ2
Fr ev

Let x, y P FX ˆ FX such that F Ópx, yq “ J. Then by hypothesis the join in the
definition of F Ó is a maximum and there exists a coupling t of x and y such that

ev ˝ Frptq “ F Órpx, yq “ J

Because of the weak-pullback situation, we get that there exists t1 P F∆X such that
Fept1q “ t. But as Fe is a regular monomorphism (as limit of an equalizer1), t “ t1 so
that t1 “ Fπ1t “ Fπ1 ˝ Fept

1q “ Fπ2 ˝ Fept
1q “ Fπ2t “ t2 and F Ór is a V-metric.

Remark 8. This last proposition can be generalized (see [4, Theorem 5.24]) but is
sufficient here.

1https://ncatlab.org/nlab/show/regular+monomorphism
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The definition of the Wasserstein lifting makes use of coupling t P F pX ˆ Xq that
project to t1 and t2 through Fπ1 and Fπ2. Some functors have optimal couplings in
the sens that the Wasserstein lifting exactly equals F̂ rptq for t an optimal coupling (see
polynomial functors in Section ?? for example).

Definition 23. Let r : X ˆX Ñ V a V-relation, and t1, t2 P FX. An optimal coupling
for F , r, and pt1, t2q is a coupling t P F pX ˆXq of t1 and t2 such that:

F Órpt1, t2q “ F̂ rptq

When an optimal coupling always exists we say that F have all the optimal couplings.

2.2 The Kantorovich lifting

This Section introduces the Kantorovich lifting. Its definition is an adaptation of [3,
Definition 3.1] to the setting of Section 1, that is the setting of [5]. After giving its
definition some properties of the Kantorovich lifting are given and proven. In particular
we prove that it restricts to V-Catsym and that the restriction is fibred. Recall that
F : SetÑ Set denotes an arbitrary functor and that V is an arbitrary symmetric unital
quantale. Note that given an evaluation map ev : FV Ñ V , ev˝F is often noted pF even
when this definition is not functorial.

In [3] the Kantorovich lifting was defined for arbitrary pseudometrics on reals, i.e.
for quantales of the form r0,Js for J P p0,8s. Let us consider the case of J “ 8, i.e.
of the quantale R`. In this context, given d : X ˆX Ñ R` a pseudometric on X and
ev : FR` Ñ R` an evaluation map, the Kantorovich lifting of d is defined in [3] by:

@x, y P FX, F Òdpx, yq “ sup
!

dep pFfpxq, pFfpyqq | f : pX, dq Ñ pR`, deq

)

where pFf is equal to ev˝Ff , de is the extended euclidean distance on R`, and functions
f : pX, dq Ñ pR`, deq are non-expansive maps of metric spaces. The goal is to translate
this formula in our setting. Using tools introduced in Section 1 we obtain the following
definition:

Definition 24. Given ev : FV Ñ V an evaluation map, the Kantorovich lifting of F
along ev is the data F Ò : V-RelÑ V-Rel defined by:

• a map on objects; on r P V-Rel,

@t1, t2 P FX, F
Òrpt1, t2q “

ľ

!

dep pFfpt1q, pFfpt2qq | f : r Ñ de in V-Rel
)

where pFf “ ev ˝ Ff ;

• a map on morphisms; on f : X Ñ Y in V-Rel, F Òf “ Ff .

Before looking at properties of the Kantorovich lifting, it must be proven that this data
is indeed a lifting.
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Proposition 19. The Kantorovich lifting is a well-defined lifting of F to the category
of V-relations.

Proof. Two things to show:

• F Ò is a functor; Note that if f : r Ñ s is a morphism in V-Rel from r : XˆX Ñ V
to s : Y ˆ Y Ñ V , i.e. it is a map f : X Ñ Y such that r ď s ˝ pf ˆ fq,
then F Òf “ Ff is a map from FX to FY . As F Òr is a V-relation of the form
F Òr : FX ˆFX Ñ V , and similarly F Òs : FY ˆFY Ñ V , f can be considered as
a V-Rel map from F Òr to F Òs if and only if the following holds:

F Òr ď F Òs ˝ pFf ˆ Ffq

By definition,

F Òpsq ˝ pFf ˆ Ffqpx, yq “
ľ

!

dep pFgpFfpxqq, pFgpFfpyqqq | g : sÑ de

)

F Òrpx, yq “
ľ

!

dep pFhpxq, pFhpyqq | h : r Ñ de

)

Taking h “ g ˝ f , one gets,

pFg ˝ Ff “ pF pg ˝ fq

“ pFh

so that by composition of f : r Ñ s and g : sÑ de, h is of the form r Ñ de and,
!

dep pFgpFfpxqq, pFgpFfpyqqq | g : sÑ de

)

Ď

!

dep pFhpxq, pFhpyqq | h : r Ñ de

)

meaning F Òr ď F Òs ˝ pFf ˆ Ffq. So F Òf is indeed a map of V-Rel from F Òr
to F Òs. Thus, F Ò is well-defined as a pair of maps on objects and on morphisms.
It is the right data to be a functor. Remains to prove the relations functoriality
requires hold.
Consider Idr : r Ñ r the identity morphism on r : X ˆX Ñ V a V-relation. Then
as a map on sets Idr “ IdX . Thus F ÒpIdrq “ F pIdXq “ IdFX “ IdF Òprq so that F Ò
preserves identity morphisms. Furthermore, given two compatible V-Rel arrows
f and g,

F Òpg ˝ fq “ F pg ˝ fq

“ Fg ˝ Ff

“ F Òf ˝ F Òg

and F Ò is indeed a V-Rel endofunctor.

• F Ò is a lifting; let us note p : V-RelÑ Set the bifibration introduced above (see
Proposition 10). Take r : X ˆX Ñ V a V-relation.

p ˝ F Òprq “ ppF Òrq

“ FX

“ F ˝ pprq
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With f : r Ñ s a morphism that is a map f : X Ñ Y on sets,

p ˝ F Òpfq “ ppFfq

“ Ff

“ F ˝ ppfq

so that p ˝ F Ò “ F ˝ p and F Ò is indeed a well-defined lifting.

Remark 9. In opposition to the Wasserstein one, the Kantorovich lifting is defined
with pF “ ev ˝ F for any ev, even when ev ˝ F is not a V-Pred lifting. That is because
the previous proof requires the following equality to hold: pFg ˝ Ff “ pF pg ˝ fq. In
return this equality defines an evaluation map by ev “ pF IdV but does not imply that
pF defines a V-Pred lifting.

Note that even though in the definition of Kantorovich liftings we have f : r Ñ de in
V-Rel a morphism, it is considered an object f : X Ñ V P V-Pred when pF is applied
to f in pFf . This could have been expressed by stating that here, pF is a functor on the
slice category Set{V .

The goal is to know when both liftings coincide. As the Wasserstein lifting is fibred
under some conditions, knowing when the Kantorovich lifting is fibred is mandatory.
This is not true in general. Furthermore for some functors, the Kantorovich lifting is
not fibred except for trivial cases.

Proposition 20. Let ev : FV Ñ V be an evaluation map. If F maps constant maps to
constant maps and if I “ J in V then F Ò is fibred if and only if ev is constant.

Proof. Let us suppose that F maps constant maps to constant maps and that I “ J in
V . Consider an evaluation map defining a Kantorovich lifting F Ò of F to V-Rel. We
will note pFf “ ev ˝ Ff . By definition, this lifting is fibred when

pFfq˚ ˝ F Ò “ F Ò ˝ f˚

This should be true for any V-relation. Take r : X ˆX Ñ V a V-relation. Then for all
x, y P FX,

pFfq˚ ˝ F Òprqpx, yq “
ľ

!

de

´

pFgpFfpxqq, pFgpFfpyqq
¯

; g : r Ñ de

)

F Ò ˝ f˚prqpx, yq “
ľ

!

de

´

pFhpxq, pFhpyq
¯

; h : f˚r Ñ de

)

Take r to be the following:

@px, yq P X ˆX, rpx, yq “

#

K if x “ y

J else

with X arbitrary, and let f : X Ñ V be a constant function. The set
!

de

´

pFgpFfpxqq, pFgpFfpyqq
¯

; g : r Ñ de

)
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is either empty, in which case the meet of the empty set being J, pFfq˚˝F Òprqpx, yq “ J,
either it is not empty, but then, as f is constant and F maps constant maps to constant
maps, Ff is again constant and the previous set is reduced to the singleton tJu as
I “ J. In any case, pFfq˚ ˝ F Òprqpx, yq “ J.

The lifting being fibred implies F Ò ˝ f˚prqpx, yq “ J, meaning that

@h : f˚r Ñ de, dep pFhpxq, pFhpyqq “ J

Having h : f˚r Ñ de means r ˝ pf ˆ fq ď de ˝ phˆ hq. As f is a constant function and
by definition of r, r ˝ pf ˆ fq is constant and equal to K, the equation characterizing h
is always true: h is any function from X to V .

F Ò ˝ f˚prqpx, yq “ J ô @h : X Ñ V in Set, dep pFhpxq, pFhpyqq “ J

Using the Lemma 6, this holds if and only if for all h : X Ñ V , pFhpxq “ pFhpyq. Taking
h : V Ñ V the identity, by functoriality, this implies that ev is constant.

Conversely, the Kantorovich lifting is obviously fibred for any constant evaluation
map as when I “ J, for all x P V , rx, xs “ J.

The Proposition 20 was first obtained in the following form:

Corollary 1. Let ev : FV Ñ V an arbitrary evaluation map. If I “ J in V and if F
is full, then F Ò is fibred if and only if ev is constant.

Example 5. The first three examples use R`-relations, pR`,`, 0q with reversed order
being the quantale structure. Note 0 “ I “ J.

• The following example was used in [3] to prove the Kantorovich and Wasserstein
liftings differ in general. Let ∆: Set Ñ Set be the diagonal functor mapping
X P Set to X ˆ X and f in Set to f ˆ f . Then, as I “ J and ∆ is full, the
associated Kantorovich lifting is fibred if and only if ev is constant.

• Consider F “ IdSet the identity functor. It is also full, so that an associated
Kantorovich lifting is fibred if and only if ev is constant.

• The finite powerset functor P maps a constant map to a constant map, thus an
associated Kantorovich lifting is fibred if and only if ev is constant.

• The finite distribution functor D maps a constant map f : x P X ÞÑ y P Y
to Dpfq : P P DpXq Ñ δy P DpY q a constant map (Ppδy “ yq “ 1 and y is
entirely determined by f). This particular example uses pr0, 1s,min t`, 1u , 0q
with reversed order as a quantale. As I “ J “ 0 any associated Kantorovich
lifting is fibred if and only if the associated evaluation map is constant.

Note however that on some functors of interest, such as the ones modeling finite deter-
ministic automata XΣ ˆ t0, 1u, or functors build with the coproduct such as X `X2,
this theorem is useless.
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In [3] the last three examples are used to illustrate cases where the Kantorovich-
Rubinstein duality holds, i.e. the Wasserstein and Kantorovich liftings are equal. Here
it clearly does not as one lifting may be fibred but not the other whenever the eval-
uation map is not constant; and even when it is, the Theorem 1 will prove that for
the two liftings to coincide ev must be constant and equal to J. It may look contra-
dictory, but [3] considered liftings on pseudometrics, i.e. restrictions to V-Catsym and
on particular quantales, quantales on reals. Interestingly enough, duality can hold on
V-Catsym when it does not on V-Rel. The next step is to give reasonable conditions
for the Kantorovich lifting to restrict to V-pseudometrics. In fact this is always true.

Proposition 21. Let ev be an evaluation map yielding the Kantorovich lifting F Ò of
F along pF “ ev ˝ F . Then, F Ò restricts to a lifting on V-Cat and V-Catsym.

Proof. Let us prove that F Ò preserves symmetric, reflexive, and transitive V-relations:

• F Ò preserves symmetric V-relations; take r : X ˆX Ñ V a V-relation. Note that
de is a symmetric V-relation. Thus,

@px, yq P FX ˆ FX, F Òrpx, yq “
ľ

!

dep pFfpxq, pFfpyqq | f : r Ñ de

)

“
ľ

!

dep pFfpyq, pFfpxqq | f : r Ñ de

)

“ F Òrpy, xq

“ F Òr ˝ symFXpx, yq

and in any case F Òr is symmetric. In particular, F Ò preserves symmetric V-
relations.

• F Ò preserves reflexive V-relations; let r : X ˆX Ñ V be a V-relation. We know
that for all v P V and x, y P X ˆX such that x ‰ y,

rv, vs ě I “ diagXpx, xq and v ě K “ diagXpx, yq

Then,

@x P FX, F Òrpx, xq “
ľ

!

dep pFfpxq, pFfpxqq | f : r Ñ de

)

“
ľ

!

r pFfpxq, pFfpxqs | f : r Ñ de

)

ě
ľ

tI | f : diagX Ñ deu

“ I

“ diagXpx, xq
@x, y P FX ˆ FX, x ‰ y ñ F Òrpx, yq ě K

“ diagXpx, yq

Thus, F Òr ě diagFX meaning F Òr is reflexive. In particular F Ò preserves reflexive
V-relations.
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• Suppose de is transitive. Then for any relation r : X ˆX Ñ V ,

@t1, t2, t3 P FX,

F Òrpt1, t2q b F
Òrpt2, t3q

“
ľ

!

dep pFfpt1q, pFfpt2qq; f : r Ñ de

)

b
ľ

!

dep pFfpt2q, pFfpt3qq; f : r Ñ de

)

ď
ľ

!

dep pFfpt1q, pFfpt2qq b dep pFfpt2q, pFfpt3qq; f : r Ñ de

)

ď
ľ

!

dep pFfpt1q, pFfpt3qq; f : r Ñ de

)

“ F Òrpt1, t3q

and in particular F Ò preserves transitive V-relations. Using the Lemmas 4 and 5,
F Ò preserves transitive V-relations in any case.

Remark 10. Note that the proof gives a stronger result: F Ò : V-RelÑ V-Catsym

Now we know the Kantorovich lifting restricts to V-Catsym, the next step is to know
wether it is fibred or not.

Proposition 22. Let ev be an evaluation map defining a Kantorovich lifting F Ò : V-RelÑ
V-Catsym. Then F Ò is fibred on V-Catsym.

Proof. By definition, stating that F Ò is fibred amounts to

@f : Y Ñ X, pFfq˚ ˝ F Ò “ F Ò ˝ f˚

Instanciating this situation, the goal is to prove that for all f : Y Ñ X, r : X ˆX Ñ V ,
and px, yq P FY ˆ FY ,

r P V-Catsym ñ pFfq˚ ˝ F Òrpx, yq “ F Ò ˝ f˚rpx, yq

By definition of p´q˚ and of F Ò,

pFfq˚ ˝ F Òrpx, yq “
ľ

!

dep pF pg ˝ fqpxq, pF pg ˝ fqpyqq | g : r Ñ de

)

F Ò ˝ f˚rpx, yq “
ľ

!

dep pFhpxq, pFhpyqq | h : f˚r Ñ de

)

Note that pFfq˚ ˝F Òr being a cartesian lifting of F Òr, we already have a morphism
from F Ò ˝ f˚ to pFfq˚ ˝F Ò. Because both are above Ff , this morphism is the identity,
and,

F Ò ˝ f˚ ď pFfq˚ ˝ F Ò

Here we are going to prove that

F Ò ˝ f˚ “ pFfq˚ ˝ F Ò
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To do so we will use that given
Ź

A and
Ź

B,

p@x P A, Dy P B, y ď xq ñ
ľ

A ě
ľ

B

To prove the equality, we only have to prove that

@h : f˚r Ñ de, Dg : r Ñ de, dep pF pg ˝ fqpxq, pF pg ˝ fqpyqq ď dep pFhpxq, pFhpyqq

Given h : f˚r Ñ de, we want to construct g : X Ñ V such that this holds. First we
define g : fpY q Ñ V on fpY q by

@z P Y, gpfpzqq “ hpzq

This is well-defined as whenever fpzq “ fpz1q, then r ˝ pf ˆ fqpz, z1q “ J ď de ˝ ph ˆ
hqpz, z1q meaning hpzq “ hpz1q using the Lemma 6. Then, with i : fpY q ãÑ X,

@u : r Ñ de, pi
˚
puq “ gq ñ pdep pF pu ˝ fqpxq, pF pu ˝ fqpyqq “ dep pFhpxq, pFhpyqqq

Because r is a V-pseudometric and using the Technical lemma, g can be extended to a
map X Ñ V giving the result.

3 The Kantorovich-Rubinstein duality
Here the goal is to study the link between the Kantorovich and the Wasserstein liftings.
It has been found that in some cases, the liftings coincide (see [3]; the examples given
in this article are also treated here). When they do the Kantorovich-Rubinstein duality
is said to hold. It has also been found that they can differ (see [3, 4]). Our main goal
is to find some conditions so that the Kantorovich-Rubinstein duality holds. Section
3.1 concentrates on duality for general V-relations, and Section 3.2 on duality for V-
pseudometrics.

Considering both the Wasserstein and the Kantorovich liftings in the same set-
ting means constructing them using the same evaluation map. For that to be possible
the latter must be monotone, yielding a V-Pred lifting defining the Wasserstein lift-
ing. Throughout this section, V will be an arbitrary symmetric unital quantale and
F : Set Ñ Set an arbitrary Set endofunctor. Finally, ev : FV Ñ V will denote an
arbitrary monotone evaluation map.

3.1 Duality for V-relations

Some general results are given in Section 3.1. In particular, Theorem 1 will prove
that for some functors duality only holds for the constant and equal to J evaluation
map. The remaining of Section 3.1 is devoted to extending this result for polynomial
functors. This is done by first looking at duality for constant functors in Section ??,
and for coproducts in Section ??. The general case for polynomial functors is treated
in Section ??.
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3.1.1 Duality, general results

We first give a generalization to arbitrary quantales of a “weak” version of duality (see
[3, Proposition 4.9].

Proposition 23. Suppose that F is a weak-pullback preserving functor and that ev is
a behaved evaluation map ev : FV Ñ V. Then,

F Ò ě F Ó

Proof. By definition,

F Ò ě F Ó

ô @r P V-Rel : X ˆX Ñ V , @t1, t2 P FX, F Òrpt1, t2q ě F Órpt1, t2q

Again by definition,

F Òrpt1, t2q “
ľ

!

dep pFfpt1q, pFfpt2qq | f : r Ñ de in V-Rel
)

F Órpt1, t2q “
ł

!

pF prqptq | t P F pX ˆXq, Fπiptq “ ti

)

A meet is greater than or equal to a join if and only if the inequality holds for all
the elements on which they are defined. Thus we have to prove that

@f : r Ñ de in V-Rel, @t P F pX ˆXq, Fπiptq “ ti ñ dep pFfpt1q, pFfpt2qq ě pF prqptq

We have:

dep pFfpt1q, pFfpt2qq “ dep pFfpFπ1ptqq, pFfpFπ2ptqqq

“ dep pF pf ˝ π1qptq, pF pf ˝ π2qptqq

“ dep pF pπ1 ˝ pf ˆ fqqptq, pF pπ2 ˝ pf ˆ fqqptqq

“ dep pFπ1pF pf ˆ fqqptq, pFπ2pF pf ˆ fqqptqq

ě pF pdeqpF pf ˆ fqptqq

(using the lemma 9)

“ pF pde ˝ pf ˆ fqqptq

ě pF prqptq

(because f : r Ñ de is a morphism in V-Rel)

ending the proof.

In some cases the duality is simple to treat:

Theorem 1. Suppose that I “ J in V and that F maps constant maps to constant
maps and is weak-pullback preserving. Then F Ò “ F Ó if and only if all the couplings on
F exists and ev is constant and equal to J.
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Proof. Obviously if ev is constant and equal to J it is behaved. In particular F Ó is
defined, and if all the couplings exist the liftings are both constant and equal to J.

Conversely, suppose duality holds. If V is a singleton, then obvioulsy ev is constant
and equal to J and duality holds. Let us suppose K ‰ J.

Using Proposition 15, F Ó is fibred here. By Proposition 20 ev must be constant. As
I “ J using Lemma 6, for all x P V , depx, xq “ J. The Kantorovich lifting is constant
and equal to J. Similarly, F Ó must be constant and equal to J:

@t1, t2 P FX, F
Ó
prqpt1, t2q “ J “

ł

!

pF prqptq | t P F pX ˆXq, Fπit “ ti

)

The set defining this join cannot be empty. Else it would mean F Óprqpt1, t2q is equal to
K ‰ J. All couplings exist.

Let us note v such that ev is constant and equal to v. Then as all couplings exists,
F Ór is constant and equal to v. Thus v “ J and:

• all couplings along F exist;

• ev is constant and equal to J.

The remaining of Section 3.1’s goal is to prove that Theorem 1 extends to polynomial
functors. The proof of this results will use the two following lemmas, linking duality
for different functors subject to natural transformations.

Lemma 10. Let G : Set Ñ Set be a Set endofunctor, and σ : G ñ F a natural iso-
morphism. Then, ev : FV Ñ V gives duality for F if and only if ev ˝ σV gives duality
for G.

Proof. We will note evF for the evaluation map ev : FV Ñ V and evG “ evF ˝ σV . For
all maps f : X Ñ Y the following commutes,

GX FX

GY FY

Gf

σX

Ff

σY

Thus, if f : X Ñ V , Ff “ σV ˝Gf ˝ σ
´1
X , and

pFf “ evF ˝ Ff
“ evF ˝ σV ˝Gf ˝ σ´1

X

“ evG ˝Gf ˝ σ´1
X

“ pGf ˝ σ´1
X

pGf “ pFf ˝ σX
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Suppose that duality holds for G with evG. Then, for all V-relation r : X ˆ X Ñ V ,
and t1, t2 P FX,

F Òrpt1, t2q “
ł

!

dep pFfpt1q, pFfpt2qq | f : r Ñ de

)

“
ł

!

dep pGfpσ
´1
X pt1qq,

pGfpσ´1
X pt2qqq | f : r Ñ de

)

“ GÒrpσ´1
X t1, σ

´1
X t2q

“ GÓrpσ´1
X t1, σ

´1
X t2q

“
ľ

!

pGrptq | t P GpX ˆXq a coupling of σ´1
X t1 and σ´1

X t2

)

“
ľ

!

pFfpσXtq | t P GpX ˆXq a coupling of σ´1
X t1 and σ´1

X t2

)

Note that given a coupling t P GpX ˆ Xq of σ´1
X t1 and σ´1

X t2, σXt is a coupling of t1
and t2 as FπipσXtq “ σXGπit “ ti. The converse being true, couplings of t1 and t2 are
in one-to-one correspondance with couplings of σ´1

X t1 and σ´1
X t2 by σX . Thus,

F Òrpx, yq “
ľ

!

pFfpσXtq | t P GpX ˆXq a coupling of σ´1
X t1 and σ´1

X t2

)

“
ľ

!

pFfptq | t P F pX ˆXq a coupling of t1 and t2
)

“ F Órpt1, t2q

proving that duality holds. The converse situation being symmetric, we leave it to the
reader.

Often we will not have a natural monomorphism instead of a natural isomorphism. In
this case duality for F do not necessarily imply duality for G, further conditions are
required.

Lemma 11. Let G : Set Ñ Set be a Set endofunctor, and σ : G ñ F be a natural
monomorphism. Suppose that F has all optimal couplings, and that with t P F pX ˆXq
an optimal coupling of t1, t2 P FX, σXˆt is an optimal coupling of σXt1 and σXt2. Then
if duality holds for F with ev, duality holds for G with ev ˝ σV .

Proof. We will note evF for ev : FV Ñ V and evG “ evF ˝ σV .
First, note that as Set has all pullbacks, a monic natural transformation is monic

pointwise. Thus, σX is left-invertible for any X. We will note τX be such a left-inverse.
By naturality of σ, for all f : X Ñ Y ,

Gf “ τY ˝Gf ˝ σX
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In particular, with f : X Ñ V ,

pGf “ evG ˝Gf
“ evF ˝ σV ˝ τY ˝ Ff ˝ σX
“ evF ˝ σV ˝ τY ˝ σY ˝Gf
“ evF ˝ σV ˝Gf
“ evF ˝ Ff ˝ σX
“ pFf ˝ σX

Suppose that duality holds for F with evF . Then, for all V-relation r : X ˆX Ñ V and
t1, t2 P GX,

GÒrpt1, t2q “
ł

!

dep pGfpt1q, pGfpt2qq | f : r Ñ de

)

“
ł

!

dep pFfpσXt1q, pFfpσXpt2qqq | f : r Ñ de

)

“ F ÒrpσXt1, σXt2q

“ F ÓrpσXt1, σXt2q

“
ľ

!

pFrptq | t a coupling of σXt1 and σXt2
)

Now, as by hypothesis t1 and t2 have an optimal coupling topt such that σXˆXtopt is an
optimal coupling of σXt1 and σXt2,

GÒrpt1, t2q “
ľ

!

pFrptq | t a coupling of σXt1 and σXt2
)

“ pFrpσXˆXtoptq

“ pGrptoptq

“ GÓrpt1, t2q

and duality holds for G with evG “ evF ˝ σV .

3.1.2 Constant functors FA

The simplest of all functors are probably constant functors FA sending any set X to
a fixed set A and any morphism to the identity morphism IdA. With these functors
duality never holds whenever V and A have more than one element,

Proposition 24. Let A be a set. Consider the constant functor FA along with a well-
behaved evaluation map ev : A Ñ V. Suppose that I “ J in V. Then duality holds if
and only if one of the following two conditions hold:

• V has only one element;

• A has only one element and ev is constant and equal to J,
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In any case, ev must be constant and equal to J.

Proof. Suppose that duality holds.
Note that given pa1, a2q P A

2, a coupling a P FApAˆAq “ A is such that IdAa1 “ a
and IdAa2 “ a, i.e. it exists if and only if a1 “ a2. When it does the formula for
the Wasserstein lifting gives FAÓrpa, aq “ evpaq independently from r. The definition
of the Kantorovich lifting gives FAÒrpa, aq “ ra, as. As I “ J and using Lemma
6, FAÒrpa, aq “ J so that duality implies either that V is a singleton, or that ev is
constant and equal to J. When V is a singleton, duality obviously holds.

Suppose that K ‰ J so that ev is constant and equal to J. Whenever a1 ‰

a2, because a coupling of a1 and a2 does not exist, FAÓrpa1, a2q “
Ž

H “ K. But
FAÒrpa1, a2q “ J as ev is constant and equal to J. Thus, whenever K ‰ J and there
exists a1 ‰ a2 in A, duality does not hold. Duality implies that A is a singleton. Then
duality obviously holds.

3.1.3 Coproducts

Let us generalize what we did on constant functors. This will give us an inductive
condition of duality for functors constructed using coproducts.

Proposition 25. Let F,G : Set Ñ Set be two Set endofunctors. They induce the
functor F p´q`Gp´q : SetÑ Set defined by X ÞÑ F pXq`GpXq and f ÞÑ F pfq`Gpfq.
Let ev be a monotone evaluation map for F p´q`Gp´q. Then, duality holds if and only
if:

• the restriction of ev to F (resp. G) gives duality;

• for all r : X ˆX Ñ V a V-relation, px, 1q, py, 2q P F pXq `GpXq, with x P F pXq
and y P GpXq,

ľ

tdepevpFfpxq, 1q, evpGfpyq, 2qq|f : r Ñ deu “ K

Proof. Suppose that duality holds.
Obviously, duality holds for the liftings of F and G when ev is restricted to them

using the coproduct structure (this is a generalization of Lemma 11 not using optimal
couplings).

Consider r : X ˆ X Ñ V a V-relation and x P F pXq, y P GpXq. Couplings of
px, 1q P F pXq `GpXq with py, 2q do not exist. Indeed such a coupling t P F pX ˆXq `
GpXˆXq would have to be of the form pt, iq for i P t1, 2u and such that after projections
Fπ1 ` Gπ1 and Fπ2 ` Gπ2 one gets back px, 1q and py, 2q, implying 1 “ i “ 2. Thus,
pF p´q `Gp´qqÓrppx, 1q, py, 2qq “ K. Necessarily, pF p´q `Gp´qqÒrppx, 1q, py, 2qq “ K

as duality holds. Thus,
ľ

tdepevpFfpxq, 1q, evpGfpyq, 2qq|f : r Ñ deu “ K

giving the other condition in the theorem statement.
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Conversely, suppose both conditions are true. Then, the liftings coincide for ele-
ments of the form px, 1q and px1, 1q (resp. py, 2q and py1, 2q). On elements px, 1q and
py, 2q, the liftings are both equal to K; the Wasserstein lifting because there is no cou-
pling of px, 1q with py, 2q and the Kantorovich lifting using the second condition in the
theorem statement. Overall, duality holds.

Remark 11. This result can be adapted to arbitrary coproducts simply by replacing
the second condition by similar conditions applying for each pair of functors defining
the coproduct.

This proposition states that an evaluation map giving duality for F `G is composed
of two evaluation maps, one for F and one for G, that are incompatible.

This result’s proof is quite simple. However its implications are very interesting.

Example 6. In Example 5, two examples are used to illustrate that Proposition 20 do
not apply to every functor; in particular the functor defined by X ÞÑ X `X2 on sets.
This functor does not map constant maps to constant maps and thus Proposition 20
does not apply. For the same reason Theorem 1 does not apply on X `X2. Still, using
Proposition 25, one knows that if ev : V`V2 Ñ V gives duality for X`X2 then it gives
duality on both its restrictions to V and V2. Then, using Theorem 1, ev is constant
and equal to J on both restrictions, meaning that overall, it is constant and equal to
J, and the second condition of Proposition 25 does not apply: duality cannot hold for
X `X2.

More generally the next section will show that similar reasonings apply to every poly-
nomial functor, extending Theorem 1 and Proposition 24 to all of them.

3.1.4 Polynomial functors

Here we study duality for Kripke polynomial functors as defined in [7, Section 2.2]; that
is functors built using:

• Constant functors;

• Identity functors;

• Finite products;

• Arbitrary coproducts;

• Composition with exponent functor p´qB for arbitrary set B;

• Composition with the finite powerset functor.

Therafter we simply talk of polynomial functors or polynomial Set endofunctors.
First we give a lemma that will be used to prove a general result on polynomial

functors:
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Lemma 12. Let F be a polynomial functor, r : X ˆ X Ñ V a V-relation, and x, y P
FX. Then, either there are no couplings of x and y, either there exists an optimal
coupling t P F pXˆXq of x and y, i.e. a coupling such that for all monotone evaluation
map ev : F pVq Ñ V,

F Órpx, yq “ ev ˝ Frptq

Proof. The proof will be done by induction on the structure of polynomial functors. If
F “ A, x, y P A, either x ‰ y and there are no couplings of x and y, either x “ y and
t “ x “ y is the only and thus optimal coupling of x and y (see the proof of Proposition
24).

If F “ IdSet, then x and y have a unique and thus optimal coupling px, yq P IdSetpXˆ
Xq.

Suppose that the lemma holds for F and G two polynomial functors. Let us consider
the different construction possible for polynomial functors:

• F ˆ G. Let px, yq “ ppx1, y1q, px2, y2qq P pF pXq ˆ GpXqq2. Then, a coupling for
x and y is a pair made of a coupling for x1 and y1, and a coupling for x2 and
y2. By induction hypothesis, either one of these does not exist and there are no
couplings of x and y, either there exists couplings of both x1 and y1 and x2 and
y2, and by induction hypothesis there are optimal couplings t1 of x1 and y1 and t2
of x2 and y2. Then, t “ pt1, t2q is an optimal coupling for x and y. This is proven
using the definition of monotonicity for evaluation maps on products of functors.

• F ` G. Let px, iq, py, jq P F pXq ` GpXq. Then, if i ‰ j there is no coupling of
px, iq and py, jq. If i “ j, then a coupling pt, iq of px, iq and py, iq is a coupling of
x and y. By induction hypotheses, we can suppose t to be optimal for x and y.
Then pt, iq is optimal for px, iq and py, iq. Thus, there is an optimal coupling of
px, iq and py, iq.

• F p´qB for a fixed set B. Let x, y P F pXqB. Then, we can write x “ pxbqbPB,
and y “ pybqbPB with xb, yb P F pXq. Then, a coupling of x and y is t “ ptbqbPB P
F pX ˆ XqB such that for b P B, tb is a coupling of xb and yb. By induction
hypotheses, xb and yb have an optimal coupling. We will note it tb despite the
above notations. Then, t “ ptbqbPB is optimal for x and y.

• PpF p´qq. Let X, Y P PpF pZqq. Then, X and Y are subsets of F pZq. A coupling
of X and Y is a subset T of PpF pX ˆXqq such that for all t P T , there are x P X
and y P Y , and t is a coupling of x and y and such that for all x P X, there is
t P T such that t is a coupling of x with some y P Y , and similarly for all y P Y .
Consider T the coupling made of, for all x P X, the coupling t defined as the join
of all the optimal couplings of x with some y P Y , and similarly for y. Then, this
coupling is optimal for X and Y . (not clear TODO: rewrite this; still optimal
couplings for P were already defined in [3] so not a big deal for now; however here
optimal couplings depend on the considered pseudometric, so that this must be
added in the definition of optimal couplings).
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The following result solves duality for polynomial functors on V-Rel. The following
hypothesis will be made: any occurence of H ˆ F p´q will simply be replaced by H.
When a construction such as the product bifunctor, the coproduct, or the powerset
functor are composed with constant functors only, the whole thing will be considered
a constant functor. Thus if we consider F p´q ˆ Gp´q one of F or G at least is not a
constant functor.

Theorem 2. Let F : Set Ñ Set a polynomial Set endofunctor. Suppose that I “ J
in V. Then for any monotone evaluation map ev : FV Ñ V, duality holds if and only
if V is a singleton or if

• there is not constant functors in the recursive definition of F that is not H or a
singleton;

• there is not coproducts in the recursive definition of F that is not with the constant
functor FH;

• ev is constant and equal to J.

Proof. If V is a singleton, obviously duality holds. From now on suppose K ‰ J.
Suppose there is no constant functors apart from singletons orH, and no coproducts

except when made on FH in the recursive definition of F . Let us prove by induction that
F maps constant maps to constant maps. If F “ FA, then either A is a singleton, either
A “ H. In any case, F maps constant maps to IdA which is constant. If F “ IdSet,
F obviously maps constant maps to constant maps. Suppose that G and H are Set
endofunctor mapping constant maps to constant maps. Then:

• if F “ H ˆG, then given a constant map f , Ff “ Gf ˆHf where Gf and Hf
are constant maps by induction hypotheses. Thus, Ff is a constant map.

• if F “ H ` G, then without loss of generality, G “ FH. In particular there is a
natural isomorphism F – H, so that F maps constant maps to constant maps.

• if F “ HB for B an arbitrary set, then with f : X Ñ Y a map, Ff “ HpfqB

maps function g P B Ñ FX to g˝Hpfq constant as Hpfq is constant by induction
hypothesis.

• if F “ PpHq, then with f : X Ñ Y a map, Ff “ PpHpfqq mapping a subset
S Ď PpHXq to its image by Hpfq. The latter being constant and equal to
y P HpY q by induction hypotheses, Ff maps any S Ď PpHXq to the singleton
tyu, and Ff is a constant map.

By induction, any such polynomial functor F maps constant maps to constant maps.
As I “ J in V by hypothesis, using Theorem 1, duality holds for any such F if and
only if ev is constant and equal to J.

Conversely, suppose that a constant functor on a set with at least two elements or a
coproduct with functors that are not FH appear in F ’s inductive definition. Then, let
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us prove by induction that duality cannot hold. We cannot have F “ IdSet. If F “ FA
for A with at least two elements, then by Proposition 24, duality cannot hold as V is
not a singleton. Suppose that the Theorem statement is true for polynomial functors
built using n inductive step. Suppose F is built using n` 1 inductive steps. Then:

• if F “ H ˆ G then we cannot treat F ’s duality right away. Let us look at H
inductive definition. Without loss of generality, we suppose that H ‰ K1 ˆK2.
If H “ FA for some set A, then by hypothesis A ‰ H and either A is a singleton
and F – G, and by induction duality cannot hold on F , either A has at leat two
elements, and then we note that F –

š

aPAG, and we treat this case using the
next point. If H “ K1`K2, then F – pK1ˆGq`pK2ˆGq, and we treat this case
using the next point. If H “ KB, then there is a monic natural transformation
KˆGñ F sending optimal couplings to optimal couplings, so that by induction
hypothesis onKˆG, and by the contraposis of Lemma 11, duality cannot hold for
F . Similarly for H “ PpKq, there is a monic natural transformation K ˆGñ F
that implies that duality cannot hold for F .

The final case is when H “ X. Then, we treat the different inductive case in G’s
definition by the same procedue, leaving one case, F “ X ˆX. This case cannot
happen by hypothesis on F .

• if F “ H `G, then ev giving duality for F must, by restriction, give duality for
H and for G. By induction hypotheses, that implies that ev is constant and equal
to J. As neither H nor G are the constant functor equal to H, and as V is not
a singleton, there exists vH P HpVq and vG P GpVq. Then, because we have a
coproduct, there are no coupling of pvH , 1q and pvG, 2q. Thus, choosing the right
V-relation, the Wasserstein lifting can be equal to K when the Kantorovich lifting
is constant and equal to J, and duality cannot hold for F .

• if F “ HB, then we know that duality cannot hold for H. There is a monic
natural transformation H ñ F that associates to an elements of HX the function
constant and equalt to it. Using the contraposis of Lemma 11 and the fact duality
cannot holds for H, duality cannot hold for F neither.

• if F “ PpHq, then once again there is a monic natural transformation H ñ F
that associates to each element in HX the corresponding singleton in PpHpXqq.
By the contraposis of Lemma 11 and because by induction hypothesis, duality
cannot hold for H, duality cannot hold for F .

3.2 Duality for V-pseudometrics

As shown already in the last Section, the Wasserstein and the Kantorovich liftings are
better considered on V-pseudometrics. Section 3.2 studies duality for such V-relations.

Even though the methods are essentially the same for every functor, finding a general
duality result seems a complicated task. Thus duality is considered one functor at a
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time. Some results on general V-relation are also true for V-pseudometrics as shown in
Section ?? and ??.

Our approach rests on two things. First our interpretation of duality. It will be
constructed in Section ?? and consolidated throughout Section 3.2. It gives intuitions
as to what matters for duality to hold. The second tool is the almost permanent use
of the Technical Lemma to actually prove liftings coincide in Section 3.2. Section 2
and Theorem 1 argue that the right place to look for duality is by restricting the
Kantorovich and the Wasserstein liftings to V-Catsym. To this end only well-behaved
evaluation maps will be considered from now on. Often it will be supposed that I “ J
in V .

Here we will answer several questions about duality: can duality hold for every
functor ? No, in general constant functors do not give duality. Is there a generic
evaluation map giving duality under mild conditions ? A good candidate would have
been the canonical evaluation map. Still it does not give duality on the diagonal and
finite probability distribution functors. Is it possible to solve duality, at least for a
given functor ? Yes, here we solve this problem for constant functors and the likes, the
identity functor, the finite powerset functor, and the diagonal functor. The proofs are
very similar but difficult to generalize.

3.2.1 Constant functors, coproducts, and Observables

More generally, it is easy to see that duality holds whenever V is a singleton: for any
set X there is only one V-relation on X.

In a computational interpretation, constant functors are associated to those sys-
tems that are in a constant state, with one observable, an element of A. That being
said, Proposition 24 is the starting point of our interpretation of duality: whenever an
observable is explicitly given in the structure of the functor, then duality cannot hold
except for those ev that are able to take observables into account. By explicit observ-
ables, we mean constant sets in the structure of the lifted functor. Explicit observables
are highlighted by the Wasserstein lifting; they imply non-existence of some couplings
making the Wasserstein lifting equal to K. This notion of explicit observable and its
interpretation with duality is made formal in Corollary 2.

Furthermore, examples in the sequel will show that even “implicit” observables pre-
vent duality to hold whenever they are not taken into account by ev. Let us explain what
is meant by “implicit” observables. They are natural transformation σ : F ñ G. Then,
given a V-pseudometric r : X ˆX Ñ V , elements t1, t2 P FX, whenever σXt1 “ σXt2,
that is with !Set final in Set, the following commutes for all f : r Ñ de:

!

FX GX FX

FV GV FV

t1 t2

Ff

σX

Gf

σX

Ff

σV σV
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Thus, whenever the evaluation map ev only depends on σV , two elements t1, t2 P FX
with the same implicit observable σXt1 “ σXt2 will give ev ˝ Ffpt1q “ ev ˝ Ffpt2q
for all f : r Ñ de. Using Lemma 6, if I “ J that implies F Òrpt1, t2q “ J. Thus
implicit observables are highlighted by the Kantorovich lifting. This notion of implicit
observables and its interpretation with duality is very difficult to translate in a formal
general way. It will be recalled each time duality is solved using it: for the identity,
powerset, diagonal, and finite probability distribution functors.

In this way, duality is a way of looking at the observables present in the system type
represented by the functor that is lifted.

Let us generalize the previous result.

Corollary 2. Let A a set, F an endofunctor on Set. Suppose V has at least two
elements. Consider the functor F p´q ˆ A which associates F pXq ˆ A to a set X and
F pfqˆIdA to a function f . Then, given a well-behaved evaluation map ev for F p´qˆA,
duality holds if and only,

• for all a1 ‰ a2 P A, v P V,
Ź

trevpv, a1q, evpv, a2qs, revpv, a2q, evpv, a1qsu “ K;

• for all a P A, ev|F pVqˆtau would give duality as a well-behaved evaluation map for
F .

Proof. Suppose duality holds. Let r : X ˆ X Ñ V a V-pseudometrics. Consider x1 “

px, a1q and x2 “ px, a2q in F pXqˆA with a1 ‰ a2. Then, there exists no coupling of x1

and x2, so that F p´q ˆ AÓrpx1, x2q “ K. Because duality holds, F p´q ˆ AÒrpx1, x2q “

K. We know that

F p´q ˆ AÒrpx1, x2q “
ľ

tdepevpFfpxq, a1q, evpFfpxq, a2qq | f : r Ñ deu

This being equal to K gives the first condition. Now consider x “ px1, aq and y “ py1, aq
and ev|F pVqˆtau. Then, as duality holds F p´q ˆ AÒrpx, yq “ F p´q ˆ AÓrpx, yq, i.e.,
ľ

tdepevpFfpxqq, evpFfpyqqq | f : r Ñ deu “
ł

tevpFfptqq | t a coupling of x and yu

Now, as this is true for all r, x1, and y1, as a coupling is of the form pt1, aq for t1 a
coupling of x1 and y1 for the functor F , and as in the previous equation we always apply
evF p´qˆtau, then it means evF p´qˆtau gives duality for F p´q giving the second condition.

Conversely, suppose both conditions hold. Let r : X ˆ X Ñ V a pseudometric.
Because on the second condition, whenever we look at the liftings on elements with the
same observable in A, we get duality. Let x “ px1, a1q and y “ py1, a2q with a1 ‰ a2.
Then F p´q ˆ AÓrpx, yq “ K because there are no couplings of x and y. Let v P V .
Using the technical lemma we can construct f : r Ñ V such that Ffpx1q “ Ffpy1q “ v.
By inclusion,

F p´q ˆ AÒrpx, yq ď
ľ

tdepevpv, a1q, evpv, a2qqu “ K

and thus F p´q ˆ AÒrpx, yq “ K ending the proof.
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This proposition states that when an observable is made explicit through a constant
set, then ev must take it into account so that the Kantorovich lifting can be equal to K
whenever the Wasserstein lifting is, that is whenever observables do not coincide. For
example, when taking F “ IdSet the identity functor and V “ R` the usual quantale,
using propositions 26 and ??, with A “ r0,8s, we know that evpx, yq “ x` y will not
give duality, because with two different observable y and z, the Kantorovich lifting will
give |y ´ z| ‰ 8 “ pIdˆ AÓqrppx, yq, px, zqq on px, yq and px, zq. Still, duality holds
takin evpx, yq “ x.y.

3.2.2 The identity functor IdSet

The simpler functor treated in [3] is IdSet the identity functor. The evaluation maps
that are considered in [3] are of the form evpvq “ c.v for some constant 0 ă c ď 1. Here
we generalises this result.

Proposition 26. Let us consider pR`,`, 0q the usual symmetric unital quantale where
I “ J and ev a well-behaved evaluation map for the identity functor. Then duality holds
on V-pseudometrics: IdSet

Ò
“ IdSet

Ó.

Proof. Consider r : X ˆX Ñ V a R`-pseudometric. Note that for all x, y P X there is
a unique coupling px, yq P IdSetpX ˆXq that projects to both x and y. Thus,

IdÓrpx, yq “ ev ˝ rpx, yq

On the other hand,

IdÒrpx, yq “ sup t|evpfpxqq ´ evpfpyqq|; f : r Ñ deu

Note that
|evprpx, yqq ´ evp0q| “ ev ˝ rpx, yq

so that we are in the situation of proposition ??. Thus there exists an f : r Ñ de such
that |evpfpxqq ´ evpfpyqq| “ IdÓrpx, yq proving that duality holds.

Remark 12. With V “ R`, well-behaved evaluation map for the identity functor are
exactly monotone subadditive maps that are equal to 0 in 0. Thus, any additive maps
fpxq “ c.x for c P r0,8q works. Another example is fpxq “

?
x. More generally, any

increasing concave map that is equal to 0 in 0 works.

Following the previous interpretation we would say that the identity functor presents no
observables, being explicit or implicit, that would prevent duality from holding. This
will also be the case of the next functor. Still cases on ∆ or D will be more difficult to
understand using our interpretation.
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3.2.3 The finite powerset functor P

The second more eleborate functor treated in [3] is the finite powerset functor P which
send a set X to its set of finite subset PpXq and a map f to the correspond direct
image map Ppfq. In [3] it is noted that with evpXq “ maxX duality holds. We also
give a generalization:

Proposition 27. Let us consider pR`,`, 0q the usual unital symmetric quantale with
I “ J and ev an evaluation map. If ev is well-behaved for P, then duality holds on
pseudometrics.

Proof. Let ev : PV Ñ V be a well-behaved evaluation map for P . First, let us look
at what it means for ev to be monotone. Let pX1, X2q P pPVq2 be two subsets of V .
The usual lifting of relation of ď gives a preorder ! on PV along which ev should be
monotone. In particular ! is defined by the following:

X1 ! X2 ô Dr P P ď, @i, Pπir “ Xi

this means that there should exists a subset r of PpV ˆ Vq such that if px, yq P r
then x ď y, and such that left (resp. right) projection of elements of r give X1 (resp.
X2). I claim that X1 ! X2 is equivalent to minX1 ď minX2 and maxX1 ď maxX2.
Indeed if this holds then r “ tpx,maxX2q | x P X1uYtpminX1, yq | y P X2u is a witness
giving the inquality. Conversely if minX1 ą minX2 then there is no x P X1 such that
x ď minX2 and minX2 cannot appear in any witness for !.
Note in particular that if minX1 “ minX2 and maxX1 “ maxX2, even though X1 ‰

X2 monotonicity of ev implies evX1 “ evX2. In particular, ev only depends on min
and max. There exists f : V ˆV Ñ V such that evX “ fpminX,maxXq. Furthermore
by definition of ! f is monotone along both of its components. Note that in our use of
f , its first component will always be smaller than its second.
Let us look at the Wasserstein lifting of P along ev. Let r : X ˆ X Ñ V be a V-
pseudometric and T1, T2 Ď PX be finite subsets,

PÓrpT1, T2q “
ł

!

pPrpT q | @i, PπiT “ Ti

)

“ inf tev ˝ PrpT q | @i, PπiT “ Tiu

“ inf tfpminPrpT q,maxPrpT qq | @i, PπiT “ Tiu

“ min tfpminPrpT q,maxPrpT qq | @i, PπiT “ Tiu

(as T1 and T2 are finite subsets there is a finite number of couplings)

Because f is monotone in both arguments,

PÓrpT1, T2q ě fpmin trpx, yq | x P T1, y P T2u ,max

˜

ď

xPT1

trpx, yq | y P T2u Y
ď

yPT2

trpx, yq | x P T1u

¸

q

We get an equality with the following coupling of T1 and T2 that we will note T from
now on (this is the optimal coupling mentioned in [4]),

T “
ď

xPT1

trpx, yq | y P T2u Y
ď

yPT2

trpx, yq | x P T1u
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There are rpx1, y1q and rpx2, y2q such that

PÓrpT1, T2q “ fprpx1, y1q, rpx2, y2qq

Now let us look at the Kantorovich lifting of P along ev:

PÒrpT1, T2q “
ľ

!

deppPgpT1q, pPgpT2qq | g : r Ñ de

)

“ sup t|fpminPgpT1q,maxPgpT1qq ´ fpminPgpT2q,maxPgpT2qq|; g : r Ñ deu

If we find g giving equality:

|fpminPgpT1q,maxPgpT1qq ´ fpminPgpT2q,maxPgpT2qq| “ fprpx1, y1q, rpx2, y2qq

Withoug loss of generality let us suppose that,

rpx2, y2q “ min trpx2, yq | y P T2u

Then, we set,

@x P T1, gpxq “ min trpx, yq | y P T2u

@y P T2, gpyq “ 0

With this definition,

|fpminPgpT1q,maxPgpT1qq ´ fpminPgpT2q,maxPgpT2qq|

“fpminPgpT1q,maxPgpT1qq “ fprpx1, y1q, rpx2, y2qq

Also, for all y, y1 P T2, rpy, y1q ě J “ depgpyq, gpy
1qq, for all y P T2 and x P T1,

depgpxq, gpyqq “ gpxq

“ min trpx, y1q | y1 P T2u

ď rpx, yq

and finally for all x, x1 P T1, if gpxq “ rpx, yq and gpx1q “ rpx1, y1q following the definition
of g,

rpx, y1q ď rpx, x1q ` rpx1, y1q

rpx, y1q ě rpx, yq

giving,
rpx, x1q ě rpx, yq ´ rpx1, y1q

and by symmetry,
rpx1, xq ě rpx1, y1q ´ rpx, yq

meaning that depgpxq, gpx
1qq ď rpx, x1q. Thus, we are in the situation of the proposition

??, and there exists g : r Ñ de such that duality holds.
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Following our previous interpretation, there is no observable, implicit or explicit, that
could be defined on P , explaining why duality always hold. In r5s, it is shown that
min is not well-behaved for the powerset functor. Here we know that a well-behaved
evaluation map for the powerset functor must depend only on the maximum and on the
minimum of the given subset of V . A question is, “is there a well-behaved evaluation
map that do not only depend on max ?”. To this end, a way of knowing when an
evaluation map is well-behaved that depend not on subsets but on values would be
great. We give here such a result:

Proposition 28. Let ev an evaluation map for the finite powerset functor. It is well-
behaved if and only if:

• it is monotone in both its arguments;

• for all xm ď xM and ym ď yM in V such that ym ` xM ď xm ` yM ,

evpym ` xM , xM ` yMq ď evpym, yMq ` evpxm, xMq

• evp0, 0q “ 0.

Proof. In the definition 21 of well-behaved evaluation maps, there are three conditions.
The first one is that it should be monotone. This is, here, equivalent to it being
monotone in each of its component. The third one is that precomposing by PκX gives
a map superior or equal to κPX, that is that the direct image of tJu is equal to tJu.
Here this is equivalent to the third condition: evp0, 0q “ 0.
Finally there is the condition:

@p : X Ñ V , ev ˝ Ppp` qq ďR ev ˝ Pppq ` ev ˝ Ppqq

As p and q are arbitrary predicates, this amounts to say that for all finite subsets
Y, Z Ď V that are in bijection f : Y Ñ Z,

evpmin
 

z ` f´1
pzq|z P Z

(

,max
 

z ` f´1
pzq|z P Z

(

q ď evpmin tz|z P Zu ,max tz|z P Zuq`evpmin
 

f´1
pzq|z P Z

(

,max
 

f´1
pzq|z P Z

(

q

Noting xm, xM “ minX,maxX, and ym, yM “ minY,maxY , this is equivalent to, the
second part of this inequation can be rewritten

evpxm, xMq ` evpym, yMq

Without loss of generality, suppose ym ` xM ď yM ` xm. Now, suppose that the
condition of this proposition holds. Then as min tx` f´1pxq|x P Xu ď xM ` ym and
as max tx` f´1pxq|x P Xu ď xM ` yM , by monotonicity of ev we get that ev is well-
behaved.

Conversely, suppose that ev is well-behaved. Then consider X “ pxM , xm, xMq and
Y “ pyM , yM , ymq Then, well-behavness on these sets implies

evpym ` xM , xM ` yMq ď evpxm, xMq ` evpym, yMq

ending the proof.
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This result can be used to prove some evaluation maps are not well-behaved:

Example 7. As p1 ` 2q ` p2 ` 2q ě p1 ` 2q ` p1 ` 2q, evpx, yq “ x ` y, that is
evpXq “ minX `maxX is not well-behaved.

It can be noted that in this example, composing by the square roots gives
a

p1` 2q ` p2` 2q “?
7 ď 2

?
3. A good candidate for a well-behaved evaluation map is thus evpXq “?

minX `maxX. Interestingly enough, it is well-behaved;

Proposition 29. The evaluation map ev : PV Ñ V associating to a subset X Ď V the
value

?
minX `maxX is well-behaved.

Proof. This proof will be done using the proposition 28. The goal is to show that for
all xm, xM , ym, yM P V such that xm ď xM , ym ď yM and ym ` xM ď yM ` xm,

a

ym ` 2xM ` yM ď
?
xm, xM `

?
ym, yM

We prove this is always true:
a

ym ` 2xM ` yM ď
?
xm ` xM `

?
ym ` yM

ôym ` 2xM ` yM ď xm ` xM ` ym ` yM ` 2
a

pxm ` xMqpym ` yMq

ôxM ´ xm ď 2
a

pxm ` xMqpym ` yMq

ôx2
M ´ 2xmxM ` x

2
m ď 4pxm ` xMqpym ` yMq

ôx2
M ´ 2pxm ` 2pym ` yMqqxM ` x

2
m ´ 4xmpym ` yMq ď 0

From now on, we will consider ym, yM , and xm fixed. Note that xM P rxm, yM´ym`xms.
Let us study the corresponding quadratic equation in xM . The discriminant is

∆ “ 4pxm ` 2pym ` yMqq
2
´ 4px2

m ´ 4xmpym ` yMqq

“ 4x2
m ` 16xmpym ` yMq ` 16pym ` yMq

2
´ 4x2

m ` 16xmpym ` yMq

“ 32xmpym ` yMq ` 16pym ` yMq
2

which is obviously positive. Thus, if the interval for xM , that is rxm, yM ´ ym ` xms is
included in the interval in which our quadratic equation is negative, then the condition
for well-behavness is always true and the proof is over.

Firs, we want

´p´2pxm ` 2pym ` yMqqq ´
?

∆

2
ď xm

ôxm ` 2pym ` yMq ´

?
∆

2
ď xm

ô16pym ` yMq
2
ď ∆

ô16pym ` yMq
2
ď 32xMpym ` yMq ` 16pym ` yMq

2

ô0 ď 32xMpym ` yMq
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which is always true.
The second condition is

yM ´ ym ` xm ď
´p´2pxm ` 2pym ` yMqqq `

?
∆

2

ôyM ´ ym ` xm ď xm ` 2pym ` yMq `

?
∆

2

ô0 ď 3ym `

?
∆

2

which is always true.

3.2.4 The diagonal functor ∆

The counter-example given in [3] is for the diagonal functor ∆ mapping a set X to
X ˆ X and a map f to f ˆ f . Following our interpretation, an implicit observable
associated to ∆ is the symmetry of elements in X ˆ X. Because the evaluation map
given by the sum ev : px, yq P VˆV Ñ x`yV does not distinguish symmetric elements,
duality is prevented from holding. We first generalizes this result:

Proposition 30. Let ev a well-behaved evaluation map for ∆ such that for all x, y P V,
evpx, yq “ evpy, xq. Then duality holds if and only if ev is constant and equal to J.

Here we give an example of well-behaved evaluation map for ∆ for which duality holds.

Proposition 31. Let pV ,b, Iq be a symmetric unital quantale in which I “ J. Con-
sider the functor ∆. Then, any of the two projection maps πi is well-behaved and duality
holds for the associated liftings.

Proof. πi is obviously monotone. Furthermore, πipJ,Jq “ J and πipx b y, x b yq “
x b y “ πipx, xq b πipy, yq proving πi is well-behaved. Now consider r : X ˆX Ñ V a
V-metric. Then there is only one coupling ppx1, y1q, px2, y2qq having px1, x2q and py1, y2q

as projections through ∆. Thus,

∆Órpx, yq “ πi∆rppx1, x2q, py1, y2qq “ rpx1, x2q

Furthermore,

∆Òrpx, yq “ sup t|πi ˝ pf ˆ fqpxq ´ πi ˝ pf ˆ fqpyq|; f : r Ñ deu

“ sup t|fpx1q ´ fpy1q|; f : r Ñ deu

We already saw in the proof 24 that using the proposition ?? there exists an f : r Ñ de

such that
|fpx1q ´ fpy1q| “ rpx1, x2q

proving the Kantorovich-Rubinstein duality holds in this case.
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Projections beak the symmetry given by the symmetry observable in a way that sym-
metric elements cannot relate to one another through ev. This is the explanation,
through our interpretation of duality, of why duality holds in this case. One could
wonder what would happens if ev was not symmetric, but still did depend on both
variables. If we do not have a general result in this setting, we know that in some cases
duality does not hold. We interpret duality not holding because symmetric elements
still relate too much to one another through ev:

Proposition 32. Let ev a well-behaved evaluation map for ∆. Then duality holds if
and only if ev is of the form

ev “ f ˝ πi ` 1tπj“8ug ˝ πi

for i ‰ j.

Proof. Suppose ev gives duality for ∆. Let us look at what the “symmetry observable”
implies. Consider a pseudometric r : XˆX Ñ r0,8s. Let x, y be elements of X. Then,
by definition,

∆Órppx, yq, py, xqq “ evprpx, yq, rpx, yqq

By hypotheses,

sup t|evpfx, fyq ´ evpfy, fxq|; f : r Ñ deu “ evprpx, yq, rpx, yqq

Because we are on r0,8s, we can consider a sequence pfnqn of functions from r to de

that will give the above equality as its limit. From this we can extract a subsequence
pxn, ynqn such that limnÑ8 |evpxn, ynq ´ evpyn, xnq| “ evprpx, yq, rpx, yqq and such that
both pxnqn and pynqn have a limit xl and yl and for all n, |xn ´ yn| ď rpx, yq. Setting a
function to be equal to xl on x and yl on y, and using the proposition ??, we get that
there actually exists f : r Ñ de such that |evpfx, fyq´evpfy, fxq| “ evprpx, yq, rpx, yqq.
There after, we will note rpx, yq “ a and fx “ v and fy “ w. The constraint on these
values is |v ´ w| ď a.
First, let us distinguish different cases. We suppose here that 0 ă a ă 8. If evpa, aq “
J “ 0, as ev is subadditive in both its arguments, then for all x, y ă 8, evpx, yq “ 0.
Else, if evpa, aq “ K “ 8, then for all n P N, ev

`

a
2n
, a

2n

˘

“ 8, and for all x, y ‰ J,
evpx, yq “ 8. Those two cases will be treated later. Here we suppose that 0 ă evpa, aq ă
8. Without loss of generality, we can suppose that

evpv, wq ´ evpw, vq “ evpa, aq

If v ě w, as ev is well-behaved,

evpv, wq ď evpv, vq ď evpw, vq ` evpv ´ w, 0q

giving that,

evpv, wq ´ evpw, vq ď evpv ´ w, 0q ď evpa, 0q ď evpa, aq
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Because duality holds, all these inequalities are in fact equalities. In particular, for all
0 ď c ď a, evpa, cq “ evpa, 0q and

evpv, wq ď evpa, wq “ evpa, 0q

so that we can write,
evpa, 0q ´ evpw, vq “ evpa, 0q

proving evpw, vq “ 0. In particular this implies that evp0, vq “ 0, and by subadditivity,
that evp0, cq “ 0 for all 0 ď c ă 8. Now consider values c, d, d1 with d ď d1 ă 8. By
subadditivity,

evpc, d1q ď evpc, dq ` evp0, d1 ´ dq “ evpc, dq

But by monotonicity, evpc, dq ď evpc, d1q and by antisymmetry, evpc, dq “ evpc, d1q, so
that ev only depends on one variable, exept on 8, giving the form of the proposition.
Let us prove that with such a form, duality holds. Suppose evpx, yq “ fpxq`1ty“8ugpxq.
Let r : X ˆX Ñ r0,8s a pseudometric. Consider x, y, z, w P X. Then,

∆Órppx, yq, pz, wqq “ evprpx, zq, rpy, wqq
“ fprpx, zqq ` 1trpy,wq“8ugprpx, zqq

Then, we have to distinguish cases. If rpy, wq is finite, then either:

• if rpx, yq is infinite, then rpx,wq is infinite, and we set fpxq “ rpx, zq and
fpyq “ fpzq “ fpwq “ 0 meaning |evpfx, fyq ´ evpfz, fwq| “ evpfx, fyq “
evprpx, zq, 0q “ evprpx, zq, rpy, wqq and duality holds.

• if rpx, yq is finite, then rpx,wq is finite. Then we set fx “ rpx, zq, and fz “ 0.
Because rpx, yq and rpx,wq are both finite, the value that f will take on y and w
in the proof of the proposition ?? will be finite, giving, |evpfx, fyq´evpfz, fwq| “
evpfx, fyq “ evprpx, zq, rpy, wqq and duality holds.

Now, if rpy, wq is infinite; by subbaditivity of ev

rpy, wq ďrpy, xq ` rpx,wq

ďrpy, zq ` rpz, wq

If this implies that either rpy, xq or rpx,wq and either rpy, zq or rpz, wq are infinite.
Let us suppose that rpy, xq and rpy, zq are infinite (the case rpx,wq and rpz, wq is
treated in the same way). Then we set fx “ rpx, zq, fz “ 0 and fy “ 8. Then, if
rpx,wq “ rpy, wq “ rpz, wq “ 8, we set fw “ 0. Using the proposition ?? we get
duality. Else there is v P tx, zu such that rpv, wq is finite. Then, the value that the
proof of the proposition ?? will asign to fw is finite, giving duality. In any case, duality
holds, proving the proposition.

Remark 13. This proof is remarkable. All the constraints ev must comply with are
given just by looking at ev on symmetric elements, meaning the “implicit observable”
we associated to ∆ is the only thing that can prevent duality from holding. It seems
that duality holds in general, except when the interaction between the liftings and the
functor implies some very specific structural constraints.
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3.2.5 The finite probability distribution functor D

A seemingly good choice for ev is the canonical map. But duality does not hold in
general for the canonical evaluation map. The counterexample we give is on the finite
probability distribution functor which associates to a set X the set of finite probability
distribution on X, DX “ tp : X Ñ r0; 1s | suppp is finite and

ř

xPX ppxq “ 1u, and to
any map f : X Ñ Y the map Df : DX Ñ DY , defined by Dfppq “ pλy.

ř

xPf´1pyq ppxqq.

Proposition 33. Consider the setting with the finite probability distribution functor,
the canonical evaluation map, and the quantale pr0,8s,`, 0q with reversed order. On
this setting duality does not hold.

Proof. Consider an arbitrary metric (a usual one in this setting) d : X ˆX Ñ r0,8s on
X. The liftings on d are defined by, with P1, P2 P DX,

DÓdpP1, P2q “
ł

!

pDdpP q | P P DpX ˆXq, @i, DπiP “ Pi

)

“ inf tevcanpDdpP qq | P P DpX ˆXq, @i, DπiP “ Piu

DÒdpP1, P2q “
ľ

!

deppDfpP1q, pDfpP2qq | f : dÑ de

)

“ sup t|evcanpDfpP1qq ´ evcanpDfpP2qq| | f : X Ñ V , de ˝ pf ˆ fq ěR du

First let us find out what evcan : DV Ñ V is doing here. Let us consider P P DV .
By definition,

evcanpP q “
ł

tr | P P DpÒ rqu
“ inf tr | P P DptruerqrDÒ rsu

“ inf

$

&

%

r | P P pλD.pλy.
ÿ

xPtruer´1pyq

DpxqqrD tv P r0,8s | v ďR rusq

,

.

-

“ inf

#

r | P P pλD.

˜

λy.

#

Dpyq if y ďR r

0 else

¸

rDr0, rssqi

+

“ inf tr | P P Dr0, rsu
“ max suppP

where we do have a max because D is the finite probability distribution functor. Now
note that P1 and P2 have finite support. Because DπiP “ Pi we have suppP Ď

suppP1 ˆ suppP2, and thus, the couplings P have a finite number of possible supports.
Because of the definition of evcan evcanpDdpP qq depends only on P ’s support, and finally
there are a finite number of elements definingDÓdpP1, P2q: this is defined by a minimum.
Using the proposition 17. we know that, as F preserves weak-pullback, evcan is well-
behaved such that

ev´1
canr0s “ Dκ0rDpt0uqs

Using the proposition 18, we know Dd is a metric.
Because the Wasserstein lifting preserves metrics, if the Kantorovich lifting does not,
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then it proves that duality does not hold. Suppose P1 and P2 have the same support
but different distributions. We know that DÓdpP1, P2q ‰ 0 as d is a metric. Now, for
all f : d Ñ de, |evcanpDfpP1qq ´ evcanpDfpP2qq| “ 0 because P1 and P2 share the same
support, and by definition of evcan. Thus, DÒdpP1, P2q “ 0 and duality does not hold.

This is the same proof than the one used in [3] to prove that with the functor ∆ and
` as evaluation map, duality does not hold. Following our interpretation, the support
of a finite probability distribution is an implicit observable. We mean by that that
different elements can have the same observable, i.e. support, so that the maps Ff in
the definition of the Kantorovich lifting maps same support to same support, meaning
that an evaluation map unable to distinguish elements having the same observable will
prevent duality from holding.
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