
MODULAR REPRESENTATIONS OF GL2(Fp)

LAURENT BERGER AND SANDRA ROZENSZTAJN

The goal of this project is to study certain representations of the group GL2(Fp) of in-

vertible 2 × 2 matrices with coefficients in the field with p elements Fp, where p is a prime

number.

1. The group GL2(Fp) and its subgroups

Let Fp = Z/pZ. Let M2(Fp) denote the set of 2 × 2 matrices ( a b
c d ) with a, b, c and d in

Fp. Let Id = ( 1 0
0 1 ). If M = ( a b

c d ), let det(M) = ad− bc. We say that M is invertible if there

exists N ∈ M2(Fp) such that MN = Id.

Exercise 1. Check that det(MN) = det(M) det(N), compute ( a b
c d ) ×

(
d −b
−c a

)
, and prove

that M is invertible if and only if det(M) 6= 0.

We let GL2(Fp) denote the set of matrices M ∈ M2(Fp) such that det(M) 6= 0, and

SL2(Fp) denote the set of matrices M ∈ M2(Fp) such that det(M) = 1.

Exercise 2. Prove that ( a b
c d ) ∈ M2(Fp) belongs to GL2(Fp) if and only if ( a

c ) 6= ( 0
0 ) and

( b
d ) is not a multiple of ( a

c ). Use this to show that |GL2(Fp)| = (p2 − 1)(p2 − p) and that

|SL2(Fp)| = p(p2 − 1).

Exercise 3 (Exceptional isomorphisms). Let Sn denote the permutation group of {1, 2, . . . , n}.

(1) Exercise 2 implies that |GL2(F2)| = 6. How many groups of cardinal 6 do you know?

(2) There are 3 nonzero points in F2
2. The action of GL2(F2) on those points gives rise

to a map GL2(F2)→ S3. Prove that this map is an isomorphism.

(3) Likewise, |GL2(F3)| = 48. There are 4 lines in F2
3. Use this to show that there is a

surjective map GL2(F3)→ S4, whose kernel is {Id,−Id}.
(4) (more difficult) Find a surjective map GL2(F5)→ S5.

(5) In each of the above, what is the image of SL2(Fp)?

Let Z = {( a 0
0 a ) with a ∈ F×p }.

Exercise 4. Prove that Z is the center of GL2(Fp).
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Exercise 5. Prove that there exists g ∈ F×p such that F×p = {1, g, . . . , gp−2}. Show that every

multiplicative map f : F×p → F×p is of the form x 7→ xr, with 0 ≤ r ≤ p− 2.

Let B denote the set of upper triangular matrices ( a b
0 d ) that belong to GL2(Fp). Let U be

the set of matrices of the form ( 1 a
0 1 ) for a ∈ Fp. Let w = ( 0 1

1 0 ).

Exercise 6. Prove that every multiplicative map f : B→ F×p is of the form ( a b
0 d ) 7→ ar · ds

with 0 ≤ r, s ≤ p− 2.

Exercise 7 (Bruhat decomposition). Show that GL2(Fp) = B ∪ UwB, and more precisely

that GL2(Fp) is the disjoint union of B and of the ( 1 a
0 1 )wB for a ∈ Fp.

Exercise 8. Prove that every multiplicative map f : G→ F×p is of the form M 7→ det(M)r

for some 0 ≤ r ≤ p− 2.

Hint: use exercise 6 and compute w ( a 0
0 d )w. Show that r = s, so that f = detron B, then

use exercise 7.

Another method would be to prove that f is trivial on SL2(Fp) because SL2(Fp) is the de-

rived group of GL2(Fp) – at least if p ≥ 5, see [Lan02, §8, XIII], and det : GL2(Fp)/SL2(Fp)→
F×p is an isomorphism.

2. Representations of groups

Let E be a field, and let V be an E-vector space. The space End(V ) is the set of E-linear

maps f : V → V , and Aut(V ) is the set of maps f ∈ End(V ) that are invertible.

If G is a group, a representation of G is a group homomorphism ρV : G → Aut(V ). In

other words, for every g ∈ G, the map ρV (g) : V → V is E-linear and invertible, and

ρV (gh) = ρV (g)ρV (h) if g, h ∈ G and ρV (1) = Id.

A subrepresentation of V is a subspace W of V such that W is stable under ρV (g) for all

g ∈ G. Let V G be the set of v ∈ V such that ρV (g)(v) = v for all g ∈ G. This is a subrepre-

sentation of V . We say that V is irreducible if V 6= {0}, and the only subrepresentations of

V are {0} and V itself.

If V and W are two representations of G, then a morphism of representations, also called

an intertwining operator, is a linear map f : V → W such that f(ρV (g)(v)) = ρW (g)(f(v))

for all g ∈ G and v ∈ V .

In all of this project, G is a finite group, E is a finite field, and V is a finite dimensional E-

vector space. For example: let E = Fp for some prime number p, let Sn be the permutation

group of {1, . . . , n} and let V = Ee1 ⊕ · · ·Een. If g ∈ Sn, we define ρV (g) : V → V by

requiring that ρV (g)(ei) = eg(i).
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Exercise 9. Check that V defined above is a representation of Sn. Let W = {
∑n

i=1 xiei such

that
∑n

i=1 xi = 0} and let X = E(e1 + · · ·+ en).

(1) Show that W and X are both subrepresentations of V , and that X = V Sn.

(2) Show that if n 6= 0 in E, then W ⊕X = V .

(3) If n = p, is there a subrepresentation Y of V such that W ⊕ Y = V ?

(4) Is W an irreducible representation in general?

If v ∈ V , the orbit of v is the set Orb(v) = {ρV (g)(v)}g∈G. Let Gv be the set of g ∈ G

such that ρV (g)(v) = v.

Exercise 10. Let G be a finite group and let V 6= {0} be a representation of G on a finite

dimensional Fp-vector space.

(1) Prove that Gv is a subgroup of G, and that |Orb(v)| = |G|/|Gv|.
(2) Assume now that |G| is a power of p. Show that |Orb(v)| is of the form pe with e ≥ 0,

and use this to prove that V G 6= {0}.

The fact that V G 6= {0} for any nonzero Fp-representation of a p-group G is a fundamental

result of the theory of Fp-representations.

3. Irreducible constituents

If V is a representation of G and W is a subrepresentation of V , then the quotient space

V/W is a representation of G.

Exercise 11. Check that if V 6= {0} is a finite dimensional representation of G, then it has

an irreducible subrepresentation.

Let V be a finite dimensional nonzero representation of G, and define the multiset Irr(V )

as follows. If V is irreducible, then Irr(V ) = {V }. Otherwise, let W be an irreducible

subrepresentation of W , and let Irr(V ) = {W} ∪ Irr(V/W ).

The Jordan-Hölder theorem says that the set Irr(V ) does not depend on the choice of an

irreducible representation at each step: they all arise in some order. The set Irr(V ) is the

set of irreducible constituents of V , and the cardinality of Irr(V ) is the length of V . You can

find a proof of the Jordan-Hölder theorem in §13 of [CR06], for instance.

Exercise 12. Prove the Jordan-Hölder theorem for representations of length 2.

Exercise 13 (Maschke’s theorem). (more difficult and not used in the sequel) Prove that if

|G| 6= 0 in E, and V is a finite-dimensional representation of G, then V = ⊕X∈Irr(V )X.
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Hint: if W is a subrepresention of V , let π be a projector on V whose image is W . Let

σ = (
∑

g∈G ρV (g)πρV (g)−1)/|G|. Prove that σ|W = Id, that σ is also a projector on V whose

image is W , and that its kernel is stable under the action of G.

Item (3) of exercise 9 shows that this fails if |G| = 0 in E. Here is a simpler example: let

E = Fp and G = Z/pZ and let V = Ex⊕ Ey, with ρV (g)(x) = x and ρV (g)(y) = y + gx.

Exercise 14. Check that Irr(V ) = {E,E} but that V 6= E2 (here E denotes the one-

dimensional representation of G, with G acting trivially).

4. The representations Polk

Let E = Fp. Take k ≥ 0 and let Polk be the space of homogenous polynomials of degree

k in two variables x and y, so that Polk = Exk ⊕ Exk−1y ⊕ · · · ⊕ Eyk. If g = ( a b
c d ) ∈

GL2(Fp) and P (x, y) ∈ Polk, let (ρPolk(g) · P )(x, y) = P (ax + cy, bx + dy). If r ∈ Z, let

Polk(r) denote the same space of polynomials, but with the action of GL2(Fp) given by

(ρPolk(r)(g) ·P )(x, y) = P (ax+ cy, bx+ dy) · det(g)r. One of the main goals of this project is

to prove the following theorem.

Theorem 1. The representations Polk(r) for 0 ≤ k ≤ p−1 are all irreducible, and moreover

every irreducible representation of GL2(Fp) is of the form Polk(r) for some 0 ≤ k ≤ p − 1

and 0 ≤ r ≤ p− 2.

This theorem first appears in §30 of [BN41], with a proof that is very different from the

one that we will see in this project.

Exercise 15. Prove that if V is an irreducible representation of GL2(Fp), there exists 0 ≤
r ≤ p− 2 such that ρV (z) = det(z)r · Id if z ∈ Z.

The character detr : Z → F×p attached to V is called the central character of V . If V is

a representation of GL2(Fp) that is not necessarily irreducible, we say that V has a central

character if there is an r such that ρV (z) = det(z)r · Id for all z ∈ Z, and we then call the

character detr : Z→ F×p the central character of V .

Exercise 16. Does Polk(r) have a central character? Show that two representations Polk(r)

and Polk′(r
′) are isomorphic if and only if k = k′ and p− 1 divides r − r′.

Exercise 17. Show that the representations listed in Theorem 1 are indeed irreducible.

Hint: Compute (Polk(r))U, and use exercise 10.



MODULAR REPRESENTATIONS OF GL2(Fp) 5

At this point we have found p(p− 1) pairwise non-isomorphic irreducible representations

of GL2(Fp). We want to show that every irreducible representation is isomorphic to one of

these. First we show that the Polk(r) are not irreducible for k ≥ p.

Exercise 18. Show that Polp(r) contains a subrepresentation that is isomorphic to Pol1(r).

Let D(x, y) = xpy − xyp.

Exercise 19. Compute D(ax+cy, bx+dy) and prove that Polk(r) is not irreducible if k ≥ p.

5. Construction of representations

Let V be a representation of G, and let V ∗ be the dual vector space, the space of linear maps

µ : V → E. We make V ∗ into a representation of G by setting ρV ∗(g)(µ)(x) = µ(ρV (g−1)(x))

for all µ ∈ V ∗ and x ∈ V . This is called the contragredient representation of V .

Exercise 20. Show that V is an irreducible representation of G if and only if V ∗ is.

Exercise 21. Show that the representation Polk(r)∗ is isomorphic to Polk(−r − k).

Recall that G is a finite group. Let H be a subgroup of G and let V be a representation of

H. We define the induced representation IndG
HV to be the set of maps f : G→ V satisfying

the property: for all h ∈ H and g ∈ G, f(hg) = ρV (h)(f(g)). We make this vector space

into a representation of G by setting ρIndGHV (g)(f)(x) = f(xg).

Exercise 22. Check that IndG
HV is indeed a representation of G. What is its dimension?

Exercise 23 (Frobenius reciprocity). Let G be a finite group and H be a subgroup of G

and V be an Fp-representation of G. Let W be an irreducible representation of H. Suppose

that V |H contains a subrepresentation isomorphic to W . Show that there is a nonzero map

IndG
HW → V , which is a morphism of representations of G.

6. Parabolic induction

Let χ be a multiplicative map B→ F×p , which gives rise to a one-dimensional representa-

tion of B. Let ind
GL2(Fp)
B χ be the induced representation (see exercise 22; in this case, it is

called a parabolic induction).

Exercise 24. Show that ind
GL2(Fp)
B χ is a vector space of dimension p+ 1.

Exercise 25. Show that the contragredient representation (ind
GL2(Fp)
B χ)∗ is isomorphic to

ind
GL2(Fp)
B (χ−1).
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Denote by χ(r, s) the multiplicative map B→ F×p of exercise 6, which is given by ( a b
0 d ) 7→

ards. We define a map ϕ(k, r) : Polk(r) → ind
GL2(Fp)
B χ(r, r + k) as follows: the image of a

polynomial P is the function on GL2(Fp) that sends g to (ρPolk(r)(g)P )(0, 1).

Exercise 26. Check that ϕ(k, r) is an intertwining operator Polk(r)→ ind
GL2(Fp)
B χ(r, r+k).

The image of ϕ(k, r) is therefore a subrepresentation of ind
GL2(Fp)
B χ(r, r + k).

Exercise 27. Show that if 0 ≤ k ≤ p− 1, ind
GL2(Fp)
B χ(r, r+ k) contains a subrepresentation

isomorphic to Polk(r).

Exercise 28. Show that if 0 ≤ k ≤ p− 1, ind
GL2(Fp)
B χ(r, r+ k) has a quotient representation

isomorphic to Polp−1−k(r + k).

Hint: use the contragredient.

Exercise 29. Show that if 0 ≤ k ≤ p− 1, then

Irr(ind
GL2(Fp)
B χ(r, r + k)) = {Polk(r),Polp−1−k(r + k)}.

7. End of the proof of Theorem 1

Let V be a representation of GL2(Fp). We denote by V |B the restriction of this rep-

resentation to B: it is the representation given by the restriction to B of the morphism

GL2(Fp)→ Aut(V ).

Exercise 30. Let V be a finite dimensional Fp-representation of GL2(Fp). Show that there

exists a multiplicative map χ : B→ F×p such that V |B contains a subrepresentation isomor-

phic to χ.

Hint: consider V U.

Exercise 31. Let V be a finite dimensional Fp-representation of GL2(Fp).

(1) Show that V has a subrepresentation isomorphic to Polk(r) for some r and some

0 ≤ k ≤ p− 1. Hint: use exercise 23.

(2) Finish the proof of theorem 1.

8. More about the representations Polk(r)

Let V be a representation of a group G, and W be an irreducible representation of G. Let

us denote by [V : W ] the number of irreducible constituents of V that are isomorphic to W ;

this is called the multiplicity of W in V .
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Exercise 32. Suppose that V has a central character. Show that [V : W ] = 0 if the central

character of W is not the same as the central character of V .

We now return to representations of GL2(Fp). Our goal in this section is to understand

how [Polk(r) : W ] varies if W is fixed and k → +∞. Recall that D = xpy − xyp.

Exercise 33. Show that “multiplication by D” defines a morphism of representations Polk(r+

1)→ Polk+p+1(r), so that Polk+p+1(r) has a subrepresentation isomorphic to Polk(r + 1).

We now extend a little the result of exercise 27.

Exercise 34. Suppose that k ≥ p+ 1. Show that there exists a morphism of representations

Polk(r)→ ind
GL2(Fp)
B χ(r, r+k) whose kernel is the image of Polk−p−1(r+1) by multiplication

by D, and which is surjective.

Exercise 35. Give a recursive formula expressing [Polk(r) : Pola(b)] in terms of [Polk−p−1(r+

1) : Pola(b)] and [ind
GL2(Fp)
B χ(r, r + k) : Pola(b)] for an irreducible representation Pola(b).

Exercise 36. Fix 0 ≤ a ≤ p − 1 and 0 ≤ b ≤ p − 2 and 0 ≤ r ≤ p − 2. Set δ = 1 if a = 0

or a = p− 1, and δ = 2 otherwise.

Show that [Polk(r) : Pola(b)] = 0 if p− 1 does not divide (k + 2r)− (a+ 2b), and that

[Polk(r) : Pola(b)]

dim Polk(r)
→ δ

p2 − 1
,

as k → +∞ with the condition that p− 1 divides (k + 2r)− (a+ 2b).

9. Generalization to GL2(Fq)

We fix an algebraic closure Fp of Fp. The map ϕ : x 7→ xp is an automorphism of Fp. If

q = pd with d ≥ 1, then let Fq = {x ∈ Fp such that ϕd(x) = x}.

Exercise 37. Show that Fq is a field with q elements, and that any extension of Fp of degree

d (inside Fp) is equal to Fq.

Exercise 38. Prove that there exists g ∈ F×q such that F×q = {1, g, . . . , gq−2} (more generally,

you could prove that if F is any field and W is a finite subgroup of F×, then W is cyclic).

Show that every multiplicative map f : F×q → F×q is of the form x 7→ xr with 0 ≤ r ≤ q−2,

which can also be written as x 7→ xr0 · ϕ(x)r1 · · ·ϕd−1(x)rd−1, with 0 ≤ r0, . . . , rd−1 ≤ p− 1.

From now on we take q = pd for some d ≥ 1, and E = Fq. The theory of representations

of GL2(Fq) over E is similar to the theory of representations of GL2(Fp) but with some new

features.
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Recall that ϕ : x 7→ xp is an automorphism of Fq, which is of order exactly d. For

g = ( a b
c d ) ∈ GL2(Fq), we set ϕ(g) =

(
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

)
. Let V be a representation of GL2(Fq) with

coefficients in E. We denote by V [1] the representation with the same underlying vector

space, and ρV [1](g) = ρV (ϕ(g)). More generally we define V [n] by ρV [n](g) = ρV (ϕn(g)), so

that V [n] is the same as V , but with a “twisted” action of GL2(Fq).

Exercise 39. Suppose that V has a central character. Give the central character of V [i] in

terms of the central character of V .

We still denote by Polk(r) the representation of GL2(Fq) on the set of homogenous poly-

nomials of degree k with coefficients in E = Fq.

In exercise 40 below, you need the tensor product of two representations of G. Here is a

quick definition: if V and W are two E-vector spaces, with bases v1, . . . , vm and w1, . . . , wn,

then the tensor product V ⊗W is the E-vector space with basis the mn elements vi ⊗ wj.

If f ∈ End(V ) and g ∈ End(W ) are given by f(vi) =
∑

k fikvk and g(wj) =
∑

` gj`w`,

then f ⊗ g ∈ End(V ⊗W ) is given by (f ⊗ g)(vi ⊗ wj) =
∑

k,` fikgj` · vk ⊗ w`. If V and

W are representations of G, then we make V ⊗ W into a representation of G by setting

ρV⊗W (g) = ρV (g) ⊗ ρW (g). You should look up the definition of the tensor product in

different textbooks and compare it with the one given here.

Exercise 40. Show that Polkp contains a subrepresentation isomorphic to Pol
[1]
k .

Write k =
∑m

i=0 kip
i with 0 ≤ ki ≤ p − 1. Show that Polk contains a subrepresentation

isomorphic to Pol
[0]
k0
⊗ Pol

[1]
k1
⊗ · · · ⊗ Pol

[m]
km

.

The analogue of theorem 1 is the following.

Theorem 2. The set of irreducible representations of GL2(Fq) with coefficients in E is

exactly the set of representations of the form (⊗d−1
i=0 Pol[i]ai)(b) for 0 ≤ ai ≤ p− 1 and 0 ≤ b ≤

q − 2, and these representations are pairwise non isomorphic.

You should try to prove this theorem using similar methods to those we used for GL2(Fp).

Can you do the analogue of exercise 36 for GL2(Fq)? This is theorem 3.1 of [Roz14].

10. Suggestions for further study

If you’re done proving theorem 2, you can try to see what happens for GLn(Fq) if n ≥ 3.

What are the analogues for GLn of the representations Polk? Of the parabolic inductions?

The article [Glo78] contains a number of properties of the representations Polk of GL2 (his

Vm is our Polm−1). Can you understand what are the main results of [Glo78]?
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Another possibility is to study E-linear representations of GL2(Fq) if E is a field of char-

acteristic 6= p, for example the complex numbers. This was first done by Jordan and Schur

in 1907 (see [Jor07] and [Sch07], and [FH91] or [AB95] for a more modern approach). The

representations Polk don’t exist anymore, but the ind
GL2(Fp)
B χ still do. How much of the

proof can you salvage? At some point, you’ll have to consider irreducible representations V

such that V U = {0}. These are called cuspidal representations.

Finally, the motivation for our own interest in these representations of GL2(Fp) is that they

are the starting point for constructing Fp-representations of GL2(Zp) and GL2(Qp), where

Zp are the p-adic integers and Qp is the field of p-adic numbers. These representations play

a very important role in the p-adic local Langlands correspondence.
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