
COMPOSITION OF POWER SERIES

LAURENT BERGER AND SANDRA ROZENSZTAJN

The goal of this project is to study the composition of power series f(X) = a1X+a2X
2+· · ·

with coefficients {ai}i≥1 in a field K such as R or C or Fp = Z/pZ.

When K = R or C, power series with coefficients in K occur as the Taylor series of

infinitely differentiable functions. WhenK contains Fp, those power series come from number

theory. One theme of this project is therefore the interplay between analysis and arithmetic.

1. Composition of power series

Let K be a field and let K[[X]] denote the set of power series f(X) = a0+a1X+a2X
2+ · · ·

with coefficients {ai}i≥0 in K.

Let K((X)) denote the set of power series f(X) = amX
m + am+1X

m+1 + · · · where m ∈ Z

and with coefficients {ai}i≥m in K.

If f(X) =
∑+∞

i=m aiX
i ∈ K((X)), let valX(f) be the smallest i ∈ Z such that ai 6= 0, so

that f(X) ∈ X iK[[X]] but f(X) /∈ X i+1K[[X]] (if f = 0, then valX(0) = +∞). The integer

valX(f) is the X-adic valuation of f .

Exercise 1. Prove that K((X)) is a field.

Exercise 2. Check that if {fk}k≥1 is a sequence of K((X)) such that valX(fk− fk+1) ≥ k for

all k ≥ 1, there exists f ∈ K[[X]] such that valX(f − fk) ≥ k for all k ≥ 1.

In the sequel, this method of constructing power series by successive approximations will

be a fundamental tool. In more fancy terms, K((X)) is complete for the X-adic topology.

Exercise 3. Check that if f(X) ∈ K((X)) and g(X) ∈ X · K[[X]], we can compose f and

g, i.e. that the power series f ◦ g(X) = f(g(X)) makes sense. Write down the first few

coefficients of f ◦ g in terms of those of f and g when f(X) ∈ K[[X]].

If f ∈ X ·K[[X]] and n ≥ 0, let f ◦n be f composed with itself n times: f ◦n = f ◦ · · · ◦ f .

If f(X) =
∑+∞

i=m aiX
i ∈ K((X)), let f ′(X) =

∑+∞
i=m iaiX

i−1. In particular, if f(X) =

a1X + a2X
2 + · · · , then f ′(0) = a1.

Let G(K) denote the set of power series f(X) ∈ K[[X]] such that f(0) = 0 and f ′(0) 6= 0,

i.e. f(X) = a1X + a2X
2 + · · · with a1 6= 0.
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Exercise 4. Prove that if f(X) ∈ G(K), there exists a uniquely determined g(X) ∈ G(K)

such that f(g(X)) = X and that then g(f(X)) = X. Write down the first few coefficients of

g in terms of those of f .

The power series g is the inverse of f for the composition and is denoted by f ◦−1. If

f ∈ G(K), we therefore have at our disposal f ◦n for all n ∈ Z.

The following exercise is not used in the sequel, but is one of the first important results

concerning the composition of power series. It is due to Lagrange, around 1770. If f(X) ∈
K((X)) and n ∈ Z, let [Xn](f) denote the coefficient of Xn in f(X).

Exercise 5 (Lagrange’s inversion formula). Prove that if f(X) ∈ G(C), then

n · [Xn](f ◦−1) = [X−1](
1

fn
).

Prove that the same formula holds in any field K, not just C.

2. The group G(K)

By the results of the previous section, the elements of G(K) can be composed and have an

inverse for the composition. Check that (G(K), ◦) is a group, with X the identity element.

Exercise 6. Let f be an element in G(K). Show that the map πf : K((X)) → K((X)),

u 7→ u◦f is a field automorphism, and that the map π : (G(K), ◦)→ Aut(K((X))), f 7→ πf◦−1

is an injective group homomorphism. What is the image of π?

If f(X) = a1X + a2X
2 + · · · , let i(f) = valX(f(X)−X)− 1.

The number i(f) is the ramification number of f , sometimes also called the depth of f .

For example, i(f) = 0 if a1 6= 1, i(X + Xk) = k − 1 if k ≥ 2, and i(X) = +∞. Let Gi(K)

denote the set of f ∈ G(K) such that i(f) ≥ i, so that G(K) = G0(K).

Exercise 7. Prove that if f ∈ G1(K), then i(f ◦n) = i(f) for n ∈ Z such that n 6= 0 in K.

Exercise 8. Prove that i(f) = valX(g ◦ f − g) for any g ∈ G1(K).

Exercise 9. Take i, r, s ≥ 1.

(1) Check that Gi(K) is a subgroup of G(K).

(2) Prove that if f(X) = X+ar+1X
r+1 + · · · ∈ Gr(K) and g(X) = X+ bs+1X

s+1 + · · · ∈
Gs(K), then [f, g] = f ◦−1 ◦ g◦−1 ◦ f ◦ g(X) = X + (r − s)ar+1bs+1X

r+s+1 + · · · .
(3) Prove that Gi(K) is a normal subgroup of G(K), and that [Gr(K), Gs(K)] ⊂ Gr+s(K).

(4) If K is of characteristic p, can you compute i([f, g])?
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(5) (more difficult) Is Gi(K) a characteristic subgroup of G(K), meaning that it is stable

under any group automorphism of G(K)?

If f(X) = X + ai+1X
i+1 + · · · ∈ G1(K) with ai+1 6= 0, let coef(f) = ai+1 denote the first

nontrivial coefficient of f .

Exercise 10. Prove that if f , g ∈ G1(K), then i(g◦−1 ◦f ◦ g) = i(f) and coef(g◦−1 ◦f ◦ g) =

coef(f).

The group G(K) is studied for example in [Jen54]. Some of the above formulas are in §2
of [Klo00b] or in [Cam00].

3. The n-dispersal

For k ≥ 0, consider the polynomial with coefficients in Q(
T

k

)
=
T (T − 1) · · · (T − (k − 1))

k!
.

If we plug in T = n with n ≥ k, we recover the usual binomial coefficients.

Exercise 11. Let p be a prime number and take a/b ∈ Q with p - b. Write
(
a/b
k

)
= x/y.

(1) Prove that p - y.

(2) Use this to define
(
a/b
k

)
∈ Fp

Let K be any field and take c = a/b ∈ Q, with p - b if K is of characteristic p. Let (1+X)c

denote the power series

(1 +X)c =
+∞∑
k=0

(
c

k

)
Xk.

Exercise 12. Prove that (1 +X)c1 · (1 +X)c2 = (1 +X)c1+c2 if c1, c2 are as above.

If h(X) ∈ 1 +X ·K[[X]], let h(X)c = (1 +X)c ◦ (h(X)− 1).

Exercise 13. Take n ≥ 1 such that n 6= 0 in K. If f(X) ∈ G1(K), write f(X) = X · h(X)

with h(X) ∈ 1 +X ·K[[X]] and let fn(X) = X · h(Xn)1/n. Prove that (f ◦ g)n = fn ◦ gn.

The map f 7→ fn is therefore a group homomorphism from (G1(K), ◦) to itself, called the

n-dispersal. What is the effect of the dispersal on i(f)?

Exercise 14. Compute the kernel and the image of the n-dispersal map.
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4. Conjugacy of power series over C

We first investigate the conjugacy of power series with coefficients in C. If f , g ∈ G(C),

we say that f and g are conjugate and write f ∼ g to mean that there exists h(X) ∈ G(K)

such that h◦−1 ◦ f ◦ h = g (note: h is in G(K) so h′(0) can be any element of C×).

Exercise 15. Prove that if f ∈ G(C) is such that f ′(0)n 6= 1 for every n ≥ 1, then

f(X) ∼ f ′(0) ·X.

This allows you to compute the centralizer (aka the commutant) of such an f .

Exercise 16. Prove that if f ∈ G(C) is such that f ′(0)n 6= 1 for every n ≥ 1, then for all

c ∈ K× there exists a unique g ∈ G(C) such that g′(0) = c and g ◦ f = f ◦ g.

Exercise 17. Prove that if f ∈ G1(C), f 6= X, there exists c ∈ C and n ≥ 1 such that

f(X) ∼ X +Xn+1 + cX2n+1.

Prove that if X +Xn+1 + cX2n+1 ∼ X +Xm+1 + dX2m+1, then n = m and c = d.

Exercise 18. Let f ∈ G(C) be such that there exists k ≥ 2 with f ◦k(X) = X. Prove that

f ′(0)k = 1 and that f(X) ∼ f ′(0) ·X.

Exercise 19. Finally, assume that f ′(0) is of order k ≥ 2 in C×, but that f ◦k(X) 6= X.

Prove that f(X) ∼ f ′(0) ·X + 1/(kf ′(0)) ·Xn+1 + cX2n+1 for some c ∈ C.

Exercise 20. For f as in Exercises 17, 18 and 19, can you compute the centralizer of f?

In the above exercises, what properties of the field C did you use? Which conclusions still

hold if K is of characteristic p? Most of the material in this section comes from §3 of [Sch70].

5. Sen’s theorem

Let K be a field of characteristic p and take f ∈ G1(K). By Exercise 7, we have i(f ◦n) =

i(f) if p - n, so it makes sense to look at i(f ◦p
n
) only. Let in(f) = i(f ◦p

n
) for n ≥ 0. The goal

of this section is to prove the following theorem, which is due to Shankar Sen (see [Sen69]).

Theorem 1 (Sen). If f ∈ G1(K) and n ≥ 1, then in(f) ≡ in−1(f) mod pn.

If in(f) = +∞, we agree that the congruence holds.

Exercise 21. Prove that if in(f) 6= +∞, then in+1(f) > in(f).

Exercise 22. Prove that if in(f) 6= +∞, the following are equivalent:
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(1) for all 1 ≤ j ≤ n, we have ij(f) ≡ ij−1(f) mod pj;

(2) the integers m + i(f ◦m) are pairwise distinct, as m runs through the set of integers

≥ 1 not divisible by pn+1.

Prove that the integers in (2) above are also distinct from in(f).

Take g ∈ G1(K). For m ≥ 1, let wm =
∏m−1

i=0 g◦i(X). Let w0 = 1 and for m ≤ −1, let

wm = 1/w−m ∈ K((X)).

Exercise 23. Prove that valX(wm) = m and that valX(wm ◦ g − wm) = m+ i(g◦m).

Exercise 24. Prove that if g ∈ G1(K) and h ∈ K((X)), we can write h =
∑

m≥valX(h) hm

where for each m, either hm = 0 or valX(hm) = m and valX(hm ◦ g − hm) = m+ i(g◦m).

You can now prove Sen’s theorem, by induction on n. Assume that for all g ∈ G1(K)

and all 1 ≤ j ≤ n, we have ij(g) ≡ ij−1(g) mod pj. Take f ∈ G1(K) such that in(f) 6≡
in+1(f) mod pn+1. Applying the induction hypothesis to g = f ◦p, we get in(f) ≡ in+1(f) mod

pn. Let s = in(f)− in+1(f).

Exercise 25. By applying Exercise 23 to g = fp and m = s, show that there is an element

z ∈ K((X)) such that valX(z) = s and valX(z ◦ f ◦p − z) = in(f).

Let h = z ◦ f ◦p−1 + z ◦ f ◦p−2 + · · ·+ z and let y = h ◦ f − h.

Exercise 26. Prove that valX(h) > s and that valX(y) = in(f).

Write h =
∑

m≥valX(h) hm as in Exercise 24 (with g = f) and let ym = hm ◦ f − hm so that

y =
∑

m≥valX(h) ym.

Exercise 27. Prove that the integers valX(ym) with pn+1 - m are pairwise distinct and also

distinct from in(f). Prove that valX(ym) > valX(y) for all m divisible by pn+1.

Finish the proof of Sen’s theorem.

6. Calculation of ramification numbers

In this section, K is a field of characteristic p. Sen’s theorem gives us one property of the

sequence {in(f)}n≥0 of the ramification numbers of an f ∈ G1(K), but actually computing

this sequence is quite difficult in general.

Exercise 28. Let H be the set of power series
∑

i≥0 aiX
pi ∈ Fp[[X]] with a0 = 1. Prove that

H is a subgroup of G1(Fp) and that the map H → (1+X ·Fp[[X]],×) given by
∑

i≥0 aiX
pi 7→∑

i≥0 aiX
i is a group homomorphism.

Prove that if f(X) ∈ H and i(f) = pk − 1, then in(f) = pkp
n − 1 for n ≥ 1.
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Exercise 29. If a ∈ Z≥1, let fa(X) = (1 +X)a− 1. Compute in(f1+p) for n ≥ 1 and p 6= 2.

The following is a direct corollary of Sen’s theorem.

Exercise 30. Prove that if f ∈ G1(K) and n ≥ 0, then in(f) ≥ 1 + p+ · · ·+ pn.

If p 6= 2, a power series f ∈ G1(K) such that in(f) = 1 + p + · · · + pn for all n ≥ 0 is

called minimally ramified. If p 6= 2, there exists such a power series, but proving this is not

so easy. Can you find one?

The power series f1+p of Exercise 29 is not minimally ramified, but can be transformed

into one. Recall that if k ≥ 0, there is a uniquely determined polynomial, the kth Chebyshev

polynomial Tk(X) ∈ Z[X], such that Tk(cos(θ)) = cos(kθ). Let Pk(X) = 2(1− Tk(1−X/2))

and let Y (X) = −X2/(1 +X).

Exercise 31. Take p 6= 2. Prove that Pk(Y (X)) = Y (fk(X)), that Pk ∈ G1(Fp) if k ≡
1 mod p and that in this case in(Pk) = in(fk)/2.

Prove that if p = 3, P4(X) ∈ G1(F3) is minimally ramified.

This can be generalized to all p 6= 2, but is more difficult.

Exercise 32 (more difficult). Find a way to define fω(X) ∈ Fp[[X]] for all ω such that

ωp−1 = 1 (this can be done using p-adic numbers, for example). Let Y =
∏

ωp−1=1 fω(X).

Prove that for all k ≡ 1 mod p, there exists a power series gk(X) such that gk ◦ Y = Y ◦ fk,

and that then i(gk) = i(fk)/(p− 1). This shows that g1+p is minimally ramified.

In another direction, the main result of [Kea92] says that if i0(f) = 1 and i1(f) = 1 + bp

with 1 ≤ b ≤ p− 2, then in(f) = 1 + bp+ · · ·+ bpn for all n ≥ 1.

Exercise 33. Take p 6= 2. Using Keating’s theorem, prove that X + X2 + aX3 ∈ Fp[[X]] is

minimally ramified if a 6= 1. Can you prove this directly?

The power series gk are called the condensation of the fk. Minimally ramified power series

are defined and studied in [LMS02]. The case p = 2 is a bit different from the rest.

7. Klopsch’s theorem

In Exercise 18, you classified the elements f ∈ G(C) of order n up to conjugacy, for n ≥ 1.

Exercise 34. Check that the same conclusion holds if K is of characteristic p and p - n.

You will now classify the elements f ∈ G1(K) of order p, up to conjugacy under G1(K),

when K is of characteristic p.
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Exercise 35. Let f ∈ G(K) be an element of order p. Show that f ∈ G1(K).

Conversely, show that if f ∈ G1(K) is of finite order n, then n is a power of p.

Take λ ∈ K and n ≥ 1 such that p - n. Let

F (n, λ) =
X

(1− nλXn)1/n
.

Exercise 36. Compute F (n, λ) ◦ F (n, µ), and deduce that F (n, λ)◦p = X.

Exercise 37. Show that if (n, λ) 6= (n′, λ′) and λ, λ′ are not both zero, then F (n, λ) and

F (n′, λ′) are not conjugate in G1(K).

Theorem 2 (Klopsch). If f ∈ G1(K) is such that f ◦p = X, there exists m ≥ 1 with p - m,

and λ ∈ K and g ∈ G1(K) such that g ◦ f ◦ g◦−1 = F (m,λ).

From Exercise 37 above, we see that if f is of order p, then m and λ are uniquely deter-

mined. Klopsch gives two proofs of his theorem in [Klo00a], one which uses only computations

with power series, and one which uses a bit of Galois theory. The proof given here is an

adaptation of the second one, along the lines of [BCPS15]. Recall first Artin’s lemma (see

for instance theorem 1.8 in VI §1 of [Lan02]).

Exercise 38. If F is a field and if G is a finite group of automorphisms of F , then F is a

finite extension of FG which is Galois with Galois group G.

Take F = K((X)). If f ∈ G1(K), then f defines an automorphism πf of F as in Exercise

6. Let G be the group of automorphisms of F generated by πf for an element f of order p, so

that G ' Z/pZ. Let M = FG. If F and G are as above and x ∈ F , let Tr(x) =
∑

g∈G g(x)

be its trace.

Exercise 39. Show that there exists θ ∈ F such that Tr(θ) = 1.

Hint: this is true in any Galois extension, but in case G = Z/pZ, there is a simple proof.

Take any y ∈ F not in M , and assume that Tr(y) = Tr(y2) = · · · = Tr(yp−1) = 0. Prove

that the minimal polynomial of y over M is then of the form Xp − a = 0, and that this

contradicts the fact that F/M is Galois.

Exercise 40. Show that M contains an element Y with valX(Y ) = p.

Exercise 41. Let α0 = πf (θ) + 2π2
f (θ) + · · ·+ (p− 1)πp−1

f (θ) ∈ F .

(1) Compute πf (α0)− α0

(2) Show that valX(α0) < 0.
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(3) Show that αp
0 − α0 ∈M and that F = M(α0).

(4) Show that we can find some z ∈ M such that α = α0 + z satisfies p - valX(α) and

valX(α) < 0.

Let m = − valX(α) so that m ≥ 1 and p - m. Let α−m be the coefficient of X−m in α.

Exercise 42. Let β = (α/α−m)−1/m. By considering the action of πf on α, show that we

have β ◦ f ◦ β◦−1 = F (m,λ) with λ = 1/(mα−m).

This finishes the proof of Klopsch’s theorem. We can show a little more about M .

Exercise 43. Show that any nonzero element z ∈M satisfies p | valX(z). Deduce from this

that M = K((Y )), where Y is the element defined in Exercise 40.

Exercise 44. Suppose that f1 and f2 are two elements of order p, giving rise to two fields

M1 and M2 as above, with α1 and α2 such that F = Mi(αi). Assume that m1 = m2 and

α1,−m = α2,−m where m = mi, and let βi = (αi/αi,−m)−1/m and β = β◦−11 ◦ β2.
Prove that the map u 7→ u ◦ β from F to F sends M1 to M2, and that G2 = β◦−1 ◦G1 ◦ β.

Can you redo Exercise 34 using the Galois theoretic approach of this section?

We finish with an example of an element of order 4 in G1(F2) (see [CS10]).

Exercise 45. Let f(X) = X +X2 +
∑+∞

j=0

∑2j−1
`=0 X6·2j+2` ∈ F2[[X]]. Prove that

f(X) =
X

1 +X
+

g(X)

(1 +X)2
,

where g(X) =
∑+∞

i=0 (X3 + X4)2
i

so that g(X)2 − g(X) = X3 + X4, and then that f is of

order 4 in G1(F2).

Finding explicit elements of G1(Fp) of order pn with n > 1 seems to be a hard problem.

8. Suggestions for further study

There are a number of questions about the goup G1(K) that you can think about.

(1) The group G1(Fp) is known as the wild group and also as the Nottingham group (other

more exotic names are proposed in [dSF00]). It has many interesting properties, see

for instance [Cam00]. For example, a theorem of Rachel Camina states that every

finite group with pn elements can be realized as a subgroup of G1(Fp). Another

property of G1(Fp) is that it is infinite but any proper quotient of it is a finite group.
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(2) Klopsch’s theorem is generalized to elements of order pn in [Jea09] and [Lub11] (see

also [BCPS15]), but the constructions use a lot of number theory. In general, realizing

finite groups with pn elements (p-groups) as subgroups of G1(Fp) can be done using

Galois theory, see for instance [Cam97]. Finding explicit power series giving these

realizations is quite another matter! Can you find an element of order 9 in G1(F3)?

(3) Suppose that K is of characteristic p. For which sequences {in}n≥0 does there exist a

power series f ∈ G1(K) such that in(f) = in for all n ≥ 0? This question is answered

in [LS98], but as in §7, this involves viewing the subgroups of G1(K) as the Galois

groups of certain field extensions, and using a lot of ramification theory. Can you

find a more hands-on proof, for certain sequences at least? Likewise, can you prove

Keating’s theorem (from Exercise 33) using only computations with power series?

(4) Suppose that K is of characteristic p and take f , g ∈ G1(K). If f and g are conjugate

by an element of G1(K), then in(f) = in(g) for all n ≥ 0 and coef(f ◦p
n
) = coef(g◦p

n
)

for all n ≥ 0. Are those two conditions on two power series f and g sufficient

for f and g to be conjugate? Klopsch’s theorem implies that the answer is yes if

in(f) = in(g) = +∞ for n ≥ 1. If f , g ∈ G1(Fp) are minimally ramified, one is

conjugate to a power of the other in G1(K) where K is an extension of Fp, see Prop

4.6 of [LMS02]. Once again, the proof uses advanced number theory. Can you find

a proof that uses only computations with power series? Some slightly more ramified

series are studied in [Fra16]. The general question of conjugacy seems to be open

and a nice problem to work on!

(5) In §4, you proved that power series in G(C) could be conjugated to have a special

form, called a normal form. Is the same true in G(K) when K is of characteristic p?

Is the following assertion true for at least some f in G(K): there exists k0 = k0(f)

such that if k ≥ k0 and valX(f −g) ≥ k, then f and g are conjugate? In other words,

is any power series that looks sufficiently like f conjugate to f? In classical analysis,

this would be known as an instance of a sufficient jet.

(6) In [Lub94], Lubin considers power series with coefficients in the p-adic integers, and

asks a question about when two such power series can commute for the composition.

This question is still not answered, although a number of subcases have been treated.

Lubin’s paper is very well written.
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Sandra Rozensztajn, ÉNS de Lyon, Lyon, France
E-mail address: sandra.rozensztajn@ens-lyon.fr
URL: perso.ens-lyon.fr/sandra.rozensztajn/


