INTEGRAL MODELS OF SHIMURA VARIETIES OF PEL TYPE

SANDRA ROZENSZTAJN

1. PEL DATA FOR INTEGRAL MODELS

1.1. Data from the previous chapter. In the previous chapter, we considered
a set of Shimura data of PEL type. That is we had:

(1) a finite semisimple Q-algebra B, endowed with a positive involution

(2) a finite dimensional B-module V', endowed with a non-degenerate bilinear
alternating pairing (-, -).

(3) an R-morphism h : C — Endg(V)g such that complex conjugation on C
corresponds by h to the adjunction in End g (V)g with respect to the pairing
(,), and such that (u,v) — (u,h(i)v) is a symmetric definite positive
pairing over Vg.

Let G be the reductive group over Q defined by
G(R) ={g9 € GL(V®R),3u € R*,Va,y € V& R, (92, gy) = p(z, y)}

We can attach to h a morphism pp : C* — G¢ that induces a decomposition
Ve = Vo @ Vi, where up(z) acts by z on V; and by 1 on V. The reflex field E of
the Shimura data is then the subfield of Q generated by the traces of the elements
of B acting on Vj.

Let X be the G(R)-conjugation class of the morphism C* — Gg.

Then for each compact open subgroup K of G(Ay), we have a Shimura variety
Sh(G, X) g such that Sh(G, X)x(C) = G(Q)\X x (G(Af)/K).

The Shimura variety has a model over the reflex field F of the Shimura datum.
This model can be constructed as a moduli space parameterizing abelian varieties
with polarization, endomorphisms and level structure.

We now want to construct an integral model at p of the Shimura variety, that is
a smooth model over the ring of integers Og, of the completion E, of E at some
place v of E over p.

We need some extra data and assumptions in order to ensure that this is possible,
and in order to define this integral model as a moduli space of abelian varieties.

1.2. New data. Let Op be a Z,y-order in B that is stable under the involution *
of B and becomes maximal after tensorization with Z,.
We require additional conditions:

(1) B is unramified at p, that is Bg, = B ®q Q) is isomorphic to a product of
matrix algebras over unramified extensions of Q.

(2) there exists a Z,-lattice A in Vg, that is stable under Op, and such that
the pairing (-, -) induces a perfect duality of A with itself.

We fix such a lattice A as part of the data although the construction of the
integral model doesn’t depend on the choice of A.

Example 1.1. Let B be an imaginary quadratic extension of Q. Then condition (1)
simply means that p doesn’t ramify in B. We can choose for Op the Z,)-order
generated by the ring of integers of B.
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1.3. The reductive group. Let G be the reductive group attached to the Shimura
datum. Because of the additional conditions, Gg, is unramified, as we can define
a smooth reductive model of Gg, over Z,. We denote by Cy the hyperspecial
subgroup consisting of the Z,-points of this model. It is the subgroup of Gg, that
stabilizes the lattice A.

2. PRELIMINARIES

2.1. Polarized abelian schemes with an action of Op. Let S be a spec Og, -
scheme.

2.1.1. Definition.

Definition 2.1. Let R be a subring of Q. An R-isogeny between two abelian
schemes A and A’ is an isomorphism in the category where the objects are abelian
schemes and the set of morphisms from A to A’ is Hom(4,A’) ®z R. An R-
polarization of A is a polarization of A that is also an R-isogeny from A to the dual
abelian scheme A°.

Definition 2.2. We say that (A, ), 1) is a Z)-polarized abelian scheme with an
action of Op if:

(1) A is an abelian scheme over S.

(2) Ais a Z,)-polarization.

(3) ¢ is an injective ring homorphism Op — End(A) ®z Z,) which respects
involutions on both sides: the involution * on the left side, and the Rosati
involution { coming from A on the right side.

2.1.2. Rigidity for endomorphisms of abelian schemes.

Proposition 2.3. Let S be a normal noetherian scheme, U a dense open subset
of S. Let A and B be abelian schemes over S, and fy : Ay — By a morphism of
abelian schemes. Then fy extends uniquely to a morphism f: A — B over S.

Proof. A complete proof can be found in [FC90], prop 2.9 of chapter I. In the case
where S is of dimension one, it follows from the fact that A and B are Néron models
of Ay and By respectively. (|

The proposition has the following corollary:

Corollary 2.4. Let S be a normal noetherian scheme, and A an abelian scheme
over S. Suppose that there exists an open dense subset U of S such that Ay has
a structure of polarized abelian scheme with an action of Opg. Then A is uniquely
endowed with a structure of polarized abelian scheme with an action of Op with the
polarization extending the previous polarization.

2.2. The determinant condition of Kottwitz. We now have to find a way to
explain how Op acts on the abelian scheme. More precisely we want to be able to
express the fact that Op acts on Lie(A) the same way it acts on Vj.

2.2.1. The determinant condition for projective modules. We fix once and for all a
generating family aq,...a; of Op as a Z,)-module.

Let R be an algebra over O ®z Z(,), and M be a finitely generated projective
R-module. Suppose that Op acts on M by R-linear endomorphisms. We then say
that M is a R-module with an action of Op.

We consider the action of Og[Xi,...X:] on M ®r R[X1,...X;]. We denote
by detps € R[X7,...X;] the determinant of the element Xja; + ... X;ay for this
action. Here the ring R is understood.
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It is clear that det,; is functorial in R : that is, if f : R — R’ is a homomorphism
of Op ®z Zy-algebras, and M' = M ®@g R’, then Op acts on M’ by R'-linear
endomorphisms and dety; = f(detps).

A special case of such a module with an action of Op is given by V} (see definition
in §1.1). We have the following result:

Lemma 2.5. detvo € (OE X7 Z(p)) [Xl, Cee Xt]

Proof. By definition of the reflex field E, all the elements det(b; Vp) lie in E, so the
coefficients of dety, are in E. Let F' be a number field such that the action of B
on Vj is defined on F. Then the image of Op in the algebra of g X g matrices over
Fis an O ® Zy-order. Hence det(b, Vo) is in O ® Z;,) for all b € Op. So the
coefficients of dety, are integral over Z,). This proves the lemma. g

Lemma 2.6. There exists a finite unramified extension K of E such that there
exists a free Ox-module L with an action of Op and det, = dety;.

Lemma 2.7. Let k be a field, and V and W be two finite-dimensional k-vector
spaces with an action of Op. Then V and W are isomorphic if and only if dety =
detyy .

Proof. Let us denote Op ®z k by A. Then A is a finite dimensional semisimple
algebra over k. Indeed, if char(k) = 0 then A = B ®q k, and if char(k) = p then A
is a product of matrix algebras over extensions of Fj,, as O ®Z,, is a maximal order
of B ® Qy, which is itself a product of matrix algebras over unramified extensions
of Q,. Moreover, V and W are isomorphic as k-vector spaces with an action of Op
if and only if they are isomorphic as A-modules.

We write A = Ay X --- x A, where the A; are simple k-algebras. We consider
V and W as A-modules. Then we have decompositions V = V; x --- x V,, and
W =Wy x -+ x W, where V; and W; are A;-modules. As A; is simple it has only
one isomorphism class of irreducible representation. Hence V and W are isomorphic
if and only if dim V; = dim W; for all ¢, and it is clear that this information can be
recovered from dety and detyy. O

Definition 2.8. If R is an Op ®7Z;)-algebra, and M an R-module with an action
of Op, then we say that M satisfies the determinant condition if dety; equals the
image of dety, in R[X;,...X,].

We then show how the isomorphism class varies under specialization:

Lemma 2.9. Suppose R is an O, -algebra that is a local ring with residue field k,
and let M be a finitely generated projective R-module with an action of Op. We
denote M @gr k by My. Then M satisfies the determinant condition if and only if
My does.

Proof. We need only prove that M satisfies the determinant condition when M
does. Suppose first that R is in fact an Og-algebra, for K as in lemma 2.6. Then
My is isomorphic to Lo, k as a k-module with action of Op, as detys, = detL®OKk
by lemma 2.7.

We see then that L ®p, R is a projective Op ® R-module. It is true if R = K,
as then Op ® R = B® K is semisimple. Hence by base change it is also true when
k is a field of characteristic 0. When R = O, then Op ® R is a product of matrix
algebras over extensions of Z,. The result then holds by Morita equivalence, as L
is torsion free. Hence by base change it also holds when £ is a field of characteristic
.

So the Op ® k-linear isomorphism L ®o, k — My lifts to an Op ® R-linear
morphism L ®p, R — M. Now forget the action of Op. Nakayama’s lemma
implies that this morphism is an isomorphism.
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When R is not an O-algebra, we can deduce the result from the preceding case
by considering the localizations at maximal ideals of R ®z, Of. O

We conclude that dety; depends only on specializations:

Corollary 2.10. Let R be an Og,-algebra such that spec R is connected, and let
M be a finitely generated projective R-module. Then M satisfies the determinant
condition if and only if there exists a maximal ideal m of R, with residue field k,
such that M ®pg k satisfies the determinant condition.

2.2.2. The determinant condition for abelian schemes with an action of Op. Let
(A, A\, 1) be a polarized abelian scheme with an action of Op over the base scheme
S. Then Op acts on Lie A, which is a locally free Og-module. For each open affine
subset U of S, we can define detr;, 4(U) € T'(U,Og)[X1,...X;] as in §2.2.1. By
functoriality of the definition of det, these sections are compatible, hence glue to
define a global section detr;c 4 € T'(S, Os)[X1,... X¢]. As T'(S,Og) is naturally an
Ok @z Zy)-algebra it makes sense to compare detri a4 to the image of dety, in
I'(S,05)[X1,. .. X:]. Following [Kot92], we set the following definition:

Definition 2.11. The triple (A, \, ¢) satisfies the determinant condition of Kottwitz
if detrie 4 is the image of dety;.

One consequence of the definition is the following: the dimension of Lie A and
hence that of A is equal to that of Vj.

2.2.3. Some geometric properties of the determinant condition. We state what geo-
metric consequences we can deduce from proposition 2.9 and corollary 2.10:

Proposition 2.12. Let S be an Og, -scheme, and Sy a closed subscheme of S with
nilpotent definition ideal. Let (A, A, 1) be an abelian scheme over S with an action
of Op. Suppose that the base change of (A, A\, 1) to Sy satisfies the determinant
condition. Then so does (A, \,1).

Proposition 2.13. Let S be an Og,-scheme, and (A, \, 1) an abelian scheme over
S with an action of Op. Then there is a closed subscheme T of S that is a union
of connected components, such that for all closed point x of S, (Az, Ax, Lz) Satisfies
the determinant condition if and only if x is a point of T.

2.2.4. The example of unitary groups. In the case of unitary groups over Q, we give
a condition on Lie A that is equivalent to the determinant condition of Kottwitz
and that is simpler to state.

Let B be a quadratic imaginary extension of Q, and let 7 be in B such that
Op = Z|7]. Fix a prime p that is unramified in B.

Let R be an Op (p)-algebra, and M a locally free R-module with an action of
Op. Then we have a decomposition M = M+ @& M~ where M* and M~ are also
locally free. Here M ™ is defined as the submodule of M where the action of 7 from
the action of Op and the action of the image of 7 in R coincide, and M~ is the
submodule where these action differ by conjugation in Og. When R is connected
we can then define the type of M as the pair of integers (tk M+, rk M ™).

Then an abelian scheme A with an action of Op over a base S that is an Op-
scheme satisfies the determinant condition if and only if Lie A has the same type
as the B-module Vj.

2.3. Level structure.
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2.3.1. Level subgroups. We fix KP a compact open subgroup of G(A?). Here AI}
denotes the ring of finite adeles of Q away from p.

Example 2.14. Fix a prime-to-p integer N > 0. We define a compact open
subgroup of G(A%) by: K(N) = {g € G(A%),(g - 1)(A®z 7)) € N(A ®zZP)}.
This subgroup is the principal level subgroup of level N.

2.3.2. Tate modules. We denote A ® Z® by AP and A ® A? by V),

Let (A, A,¢) be a polarized abelian scheme with an action of Op, defined on
a spec Og, -scheme. Let s be any geometric point of S, and consider the Tate
modules: T(4,) = lim A,[N], T®(A,) = lim A, [N] = T(A,) ®; Z®) and

N N prime to p
VO)(A,) = Hi(A,, A?) = TO)(A,) 05, AP,

They are endowed with a non-degenerate bilinear form, coming from the polar-
ization A, and an action of Op, coming from the action of Op on A itself.

Let f be a separable isogeny from A to A’ with kernel C. Then f induces a
morphism T(f) : T(As) — T(AL) which is injective with cokernel isomorphic to
C,. If f is of prime-to-p degree then f induces T®)(f) : T®)(A,) — T®)(A”) which
is injective with cokernel C'. We also have an isomorphism V®)(f) : V(P)(A,) —
V@A),

Suppose f is a separable R-isogeny for some subring R of Q. Then V() is still
well-defined but f doesn’t necessarily map T'(A,) into T'(A%). In fact f maps T'(As)
into T'(A%) if and only if f is an isogeny in the usual sense.

2.3.3. Definition of the level structures. Let S be a spec O, -scheme, and s a geo-
metric point of S. Let (A, A, ¢) be a polarized abelian scheme with an action of B.
We say that a map 7? from V® to V(p)(As) respects the structures on both sides
if it respects the bilinear forms up to a scalar in (A’})*, and if it is compatible with
the Op-action on both sides.

Let g be in G(A’}). If P respects the structures on both sides then so does nPog.
Hence G(A") acts on the set of such maps.

Definition 2.15. Let K? be a compact open subgroup of G(A]Ji). A level struc-
ture of level KP on (A, A, ¢) is a choice of a geometric point s for each con-
nected component of S, and for each s a choice of a KP-orbit 777 of morphisms
nP . V@) — VP)(A,) respecting the structures on both sides and such that the
orbit is fixed under the action of m(s,.S).

Remark 2.16. The last condition ensures that a level structure is in fact inde-
pendant of the choice of s. Moreover, a level structure exists at some point s if
and only if for any geometric point s’ in the same connected component as s there
exists a level structure at s'.

3. THE INTEGRAL MODEL AS A MODULI SCHEME

3.1. Definition of the moduli problem. Let us fix a set of PEL data (B, A, %)
as in section 1. We also fix a compact open subgroup K? of G (A?). We will define
a moduli problem classifying abelian schemes with an action of Op and KP? level
structure.

Definition 3.1. Let Fx»r be the following category fibered in groupoids over the
category (Sch/spec Og,) of spec O, -schemes:

e The objects over a scheme S are quadruples A = (A, A, ¢;7P), where (4, A, ¢)

is a Zp)-polarized projective abelian scheme over S with an action of Op

which respects the determinant condition of Kottwitz (definition 2.11 of
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§2.2), and 7P is a level structure of level KP over each connected component
of S.

e The morphisms from A = (A4, \,4;7P) to A’ = (A", N,/;7") over S are
given by a Z,y-isogeny f : A — A’ compatible with the action of Op and
the level structures, that is:

(1) there exists a locally constant function r with values in Z(, such that
A=r(floXof).

(2) f induces a morphism from End (A) ®z Z,) to End (A") ®z Z,), that
we still denote by f; then for all b € Op, fou(b) =/ (b).

(3) 7 = VP)(f)onP, where we denote by V() (f) the morphism induced
from V(P)(A,) to V(P)(A',).

3.2. Known results about the moduli problem.

Theorem 3.2. Fg»r is a smooth Deligne-Mumford stack and it is representable by
a quasi-projective scheme when KP is small enough.

The part of the theorem concerning representability will be proved in section 4,
where we will also explain what ”small enough” means. The part about smoothness
will be proved in section 5.

When Fg» is representable by a scheme, we denote this scheme by Sk».

Theorem 3.3. The family of schemes Sk», for KP the small enough compact
open subgroups of G(A[])p), form a tower of schemes with finite smooth transition
morphisms. The group G(A’J’c) acts on the tower via Hecke operators.

This is the object of section 6.

The generic fibre of the schemes we have constructed are isomorphic (except for
some special cases) to the Shimura varieties Sk in characteristic zero that were
defined in the preceding chapter, when K = KP(Cj,. Moreover this is compatible
with the action of Hecke operators. More precisely we will show in section 7:

Theorem 3.4. When the algebra B has no factor of type D we have the following
isomorphism for each compact open subgroup KP of G(Afc):

Sk» ®0s, By — Sk ®p E,

These isomorphisms are compatible with the action of G(A’}) on both sides.

4. REPRESENTABILITY OF THE MODULI PROBLEM
4.1. Statement of the theorem.

Theorem 4.1. For all level subgroups K, Fi is a Deligne-Mumford stack. More-
over if K is small enough so that it is contained in a principal level subgroup of level
N > 3, the functor Fi is representable by a quasi-projective scheme over Og,, .

We will prove this theorem by comparing our moduli problem to the case of the
Siegel modular varieties, that is the case where the endomorphism ring is trivial,
which is already known by the results of [MFK94|. This is the proof outlined in
[Kot92]. Another strategy to study the representability of the moduli problem
would be via Artin’s criterion. This has the advantage of being more direct and
not to rely on the difficult results of [MFK94], but it has the drawback that it only
shows that the moduli problem is representable by an algebraic space when the
level is small enough. To prove that it is in fact representable by a quasi-projective
scheme one then has to use the theory of compactifications of integral models of
Shimura varieties. A detailed proof using this strategy can be found in [Lan08].

4.2. The Siegel case.
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4.2.1. The result of [MFK94]. We first study the case where B = Q. Then the

group G is the symplectic group and the scheme we obtain is the Siegel moduli

space of abelian varieties. This case is studied in [MFK94]. We describe the result.
Fix an integer g > 1 and an integer N > 3.

Definition 4.2. Let F be the category fibered in groupoids on Z[1/N]-schemes
such that: For any Z[1/N]-scheme S, the set of objects of Fg is the set of triples
A = (A, \; ) where A in a projective abelian scheme of dimension g, A is a princi-
pal polarization, and « is a symplectic similitude (with multiplicator in (Z/NZ)*)
between (Z/NZ)?% and A[N]g. Here we consider (Z/NZ)? to be endowed with the
standard symplectic form. If A, A’ are objects of Fg, then the morphisms from A
to A’ are the isomorphisms f : A — A’ such that A = ffo XN o fand o/ = foa.

The main result is the following ([MFK94], theorem 7.9, see also [MB85], theorem
3.2 of chapter VII):

Proposition 4.3. The category fibered in groupoids F is representable by a (smooth)
quasi-projective scheme.

4.2.2. Reformulation of the moduli problem. In order to compare more easily our
situation to that studied in [MFK94] we give another formulation of the moduli
problem. We endow Q29 = V with the standard symplectic form, so that A = Z?g)
is a self-dual lattice. Then the reductive group G is the symplectic group Gsps,.
Let K = K(N) be the principal level subgroup of level N in the symplectic group
for some N prime to p.

Let F' be the category fibered in groupoids as in definition 3.1, with this set of

Shimura data.

Proposition 4.4. When N is prime to p, F' and the restriction of F to the
subcategory of Z,-schemes are isomorphic.

Proof. Let S be a (spec Zj)-scheme, and let Fg and Fg be the categories of objects
of F and F’ over S.

Let (A, \; @) be an object of Fg, and choose for each connected component of S
a geometric point s. The morphism « : (Z/NZ)% — A[N]s gives an isomorphism
as: (Z/NZ)? = A®(Z/NZ) — A[N]s that is invariant under the action of (s, S).
This morphism a; then extends to an isomorphism of symplectic modules 7P :
A®Z® — TP(A,). This morphism isn’t unique, but its K (N)-conjugation class is
uniquely determined by ay, and hence invariant under the action of 7 (s,.S). Hence
the orbit 777 of 7P : V(P) — V(P)(A,) defines a level structure 7}” extending «.. Hence
to each (A, A;a) we can attach (A4, A;7P) which is an object of F§. Morphisms in
Fg also define morphisms in F§.

Let A= (A, \;a) and A’ = (A’, );a’) be objects in Fg. Let f: A — A’ be a
Z(p)-isogeny which is a morphism in the category Fg. Then f is an isomorphism,
as by construction of the level structures f induces an isomorphism from T®)(A)
to T(P)(A’). Moreover we necessarily have N = f o Ao f. Hence f is a morphism
in the category Fg.

The last point is to see that any object in F§ is isomorphic to an object coming
from Fs. Let A = (A, \;7”) be an object of F§. We need to find A’ = (A', N, 7"')
and a morphism A — A’ in F§ such that A’ is a principal polarization and 7' :
V) — V(P)(A’) induces a symplectic similitude between (Z/NZ)% and A[N]s.

We need only find A’ such that 77'* induces an isomorphism between A®) and
T®)(A’). Indeed such a level structure then induces a (s, S)-invariant symplectic
isomorphism a; : (Z/NZ)* — A[N]s that gives us the isomorphism « : (Z/NZ)% —
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A[N]s. Moreover we can change the polarization A’ to make it principal. We know
that the bilinear forms on A®) and T®)(A’) differ by a scalar a in (A%)*. By
multipliying A by some prime-to-p integer, we can suppose that a is in (A?)* NZ®).
Let £ be a prime not divising p. We know that ) is divisible by ¢" if and only if the
pairing on Ty A, is divisible by ¢". Hence we can divide X’ by some integer n prime
to p so that a € 7% But then the new polarization induces an isomorphism
T@(AL) — T®(A.") and so is principal.

Fix a submodule M C V(®)(A,) that is invariant under the action of (s, S).
Suppose that T(p)(AS) C M with finite index. Then there exists an étale subgroup
scheme C' C A with C, isomorphic to M/T®)(A,), such that the isogeny f: A —
A’ = A/C induces an isomorphism from M to T()(A’). There is some prime-to-p
integer n such that (nf~!) is an isogeny from A’ to A, then we can endow the
abelian scheme A’ with a polarization ' = (nf~1)!o Ao (nf~!). We can define a
level structure on (A4’,\') by 7/¥ = fonP. Then f defines a morphism in F§ from
(A, \;7P) to (A, N;7"). Moreover 77" has the property that 77 (A®)) = T(®)(A").

In the case where 7(A®)) ¢ T®)(A) we can also find a triple (4’, \';7') and an
isogeny f : A — A that induces a morphism between (A’, \;7'") and (A, \;7P)
such that moreover 77" (AP)) = T(P)(A’). The existence of f comes from the inter-
pretation of the Tate module as a m;. Then we define X as f* o Ao f and 7% by
the condition that 77 = fon'”.

By combining the two preceding cases we see that we can always find such an
(A, N5, O

4.3. Reduction to the case of principal level structures.

Proposition 4.5. If Fi is representable by a scheme whenever K is a principal
level subgroup of level N > 3 then theorem 4.1 is true.

Proof. We first show that the condition implies that Fx is a Deligne-Mumford
stack for any level subgroup K. Indeed, let K’ be a principal level subgroup of
level N > 3 contained in K. Then we have a functor Fx — Fk that sends the
object (A, X\, 4;77)/S to the object (A, X, 4;7")/S where 7]’ is the K-orbit generated
by 7P (see also section 6). This functor makes the scheme Fg an étale presentation
of the stack Fx. Hence F is a Deligne-Mumford stack (see [LMBO0O], proposition
4.3.1).

We then observe that whenever K C K(N) for an N > 3, then Fx is repre-
sentable by an algebraic space. This follows from lemma 4.6 below and [LMB00],
corollary 8.1.1: a Deligne-Mumford stack where the objects have only the trivial
automorphism is representable by an algebraic space. But then we have a finite
morphism Fx — Fg(n), which is hence schematic, so Ff is representable by a
scheme as Fg(n) is. O

We used the following rigidity lemma:

Lemma 4.6. Let K be a level subgroup contained in a principal level subgroup
K(N) with N > 3. Then for any scheme S over O, and any object A of Frs, A
has only the trivial automorphism.

Proof. Tt follows from the fact that an automorphism of a polarized abelian variety
over an algebraically closed field that acts as the identity on the N-torsion subgroup
for some N > 3 is the identity automorphism (see [Ser], or [Mil86] in the book [CS86]
for a proof). O
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4.4. The general case. We fix an integer N > 3, N prime to p, and we consider
in what follows the level subgroup K = K(N).

We have a natural transformation from Fp to Fg, which is defined by sending
the quadruple (4, \,+;7) over the S-scheme T to (A, \; 7). Here 7] is the GSpg, (N)-
orbit generated by 7.

We have to prove that the functor Fp is relatively representable over Fg, and
that Fp is projective over Fg. More precisely:

Proposition 4.7. Let K be small enough so that Fq is representable by a scheme.
Then Fp is relatively representable over Fg by a scheme that is projective over Fg.

4.4.1. A scheme over Fg. In this section we fix a spec O ®z Zp)-scheme S, an
abelian scheme A over S, a Z,-polarization A of A, and an isomorphism of étale
sheaves ¢ : A/NA — A[N] that respects the alternating forms on both sides up
to a constant.

We will need the following result:

Lemma 4.8. Let S be a locally noetherian scheme, and A a projective abelian
scheme over S. Then the functor from S-schemes to sets that attaches End(Ar)
to T is representable by a union of projective schemes over S. We will denote by
& the scheme representing the functor T v End(Ar) ®z L. It is also a union of
projective schemes over S.

This follows from the theory of Hilbert schemes, as an endomorphism of A is
a special case of a subscheme of A xr A. A detailed proof of this lemma can be
found in [Hid04], section 6.1.

In our special case, the abelian scheme A is endowed with a prime-to-p polariza-
tion A. So &£ naturally comes with an involution 7, which is the Rosati involution.
Let m = 2n and ay,...a, be a set of generators of Op as a Z(,)-algebra with
an+i = a;. We define a closed subscheme Z of £™: let T be an S-scheme, and
(1,...2m) € E™(T). Then (x1,...xy) is in Z if and only if any relationship
verified by (a1,...ay,) is also verified by (z1,...2,,) and 7(z;) = Tpii.

The abelian scheme Ay is endowed with an algebra homomorphism Op —
End(Az) ®z Z,), which is compatible with the Rosati involution. That is, Az
is a polarized abelian scheme with an action of Og as in 2.1.

We know thanks to proposition 2.13 that the locus where the Opg-action on Az
satisfies the determinant condition is a union of connected components of Z. We
also have an isomorphism of étale sheaves ¢y : (A/NA)z — Az[N]. Then the
locus where this isomorphism extends to an Op level N structure is a union of
connected components of Z, as follows from remark 2.16. Moreover there is at
most one K (IV)-orbit of such liftings for each connected component. We denote by
X p the union of the connected components of Z where the determinant condition
holds and the isomorphism ¢ lifts to a level structure.

Let Ax, the abelian scheme over Xp coming from A. As follows from the
construction of Xpg, we have:

Lemma 4.9. The abelian scheme Ax, is naturally endowed with a structure of a
polarized abelian scheme with K(N)-level.

4.4.2. Comparing Fp to Fg. We now show the relative representability of Fp over
Fo when Fg is representable by a scheme. We fix a scheme S, and a morphism
S — Fq, and consider the functor 7' = Fp x5, S. We have to show that F’ is
representable by a scheme.

The given morphism S — Fg amounts to an equivalence class of triples (A, ;7))
where A is an abelian variety over S, endowed with a prime-to-p polarization A,
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and a level structure 77. We choose a representant of this equivalence class. We can
then construct a scheme Xp over S as in §4.4.1.

We then define a natural transformation 7/ — Xpg. Let T be an S-scheme.
An element of F'(T') is an equivalence class of quadruples (A, A,¢;7), such that
its image by the forgetful functor Fp — Fg is in the same equivalence class as
(A, ;). That is, there is a prime-to-p isogeny f : A — Ar, compatible with
the polarizations and the level structures. Then f induces an isomorphism between
End(A)®zZ ) and End(A7)®z%Z(,). We use this isomorphism to define a morphism
t:Op — End(Ar) ®z Z,). Hence we get a point in Xp(T').

We have to show that this construction is well-defined, that is, it doesn’t depend
on the choice of (A, A, ¢;7) in the equivalence class. But this comes from the fact
that any element of (A, A;77)r has no non-trivial automorphism, as we have chosen
the level such that Fg is representable by a scheme.

Lemma 4.10. This natural transformation is an isomorphism.

Proof. We only have to find a natural transformation Xp — F’ that is a quasi-
inverse to the transformation we have just defined. But this is lemma 4.9. (|

Hence Fp is representable by the scheme Xp. The connected components of
Xp are projective over the scheme representing Fg, which is itself quasi-projective
over S. To finish the proof of proposition 4.7, we only have to show that Xp has
only a finite number of connected components. But this comes from the fact that
Fp is locally of finite presentation over spec O, , as can be seen using the criterion
of Proposition 4.15 of [LMBO00].

In some cases we know a little more about Xp:

Proposition 4.11. Suppose that G is globally anisotropic. Then Xp is projective
over spec O, .

5. SMOOTHNESS

Theorem 5.1. Fg»r is a smooth Deligne-Mumford stack. When KP is small enough
so that Sk» is a scheme, then it is a smooth scheme.

We need only prove this when K? is small enough so that Sk» is a scheme, as
the transition morphisms between the Sk» with varying level subgroups are étale.
As Sk»p is locally of finite presentation, we only have to prove that Sk»p is formally
smooth, that is:

Proposition 5.2. Let R be an Og,-algebra. Let Sy = spec Ry and S = spec R
such that Ry = R/I with I? = 0. If (Ao, \o,t0;7) on So satisfies the determi-
nant condition of Kottwitz, then it lifts to a (A, \,1;7) on S that also satisfies the
determinant condition.

5.1. First reductions. Let us first take care of the level structure:

Lemma 5.3. If (Ao, Ao, to) lifts to (A, A, ) then any level structure Ty on (Ao, Ao, to)
lifts to a level structure 71 on (A, \,1).

Lifting 77 amounts to lifting some sections of Ag[N] to sections of A[N], for a
family of integers N prime to p. A[N] being étale over S, this is automatic.

We now take the determinant condition out of the picture: if (Ag, Ao, to) on Soy
satisfying the determinant condition of Kottwitz lifts to (A, A,¢) on S, then the lift
automatically satisfies the determinant condition, thanks to proposition 2.12.

Moreover we also know the following result, which is a consequence of the "rigid-
ity lemma” (theorem 6.1 of [MFK94]) :
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Lemma 5.4. Let A and B be two abelian schemes over S, then the restriction
Hom(A, B) — Hom( Ay, By) is injective.

From this we can deduce that if Ay and g both extend to a lifting of A, then the
compatibility condition between involutions is automatically satisfied.

5.2. The theory of Grothendieck-Messing. As we already know that the generic
fiber of the moduli space is smooth, we can assume that p is nilpotent on S. Hence
we can use the theory of Grothendieck-Messing to study the problem of lifting
Ap. Let us recall the part of the theory relevant to the situation. The complete
constructions and proofs can be found in [Mes72].

There is a functor from the category of abelian schemes over Sy to the category
of locally free sheaves on S associating to an abelian scheme Ag/Sp the evaluation
of the Dieudonné crystal ID(Ag) on the inclusion Sy — S, that we will denote by
D(Ap)s. For any abelian variety A/S lifting Ag, D(Ap)s is canonically isomorphic
to Hhr(A/S).

In the case where Ay is a polarized abelian scheme with an action of Og, D(Ap)s
also has an action of Op. Moreover the polarization induces a morphism D(A4y)s —
D(A§)s = D(Ap)%, which is an isomorphism because the polarization is separable,
and which is compatible with the action of Op on both sides. Hence the polarization
induces a non-degenerate alternating form on D(Ap)g that is skew-hermitian with
respect to Op.

A submodule of D(Ap)g is said to be admissible if it is locally a direct factor,
and reduces to (Lie Ag)* on Sp.

Theorem 5.5 (Grothendieck-Messing). There is an equivalence of categories be-
tween the category of abelian schemes over S and the category of pairs (Ao, F),
where Ag is an abelian scheme over Sy and F' an admissible submodule of D(Ag)s,
given by A — (Ag,, (Lie A)*).

In order for the lifting A of Ay to be polarized with an action of Op, it is enough
that (Lie A)* is an Op-stable totally isotropic submodule of D(Ap)s.

We are then reduced to the following linear algebra problem: Let M be a pro-
jective module of rank 2g over R with an action of Op and a non-degenerate
alternating form that is skew-hermitian with respect to Op. Let My = M ®g Ry,
and let Ny C My be a locally direct factor submodule of My of rank g stable under
the action of Op and totally isotropic for the alternating form. Find a lifting of Ny
to a submodule N of M that has the same properties.

The way to find such a submodule differ depending of the type of the group G.
Details can be found in [LR87] and [Zin82]. We will only treat a simple example:
the case of unitary groups over Q.

5.3. An example: unitary groups over Q. Let B be an imaginary quadratic
extension of QQ, with involution the complex conjugation, and suppose that the
prime p is split in B. Then A = Op ®z Z,, is Z,, x Z,, and the involution exchanges
the factors. Let e; = (1,0) and es = (0,1). Then e;M is totally isotropic for
i =1,2 as e = ea. Moreover a submodule @ of an A-module is A-stable if and
only if Q = e1Q & e2Q.

We can further simplify the problem: Let Ay be the universal abelian scheme
over Skr. We know that HL(Ap/S) and (Lie Ap)* are locally free modules on
Skr. As smoothness is a local question on Sk», we can assume that the exact
sequence 0 — (Lie Ag)* — H}p(Ao/S) — Lie(Af) — 0 is split and that these
modules are in fact free, This amounts to assuming that we have a decomposition
My = Ng & Py, with Ny and Py free. This implies that M is a free R-module with
basis any lifting of a basis of M. Let us denote e; Ny by Ny ; for ¢ = 1,2. Then the
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No,; are projective. We can also assume that they are free, by the same reasoning
as before.

Let us choose a basis of My consisting of the union of a basis of Ny;, i = 1,2,
and a basis of Fy. We can lift the basis of Ny; to a family in e; M, which gives
us free liftings V; C e;M of Ny,;. They are totally isotropic, but not necessarily
orthogonal. As the bilinear form is non-degenerate, we can modify the lifting of
the basis of Np 2 such that Ny is orthogonal to Ni, and still Ny C egM. Then
N = N; @& N is the lifting of Ny we were looking for. Indeed, N is A-stable, totally
isotropic, projective (even free), and M /N is projective, as it is isomorphic to the
submodule P of M generated by any lifting of the chosen basis of F;.

6. HECKE OPERATORS

We explain here the relation between the Shimura varieties when the level varies
and the action of the Hecke operators.

6.1. The tower of Shimura varieties. Let K and K’ be compact open subgroups
of G(A’]ﬁ), such that K C K’. Then we have a natural morphism from Fg to Fg-
which sends a quadruple (4, \, ;) over the base S to the quadruple (A, X, :;7),
where 7’ is the K’-orbit generated by 1. Hence we have a morphism of moduli
schemes S — Sk-. As in the characteristic zero case, we then have a whole tower
of integral models (Sg»)gr-

If K is a normal subgroup of K’, then Sx — Sk is an étale Galois covering of
Galois group K'/K. More generally, for all K C K’ compact open subgroups of
G(A%), the morphism Sk — Sk is finite étale and surjective.

The tower is smooth in the following sense: each of the schemes is smooth for
K? small enough, and the maps in the tower are also smooth.

6.2. Action of the Hecke operators. We also have Hecke operators: the group
G(Al;-) acts on the tower via its action on the level structure. That is: for each
g€ G(A?)7 g maps Frx — F -1, by sending (A, X, ;7)) to (A, A, ;70 g).

7. RELATION TO THE GENERIC FIBER

We will now see how the scheme Sk» relates to the Shimura variety Sh(G, X) i (C)
G(Q)\X x G(Ay)/K and to its canonical model. We first recall the construction
of the canonical model.

7.1. Modular definition of the canonical model. Let K be a compact open
subgroup of G(Ay), and let Sh(G, X))k (C) = G(Q)\X x G(Ay)/K.

We can obtain a canonical model of this Shimura variety via a moduli space, as
follows :

Definition 7.1. Let F’ be the following category fibered in groupoids over the
category (Sch/spec E) of (spec E)-schemes:

e The objects over a scheme S are quadruples A = (A4, A, ¢;7), where (A4, A, ¢)
is a polarized projective abelian scheme over S with an action of Op which
respects the determinant condition of Kottwitz (definition 2.11 of §2.2),
and 77 is a level structure of level K over each connected component of S,
that is, a K orbit of isomorphism between V' ® A, and Hy(As, Ay), for s
a geometric point of S.

e The morphisms from A to A’ over S are given by a Q-isogeny f: A — A’
compatible with the action of Op and the level structures, that is:

(1) there exists a locally constant function r with values in Q* such that

A=r(floNof).
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(2) f induces a morphism from End (A) ®z Z,) to End (A’) ®z Z), that
we still denote by f; then for all b € Op, f o «(b) = //(b).

(3) 7' = V(f) o7, where we denote by V(f) the morphism induced from
V(As) to V(A'y).

The functor F’ is representable by a scheme Sy when K is small enough. Then
Sk is a disjoint union of canonical models over E of the Shimura variety Sh(G, X) k.
More precisely, as is explained in [Kot92], §8:

Proposition 7.2.
SK - Ukcrl(Q,G) Sh(G/, X)K

where ker' (Q, Q) is the set of locally trivial elements of HY(Q,G) and parametrizes
the interior forms G' of G that are locally isomorphic to G at every place.

The failure of the Hasse principle is essentially harmless, as follows from the
study of ker'(Q, @) in [Kot92], §7:

Proposition 7.3. When G is of type C, or of type A with even n, kerl(Q,G) 18
trivial. When G 1is of type A with odd n, all the groups G’ are isomorphic to G.

We refer to [Kot92], §5 for the classification of the group G in types A, C, D.
Let us just recall that unitary groups are of type A and the symplectic group is of
type C.

In particular, under the hypotheses of the proposition, all the connected compo-
nents of Sk are in fact isomorphic to the canonical model of the Shimura variety

Sh(G, X) .

7.2. Relationship to the integral model. Let Cy be the maximal compact open
subgroup of G(Ay) at p. If K? is a compact open subgroup of G(Afc), then K =
KP(Cj is a compact open subgroup of G(Ay).

Theorem 7.4. We have then the following isomorphism when G has no factor of
type D:
Skr ®0Eu E, = Sk Qr E,

This isomorphisms are compatible with the action of G(A?) on both sides.

It follows from this result that the generic fiber of the integral model Sk» is a
union of copies of the canonical model of the Shimura variety Sh(G, X) k.

We denote by F the category we introduced in definition 3.1 in order to define the
moduli problem for the integral model of the Shimura variety. We write ]—"" , and
Fg, respectively for the restrictions of 7" and F to the set of (spec £, )-schemes.
Hence if F' is representable by the E-scheme Sk then ]-'I’ , is representable by
Sk ®g F, and likewise for }-IEu-

We will prove the following proposition, which implies theorem 7.4:

Proposition 7.5. When the algebra B has no factor of type D, the categories fibered
in groupoids ]:\IEU and F|g, are isomorphic and the isomorphism is compatible with
the action of the Hecke operators on both sides.

Proof. Let S be a (spec E, )-scheme. Let us explain how to define an equivalence
of categories from Fjg, g to .7-'"EVS. Let A = (A, X, 1;7P) an object of Fjg, 5. The
problem is in the definition of 7': we already have a KP-orbit of isomorphisms 7
between V®AI; and H;(As, A’}) and we have to extend it to the whole of A ¢. That
is, we have to find a Cp-orbit of isomorphisms between V' ® Z,, and H;(As, Zp).
Observe that V and H;(As, Q) are isomorphic B-modules, as they become so
after tensorization by Qg for any ¢ # p (this follows from the existence of the level
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structure outside p). Then V ® Q, and H;(As,Q,) are isomorphic as B-modules.
Moreover both have self-dual Og-lattices. Now we use the condition on the algebra
B: as it has no factor of type D, we know by [Kot92], lemma 7.2 that the lattices
A®Z, and Hq(As,Z,) are isomorphic as hermitian modules with an action of Op.
Moreover the Cy-orbit of isomorphism is then well-defined independently of choices.

Hence we can uniquely extend the level structure n” to 7. (]
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