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with a an edge, ∅ a graph reduced to its sources. Note terms have some arity too
(ak and ∅k for the corresponding graphs with k sources).
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terms of width at most 3, meaning (recursively) of arity at most 4.

Proposition
Given a non-negative integer k, graphs of terms of width at most k are exactly
graphs of treewidth at most k.

Here, this proposition serves as definition for treewidth.
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1 2
a3

a2 f(a3 ∥ (32) l a2)
f(32)(l a2 ∥ (32)a3)

Axiom: a pair of terms that can be used to prove two terms construct the same
graph.

Problem
Is there a finite list of axiom Ax such that for all terms t, u of width at most 3

Ax ⊢ t = u ⇔ g t ≃ g u

holds ?
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Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c,

a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
5. p f a = f ṗa and l pa = ṗ l a,
6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of width at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following connectivity
structures adapted to our graphs.
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6. l f a = f r l a and l l a = r l l a,
7. f a ∥ b = f(a ∥ l b),
8. + 4 other axioms not detailed here.

Theorem
For all terms t, u of width at most 3 Ax ⊢ t = u ⇔ g t ≃ g u.

Proof idea: we use axioms to recursively decompose terms following connectivity
structures adapted to our graphs.



The axioms, the main result, and the method

The main result 8/20

Axioms Ax given by:
1. a ∥ (b ∥ c) = (a ∥ b) ∥ c, a ∥ b = b ∥ a, and a ∥ ∅ = a,
2. pqa = (p ◦ q)a, and id a = a,
3. p(a ∥ b) = pa ∥ pb and p∅ = ∅,
4. l(a ∥ b) = l a ∥ l b and l ∅ = ∅,
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we would have K5),

making x a source gives a graph
of treewidth 3,
and similarly for y and z.

x, y, and z (but notw) are called forget points.

The forget operation is associated to forget points. The main difficulty in the proof
of the main result is handling the non-determinism of forget points: a graph may
have many of them as well as vertices that are not some.
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Prime components,
Proposition: for a graph G,
G ≃∥i Hi with Hi its prime
components
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Basic simple graphs
Paths between vertices,
Connected components
Proposition: for a graph G,
G ≃ ⊎iHi with Hi its
connected components.

Sourced graphs
Paths without sources,
except at endpoints
Full prime components,
Proposition: for a graph G,
G ≃∥i pi ljiHi with Hi its full
prime components
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we need to find some forget
points, and do so as canonically
as possible.

Basic simple graphs:
Cutvertices: vertices such that
removing them disconnects the
graph:
(petals are parts of the graphs)

Sourced graphs:
Anchors:
(here for arity 2)

1 2 1 2 +1 case
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Hard graph: a full prime graph
without anchors.

Most basic hard graph:

1 2

Basic simple graphs:
2-separators: pairs of vertices
disconnecting the graph:

Sourced graphs:
Separation pair:

1 2

Proposition
Every hard graph of treewidth at most 3 has at least one separation pair consisting
of forget points.
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What happens if a hard graph has several separation pairs ?

Theorem
Whenever a hard graph has two distinct separation pairs whose vertices are forget
points, then it must have one of the following shapes:
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The proof of the last theorem requires a case analysis handling lots of possibilities.

The following lemma reduces their number:

Lemma
A graph with 3 sources either has the triangle K3 as a minor on its sources, or it has
one of the following shapes:

Graph minors: a way to see patterns in graphs, generalising the notion of
subgraphs.
This is reminiscent of the proposition stating that a graph without a cycle (i.e.
without K3 as a minor) is a tree. Our lemma is stronger.
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Generalising to treewidth at most 4 ?

we can go up to 3-separators but no more,
the number of analysed cases of the problem explodes,
the main tool to reduce it here is the last lemma, which would need to be
generalised for K4 instead of K3,
but such a generalisation is not possible without getting a weaker statement.
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Two possible algorithmic applications:

testing treewidth at most 3, solving the
isomorphism problem for graphs of treewidth at most 3:

no polynomial algorithms are known for these problems when treewidth is
not fixed,
linear algorithms are already known for both instances,
but the structure our algorithms would follow is different from what exists
already: we hope it can be used as heuristics for the problems on general
graphs.
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Reminders:
graphs with sources, multi- and hyperedges,
operations, terms, and treewidth,
getting axioms for treewidth at most 3 ?
Yes, proven by decomposing graphs following their connectivity structure
(full prime decompositions, anchors, and separation pairs),
two research lines: generalisation and algorithmic aspects (testing treewidth
at most 3 and the isomorphism on graphs of treewidth at most 3).

Thank you for listening !
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