MODULAR REPRESENTATIONS OF $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$

LAURENT BERGER AND SANDRA ROZENSZTAJN

The goal of this project is to study certain representations of the group $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ of invertible 2×2 matrices with coefficients in the field with p elements \mathbf{F}_{p}, where p is a prime number.

1. The group $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ and its subgroups

Let $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$. Let $\mathrm{M}_{2}\left(\mathbf{F}_{p}\right)$ denote the set of 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with a, b, c and d in \mathbf{F}_{p}. Let $\operatorname{Id}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. If $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, let $\operatorname{det}(M)=a d-b c$. We say that M is invertible if there exists $N \in \mathrm{M}_{2}\left(\mathbf{F}_{p}\right)$ such that $M N=\mathrm{Id}$.

Exercise 1. Check that $\operatorname{det}(M N)=\operatorname{det}(M) \operatorname{det}(N)$, compute $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \times\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$, and prove that M is invertible if and only if $\operatorname{det}(M) \neq 0$.

We let $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ denote the set of matrices $M \in \mathrm{M}_{2}\left(\mathbf{F}_{p}\right)$ such that $\operatorname{det}(M) \neq 0$, and $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$ denote the set of matrices $M \in \mathrm{M}_{2}\left(\mathbf{F}_{p}\right)$ such that $\operatorname{det}(M)=1$.

Exercise 2. Prove that $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{M}_{2}\left(\mathbf{F}_{p}\right)$ belongs to $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ if and only if $\binom{a}{c} \neq\binom{ 0}{0}$ and $\binom{b}{d}$ is not a multiple of $\binom{a}{c}$. Use this to show that $\left|\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)$ and that $\left|\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)\right|=p\left(p^{2}-1\right)$.

Exercise 3 (Exceptional isomorphisms). Let S_{n} denote the permutation group of $\{1,2, \ldots, n\}$.
(1) Exercise 2 implies that $\left|\mathrm{GL}_{2}\left(\mathbf{F}_{2}\right)\right|=6$. How many groups of cardinal 6 do you know?
(2) There are 3 nonzero points in \mathbf{F}_{2}^{2}. The action of $\mathrm{GL}_{2}\left(\mathbf{F}_{2}\right)$ on those points gives rise to a map $\mathrm{GL}_{2}\left(\mathbf{F}_{2}\right) \rightarrow S_{3}$. Prove that this map is an isomorphism.
(3) Likewise, $\left|\mathrm{GL}_{2}\left(\mathbf{F}_{3}\right)\right|=48$. There are 4 lines in \mathbf{F}_{3}^{2}. Use this to show that there is a surjective map $\mathrm{GL}_{2}\left(\mathbf{F}_{3}\right) \rightarrow S_{4}$, whose kernel is $\{\mathrm{Id},-\mathrm{Id}\}$.
(4) (more difficult) Find a surjective map $\mathrm{GL}_{2}\left(\mathbf{F}_{5}\right) \rightarrow S_{5}$.
(5) In each of the above, what is the image of $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$?

Let $\mathrm{Z}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)\right.$ with $\left.a \in \mathbf{F}_{p}^{\times}\right\}$.
Exercise 4. Prove that Z is the center of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$.

Exercise 5. Prove that there exists $g \in \mathbf{F}_{p}^{\times}$such that $\mathbf{F}_{p}^{\times}=\left\{1, g, \ldots, g^{p-2}\right\}$. Show that every multiplicative map $f: \mathbf{F}_{p}^{\times} \rightarrow \mathbf{F}_{p}^{\times}$is of the form $x \mapsto x^{r}$, with $0 \leq r \leq p-2$.

Let B denote the set of upper triangular matrices $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ that belong to $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$. Let U be the set of matrices of the form $\left(\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right)$ for $a \in \mathbf{F}_{p}$. Let $w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Exercise 6. Prove that every multiplicative map $f: \mathrm{B} \rightarrow \mathbf{F}_{p}^{\times}$is of the form $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \mapsto a^{r} \cdot d^{s}$ with $0 \leq r, s \leq p-2$.

Exercise 7 (Bruhat decomposition). Show that $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)=\mathrm{B} \cup \mathrm{U} w \mathrm{~B}$, and more precisely that $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ is the disjoint union of B and of the $\left(\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right) w \mathrm{~B}$ for $a \in \mathbf{F}_{p}$.

Exercise 8. Prove that every multiplicative map $f: \mathrm{G} \rightarrow \mathbf{F}_{p}^{\times}$is of the form $M \mapsto \operatorname{det}(M)^{r}$ for some $0 \leq r \leq p-2$.

Hint: use exercise 6 and compute $w\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) w$. Show that $r=s$, so that $f=\operatorname{det}^{r}$ on B , then use exercise 7.

Another method would be to prove that f is trivial on $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$ because $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$ is the derived group of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ - at least if $p \geq 5$, see $[\mathrm{Lan} 02, \S 8, \mathrm{XIII}]$, and det: $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right) / \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \rightarrow$ \mathbf{F}_{p}^{\times}is an isomorphism.

2. Representations of groups

Let E be a field, and let V be an E-vector space. The space $\operatorname{End}(V)$ is the set of E-linear maps $f: V \rightarrow V$, and $\operatorname{Aut}(V)$ is the set of maps $f \in \operatorname{End}(V)$ that are invertible.

If G is a group, a representation of G is a group homomorphism $\rho_{V}: G \rightarrow \operatorname{Aut}(V)$. In other words, for every $g \in \mathrm{G}$, the map $\rho_{V}(g): V \rightarrow V$ is E-linear and invertible, and $\rho_{V}(g h)=\rho_{V}(g) \rho_{V}(h)$ if $g, h \in \mathrm{G}$ and $\rho_{V}(1)=\mathrm{Id}$.

A subrepresentation of V is a subspace W of V such that W is stable under $\rho_{V}(g)$ for all $g \in \mathrm{G}$. Let V^{G} be the set of $v \in V$ such that $\rho_{V}(g)(v)=v$ for all $g \in \mathrm{G}$. This is a subrepresentation of V. We say that V is irreducible if $V \neq\{0\}$, and the only subrepresentations of V are $\{0\}$ and V itself.

If V and W are two representations of G , then a morphism of representations, also called an intertwining operator, is a linear map $f: V \rightarrow W$ such that $f\left(\rho_{V}(g)(v)\right)=\rho_{W}(g)(f(v))$ for all $g \in \mathrm{G}$ and $v \in V$.

In all of this project, G is a finite group, E is a finite field, and V is a finite dimensional E vector space. For example: let $E=\mathbf{F}_{p}$ for some prime number p, let S_{n} be the permutation group of $\{1, \ldots, n\}$ and let $V=E e_{1} \oplus \cdots E e_{n}$. If $g \in S_{n}$, we define $\rho_{V}(g): V \rightarrow V$ by requiring that $\rho_{V}(g)\left(e_{i}\right)=e_{g(i)}$.

Exercise 9. Check that V defined above is a representation of S_{n}. Let $W=\left\{\sum_{i=1}^{n} x_{i} e_{i}\right.$ such that $\left.\sum_{i=1}^{n} x_{i}=0\right\}$ and let $X=E\left(e_{1}+\cdots+e_{n}\right)$.
(1) Show that W and X are both subrepresentations of V, and that $X=V^{S_{n}}$.
(2) Show that if $n \neq 0$ in E, then $W \oplus X=V$.
(3) If $n=p$, is there a subrepresentation Y of V such that $W \oplus Y=V$?
(4) Is W an irreducible representation in general?

If $v \in V$, the orbit of v is the set $\operatorname{Orb}(v)=\left\{\rho_{V}(g)(v)\right\}_{g \in \mathrm{G}}$. Let G_{v} be the set of $g \in \mathrm{G}$ such that $\rho_{V}(g)(v)=v$.

Exercise 10. Let G be a finite group and let $V \neq\{0\}$ be a representation of G on a finite dimensional \mathbf{F}_{p}-vector space.
(1) Prove that G_{v} is a subgroup of G , and that $|\operatorname{Orb}(v)|=|\mathrm{G}| /\left|\mathrm{G}_{v}\right|$.
(2) Assume now that $|\mathrm{G}|$ is a power of p. Show that $|\operatorname{Orb}(v)|$ is of the form p^{e} with $e \geq 0$, and use this to prove that $V^{\mathrm{G}} \neq\{0\}$.

The fact that $V^{\mathrm{G}} \neq\{0\}$ for any nonzero \mathbf{F}_{p}-representation of a p-group G is a fundamental result of the theory of \mathbf{F}_{p}-representations.

3. Irreducible constituents

If V is a representation of G and W is a subrepresentation of V, then the quotient space V / W is a representation of G .

Exercise 11. Check that if $V \neq\{0\}$ is a finite dimensional representation of G , then it has an irreducible subrepresentation.

Let V be a finite dimensional nonzero representation of G , and define the multiset $\operatorname{Irr}(V)$ as follows. If V is irreducible, then $\operatorname{Irr}(V)=\{V\}$. Otherwise, let W be an irreducible subrepresentation of W, and let $\operatorname{Irr}(V)=\{W\} \cup \operatorname{Irr}(V / W)$.

The Jordan-Hölder theorem says that the set $\operatorname{Irr}(V)$ does not depend on the choice of an irreducible representation at each step: they all arise in some order. The set $\operatorname{Irr}(V)$ is the set of irreducible constituents of V, and the cardinality of $\operatorname{Irr}(V)$ is the length of V. You can find a proof of the Jordan-Hölder theorem in $\S 13$ of [CR06], for instance.

Exercise 12. Prove the Jordan-Hölder theorem for representations of length 2.
Exercise 13 (Maschke's theorem). (more difficult and not used in the sequel) Prove that if $|\mathrm{G}| \neq 0$ in E, and V is a finite-dimensional representation of G , then $V=\oplus_{X \in \operatorname{Irr}(V)} X$.

Hint: if W is a subrepresention of V, let π be a projector on V whose image is W. Let $\sigma=\left(\sum_{g \in \mathrm{G}} \rho_{V}(g) \pi \rho_{V}(g)^{-1}\right) /|G|$. Prove that $\left.\sigma\right|_{W}=\mathrm{Id}$, that σ is also a projector on V whose image is W, and that its kernel is stable under the action of G .

Item (3) of exercise 9 shows that this fails if $|\mathrm{G}|=0$ in E. Here is a simpler example: let $E=\mathbf{F}_{p}$ and $\mathrm{G}=\mathbf{Z} / p \mathbf{Z}$ and let $V=E x \oplus E y$, with $\rho_{V}(g)(x)=x$ and $\rho_{V}(g)(y)=y+g x$.

Exercise 14. Check that $\operatorname{Irr}(V)=\{E, E\}$ but that $V \neq E^{2}$ (here E denotes the onedimensional representation of G , with G acting trivially).

4. The representations Pol_{k}

Let $E=\mathbf{F}_{p}$. Take $k \geq 0$ and let Pol_{k} be the space of homogenous polynomials of degree k in two variables x and y, so that $\mathrm{Pol}_{k}=E x^{k} \oplus E x^{k-1} y \oplus \cdots \oplus E y^{k}$. If $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in$ $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ and $P(x, y) \in \operatorname{Pol}_{k}$, let $\left(\rho_{\mathrm{Pol}_{k}}(g) \cdot P\right)(x, y)=P(a x+c y, b x+d y)$. If $r \in \mathbf{Z}$, let $\mathrm{Pol}_{k}(r)$ denote the same space of polynomials, but with the action of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ given by $\left(\rho_{\mathrm{Pol}_{k}(r)}(g) \cdot P\right)(x, y)=P(a x+c y, b x+d y) \cdot \operatorname{det}(g)^{r}$. One of the main goals of this project is to prove the following theorem.

Theorem 1. The representations $\operatorname{Pol}_{k}(r)$ for $0 \leq k \leq p-1$ are all irreducible, and moreover every irreducible representation of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ is of the form $\mathrm{Pol}_{k}(r)$ for some $0 \leq k \leq p-1$ and $0 \leq r \leq p-2$.

This theorem first appears in $\S 30$ of [BN41], with a proof that is very different from the one that we will see in this project.

Exercise 15. Prove that if V is an irreducible representation of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$, there exists $0 \leq$ $r \leq p-2$ such that $\rho_{V}(z)=\operatorname{det}(z)^{r} \cdot \operatorname{Id}$ if $z \in \mathrm{Z}$.

The character $\operatorname{det}^{r}: \mathrm{Z} \rightarrow \mathbf{F}_{p}^{\times}$attached to V is called the central character of V. If V is a representation of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ that is not necessarily irreducible, we say that V has a central character if there is an r such that $\rho_{V}(z)=\operatorname{det}(z)^{r}$. Id for all $z \in \mathrm{Z}$, and we then call the character $\operatorname{det}^{r}: \mathrm{Z} \rightarrow \mathbf{F}_{p}^{\times}$the central character of V.

Exercise 16. Does $\operatorname{Pol}_{k}(r)$ have a central character? Show that two representations $\operatorname{Pol}_{k}(r)$ and $\operatorname{Pol}_{k^{\prime}}\left(r^{\prime}\right)$ are isomorphic if and only if $k=k^{\prime}$ and $p-1$ divides $r-r^{\prime}$.

Exercise 17. Show that the representations listed in Theorem 1 are indeed irreducible.
Hint: Compute $\left(\operatorname{Pol}_{k}(r)\right)^{\mathrm{U}}$, and use exercise 10.

At this point we have found $p(p-1)$ pairwise non-isomorphic irreducible representations of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$. We want to show that every irreducible representation is isomorphic to one of these. First we show that the $\operatorname{Pol}_{k}(r)$ are not irreducible for $k \geq p$.

Exercise 18. Show that $\operatorname{Pol}_{p}(r)$ contains a subrepresentation that is isomorphic to $\operatorname{Pol}_{1}(r)$.
Let $D(x, y)=x^{p} y-x y^{p}$.
Exercise 19. Compute $D(a x+c y, b x+d y)$ and prove that $\operatorname{Pol}_{k}(r)$ is not irreducible if $k \geq p$.

5. Construction of representations

Let V be a representation of G , and let V^{*} be the dual vector space, the space of linear maps $\mu: V \rightarrow E$. We make V^{*} into a representation of G by setting $\rho_{V^{*}}(g)(\mu)(x)=\mu\left(\rho_{V}\left(g^{-1}\right)(x)\right)$ for all $\mu \in V^{*}$ and $x \in V$. This is called the contragredient representation of V.

Exercise 20. Show that V is an irreducible representation of G if and only if V^{*} is.
Exercise 21. Show that the representation $\operatorname{Pol}_{k}(r)^{*}$ is isomorphic to $\operatorname{Pol}_{k}(-r-k)$.
Recall that G is a finite group. Let H be a subgroup of G and let V be a representation of H. We define the induced representation $\operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}} V$ to be the set of maps $f: \mathrm{G} \rightarrow V$ satisfying the property: for all $h \in \mathrm{H}$ and $g \in \mathrm{G}, f(h g)=\rho_{V}(h)(f(g))$. We make this vector space into a representation of G by setting $\rho_{\mathrm{Ind}_{\mathrm{H}}^{\mathrm{G}} V}(g)(f)(x)=f(x g)$.

Exercise 22. Check that $\operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}} V$ is indeed a representation of G . What is its dimension?
Exercise 23 (Frobenius reciprocity). Let G be a finite group and H be a subgroup of G and V be an \mathbf{F}_{p}-representation of G . Let W be an irreducible representation of H . Suppose that $\left.V\right|_{\mathrm{H}}$ contains a subrepresentation isomorphic to W. Show that there is a nonzero map $\operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}} W \rightarrow V$, which is a morphism of representations of G .

6. Parabolic induction

Let χ be a multiplicative map $\mathrm{B} \rightarrow \mathbf{F}_{p}^{\times}$, which gives rise to a one-dimensional representation of B. Let $\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi$ be the induced representation (see exercise 22 ; in this case, it is called a parabolic induction).

Exercise 24. Show that $\left.\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}}{ }^{\mathrm{GL}} \mathbf{F}_{p}\right) \chi$ is a vector space of dimension $p+1$.
Exercise 25. Show that the contragredient representation $\left(\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi\right)^{*}$ is isomorphic to $\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)}\left(\chi^{-1}\right)$.

Denote by $\chi(r, s)$ the multiplicative map $\mathrm{B} \rightarrow \mathbf{F}_{p}^{\times}$of exercise 6 , which is given by $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \mapsto$ $a^{r} d^{s}$. We define a map $\varphi(k, r): \operatorname{Pol}_{k}(r) \rightarrow \operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi(r, r+k)$ as follows: the image of a polynomial P is the function on $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ that sends g to $\left(\rho_{\mathrm{Pol}_{k}(r)}(g) P\right)(0,1)$.

Exercise 26. Check that $\varphi(k, r)$ is an intertwining operator $\operatorname{Pol}_{k}(r) \rightarrow \operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi(r, r+k)$.
The image of $\varphi(k, r)$ is therefore a subrepresentation of $\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi(r, r+k)$.
Exercise 27. Show that if $0 \leq k \leq p-1, \operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi(r, r+k)$ contains a subrepresentation isomorphic to $\mathrm{Pol}_{k}(r)$.

Exercise 28. Show that if $0 \leq k \leq p-1, \operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi(r, r+k)$ has a quotient representation isomorphic to $\operatorname{Pol}_{p-1-k}(r+k)$.

Hint: use the contragredient.
Exercise 29. Show that if $0 \leq k \leq p-1$, then

$$
\operatorname{Irr}\left(\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi(r, r+k)\right)=\left\{\operatorname{Pol}_{k}(r), \operatorname{Pol}_{p-1-k}(r+k)\right\}
$$

7. End of the proof of Theorem 1

Let V be a representation of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$. We denote by $\left.V\right|_{\mathrm{B}}$ the restriction of this representation to B : it is the representation given by the restriction to B of the morphism $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right) \rightarrow \operatorname{Aut}(V)$.

Exercise 30. Let V be a finite dimensional \mathbf{F}_{p}-representation of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$. Show that there exists a multiplicative map $\chi: \mathrm{B} \rightarrow \mathbf{F}_{p}^{\times}$such that $\left.V\right|_{\mathrm{B}}$ contains a subrepresentation isomorphic to χ.

Hint: consider V^{U}.
Exercise 31. Let V be a finite dimensional \mathbf{F}_{p}-representation of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$.
(1) Show that V has a subrepresentation isomorphic to $\operatorname{Pol}_{k}(r)$ for some r and some $0 \leq k \leq p-1$. Hint: use exercise 23.
(2) Finish the proof of theorem 1.

8. More about the representations $\operatorname{Pol}_{k}(r)$

Let V be a representation of a group G , and W be an irreducible representation of G. Let us denote by $[V: W]$ the number of irreducible constituents of V that are isomorphic to W; this is called the multiplicity of W in V.

Exercise 32. Suppose that V has a central character. Show that $[V: W]=0$ if the central character of W is not the same as the central character of V.

We now return to representations of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$. Our goal in this section is to understand how $\left[\operatorname{Pol}_{k}(r): W\right]$ varies if W is fixed and $k \rightarrow+\infty$. Recall that $D=x^{p} y-x y^{p}$.

Exercise 33. Show that "multiplication by D " defines a morphism of representations $\operatorname{Pol}_{k}(r+$ 1) $\rightarrow \operatorname{Pol}_{k+p+1}(r)$, so that $\operatorname{Pol}_{k+p+1}(r)$ has a subrepresentation isomorphic to $\operatorname{Pol}_{k}(r+1)$.

We now extend a little the result of exercise 27.
Exercise 34. Suppose that $k \geq p+1$. Show that there exists a morphism of representations $\operatorname{Pol}_{k}(r) \rightarrow \operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}}{ }_{2}\left(\mathbf{F}_{p}\right) \chi(r, r+k)$ whose kernel is the image of $\operatorname{Pol}_{k-p-1}(r+1)$ by multiplication by D, and which is surjective.

Exercise 35. Give a recursive formula expressing $\left[\operatorname{Pol}_{k}(r): \operatorname{Pol}_{a}(b)\right]$ in terms of $\left[\operatorname{Pol}_{k-p-1}(r+\right.$ 1) : $\left.\operatorname{Pol}_{a}(b)\right]$ and $\left[\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi(r, r+k): \operatorname{Pol}_{a}(b)\right]$ for an irreducible representation $\operatorname{Pol}_{a}(b)$.

Exercise 36. Fix $0 \leq a \leq p-1$ and $0 \leq b \leq p-2$ and $0 \leq r \leq p-2$. Set $\delta=1$ if $a=0$ or $a=p-1$, and $\delta=2$ otherwise.

Show that $\left[\operatorname{Pol}_{k}(r): \operatorname{Pol}_{a}(b)\right]=0$ if $p-1$ does not divide $(k+2 r)-(a+2 b)$, and that

$$
\frac{\left[\operatorname{Pol}_{k}(r): \operatorname{Pol}_{a}(b)\right]}{\operatorname{dim} \operatorname{Pol}_{k}(r)} \rightarrow \frac{\delta}{p^{2}-1}
$$

as $k \rightarrow+\infty$ with the condition that $p-1$ divides $(k+2 r)-(a+2 b)$.

9. Generalization to $\mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$

We fix an algebraic closure $\overline{\mathbf{F}}_{p}$ of \mathbf{F}_{p}. The map $\varphi: x \mapsto x^{p}$ is an automorphism of $\overline{\mathbf{F}}_{p}$. If $q=p^{d}$ with $d \geq 1$, then let $\mathbf{F}_{q}=\left\{x \in \overline{\mathbf{F}}_{p}\right.$ such that $\left.\varphi^{d}(x)=x\right\}$.

Exercise 37. Show that \mathbf{F}_{q} is a field with q elements, and that any extension of \mathbf{F}_{p} of degree d (inside $\overline{\mathbf{F}}_{p}$) is equal to \mathbf{F}_{q}.

Exercise 38. Prove that there exists $g \in \mathbf{F}_{q}^{\times}$such that $\mathbf{F}_{q}^{\times}=\left\{1, g, \ldots, g^{q-2}\right\}$ (more generally, you could prove that if F is any field and W is a finite subgroup of F^{\times}, then W is cyclic).

Show that every multiplicative map $f: \mathbf{F}_{q}^{\times} \rightarrow \mathbf{F}_{q}^{\times}$is of the form $x \mapsto x^{r}$ with $0 \leq r \leq q-2$, which can also be written as $x \mapsto x^{r_{0}} \cdot \varphi(x)^{r_{1}} \cdots \varphi^{d-1}(x)^{r_{d-1}}$, with $0 \leq r_{0}, \ldots, r_{d-1} \leq p-1$.

From now on we take $q=p^{d}$ for some $d \geq 1$, and $E=\mathbf{F}_{q}$. The theory of representations of $\mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$ over E is similar to the theory of representations of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ but with some new features.

Recall that $\varphi: x \mapsto x^{p}$ is an automorphism of \mathbf{F}_{q}, which is of order exactly d. For $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$, we set $\varphi(g)=\left(\begin{array}{cc}\varphi(a) & \varphi(b) \\ \varphi(c) & \varphi(d)\end{array}\right)$. Let V be a representation of $\mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$ with coefficients in E. We denote by $V^{[1]}$ the representation with the same underlying vector space, and $\rho_{V^{[1]}}(g)=\rho_{V}(\varphi(g))$. More generally we define $V^{[n]}$ by $\rho_{V^{[n]}}(g)=\rho_{V}\left(\varphi^{n}(g)\right)$, so that $V^{[n]}$ is the same as V, but with a "twisted" action of $\mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$.

Exercise 39. Suppose that V has a central character. Give the central character of $V^{[i]}$ in terms of the central character of V.

We still denote by $\operatorname{Pol}_{k}(r)$ the representation of $\mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$ on the set of homogenous polynomials of degree k with coefficients in $E=\mathbf{F}_{q}$.

In exercise 40 below, you need the tensor product of two representations of G. Here is a quick definition: if V and W are two E-vector spaces, with bases v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{n}, then the tensor product $V \otimes W$ is the E-vector space with basis the $m n$ elements $v_{i} \otimes w_{j}$. If $f \in \operatorname{End}(V)$ and $g \in \operatorname{End}(W)$ are given by $f\left(v_{i}\right)=\sum_{k} f_{i k} v_{k}$ and $g\left(w_{j}\right)=\sum_{\ell} g_{j \ell} w_{\ell}$, then $f \otimes g \in \operatorname{End}(V \otimes W)$ is given by $(f \otimes g)\left(v_{i} \otimes w_{j}\right)=\sum_{k, \ell} f_{i k} g_{j \ell} \cdot v_{k} \otimes w_{\ell}$. If V and W are representations of G , then we make $V \otimes W$ into a representation of G by setting $\rho_{V \otimes W}(g)=\rho_{V}(g) \otimes \rho_{W}(g)$. You should look up the definition of the tensor product in different textbooks and compare it with the one given here.

Exercise 40. Show that $\mathrm{Pol}_{k p}$ contains a subrepresentation isomorphic to $\mathrm{Pol}_{k}^{[1]}$.
Write $k=\sum_{i=0}^{m} k_{i} p^{i}$ with $0 \leq k_{i} \leq p-1$. Show that Pol_{k} contains a subrepresentation isomorphic to $\mathrm{Pol}_{k_{0}}^{[0]} \otimes \operatorname{Pol}_{k_{1}}^{[1]} \otimes \cdots \otimes \operatorname{Pol}_{k_{m}}^{[m]}$.

The analogue of theorem 1 is the following.
Theorem 2. The set of irreducible representations of $\mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$ with coefficients in E is exactly the set of representations of the form $\left(\otimes_{i=0}^{d-1} \operatorname{Pol}_{a_{i}}^{[i]}\right)(b)$ for $0 \leq a_{i} \leq p-1$ and $0 \leq b \leq$ $q-2$, and these representations are pairwise non isomorphic.

You should try to prove this theorem using similar methods to those we used for $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$. Can you do the analogue of exercise 36 for $\mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$? This is theorem 3.1 of [Roz14].

10. SUGGEStions for further study

If you're done proving theorem 2 , you can try to see what happens for $\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)$ if $n \geq 3$. What are the analogues for GL_{n} of the representations Pol_{k} ? Of the parabolic inductions?

The article [Glo78] contains a number of properties of the representations Pol_{k} of GL_{2} (his V_{m} is our Pol_{m-1}). Can you understand what are the main results of [Glo78]?

Another possibility is to study E-linear representations of $\mathrm{GL}_{2}\left(\mathbf{F}_{q}\right)$ if E is a field of characteristic $\neq p$, for example the complex numbers. This was first done by Jordan and Schur in 1907 (see [Jor07] and [Sch07], and [FH91] or [AB95] for a more modern approach). The representations Pol_{k} don't exist anymore, but the $\operatorname{ind}_{\mathrm{B}}^{\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)} \chi$ still do. How much of the proof can you salvage? At some point, you'll have to consider irreducible representations V such that $V^{\mathrm{U}}=\{0\}$. These are called cuspidal representations.

Finally, the motivation for our own interest in these representations of $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ is that they are the starting point for constructing \mathbf{F}_{p}-representations of $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ and $\mathrm{GL}_{2}\left(\mathbf{Q}_{p}\right)$, where \mathbf{Z}_{p} are the p-adic integers and \mathbf{Q}_{p} is the field of p-adic numbers. These representations play a very important role in the p-adic local Langlands correspondence.

References

[AB95] Jonathan Lazare Alperin and Rowen B. Bell, Groups and representations, Graduate Texts in Mathematics, vol. 162, Springer-Verlag, New York, 1995.
[BN41] Richard Dagobert Brauer and Cecil Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556-590.
[CR06] Charles Whittlesey Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006, Reprint of the 1962 original.
[FH91] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics.
[Glo78] David John Glover, A study of certain modular representations, J. Algebra 51 (1978), no. 2, 425-475.
[Jor07] Herbert Edwin Jordan, Group-Characters of Various Types of Linear Groups, Amer. J. Math. 29 (1907), no. 4, 387-405.
[Lan02] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002.
[Roz14] Sandra Rozensztajn, Asymptotic values of modular multiplicities for GL_{2}, J. Théor. Nombres Bordeaux 26 (2014), no. 2, 465-482.
[Sch07] Issai Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen., J. Reine Angew. Math. 132 (1907), 85-137.

Laurent Berger, EnS de Lyon, Lyon, France
E-mail address: laurent.berger@ens-lyon.fr
URL: perso.ens-lyon.fr/laurent.berger/
Sandra Rozensztajn, ENS de Lyon, Lyon, France
E-mail address: sandra.rozensztajn@ens-lyon.fr
URL: perso.ens-lyon.fr/sandra.rozensztajn/

