MODULAR REPRESENTATIONS OF $GL_2(\mathbf{F}_p)$

LAURENT BERGER AND SANDRA ROZENSZTAJN

The goal of this project is to study certain *representations* of the group $GL_2(\mathbf{F}_p)$ of invertible 2×2 matrices with coefficients in the field with p elements \mathbf{F}_p , where p is a prime number.

1. The group $\operatorname{GL}_2(\mathbf{F}_p)$ and its subgroups

Let $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$. Let $M_2(\mathbf{F}_p)$ denote the set of 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with a, b, c and d in \mathbf{F}_p . Let $\mathrm{Id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. If $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, let $\mathrm{det}(M) = ad - bc$. We say that M is *invertible* if there exists $N \in M_2(\mathbf{F}_p)$ such that $MN = \mathrm{Id}$.

Exercise 1. Check that $\det(MN) = \det(M) \det(N)$, compute $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, and prove that M is invertible if and only if $\det(M) \neq 0$.

We let $\operatorname{GL}_2(\mathbf{F}_p)$ denote the set of matrices $M \in \operatorname{M}_2(\mathbf{F}_p)$ such that $\det(M) \neq 0$, and $\operatorname{SL}_2(\mathbf{F}_p)$ denote the set of matrices $M \in \operatorname{M}_2(\mathbf{F}_p)$ such that $\det(M) = 1$.

Exercise 2. Prove that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbf{F}_p)$ belongs to $\operatorname{GL}_2(\mathbf{F}_p)$ if and only if $\begin{pmatrix} a \\ c \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} b \\ d \end{pmatrix}$ is not a multiple of $\begin{pmatrix} a \\ c \end{pmatrix}$. Use this to show that $|\operatorname{GL}_2(\mathbf{F}_p)| = (p^2 - 1)(p^2 - p)$ and that $|\operatorname{SL}_2(\mathbf{F}_p)| = p(p^2 - 1)$.

Exercise 3 (Exceptional isomorphisms). Let S_n denote the permutation group of $\{1, 2, ..., n\}$.

- (1) Exercise 2 implies that $|GL_2(\mathbf{F}_2)| = 6$. How many groups of cardinal 6 do you know?
- (2) There are 3 nonzero points in \mathbf{F}_2^2 . The action of $\operatorname{GL}_2(\mathbf{F}_2)$ on those points gives rise to a map $\operatorname{GL}_2(\mathbf{F}_2) \to S_3$. Prove that this map is an isomorphism.
- (3) Likewise, $|\operatorname{GL}_2(\mathbf{F}_3)| = 48$. There are 4 lines in \mathbf{F}_3^2 . Use this to show that there is a surjective map $\operatorname{GL}_2(\mathbf{F}_3) \to S_4$, whose kernel is $\{\operatorname{Id}, -\operatorname{Id}\}$.
- (4) (more difficult) Find a surjective map $\operatorname{GL}_2(\mathbf{F}_5) \to S_5$.
- (5) In each of the above, what is the image of $SL_2(\mathbf{F}_p)$?

Let $\mathbf{Z} = \{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ with $a \in \mathbf{F}_p^{\times} \}$.

Exercise 4. Prove that Z is the center of $GL_2(\mathbf{F}_p)$.

Exercise 5. Prove that there exists $g \in \mathbf{F}_p^{\times}$ such that $\mathbf{F}_p^{\times} = \{1, g, \dots, g^{p-2}\}$. Show that every multiplicative map $f : \mathbf{F}_p^{\times} \to \mathbf{F}_p^{\times}$ is of the form $x \mapsto x^r$, with $0 \le r \le p-2$.

Let B denote the set of upper triangular matrices $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ that belong to $\operatorname{GL}_2(\mathbf{F}_p)$. Let U be the set of matrices of the form $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ for $a \in \mathbf{F}_p$. Let $w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Exercise 6. Prove that every multiplicative map $f : B \to \mathbf{F}_p^{\times}$ is of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto a^r \cdot d^s$ with $0 \leq r, s \leq p-2$.

Exercise 7 (Bruhat decomposition). Show that $\operatorname{GL}_2(\mathbf{F}_p) = B \cup UwB$, and more precisely that $\operatorname{GL}_2(\mathbf{F}_p)$ is the disjoint union of B and of the $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} wB$ for $a \in \mathbf{F}_p$.

Exercise 8. Prove that every multiplicative map $f : \mathbf{G} \to \mathbf{F}_p^{\times}$ is of the form $M \mapsto \det(M)^r$ for some $0 \le r \le p-2$.

Hint: use exercise 6 and compute $w \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} w$. Show that r = s, so that $f = \det^r on B$, then use exercise 7.

Another method would be to prove that f is trivial on $SL_2(\mathbf{F}_p)$ because $SL_2(\mathbf{F}_p)$ is the derived group of $GL_2(\mathbf{F}_p)$ – at least if $p \ge 5$, see [Lan02, §8, XIII], and det : $GL_2(\mathbf{F}_p)/SL_2(\mathbf{F}_p) \rightarrow \mathbf{F}_p^{\times}$ is an isomorphism.

2. Representations of groups

Let E be a field, and let V be an E-vector space. The space $\operatorname{End}(V)$ is the set of E-linear maps $f: V \to V$, and $\operatorname{Aut}(V)$ is the set of maps $f \in \operatorname{End}(V)$ that are invertible.

If G is a group, a representation of G is a group homomorphism $\rho_V : G \to \operatorname{Aut}(V)$. In other words, for every $g \in G$, the map $\rho_V(g) : V \to V$ is *E*-linear and invertible, and $\rho_V(gh) = \rho_V(g)\rho_V(h)$ if $g, h \in G$ and $\rho_V(1) = \operatorname{Id}$.

A subrepresentation of V is a subspace W of V such that W is stable under $\rho_V(g)$ for all $g \in G$. Let V^G be the set of $v \in V$ such that $\rho_V(g)(v) = v$ for all $g \in G$. This is a subrepresentation of V. We say that V is *irreducible* if $V \neq \{0\}$, and the only subrepresentations of V are $\{0\}$ and V itself.

If V and W are two representations of G, then a morphism of representations, also called an intertwining operator, is a linear map $f: V \to W$ such that $f(\rho_V(g)(v)) = \rho_W(g)(f(v))$ for all $g \in G$ and $v \in V$.

In all of this project, G is a finite group, E is a finite field, and V is a finite dimensional Evector space. For example: let $E = \mathbf{F}_p$ for some prime number p, let S_n be the permutation group of $\{1, \ldots, n\}$ and let $V = Ee_1 \oplus \cdots Ee_n$. If $g \in S_n$, we define $\rho_V(g) : V \to V$ by requiring that $\rho_V(g)(e_i) = e_{g(i)}$. **Exercise 9.** Check that V defined above is a representation of S_n . Let $W = \{\sum_{i=1}^n x_i e_i \text{ such that } \sum_{i=1}^n x_i = 0\}$ and let $X = E(e_1 + \dots + e_n)$.

- (1) Show that W and X are both subrepresentations of V, and that $X = V^{S_n}$.
- (2) Show that if $n \neq 0$ in E, then $W \oplus X = V$.
- (3) If n = p, is there a subrepresentation Y of V such that $W \oplus Y = V$?
- (4) Is W an irreducible representation in general?

If $v \in V$, the orbit of v is the set $\operatorname{Orb}(v) = \{\rho_V(g)(v)\}_{g \in G}$. Let G_v be the set of $g \in G$ such that $\rho_V(g)(v) = v$.

Exercise 10. Let G be a finite group and let $V \neq \{0\}$ be a representation of G on a finite dimensional \mathbf{F}_p -vector space.

- (1) Prove that G_v is a subgroup of G, and that $|Orb(v)| = |G|/|G_v|$.
- (2) Assume now that |G| is a power of p. Show that |Orb(v)| is of the form p^e with $e \ge 0$, and use this to prove that $V^G \ne \{0\}$.

The fact that $V^{G} \neq \{0\}$ for any nonzero \mathbf{F}_{p} -representation of a *p*-group G is a fundamental result of the theory of \mathbf{F}_{p} -representations.

3. IRREDUCIBLE CONSTITUENTS

If V is a representation of G and W is a subrepresentation of V, then the quotient space V/W is a representation of G.

Exercise 11. Check that if $V \neq \{0\}$ is a finite dimensional representation of G, then it has an irreducible subrepresentation.

Let V be a finite dimensional nonzero representation of G, and define the multiset Irr(V) as follows. If V is irreducible, then $Irr(V) = \{V\}$. Otherwise, let W be an irreducible subrepresentation of W, and let $Irr(V) = \{W\} \cup Irr(V/W)$.

The Jordan-Hölder theorem says that the set Irr(V) does not depend on the choice of an irreducible representation at each step: they all arise in some order. The set Irr(V) is the set of *irreducible constituents* of V, and the cardinality of Irr(V) is the *length* of V. You can find a proof of the Jordan-Hölder theorem in §13 of [CR06], for instance.

Exercise 12. Prove the Jordan-Hölder theorem for representations of length 2.

Exercise 13 (Maschke's theorem). (more difficult and not used in the sequel) Prove that if $|G| \neq 0$ in E, and V is a finite-dimensional representation of G, then $V = \bigoplus_{X \in Irr(V)} X$.

Hint: if W is a subrepresention of V, let π be a projector on V whose image is W. Let $\sigma = (\sum_{g \in G} \rho_V(g) \pi \rho_V(g)^{-1})/|G|$. Prove that $\sigma|_W = \text{Id}$, that σ is also a projector on V whose image is W, and that its kernel is stable under the action of G.

Item (3) of exercise 9 shows that this fails if $|\mathbf{G}| = 0$ in E. Here is a simpler example: let $E = \mathbf{F}_p$ and $\mathbf{G} = \mathbf{Z}/p\mathbf{Z}$ and let $V = Ex \oplus Ey$, with $\rho_V(g)(x) = x$ and $\rho_V(g)(y) = y + gx$.

Exercise 14. Check that $Irr(V) = \{E, E\}$ but that $V \neq E^2$ (here E denotes the onedimensional representation of G, with G acting trivially).

4. The representations Pol_k

Let $E = \mathbf{F}_p$. Take $k \ge 0$ and let Pol_k be the space of homogenous polynomials of degree k in two variables x and y, so that $\operatorname{Pol}_k = Ex^k \oplus Ex^{k-1}y \oplus \cdots \oplus Ey^k$. If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbf{F}_p)$ and $P(x, y) \in \operatorname{Pol}_k$, let $(\rho_{\operatorname{Pol}_k}(g) \cdot P)(x, y) = P(ax + cy, bx + dy)$. If $r \in \mathbf{Z}$, let $\operatorname{Pol}_k(r)$ denote the same space of polynomials, but with the action of $\operatorname{GL}_2(\mathbf{F}_p)$ given by $(\rho_{\operatorname{Pol}_k(r)}(g) \cdot P)(x, y) = P(ax + cy, bx + dy) \cdot \det(g)^r$. One of the main goals of this project is to prove the following theorem.

Theorem 1. The representations $\operatorname{Pol}_k(r)$ for $0 \le k \le p-1$ are all irreducible, and moreover every irreducible representation of $\operatorname{GL}_2(\mathbf{F}_p)$ is of the form $\operatorname{Pol}_k(r)$ for some $0 \le k \le p-1$ and $0 \le r \le p-2$.

This theorem first appears in §30 of [BN41], with a proof that is very different from the one that we will see in this project.

Exercise 15. Prove that if V is an irreducible representation of $\operatorname{GL}_2(\mathbf{F}_p)$, there exists $0 \leq r \leq p-2$ such that $\rho_V(z) = \det(z)^r \cdot \operatorname{Id}$ if $z \in \mathbb{Z}$.

The character det^r : $\mathbf{Z} \to \mathbf{F}_p^{\times}$ attached to V is called the *central character* of V. If V is a representation of $\operatorname{GL}_2(\mathbf{F}_p)$ that is not necessarily irreducible, we say that V has a central character if there is an r such that $\rho_V(z) = \det(z)^r \cdot \operatorname{Id}$ for all $z \in \mathbf{Z}$, and we then call the character det^r : $\mathbf{Z} \to \mathbf{F}_p^{\times}$ the central character of V.

Exercise 16. Does $\operatorname{Pol}_k(r)$ have a central character? Show that two representations $\operatorname{Pol}_k(r)$ and $\operatorname{Pol}_{k'}(r')$ are isomorphic if and only if k = k' and p - 1 divides r - r'.

Exercise 17. Show that the representations listed in Theorem 1 are indeed irreducible. Hint: Compute $(\operatorname{Pol}_k(r))^{U}$, and use exercise 10. At this point we have found p(p-1) pairwise non-isomorphic irreducible representations of $\operatorname{GL}_2(\mathbf{F}_p)$. We want to show that every irreducible representation is isomorphic to one of these. First we show that the $\operatorname{Pol}_k(r)$ are not irreducible for $k \ge p$.

Exercise 18. Show that $\operatorname{Pol}_p(r)$ contains a subrepresentation that is isomorphic to $\operatorname{Pol}_1(r)$.

Let $D(x, y) = x^p y - x y^p$.

Exercise 19. Compute D(ax+cy, bx+dy) and prove that $\operatorname{Pol}_k(r)$ is not irreducible if $k \ge p$.

5. Construction of representations

Let V be a representation of G, and let V^* be the *dual vector space*, the space of linear maps $\mu: V \to E$. We make V^* into a representation of G by setting $\rho_{V^*}(g)(\mu)(x) = \mu(\rho_V(g^{-1})(x))$ for all $\mu \in V^*$ and $x \in V$. This is called the *contragredient* representation of V.

Exercise 20. Show that V is an irreducible representation of G if and only if V^* is.

Exercise 21. Show that the representation $\operatorname{Pol}_k(r)^*$ is isomorphic to $\operatorname{Pol}_k(-r-k)$.

Recall that G is a finite group. Let H be a subgroup of G and let V be a representation of H. We define the *induced representation* $\operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}}V$ to be the set of maps $f: \mathrm{G} \to V$ satisfying the property: for all $h \in \mathrm{H}$ and $g \in \mathrm{G}$, $f(hg) = \rho_V(h)(f(g))$. We make this vector space into a representation of G by setting $\rho_{\operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}}V}(g)(f)(x) = f(xg)$.

Exercise 22. Check that $\operatorname{Ind}_{H}^{G}V$ is indeed a representation of G. What is its dimension?

Exercise 23 (Frobenius reciprocity). Let G be a finite group and H be a subgroup of G and V be an \mathbf{F}_p -representation of G. Let W be an irreducible representation of H. Suppose that $V|_{\mathrm{H}}$ contains a subrepresentation isomorphic to W. Show that there is a nonzero map $\mathrm{Ind}_{\mathrm{H}}^{\mathrm{G}}W \to V$, which is a morphism of representations of G.

6. PARABOLIC INDUCTION

Let χ be a multiplicative map $B \to \mathbf{F}_p^{\times}$, which gives rise to a one-dimensional representation of B. Let $\operatorname{ind}_B^{\operatorname{GL}_2(\mathbf{F}_p)}\chi$ be the induced representation (see exercise 22; in this case, it is called a *parabolic induction*).

Exercise 24. Show that $\operatorname{ind}_{B}^{\operatorname{GL}_{2}(\mathbf{F}_{p})}\chi$ is a vector space of dimension p+1.

Exercise 25. Show that the contragredient representation $(\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}(\mathbf{F}_{p})}\chi)^{*}$ is isomorphic to $\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}(\mathbf{F}_{p})}(\chi^{-1})$.

Denote by $\chi(r, s)$ the multiplicative map $\mathbf{B} \to \mathbf{F}_p^{\times}$ of exercise 6, which is given by $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto a^r d^s$. We define a map $\varphi(k, r) : \operatorname{Pol}_k(r) \to \operatorname{ind}_{\mathbf{B}}^{\operatorname{GL}_2(\mathbf{F}_p)} \chi(r, r+k)$ as follows: the image of a polynomial P is the function on $\operatorname{GL}_2(\mathbf{F}_p)$ that sends g to $(\rho_{\operatorname{Pol}_k(r)}(g)P)(0, 1)$.

Exercise 26. Check that $\varphi(k,r)$ is an intertwining operator $\operatorname{Pol}_k(r) \to \operatorname{ind}_{\operatorname{B}}^{\operatorname{GL}_2(\mathbf{F}_p)}\chi(r,r+k)$.

The image of $\varphi(k,r)$ is therefore a subrepresentation of $\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}(\mathbf{F}_{p})}\chi(r,r+k)$.

Exercise 27. Show that if $0 \le k \le p-1$, $\operatorname{ind}_{B}^{\operatorname{GL}_{2}(\mathbf{F}_{p})}\chi(r, r+k)$ contains a subrepresentation isomorphic to $\operatorname{Pol}_{k}(r)$.

Exercise 28. Show that if $0 \le k \le p-1$, $\operatorname{ind}_{B}^{\operatorname{GL}_{2}(\mathbf{F}_{p})}\chi(r, r+k)$ has a quotient representation isomorphic to $\operatorname{Pol}_{p-1-k}(r+k)$.

Hint: use the contragredient.

Exercise 29. Show that if $0 \le k \le p-1$, then

$$\operatorname{Irr}(\operatorname{ind}_{\mathrm{B}}^{\operatorname{GL}_{2}(\mathbf{F}_{p})}\chi(r,r+k)) = \{\operatorname{Pol}_{k}(r), \operatorname{Pol}_{p-1-k}(r+k)\}.$$

7. End of the proof of Theorem 1

Let V be a representation of $\operatorname{GL}_2(\mathbf{F}_p)$. We denote by $V|_{\mathrm{B}}$ the restriction of this representation to B: it is the representation given by the restriction to B of the morphism $\operatorname{GL}_2(\mathbf{F}_p) \to \operatorname{Aut}(V)$.

Exercise 30. Let V be a finite dimensional \mathbf{F}_p -representation of $\operatorname{GL}_2(\mathbf{F}_p)$. Show that there exists a multiplicative map $\chi : \mathbb{B} \to \mathbf{F}_p^{\times}$ such that $V|_{\mathbb{B}}$ contains a subrepresentation isomorphic to χ .

Hint: consider V^{U} .

Exercise 31. Let V be a finite dimensional \mathbf{F}_p -representation of $\mathrm{GL}_2(\mathbf{F}_p)$.

- (1) Show that V has a subrepresentation isomorphic to $\operatorname{Pol}_k(r)$ for some r and some $0 \le k \le p-1$. Hint: use exercise 23.
- (2) Finish the proof of theorem 1.

8. More about the representations $Pol_k(r)$

Let V be a representation of a group G, and W be an irreducible representation of G. Let us denote by [V:W] the number of irreducible constituents of V that are isomorphic to W; this is called the *multiplicity* of W in V. **Exercise 32.** Suppose that V has a central character. Show that [V:W] = 0 if the central character of W is not the same as the central character of V.

We now return to representations of $\operatorname{GL}_2(\mathbf{F}_p)$. Our goal in this section is to understand how $[\operatorname{Pol}_k(r): W]$ varies if W is fixed and $k \to +\infty$. Recall that $D = x^p y - x y^p$.

Exercise 33. Show that "multiplication by D" defines a morphism of representations $\operatorname{Pol}_k(r+1) \to \operatorname{Pol}_{k+p+1}(r)$, so that $\operatorname{Pol}_{k+p+1}(r)$ has a subrepresentation isomorphic to $\operatorname{Pol}_k(r+1)$.

We now extend a little the result of exercise 27.

Exercise 34. Suppose that $k \ge p+1$. Show that there exists a morphism of representations $\operatorname{Pol}_k(r) \to \operatorname{ind}_{\mathrm{B}}^{\operatorname{GL}_2(\mathbf{F}_p)}\chi(r,r+k)$ whose kernel is the image of $\operatorname{Pol}_{k-p-1}(r+1)$ by multiplication by D, and which is surjective.

Exercise 35. Give a recursive formula expressing $[\operatorname{Pol}_k(r) : \operatorname{Pol}_a(b)]$ in terms of $[\operatorname{Pol}_{k-p-1}(r+1) : \operatorname{Pol}_a(b)]$ and $[\operatorname{ind}_{\mathrm{B}}^{\operatorname{GL}_2(\mathbf{F}_p)}\chi(r,r+k) : \operatorname{Pol}_a(b)]$ for an irreducible representation $\operatorname{Pol}_a(b)$.

Exercise 36. Fix $0 \le a \le p-1$ and $0 \le b \le p-2$ and $0 \le r \le p-2$. Set $\delta = 1$ if a = 0 or a = p-1, and $\delta = 2$ otherwise.

Show that $[\operatorname{Pol}_k(r) : \operatorname{Pol}_a(b)] = 0$ if p - 1 does not divide (k + 2r) - (a + 2b), and that

$$\frac{[\operatorname{Pol}_k(r):\operatorname{Pol}_a(b)]}{\dim\operatorname{Pol}_k(r)}\to \frac{\delta}{p^2-1}$$

as $k \to +\infty$ with the condition that p-1 divides (k+2r) - (a+2b).

9. GENERALIZATION TO $GL_2(\mathbf{F}_q)$

We fix an algebraic closure $\overline{\mathbf{F}}_p$ of \mathbf{F}_p . The map $\varphi : x \mapsto x^p$ is an automorphism of $\overline{\mathbf{F}}_p$. If $q = p^d$ with $d \ge 1$, then let $\mathbf{F}_q = \{x \in \overline{\mathbf{F}}_p \text{ such that } \varphi^d(x) = x\}.$

Exercise 37. Show that \mathbf{F}_q is a field with q elements, and that any extension of \mathbf{F}_p of degree d (inside $\overline{\mathbf{F}}_p$) is equal to \mathbf{F}_q .

Exercise 38. Prove that there exists $g \in \mathbf{F}_q^{\times}$ such that $\mathbf{F}_q^{\times} = \{1, g, \dots, g^{q-2}\}$ (more generally, you could prove that if F is any field and W is a finite subgroup of F^{\times} , then W is cyclic).

Show that every multiplicative map $f: \mathbf{F}_q^{\times} \to \mathbf{F}_q^{\times}$ is of the form $x \mapsto x^r$ with $0 \leq r \leq q-2$, which can also be written as $x \mapsto x^{r_0} \cdot \varphi(x)^{r_1} \cdots \varphi^{d-1}(x)^{r_{d-1}}$, with $0 \leq r_0, \ldots, r_{d-1} \leq p-1$.

From now on we take $q = p^d$ for some $d \ge 1$, and $E = \mathbf{F}_q$. The theory of representations of $\operatorname{GL}_2(\mathbf{F}_q)$ over E is similar to the theory of representations of $\operatorname{GL}_2(\mathbf{F}_p)$ but with some new features. Recall that $\varphi : x \mapsto x^p$ is an automorphism of \mathbf{F}_q , which is of order exactly d. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbf{F}_q)$, we set $\varphi(g) = \begin{pmatrix} \varphi(a) & \varphi(b) \\ \varphi(c) & \varphi(d) \end{pmatrix}$. Let V be a representation of $\operatorname{GL}_2(\mathbf{F}_q)$ with coefficients in E. We denote by $V^{[1]}$ the representation with the same underlying vector space, and $\rho_{V^{[1]}}(g) = \rho_V(\varphi(g))$. More generally we define $V^{[n]}$ by $\rho_{V^{[n]}}(g) = \rho_V(\varphi^n(g))$, so that $V^{[n]}$ is the same as V, but with a "twisted" action of $\operatorname{GL}_2(\mathbf{F}_q)$.

Exercise 39. Suppose that V has a central character. Give the central character of $V^{[i]}$ in terms of the central character of V.

We still denote by $\operatorname{Pol}_k(r)$ the representation of $\operatorname{GL}_2(\mathbf{F}_q)$ on the set of homogenous polynomials of degree k with coefficients in $E = \mathbf{F}_q$.

In exercise 40 below, you need the *tensor product* of two representations of G. Here is a quick definition: if V and W are two E-vector spaces, with bases v_1, \ldots, v_m and w_1, \ldots, w_n , then the tensor product $V \otimes W$ is the E-vector space with basis the mn elements $v_i \otimes w_j$. If $f \in \text{End}(V)$ and $g \in \text{End}(W)$ are given by $f(v_i) = \sum_k f_{ik}v_k$ and $g(w_j) = \sum_{\ell} g_{j\ell}w_{\ell}$, then $f \otimes g \in \text{End}(V \otimes W)$ is given by $(f \otimes g)(v_i \otimes w_j) = \sum_{k,\ell} f_{ik}g_{j\ell} \cdot v_k \otimes w_\ell$. If V and W are representations of G, then we make $V \otimes W$ into a representation of G by setting $\rho_{V \otimes W}(g) = \rho_V(g) \otimes \rho_W(g)$. You should look up the definition of the tensor product in different textbooks and compare it with the one given here.

Exercise 40. Show that Pol_{kp} contains a subrepresentation isomorphic to $\operatorname{Pol}_{k}^{[1]}$.

Write $k = \sum_{i=0}^{m} k_i p^i$ with $0 \le k_i \le p-1$. Show that Pol_k contains a subrepresentation isomorphic to $\operatorname{Pol}_{k_0}^{[0]} \otimes \operatorname{Pol}_{k_1}^{[1]} \otimes \cdots \otimes \operatorname{Pol}_{k_m}^{[m]}$.

The analogue of theorem 1 is the following.

Theorem 2. The set of irreducible representations of $\operatorname{GL}_2(\mathbf{F}_q)$ with coefficients in E is exactly the set of representations of the form $(\bigotimes_{i=0}^{d-1}\operatorname{Pol}_{a_i}^{[i]})(b)$ for $0 \le a_i \le p-1$ and $0 \le b \le q-2$, and these representations are pairwise non isomorphic.

You should try to prove this theorem using similar methods to those we used for $GL_2(\mathbf{F}_p)$. Can you do the analogue of exercise 36 for $GL_2(\mathbf{F}_q)$? This is theorem 3.1 of [Roz14].

10. Suggestions for further study

If you're done proving theorem 2, you can try to see what happens for $GL_n(\mathbf{F}_q)$ if $n \geq 3$. What are the analogues for GL_n of the representations Pol_k ? Of the parabolic inductions?

The article [Glo78] contains a number of properties of the representations Pol_k of GL_2 (his V_m is our Pol_{m-1}). Can you understand what are the main results of [Glo78]?

Another possibility is to study *E*-linear representations of $\operatorname{GL}_2(\mathbf{F}_q)$ if *E* is a field of characteristic $\neq p$, for example the complex numbers. This was first done by Jordan and Schur in 1907 (see [Jor07] and [Sch07], and [FH91] or [AB95] for a more modern approach). The representations Pol_k don't exist anymore, but the $\operatorname{ind}_{\mathrm{B}}^{\operatorname{GL}_2(\mathbf{F}_p)}\chi$ still do. How much of the proof can you salvage? At some point, you'll have to consider irreducible representations *V* such that $V^{\mathrm{U}} = \{0\}$. These are called *cuspidal* representations.

Finally, the motivation for our own interest in these representations of $\operatorname{GL}_2(\mathbf{F}_p)$ is that they are the starting point for constructing \mathbf{F}_p -representations of $\operatorname{GL}_2(\mathbf{Z}_p)$ and $\operatorname{GL}_2(\mathbf{Q}_p)$, where \mathbf{Z}_p are the *p*-adic integers and \mathbf{Q}_p is the field of *p*-adic numbers. These representations play a very important role in the *p*-adic local Langlands correspondence.

References

- [AB95] Jonathan Lazare Alperin and Rowen B. Bell, Groups and representations, Graduate Texts in Mathematics, vol. 162, Springer-Verlag, New York, 1995.
- [BN41] Richard Dagobert Brauer and Cecil Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556–590.
- [CR06] Charles Whittlesey Curtis and Irving Reiner, *Representation theory of finite groups and associative algebras*, AMS Chelsea Publishing, Providence, RI, 2006, Reprint of the 1962 original.
- [FH91] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics.
- [Glo78] David John Glover, A study of certain modular representations, J. Algebra 51 (1978), no. 2, 425–475.
- [Jor07] Herbert Edwin Jordan, Group-Characters of Various Types of Linear Groups, Amer. J. Math. 29 (1907), no. 4, 387–405.
- [Lan02] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002.
- [Roz14] Sandra Rozensztajn, Asymptotic values of modular multiplicities for GL₂, J. Théor. Nombres Bordeaux 26 (2014), no. 2, 465–482.
- [Sch07] Issai Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen., J. Reine Angew. Math. 132 (1907), 85–137.

LAURENT BERGER, ENS DE LYON, LYON, FRANCE E-mail address: laurent.berger@ens-lyon.fr URL: perso.ens-lyon.fr/laurent.berger/

SANDRA ROZENSZTAJN, ENS DE LYON, LYON, FRANCE *E-mail address*: sandra.rozensztajn@ens-lyon.fr *URL*: perso.ens-lyon.fr/sandra.rozensztajn/