
INTEGRAL MODELS OF SHIMURA VARIETIES OF PEL TYPE

SANDRA ROZENSZTAJN

1. PEL data for integral models

1.1. Data from the previous chapter. In the previous chapter, we considered
a set of Shimura data of PEL type. That is we had:

(1) a finite semisimple Q-algebra B, endowed with a positive involution ∗
(2) a finite dimensional B-module V , endowed with a non-degenerate bilinear

alternating pairing 〈·, ·〉.
(3) an R-morphism h : C → EndB(V )R such that complex conjugation on C

corresponds by h to the adjunction in EndB(V )R with respect to the pairing
〈·, ·〉, and such that (u, v) 7→ 〈u, h(i)v〉 is a symmetric definite positive
pairing over VR.

Let G be the reductive group over Q defined by

G(R) = {g ∈ GL(V ⊗R),∃µ ∈ R∗,∀x, y ∈ V ⊗R, 〈gx, gy〉 = µ〈x, y〉}

We can attach to h a morphism µh : C∗ → GC that induces a decomposition
VC = V0 ⊕ V1, where µh(z) acts by z on V1 and by 1 on V0. The reflex field E of
the Shimura data is then the subfield of Q generated by the traces of the elements
of B acting on V0.

Let X be the G(R)-conjugation class of the morphism C∗ → GR.
Then for each compact open subgroup K of G(Af ), we have a Shimura variety

Sh(G,X )K such that Sh(G,X )K(C) = G(Q)\X × (G(Af )/K).
The Shimura variety has a model over the reflex field E of the Shimura datum.

This model can be constructed as a moduli space parameterizing abelian varieties
with polarization, endomorphisms and level structure.

We now want to construct an integral model at p of the Shimura variety, that is
a smooth model over the ring of integers OEν of the completion Eν of E at some
place ν of E over p.

We need some extra data and assumptions in order to ensure that this is possible,
and in order to define this integral model as a moduli space of abelian varieties.

1.2. New data. Let OB be a Z(p)-order in B that is stable under the involution ∗
of B and becomes maximal after tensorization with Zp.

We require additional conditions:

(1) B is unramified at p, that is BQp = B ⊗Q Qp is isomorphic to a product of
matrix algebras over unramified extensions of Qp.

(2) there exists a Zp-lattice Λ in VQp that is stable under OB , and such that
the pairing 〈·, ·〉 induces a perfect duality of Λ with itself.

We fix such a lattice Λ as part of the data although the construction of the
integral model doesn’t depend on the choice of Λ.

Example 1.1. Let B be an imaginary quadratic extension of Q. Then condition (1)
simply means that p doesn’t ramify in B. We can choose for OB the Z(p)-order
generated by the ring of integers of B.
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1.3. The reductive group. Let G be the reductive group attached to the Shimura
datum. Because of the additional conditions, GQp is unramified, as we can define
a smooth reductive model of GQp over Zp. We denote by C0 the hyperspecial
subgroup consisting of the Zp-points of this model. It is the subgroup of GQp that
stabilizes the lattice Λ.

2. Preliminaries

2.1. Polarized abelian schemes with an action of OB. Let S be a specOEν -
scheme.

2.1.1. Definition.

Definition 2.1. Let R be a subring of Q. An R-isogeny between two abelian
schemes A and A′ is an isomorphism in the category where the objects are abelian
schemes and the set of morphisms from A to A′ is Hom(A,A′) ⊗Z R. An R-
polarization of A is a polarization of A that is also an R-isogeny from A to the dual
abelian scheme At.

Definition 2.2. We say that (A, λ, ι) is a Z(p)-polarized abelian scheme with an
action of OB if:

(1) A is an abelian scheme over S.
(2) λ is a Z(p)-polarization.
(3) ι is an injective ring homorphism OB → End(A) ⊗Z Z(p) which respects

involutions on both sides: the involution ∗ on the left side, and the Rosati
involution † coming from λ on the right side.

2.1.2. Rigidity for endomorphisms of abelian schemes.

Proposition 2.3. Let S be a normal noetherian scheme, U a dense open subset
of S. Let A and B be abelian schemes over S, and fU : AU → BU a morphism of
abelian schemes. Then fU extends uniquely to a morphism f : A→ B over S.

Proof. A complete proof can be found in [FC90], prop 2.9 of chapter I. In the case
where S is of dimension one, it follows from the fact that A and B are Néron models
of AU and BU respectively. �

The proposition has the following corollary:

Corollary 2.4. Let S be a normal noetherian scheme, and A an abelian scheme
over S. Suppose that there exists an open dense subset U of S such that AU has
a structure of polarized abelian scheme with an action of OB. Then A is uniquely
endowed with a structure of polarized abelian scheme with an action of OB with the
polarization extending the previous polarization.

2.2. The determinant condition of Kottwitz. We now have to find a way to
explain how OB acts on the abelian scheme. More precisely we want to be able to
express the fact that OB acts on Lie(A) the same way it acts on V0.

2.2.1. The determinant condition for projective modules. We fix once and for all a
generating family α1, . . . αt of OB as a Z(p)-module.

Let R be an algebra over OE ⊗Z Z(p), and M be a finitely generated projective
R-module. Suppose that OB acts on M by R-linear endomorphisms. We then say
that M is a R-module with an action of OB .

We consider the action of OB [X1, . . . Xt] on M ⊗R R[X1, . . . Xt]. We denote
by detM ∈ R[X1, . . . Xt] the determinant of the element X1α1 + . . . Xtαt for this
action. Here the ring R is understood.
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It is clear that detM is functorial in R : that is, if f : R→ R′ is a homomorphism
of OE ⊗Z Z(p)-algebras, and M ′ = M ⊗R R′, then OB acts on M ′ by R′-linear
endomorphisms and detM ′ = f(detM ).

A special case of such a module with an action of OB is given by V0 (see definition
in §1.1). We have the following result:

Lemma 2.5. detV0
∈
(
OE ⊗Z Z(p)

)
[X1, . . . Xt].

Proof. By definition of the reflex field E, all the elements det(b;V0) lie in E, so the
coefficients of detV0

are in E. Let F be a number field such that the action of B
on V0 is defined on F . Then the image of OB in the algebra of g × g matrices over
F is an OF ⊗ Z(p)-order. Hence det(b, V0) is in OF ⊗ Z(p) for all b ∈ OB . So the
coefficients of detV0

are integral over Z(p). This proves the lemma. �

Lemma 2.6. There exists a finite unramified extension K of E such that there
exists a free OK-module L with an action of OB and detL = detV0

.

Lemma 2.7. Let k be a field, and V and W be two finite-dimensional k-vector
spaces with an action of OB. Then V and W are isomorphic if and only if detV =
detW .

Proof. Let us denote OB ⊗Z k by A. Then A is a finite dimensional semisimple
algebra over k. Indeed, if char(k) = 0 then A = B ⊗Q k, and if char(k) = p then A
is a product of matrix algebras over extensions of Fp, as OB⊗Zp is a maximal order
of B ⊗Qp, which is itself a product of matrix algebras over unramified extensions
of Qp. Moreover, V and W are isomorphic as k-vector spaces with an action of OB
if and only if they are isomorphic as A-modules.

We write A = A1 × · · · × An where the Ai are simple k-algebras. We consider
V and W as A-modules. Then we have decompositions V = V1 × · · · × Vn and
W = W1 × · · · ×Wn where Vi and Wi are Ai-modules. As Ai is simple it has only
one isomorphism class of irreducible representation. Hence V and W are isomorphic
if and only if dimVi = dimWi for all i, and it is clear that this information can be
recovered from detV and detW . �

Definition 2.8. If R is an OE⊗ZZ(p)-algebra, and M an R-module with an action
of OB , then we say that M satisfies the determinant condition if detM equals the
image of detV0

in R[X1, . . . Xt].

We then show how the isomorphism class varies under specialization:

Lemma 2.9. Suppose R is an OEν -algebra that is a local ring with residue field k,
and let M be a finitely generated projective R-module with an action of OB. We
denote M ⊗R k by M0. Then M satisfies the determinant condition if and only if
M0 does.

Proof. We need only prove that M satisfies the determinant condition when M0

does. Suppose first that R is in fact an OK-algebra, for K as in lemma 2.6. Then
M0 is isomorphic to L⊗OK k as a k-module with action ofOB , as detM0

= detL⊗OK k
by lemma 2.7.

We see then that L⊗OK R is a projective OB ⊗R-module. It is true if R = K,
as then OB ⊗R = B ⊗K is semisimple. Hence by base change it is also true when
k is a field of characteristic 0. When R = OK , then OB ⊗R is a product of matrix
algebras over extensions of Zp. The result then holds by Morita equivalence, as  L
is torsion free. Hence by base change it also holds when k is a field of characteristic
p.

So the OB ⊗ k-linear isomorphism L ⊗OK k → M0 lifts to an OB ⊗ R-linear
morphism L ⊗OK R → M . Now forget the action of OB . Nakayama’s lemma
implies that this morphism is an isomorphism.
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When R is not an OK-algebra, we can deduce the result from the preceding case
by considering the localizations at maximal ideals of R⊗Zp OK . �

We conclude that detM depends only on specializations:

Corollary 2.10. Let R be an OEν -algebra such that specR is connected, and let
M be a finitely generated projective R-module. Then M satisfies the determinant
condition if and only if there exists a maximal ideal m of R, with residue field k,
such that M ⊗R k satisfies the determinant condition.

2.2.2. The determinant condition for abelian schemes with an action of OB. Let
(A, λ, ι) be a polarized abelian scheme with an action of OB over the base scheme
S. Then OB acts on LieA, which is a locally free OS-module. For each open affine
subset U of S, we can define detLieA(U) ∈ Γ(U,OS)[X1, . . . Xt] as in §2.2.1. By
functoriality of the definition of det, these sections are compatible, hence glue to
define a global section detLieA ∈ Γ(S,OS)[X1, . . . Xt]. As Γ(S,OS) is naturally an
OE ⊗Z Z(p)-algebra it makes sense to compare detLieA to the image of detV0

in
Γ(S,OS)[X1, . . . Xt]. Following [Kot92], we set the following definition:

Definition 2.11. The triple (A, λ, ι) satisfies the determinant condition of Kottwitz
if detLieA is the image of detV0

.

One consequence of the definition is the following: the dimension of LieA and
hence that of A is equal to that of V0.

2.2.3. Some geometric properties of the determinant condition. We state what geo-
metric consequences we can deduce from proposition 2.9 and corollary 2.10:

Proposition 2.12. Let S be an OEν -scheme, and S0 a closed subscheme of S with
nilpotent definition ideal. Let (A, λ, ι) be an abelian scheme over S with an action
of OB. Suppose that the base change of (A, λ, ι) to S0 satisfies the determinant
condition. Then so does (A, λ, ι).

Proposition 2.13. Let S be an OEν -scheme, and (A, λ, ι) an abelian scheme over
S with an action of OB. Then there is a closed subscheme T of S that is a union
of connected components, such that for all closed point x of S, (Ax, λx, ιx) satisfies
the determinant condition if and only if x is a point of T .

2.2.4. The example of unitary groups. In the case of unitary groups over Q, we give
a condition on LieA that is equivalent to the determinant condition of Kottwitz
and that is simpler to state.

Let B be a quadratic imaginary extension of Q, and let τ be in B such that
OB = Z[τ ]. Fix a prime p that is unramified in B.

Let R be an OB,(p)-algebra, and M a locally free R-module with an action of

OB . Then we have a decomposition M = M+ ⊕M− where M+ and M− are also
locally free. Here M+ is defined as the submodule of M where the action of τ from
the action of OB and the action of the image of τ in R coincide, and M− is the
submodule where these action differ by conjugation in OB . When R is connected
we can then define the type of M as the pair of integers (rkM+, rkM−).

Then an abelian scheme A with an action of OB over a base S that is an OB-
scheme satisfies the determinant condition if and only if LieA has the same type
as the B-module V0.

2.3. Level structure.
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2.3.1. Level subgroups. We fix Kp a compact open subgroup of G(Ap
f ). Here Ap

f

denotes the ring of finite adeles of Q away from p.

Example 2.14. Fix a prime-to-p integer N > 0. We define a compact open
subgroup of G(Ap

f ) by: K(N) = {g ∈ G(Ap
f ), (g − 1)(Λ⊗Z Ẑ(p)) ⊂ N(Λ⊗Z Ẑ(p))}.

This subgroup is the principal level subgroup of level N .

2.3.2. Tate modules. We denote Λ⊗ Ẑ(p) by Λ(p), and Λ⊗Ap
f by V (p).

Let (A, λ, ι) be a polarized abelian scheme with an action of OB , defined on
a specOEν -scheme. Let s be any geometric point of S, and consider the Tate

modules: T (As) = lim
←−
N

As[N ], T (p)(As) = lim
←−

N prime to p

As[N ] = T (As) ⊗Ẑ Ẑ(p) and

V (p)(As) = H1(As,A
p
f ) = T (p)(As)⊗Ẑ(p) Ap

f .
They are endowed with a non-degenerate bilinear form, coming from the polar-

ization λ, and an action of OB , coming from the action of OB on A itself.
Let f be a separable isogeny from A to A′ with kernel C. Then f induces a

morphism T (f) : T (As) → T (A′s) which is injective with cokernel isomorphic to
Cs. If f is of prime-to-p degree then f induces T (p)(f) : T (p)(As)→ T (p)(A′s) which
is injective with cokernel C. We also have an isomorphism V (p)(f) : V (p)(As) →
V (p)(A′s).

Suppose f is a separable R-isogeny for some subring R of Q. Then V (f) is still
well-defined but f doesn’t necessarily map T (As) into T (A′s). In fact f maps T (As)
into T (A′s) if and only if f is an isogeny in the usual sense.

2.3.3. Definition of the level structures. Let S be a specOEν -scheme, and s a geo-
metric point of S. Let (A, λ, ι) be a polarized abelian scheme with an action of B.
We say that a map ηp from V (p) to V (p)(As) respects the structures on both sides
if it respects the bilinear forms up to a scalar in (Ap

f )∗, and if it is compatible with
the OB-action on both sides.

Let g be in G(Ap
f ). If ηp respects the structures on both sides then so does ηp◦g.

Hence G(Ap
f ) acts on the set of such maps.

Definition 2.15. Let Kp be a compact open subgroup of G(Ap
f ). A level struc-

ture of level Kp on (A, λ, ι) is a choice of a geometric point s for each con-
nected component of S, and for each s a choice of a Kp-orbit ηp of morphisms
ηp : V (p) → V (p)(As) respecting the structures on both sides and such that the
orbit is fixed under the action of π1(s, S).

Remark 2.16. The last condition ensures that a level structure is in fact inde-
pendant of the choice of s. Moreover, a level structure exists at some point s if
and only if for any geometric point s′ in the same connected component as s there
exists a level structure at s′.

3. The integral model as a moduli scheme

3.1. Definition of the moduli problem. Let us fix a set of PEL data (B,Λ, ∗)
as in section 1. We also fix a compact open subgroup Kp of G(Ap

f ). We will define
a moduli problem classifying abelian schemes with an action of OB and Kp level
structure.

Definition 3.1. Let FKp be the following category fibered in groupoids over the
category (Sch/ specOEν ) of specOEν -schemes:

• The objects over a scheme S are quadruples A = (A, λ, ι; ηp), where (A, λ, ι)
is a Z(p)-polarized projective abelian scheme over S with an action of OB
which respects the determinant condition of Kottwitz (definition 2.11 of
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§2.2), and ηp is a level structure of level Kp over each connected component
of S.
• The morphisms from A = (A, λ, ι; ηp) to A′ = (A′, λ′, ι′; η′

p
) over S are

given by a Z(p)-isogeny f : A → A′ compatible with the action of OB and
the level structures, that is:
(1) there exists a locally constant function r with values in Z∗(p) such that

λ = r(f t ◦ λ′ ◦ f).
(2) f induces a morphism from End (A)⊗Z Z(p) to End (A′)⊗Z Z(p), that

we still denote by f ; then for all b ∈ OB , f ◦ ι(b) = ι′(b).
(3) η′

p
= V (p)(f) ◦ ηp, where we denote by V (p)(f) the morphism induced

from V (p)(As) to V (p)(A′s).

3.2. Known results about the moduli problem.

Theorem 3.2. FKp is a smooth Deligne-Mumford stack and it is representable by
a quasi-projective scheme when Kp is small enough.

The part of the theorem concerning representability will be proved in section 4,
where we will also explain what ”small enough” means. The part about smoothness
will be proved in section 5.

When FKp is representable by a scheme, we denote this scheme by SKp .

Theorem 3.3. The family of schemes SKp , for Kp the small enough compact
open subgroups of G(Ap

f ), form a tower of schemes with finite smooth transition

morphisms. The group G(Ap
f ) acts on the tower via Hecke operators.

This is the object of section 6.
The generic fibre of the schemes we have constructed are isomorphic (except for

some special cases) to the Shimura varieties SK in characteristic zero that were
defined in the preceding chapter, when K = KpC0. Moreover this is compatible
with the action of Hecke operators. More precisely we will show in section 7:

Theorem 3.4. When the algebra B has no factor of type D we have the following
isomorphism for each compact open subgroup Kp of G(Ap

f ):

SKp ⊗OEν Eν
∼−→ SK ⊗E Eν

These isomorphisms are compatible with the action of G(Ap
f ) on both sides.

4. Representability of the moduli problem

4.1. Statement of the theorem.

Theorem 4.1. For all level subgroups K, FK is a Deligne-Mumford stack. More-
over if K is small enough so that it is contained in a principal level subgroup of level
N ≥ 3, the functor FK is representable by a quasi-projective scheme over OEν .

We will prove this theorem by comparing our moduli problem to the case of the
Siegel modular varieties, that is the case where the endomorphism ring is trivial,
which is already known by the results of [MFK94]. This is the proof outlined in
[Kot92]. Another strategy to study the representability of the moduli problem
would be via Artin’s criterion. This has the advantage of being more direct and
not to rely on the difficult results of [MFK94], but it has the drawback that it only
shows that the moduli problem is representable by an algebraic space when the
level is small enough. To prove that it is in fact representable by a quasi-projective
scheme one then has to use the theory of compactifications of integral models of
Shimura varieties. A detailed proof using this strategy can be found in [Lan08].

4.2. The Siegel case.
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4.2.1. The result of [MFK94]. We first study the case where B = Q. Then the
group G is the symplectic group and the scheme we obtain is the Siegel moduli
space of abelian varieties. This case is studied in [MFK94]. We describe the result.

Fix an integer g ≥ 1 and an integer N ≥ 3.

Definition 4.2. Let F be the category fibered in groupoids on Z[1/N ]-schemes
such that: For any Z[1/N ]-scheme S, the set of objects of FS is the set of triples
A = (A, λ;α) where A in a projective abelian scheme of dimension g, λ is a princi-
pal polarization, and α is a symplectic similitude (with multiplicator in (Z/NZ)∗)
between (Z/NZ)2S and A[N ]S . Here we consider (Z/NZ)2 to be endowed with the
standard symplectic form. If A, A′ are objects of FS , then the morphisms from A
to A′ are the isomorphisms f : A→ A′ such that λ = f t ◦ λ′ ◦ f and α′ = f ◦ α.

The main result is the following ([MFK94], theorem 7.9, see also [MB85], theorem
3.2 of chapter VII):

Proposition 4.3. The category fibered in groupoids F is representable by a (smooth)
quasi-projective scheme.

4.2.2. Reformulation of the moduli problem. In order to compare more easily our
situation to that studied in [MFK94] we give another formulation of the moduli

problem. We endow Q2g = V with the standard symplectic form, so that Λ = Z2g
(p)

is a self-dual lattice. Then the reductive group G is the symplectic group Gsp2g.
Let K = K(N) be the principal level subgroup of level N in the symplectic group
for some N prime to p.

Let F ′ be the category fibered in groupoids as in definition 3.1, with this set of
Shimura data.

Proposition 4.4. When N is prime to p, F ′ and the restriction of F to the
subcategory of Zp-schemes are isomorphic.

Proof. Let S be a (specZp)-scheme, and let FS and F ′S be the categories of objects
of F and F ′ over S.

Let (A, λ;α) be an object of FS , and choose for each connected component of S
a geometric point s. The morphism α : (Z/NZ)2S → A[N ]S gives an isomorphism
αs : (Z/NZ)2 = Λ⊗(Z/NZ)→ A[N ]s that is invariant under the action of π1(s, S).
This morphism αs then extends to an isomorphism of symplectic modules ηp :
Λ⊗ Ẑ(p) → T p(As). This morphism isn’t unique, but its K(N)-conjugation class is
uniquely determined by αs, and hence invariant under the action of π1(s, S). Hence
the orbit ηp of ηp : V (p) → V (p)(As) defines a level structure ηp extending α. Hence
to each (A, λ;α) we can attach (A, λ; ηp) which is an object of F ′S . Morphisms in
FS also define morphisms in F ′S .

Let A = (A, λ;α) and A′ = (A′, λ′;α′) be objects in FS . Let f : A → A′ be a
Z(p)-isogeny which is a morphism in the category F ′S . Then f is an isomorphism,

as by construction of the level structures f induces an isomorphism from T (p)(A)
to T (p)(A′). Moreover we necessarily have λ′ = f t ◦ λ ◦ f . Hence f is a morphism
in the category FS .

The last point is to see that any object in F ′S is isomorphic to an object coming
from FS . Let A = (A, λ; ηp) be an object of F ′S . We need to find A′ = (A′, λ′, ηp′)
and a morphism A → A′ in F ′S such that λ′ is a principal polarization and η′

p
:

V (p) → V (p)(A′s) induces a symplectic similitude between (Z/NZ)2S and A[N ]S .

We need only find A′ such that η′
p

induces an isomorphism between Λ(p) and
T (p)(A′s). Indeed such a level structure then induces a π1(s, S)-invariant symplectic
isomorphism αs : (Z/NZ)2 → A[N ]s that gives us the isomorphism α : (Z/NZ)2S →
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A[N ]S . Moreover we can change the polarization λ′ to make it principal. We know
that the bilinear forms on Λ(p) and T (p)(A′s) differ by a scalar a in (Ap

f )∗. By

multipliying λ′ by some prime-to-p integer, we can suppose that a is in (Ap
f )∗∩Ẑ(p).

Let ` be a prime not divising p. We know that λ′ is divisible by `n if and only if the
pairing on T`As is divisible by `n. Hence we can divide λ′ by some integer n prime
to p so that a ∈ Ẑ(p)∗. But then the new polarization induces an isomorphism
T (p)(A′s)→ T (p)(A′s

t
) and so is principal.

Fix a submodule M ⊂ V (p)(As) that is invariant under the action of π1(s, S).
Suppose that T (p)(As) ⊂M with finite index. Then there exists an étale subgroup
scheme C ⊂ A with Cs isomorphic to M/T (p)(As), such that the isogeny f : A →
A′ = A/C induces an isomorphism from M to T (p)(A′s). There is some prime-to-p
integer n such that (nf−1) is an isogeny from A′ to A, then we can endow the
abelian scheme A′ with a polarization λ′ = (nf−1)t ◦ λ ◦ (nf−1). We can define a
level structure on (A′, λ′) by η′

p
= f ◦ ηp. Then f defines a morphism in F ′S from

(A, λ; ηp) to (A′, λ′; η′
p
). Moreover η′

p
has the property that η′

p
(Λ(p)) = T (p)(A′).

In the case where η(Λ(p)) ⊂ T (p)(A) we can also find a triple (A′, λ′; η′) and an
isogeny f : A′ → A that induces a morphism between (A′, λ′; η′

p
) and (A, λ; ηp)

such that moreover η′
p
(Λ(p)) = T (p)(A′). The existence of f comes from the inter-

pretation of the Tate module as a π1. Then we define λ′ as f t ◦ λ ◦ f and η′
p

by
the condition that ηp = f ◦ η′p.

By combining the two preceding cases we see that we can always find such an
(A′, λ′; η′

p
). �

4.3. Reduction to the case of principal level structures.

Proposition 4.5. If FK is representable by a scheme whenever K is a principal
level subgroup of level N ≥ 3 then theorem 4.1 is true.

Proof. We first show that the condition implies that FK is a Deligne-Mumford
stack for any level subgroup K. Indeed, let K ′ be a principal level subgroup of
level N ≥ 3 contained in K. Then we have a functor FK′ → FK that sends the
object (A, λ, ι; ηp)/S to the object (A, λ, ι; η̃

p
)/S where η̃

p
is the K-orbit generated

by ηp (see also section 6). This functor makes the scheme FK′ an étale presentation
of the stack FK . Hence FK is a Deligne-Mumford stack (see [LMB00], proposition
4.3.1).

We then observe that whenever K ⊂ K(N) for an N ≥ 3, then FK is repre-
sentable by an algebraic space. This follows from lemma 4.6 below and [LMB00],
corollary 8.1.1: a Deligne-Mumford stack where the objects have only the trivial
automorphism is representable by an algebraic space. But then we have a finite
morphism FK → FK(N), which is hence schematic, so FK is representable by a
scheme as FK(N) is. �

We used the following rigidity lemma:

Lemma 4.6. Let K be a level subgroup contained in a principal level subgroup
K(N) with N ≥ 3. Then for any scheme S over OEν and any object A of FKS, A
has only the trivial automorphism.

Proof. It follows from the fact that an automorphism of a polarized abelian variety
over an algebraically closed field that acts as the identity on the N -torsion subgroup
for someN ≥ 3 is the identity automorphism (see [Ser], or [Mil86] in the book [CS86]
for a proof). �
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4.4. The general case. We fix an integer N ≥ 3, N prime to p, and we consider
in what follows the level subgroup K = K(N).

We have a natural transformation from FB to FQ, which is defined by sending
the quadruple (A, λ, ι; η) over the S-scheme T to (A, λ; η̃). Here η̃ is the GSp2g(N)-
orbit generated by η.

We have to prove that the functor FB is relatively representable over FQ, and
that FB is projective over FQ. More precisely:

Proposition 4.7. Let K be small enough so that FQ is representable by a scheme.
Then FB is relatively representable over FQ by a scheme that is projective over FQ.

4.4.1. A scheme over FQ. In this section we fix a specOE ⊗Z Z(p)-scheme S, an
abelian scheme A over S, a Z(p)-polarization λ of A, and an isomorphism of étale

sheaves φN : Λ/NΛ
∼−→ A[N ] that respects the alternating forms on both sides up

to a constant.
We will need the following result:

Lemma 4.8. Let S be a locally noetherian scheme, and A a projective abelian
scheme over S. Then the functor from S-schemes to sets that attaches End(AT )
to T is representable by a union of projective schemes over S. We will denote by
E the scheme representing the functor T 7→ End(AT )⊗Z Z(p). It is also a union of
projective schemes over S.

This follows from the theory of Hilbert schemes, as an endomorphism of AT is
a special case of a subscheme of A ×T A. A detailed proof of this lemma can be
found in [Hid04], section 6.1.

In our special case, the abelian scheme A is endowed with a prime-to-p polariza-
tion λ. So E naturally comes with an involution r, which is the Rosati involution.
Let m = 2n and a1, . . . am be a set of generators of OB as a Z(p)-algebra with
an+i = a∗i . We define a closed subscheme Z of Em: let T be an S-scheme, and
(x1, . . . xm) ∈ Em(T ). Then (x1, . . . xm) is in Z if and only if any relationship
verified by (a1, . . . am) is also verified by (x1, . . . xm) and r(xi) = xn+i.

The abelian scheme AZ is endowed with an algebra homomorphism OB →
End(AZ) ⊗Z Z(p), which is compatible with the Rosati involution. That is, AZ
is a polarized abelian scheme with an action of OB as in 2.1.

We know thanks to proposition 2.13 that the locus where the OB-action on AZ
satisfies the determinant condition is a union of connected components of Z. We
also have an isomorphism of étale sheaves φN : (Λ/NΛ)Z

∼−→ AZ [N ]. Then the
locus where this isomorphism extends to an OB level N structure is a union of
connected components of Z, as follows from remark 2.16. Moreover there is at
most one K(N)-orbit of such liftings for each connected component. We denote by
XB the union of the connected components of Z where the determinant condition
holds and the isomorphism φ lifts to a level structure.

Let AXB the abelian scheme over XB coming from A. As follows from the
construction of XB , we have:

Lemma 4.9. The abelian scheme AXB is naturally endowed with a structure of a
polarized abelian scheme with K(N)-level.

4.4.2. Comparing FB to FQ. We now show the relative representability of FB over
FQ when FQ is representable by a scheme. We fix a scheme S, and a morphism
S → FQ, and consider the functor F ′ = FB ×FQ S. We have to show that F ′ is
representable by a scheme.

The given morphism S → FQ amounts to an equivalence class of triples (A, λ; η)
where A is an abelian variety over S, endowed with a prime-to-p polarization λ,
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and a level structure η. We choose a representant of this equivalence class. We can
then construct a scheme XB over S as in §4.4.1.

We then define a natural transformation F ′ → XB . Let T be an S-scheme.
An element of F ′(T ) is an equivalence class of quadruples (A, λ, ι; η), such that
its image by the forgetful functor FB → FQ is in the same equivalence class as
(A, λ; η)T . That is, there is a prime-to-p isogeny f : A → AT , compatible with
the polarizations and the level structures. Then f induces an isomorphism between
End(A)⊗ZZ(p) and End(AT )⊗ZZ(p). We use this isomorphism to define a morphism
ι : OB → End(AT )⊗Z Z(p). Hence we get a point in XB(T ).

We have to show that this construction is well-defined, that is, it doesn’t depend
on the choice of (A, λ, ι; η) in the equivalence class. But this comes from the fact
that any element of (A, λ; η)T has no non-trivial automorphism, as we have chosen
the level such that FQ is representable by a scheme.

Lemma 4.10. This natural transformation is an isomorphism.

Proof. We only have to find a natural transformation XB → F ′ that is a quasi-
inverse to the transformation we have just defined. But this is lemma 4.9. �

Hence FB is representable by the scheme XB . The connected components of
XB are projective over the scheme representing FQ, which is itself quasi-projective
over S. To finish the proof of proposition 4.7, we only have to show that XB has
only a finite number of connected components. But this comes from the fact that
FB is locally of finite presentation over specOEν , as can be seen using the criterion
of Proposition 4.15 of [LMB00].

In some cases we know a little more about XB :

Proposition 4.11. Suppose that G is globally anisotropic. Then XB is projective
over specOEν .

5. Smoothness

Theorem 5.1. FKp is a smooth Deligne-Mumford stack. When Kp is small enough
so that SKp is a scheme, then it is a smooth scheme.

We need only prove this when Kp is small enough so that SKp is a scheme, as
the transition morphisms between the SKp with varying level subgroups are étale.
As SKp is locally of finite presentation, we only have to prove that SKp is formally
smooth, that is:

Proposition 5.2. Let R be an OEν -algebra. Let S0 = specR0 and S = specR
such that R0 = R/I with I2 = 0. If (A0, λ0, ι0; η0) on S0 satisfies the determi-
nant condition of Kottwitz, then it lifts to a (A, λ, ι; η) on S that also satisfies the
determinant condition.

5.1. First reductions. Let us first take care of the level structure:

Lemma 5.3. If (A0, λ0, ι0) lifts to (A, λ, ι) then any level structure η0 on (A0, λ0, ι0)
lifts to a level structure η on (A, λ, ι).

Lifting η amounts to lifting some sections of A0[N ] to sections of A[N ], for a
family of integers N prime to p. A[N ] being étale over S, this is automatic.

We now take the determinant condition out of the picture: if (A0, λ0, ι0) on S0

satisfying the determinant condition of Kottwitz lifts to (A, λ, ι) on S, then the lift
automatically satisfies the determinant condition, thanks to proposition 2.12.

Moreover we also know the following result, which is a consequence of the ”rigid-
ity lemma” (theorem 6.1 of [MFK94]) :
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Lemma 5.4. Let A and B be two abelian schemes over S, then the restriction
Hom(A,B)→ Hom(A0, B0) is injective.

From this we can deduce that if λ0 and ι0 both extend to a lifting of A, then the
compatibility condition between involutions is automatically satisfied.

5.2. The theory of Grothendieck-Messing. As we already know that the generic
fiber of the moduli space is smooth, we can assume that p is nilpotent on S. Hence
we can use the theory of Grothendieck-Messing to study the problem of lifting
A0. Let us recall the part of the theory relevant to the situation. The complete
constructions and proofs can be found in [Mes72].

There is a functor from the category of abelian schemes over S0 to the category
of locally free sheaves on S associating to an abelian scheme A0/S0 the evaluation
of the Dieudonné crystal D(A0) on the inclusion S0 → S, that we will denote by
D(A0)S . For any abelian variety A/S lifting A0, D(A0)S is canonically isomorphic
to H1

DR(A/S).
In the case where A0 is a polarized abelian scheme with an action of OB , D(A0)S

also has an action of OB . Moreover the polarization induces a morphism D(A0)S →
D(At0)S = D(A0)∗S , which is an isomorphism because the polarization is separable,
and which is compatible with the action ofOB on both sides. Hence the polarization
induces a non-degenerate alternating form on D(A0)S that is skew-hermitian with
respect to OB .

A submodule of D(A0)S is said to be admissible if it is locally a direct factor,
and reduces to (LieA0)∗ on S0.

Theorem 5.5 (Grothendieck-Messing). There is an equivalence of categories be-
tween the category of abelian schemes over S and the category of pairs (A0, F ),
where A0 is an abelian scheme over S0 and F an admissible submodule of D(A0)S,
given by A 7→ (A|S0

, (LieA)∗).

In order for the lifting A of A0 to be polarized with an action of OB , it is enough
that (LieA)∗ is an OB-stable totally isotropic submodule of D(A0)S .

We are then reduced to the following linear algebra problem: Let M be a pro-
jective module of rank 2g over R with an action of OB and a non-degenerate
alternating form that is skew-hermitian with respect to OB . Let M0 = M ⊗R R0,
and let N0 ⊂M0 be a locally direct factor submodule of M0 of rank g stable under
the action of OB and totally isotropic for the alternating form. Find a lifting of N0

to a submodule N of M that has the same properties.
The way to find such a submodule differ depending of the type of the group G.

Details can be found in [LR87] and [Zin82]. We will only treat a simple example:
the case of unitary groups over Q.

5.3. An example: unitary groups over Q. Let B be an imaginary quadratic
extension of Q, with involution the complex conjugation, and suppose that the
prime p is split in B. Then A = OB ⊗Z Zp is Zp×Zp and the involution exchanges
the factors. Let e1 = (1, 0) and e2 = (0, 1). Then eiM is totally isotropic for
i = 1, 2 as e∗1 = e2. Moreover a submodule Q of an A-module is A-stable if and
only if Q = e1Q⊕ e2Q.

We can further simplify the problem: Let A0 be the universal abelian scheme
over SKp . We know that H1

DR(A0/S) and (LieA0)∗ are locally free modules on
SKp . As smoothness is a local question on SKp , we can assume that the exact
sequence 0 → (LieA0)∗ → H1

DR(A0/S) → Lie(At0) → 0 is split and that these
modules are in fact free, This amounts to assuming that we have a decomposition
M0 = N0 ⊕ P0, with N0 and P0 free. This implies that M is a free R-module with
basis any lifting of a basis of M0. Let us denote eiN0 by N0,i for i = 1, 2. Then the
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N0,i are projective. We can also assume that they are free, by the same reasoning
as before.

Let us choose a basis of M0 consisting of the union of a basis of N0,i, i = 1, 2,
and a basis of P0. We can lift the basis of N0,i to a family in eiM , which gives
us free liftings Ni ⊂ eiM of N0,i. They are totally isotropic, but not necessarily
orthogonal. As the bilinear form is non-degenerate, we can modify the lifting of
the basis of N0,2 such that N2 is orthogonal to N1, and still N1 ⊂ e1M . Then
N = N1⊕N2 is the lifting of N0 we were looking for. Indeed, N is A-stable, totally
isotropic, projective (even free), and M/N is projective, as it is isomorphic to the
submodule P of M generated by any lifting of the chosen basis of P0.

6. Hecke operators

We explain here the relation between the Shimura varieties when the level varies
and the action of the Hecke operators.

6.1. The tower of Shimura varieties. Let K and K ′ be compact open subgroups
of G(Ap

f ), such that K ⊂ K ′. Then we have a natural morphism from FK to FK′
which sends a quadruple (A, λ, ι; η) over the base S to the quadruple (A, λ, ι; η′),
where η′ is the K ′-orbit generated by η. Hence we have a morphism of moduli
schemes SK → SK′ . As in the characteristic zero case, we then have a whole tower
of integral models (SKp)Kp .

If K is a normal subgroup of K ′, then SK → SK′ is an étale Galois covering of
Galois group K ′/K. More generally, for all K ⊂ K ′ compact open subgroups of
G(Ap

f ), the morphism SK → SK′ is finite étale and surjective.
The tower is smooth in the following sense: each of the schemes is smooth for

Kp small enough, and the maps in the tower are also smooth.

6.2. Action of the Hecke operators. We also have Hecke operators: the group
G(Ap

f ) acts on the tower via its action on the level structure. That is: for each

g ∈ G(Ap
f ), g maps FK → Fg−1Kg by sending (A, λ, ι; η) to (A, λ, ι; η ◦ g).

7. Relation to the generic fiber

We will now see how the scheme SKp relates to the Shimura variety Sh(G,X)K(C) =
G(Q)\X × G(Af )/K and to its canonical model. We first recall the construction
of the canonical model.

7.1. Modular definition of the canonical model. Let K be a compact open
subgroup of G(Af ), and let Sh(G,X)K(C) = G(Q)\X ×G(Af )/K.

We can obtain a canonical model of this Shimura variety via a moduli space, as
follows :

Definition 7.1. Let F ′ be the following category fibered in groupoids over the
category (Sch/ specE) of (specE)-schemes:

• The objects over a scheme S are quadruples A = (A, λ, ι; η), where (A, λ, ι)
is a polarized projective abelian scheme over S with an action of OB which
respects the determinant condition of Kottwitz (definition 2.11 of §2.2),
and η is a level structure of level K over each connected component of S,
that is, a K orbit of isomorphism between V ⊗Af and H1(As,Af ), for s
a geometric point of S.

• The morphisms from A to A′ over S are given by a Q-isogeny f : A → A′

compatible with the action of OB and the level structures, that is:
(1) there exists a locally constant function r with values in Q∗ such that

λ = r(f t ◦ λ′ ◦ f).
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(2) f induces a morphism from End (A)⊗Z Z(p) to End (A′)⊗Z Z(p), that
we still denote by f ; then for all b ∈ OB , f ◦ ι(b) = ι′(b).

(3) η′ = V (f) ◦ η, where we denote by V (f) the morphism induced from
V (As) to V (A′s).

The functor F ′ is representable by a scheme SK when K is small enough. Then
SK is a disjoint union of canonical models over E of the Shimura variety Sh(G,X)K .
More precisely, as is explained in [Kot92], §8:

Proposition 7.2.

SK = tker1(Q,G)Sh(G′,X )K

where ker1(Q, G) is the set of locally trivial elements of H1(Q, G) and parametrizes
the interior forms G′ of G that are locally isomorphic to G at every place.

The failure of the Hasse principle is essentially harmless, as follows from the
study of ker1(Q, G) in [Kot92], §7:

Proposition 7.3. When G is of type C, or of type A with even n, ker1(Q, G) is
trivial. When G is of type A with odd n, all the groups G′ are isomorphic to G.

We refer to [Kot92], §5 for the classification of the group G in types A, C, D.
Let us just recall that unitary groups are of type A and the symplectic group is of
type C.

In particular, under the hypotheses of the proposition, all the connected compo-
nents of SK are in fact isomorphic to the canonical model of the Shimura variety
Sh(G,X )K .

7.2. Relationship to the integral model. Let C0 be the maximal compact open
subgroup of G(Af ) at p. If Kp is a compact open subgroup of G(Ap

f ), then K =

KpC0 is a compact open subgroup of G(Af ).

Theorem 7.4. We have then the following isomorphism when G has no factor of
type D:

SKp ⊗OEν Eν
∼−→ SK ⊗E Eν

This isomorphisms are compatible with the action of G(Ap
f ) on both sides.

It follows from this result that the generic fiber of the integral model SKp is a
union of copies of the canonical model of the Shimura variety Sh(G,X )K .

We denote by F the category we introduced in definition 3.1 in order to define the
moduli problem for the integral model of the Shimura variety. We write F ′|Eν and

F|Eν respectively for the restrictions of F ′ and F to the set of (specEν)-schemes.
Hence if F ′ is representable by the E-scheme SK then F ′|Eν is representable by

SK ⊗E Eν and likewise for F|Eν .
We will prove the following proposition, which implies theorem 7.4:

Proposition 7.5. When the algebra B has no factor of type D, the categories fibered
in groupoids F ′|Eν and F|Eν are isomorphic and the isomorphism is compatible with

the action of the Hecke operators on both sides.

Proof. Let S be a (specEν)-scheme. Let us explain how to define an equivalence
of categories from F|EνS to F ′|EνS . Let A = (A, λ, ι; ηp) an object of F|EνS . The

problem is in the definition of η′: we already have a Kp-orbit of isomorphisms η
between V ⊗Ap

f and H1(As,A
p
f ) and we have to extend it to the whole of Af . That

is, we have to find a C0-orbit of isomorphisms between V ⊗ Zp and H1(As,Zp).
Observe that V and H1(As,Q) are isomorphic B-modules, as they become so

after tensorization by Q` for any ` 6= p (this follows from the existence of the level
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structure outside p). Then V ⊗ Qp and H1(As,Qp) are isomorphic as B-modules.
Moreover both have self-dual OB-lattices. Now we use the condition on the algebra
B: as it has no factor of type D, we know by [Kot92], lemma 7.2 that the lattices
Λ⊗Zp and H1(As,Zp) are isomorphic as hermitian modules with an action of OB .
Moreover the C0-orbit of isomorphism is then well-defined independently of choices.
Hence we can uniquely extend the level structure ηp to η. �
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