Fluctuations near a critical point



Fluctuations near a critical point

Motivations

Why is interesting to study these fluctuations nese@nd order
phase transition?

1) The probability density functions of global \dnles

S. T. Bramwell, P. Holdsworth, J.-F. Pinton, Naturé #96, 552 (1998)
Universality of rare fluctuations in turbulence and critical phenomena

E. Bertin, Phys. Rev. Lett, 95 170601 (2005).
Global fluctuations in Gumbel Satistics

2) Aging at critical point

L. Berthier, P. Holdsworth, Europhys. Lett. 58, 35@2)
Surfing on a critical line: Regjuvenation without chaos, memory without a hierarchical phase
Space

P. Calabrese and A. Gambassi, cond-mat/0410357V2
Aging Properties of Critical Systems



Fluctuation Dissipation Ratio (FDR) during aging
1

In equilibrium X (t, tw) = kBT(Ce(t,t) — Cy(t, tw))
Wt =22 = [ Raar ot tw) =< 30(8)50(tw) >
ext w

Out equilibrium  (Cugliandolo and Kurchan 1992) FDR

T
Teff(ta t’w)

Xlit,;w) (Cy(t,t) — Cy(t,tw)) X (¢, tw) =

B

X(t7 t’w) —

Experimentally this idea has been tested in
e Spin glasses
* Colloids Controversial results
e Polymers
Need for experiments where the results
can be directly compared with theoretical models
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The Fréedericksz transition in liquid crystals

Second order phase transition and the global var@flahterest
Experimental system

Experimental results on PDF: the universal PDF fobg variables
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Liquid Crystals and Fréedericksz transition (1)
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A liquid crystal consists of
elongated molecules

n 1S the director

Surface treatement.

W Parallel anchored

(planar allignement)

Control parameter :
voltage difference U




Liquid Crystals and Fréedericksz transition (1l)

n = cos(f) ux + sin(0) u,
With boundary conditions u
#H(z=0)=06(z=L)=0

Solution of the form: 0(z) = 0g(z,y) sin(7F) ’

If 6 << 1 remains small, the equation of motion of 6g is :

T— = €0 — | K 0
O dt 0 | > O
y K1 K3 — K1 U?
TO = 5 U= K = 62—2—1
eo€alié €0€a K1 Ug

Correlation length in the xy plane : & = f/E
(San Miguel, Phys. Rev. A, 32, 3811, 1985)



o T
e The order parameter is 0y(x,y)
o T
o T

o T

Freedericksz transition
he Fréederick transition is a second order phase transition

he control parameter is ¢ = U?/U? — 1

he relaxation time iS Trepae = T,/ €

L

he correlation length &, = —~_"



Shadowgraph image

e=-0.03

v200(z,y)” |k

. ~ TOum e = 0.02

FIG. 1: Left column: shadowgraph snapshots of an area of
1.03 x 1.03 mm~. Right column: corresponding structure
factors, averaged over 256 images. (a): Vo = 3.170 , (b):

Vo = 3.256 Volt.
U = 3.22V and L = 27um
from zhou,Ahlers, arXiv: nlin/0409015v2




Fréedericksz transition

The Fréederick transition is a second order phase transition
The order parameter is 6y(z, y)
The control parameter is ¢ = U?/U? — 1

The relaxation time iS Trepqr = To/€

L

The correlation length &. = -

S

Global variable:

dzd
L/ <(1—n2)>;pdeN// 02 & y

where A = 7D?/4 and < . >z, stands for mean on A.
We measure de fluctuations of ¢

as a function of D/& and e




Experimental set-up

XA O "
Eo(X+7¥) Eg(exp(i®y)% + exp(idy)y)
Y 4
LC
Laser beam [ - | —
Polarization
_.________..> )
interferometer

- U Sensitivity : 5 104 m/HZY?

Two cells with different thickness: L = 6um and L = 25um. Surface S = lem?

The liquid crystal cell is a

birifrengent plate. Optical axis / / n

Measurement of the dephasing ® = ¢, — ®, between the two polarisations.

(D:aerC:cH—b// g2 42y
L 074

Laser diameter inside the cell 38um (limited by diffraction)



Measure of the dephasing

The dephasing between the Ex and Ey is:

2w L NoNe
P =(—— —n dz
< A /0 (\/n% cos(6)? + n2sin(9)? O) >

with (no, ne) the two anistotropic refractive indices.

LY

If 0 << 1 in terms of ¢ we get.:

27

ne(ne + no) C) b = 7(ne — o) L

4n§

<D:dm(1—

® - d,)

P,

Interferometer noise : . ~6 1081, 1/2




Experimental system: polarization interferometer
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Mean Amplitude of <(>
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Computed V., = 0.74V
Measured V., = 0.73V by < ( >xe=0



Fluctuation spectra of {
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Relaxation time as a function ofg
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from the fit U. = 0.73V and 7, = 0.1s
Computed 7, = 0.09s.

Variance : o2 x Sp(e) fe(e) o< e 1



PDF sz
Cell width L=6.7 pum7o ~ 0.1s and D = 38um
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Low frequency Iinfluence

High-pass filter

e 50mHz (Green)

1mHz (Blue)

2Hz (Red)

10°




Questions

*\What is the interpretation for the PDF@f?

*\Why this behavior has not been observed before?



Universality of fluctuation PDF

e In 1998 Bramwell, Holdsworth, Pinton proposed that in spatial extended sys-
tems the PDF of a global quantity x may take an universal form:

P(z) = Kexp{—a [b(x — s) — exp(b(z — s))]}

BHP distribution is equivalent to Gumbel for a integer. ( Bertin 2005).

e Correlation lengths are of the order of the system size
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BHP has been observed in the
fluctuations of :

*the injected power in an
experiment of turbulence

= the magnetizaton in a xy
model

= on the height of the Danube
river



PDF of {
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PDF of

Cell with L = 25
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« The BHP distributions are observed when the diantd the
probe is smaller then the correlation length

 The BHP is determined by the very slow motion
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Dependence oY as a functtion ofe and fc

L 1 1
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Aging at critical point
(Calabrese, Gambassi)

At t=0 the system is rapidly quenched from € = ¢7 to ¢g = O.

Within the Ginzburg-Landau approximation the dynamics of
Og is ruled by:

dbo 3
= —0
Tt 0
whose solution is
Oo()2 >= —° with =
< Oo(t)” > 2 (t+ mm) m 2eq
0_;, | The system remains out
8 tw : - .
06l «—> | of equilibrium forever.
— it Experimentally the condition e =0 IS never realized
~100 ~50 0 50 100 X(t7 tw) a nd C(t’ tw)



Fluctuation dissipation theorem after a quench
(mean field)
We consider the fluctuations 60(t) = 69(t)— < 0p(t) >

The correlation C(t,tw) =< 00(t)00(ty) > for ty < t

(tw + Tm)4 — T#z

C(t, tw) = St VG T T

3/2
R(t,tw) = Abo _ (tw + 7in) Response function

Ah - (t+mm)3/2

. . . : . R(t.t
The fluctuation dissipation ratio (FDFEX (¢, tw) = —kgT (¢, tw)

ath(t,tw)
In equilibrium X (¢,ty) = 1

After the quench at critical point X (¢, tw) < 0.8 Vt and tq



Time evolution after a quench in LC

from ¢; = 0.3 to ¢g = 0.01

- 0.0 0.4 0.6 0.8 1' 12 14 \1.6
t(s)
Fit function
(o= S
1+ (<<<o>> - 1) exp (=)
2€0 2€q

with < {(c0) >= ok and < ¢(0) >= ok

Feot1) fe+1)



Time evolution of { after a guench

Quench from e; ~ 0.3 to ¢g >~ 0.01 7 = 72 > 0.22s
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C (Lt )/C (L.1)

Correlations

04

C,(tt, )/C (L)

C(t) = 0p(t)% = Y3 (t) 4 24pgdl =< ((t) > +6¢(¢)
PYa(t) =< ¢(t) >

Ce(t, tw) =< 6¢(1)0¢(tw) >= 490 ()P0 (tw) Cy(t, tw)

Master curve by rescaling

(t —tw) — (- tw)/(t + ™m)
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FDT In the LC experiment:
the measure of the response function

(ttw) = <rA - /tt R(t, )t Co(t, tw) =< 60(1)50(tw) >
ext w
1 In equilibrium
FDR | x(ttw) = s (Colti0) = Coltstw)) | 7=,

Which is the appropriate external torque ., for the LC 7

e [ B=Ar*K; /AL
=2 = B2y~ (k +e+1) 6] +1 [ e=atie
2 dt Oo(t) = o + Alt)
- "I-E
LA Blaco— 3(n+ o + 1) U] A4 2Bdevs (1 - %) o

[ ext




FDT In the LC experiment:

_ 0¢(%)
ot = Dabo (1) Cext = 4B (1) de (1 -

Experimental test of these results (JSTAT POlOéGQ)Z:
1) Out of equilibrium, using the Transient Fluctuatibheoremn
2) FDT in equilibrium

In equilibrium  Yg(t) = g (tw) = g
(A(T)) X¢,be

X(7) = T 02 ( _%3>

Yo(t)?
2

Ce (L, tw) = 49§ Co(t, tw)
and FDT
X(,de . 1

(Ce(t,t) — Ce(t, tw))

<>\
B(1-=57) ksT | ,
with B = An< K1 /4L



FDT in the LC experiment in equilibrium
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FDT in the LC experiment in equilibrium

X(,0¢€
)

(Gt ) -

CC(tatw)) with B = A7T2K1/4L

X¢,6¢(t tw) g’%
Dﬁ%
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Response function during aging
A o [t =1
o S 5t {SJEIE TR TR : (.ES)
A=00(t) — o) and A = SUa®? _ OG> A
Rt ty) = AW > _ Re st tw)

M ext(tw) - 4B o(tw) Yo(t) (1 _ ¢O(§w)2>

A(t t
x (¢, tw) = <al) > =/ R(t,t)dt’
[ ext t

w




FDT out of equilibrium: fixed t as a functionof tw

X(ta t’w) T

X(ts tw) = ———=(Cp(t, 1) = Co(t, tw)) WIth Terr = xteen)
BT
1 \
—equilibrium

N +1=0.7 s i
=t C(t,t") ©1=0.6 s
= \j | “1=05'5
O 06 . l =248
A; \o ) ‘ ‘ ‘
4‘;% 0.4 5 - . .
I_r:o —_— ’
~ ° °

0.2 il
0 | | | | | | | | | e ¥
0 0.1 02 03 4 0, 0, 07 08 0.9 1
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for C(t,tw) > C(t,t*), X =1 and Teff =T
for C'(t,tyw) < C(t,t%), X ~ 0.33 and Teff ~ 3T

L. Cugliandolo, J. Kurchan, and L. Peliti, PhysyvRE 55, 3898 (1997).
D. Hérisson and M. Ocio, Phys. Rev. Lett. 88, 257&1D2)



kBTx(t,tW)/Ce(t,t)

FDT out of equilibrium: fixed t as a functionof tw

for C(t,tw) > C(t,t"), X =1 and Teff =T
for C'(t,tyw) < C(t,t%), X ~ 0.33 and Teff ~ 3T

evolution of t* as a function of t

1 T T 1 T T T T 0.25
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* 0 . 0 0 .

L =1-1Z for t > 7 defines the lenght of the equilibrium interval

with respect to the total time.
At eg = 0,= 7 =00 : the equilibrium interval does not exist.



FDT out of equilibrium: fixed tw as a functionof t

X(t7 t’w)
(s tw) = kT (Colt, 1) = Cy(t, tw)) evolution of Teff versus tw
i S T 550l
W|th Teff —_— m .
e * .
I_‘E-ﬁ:l' .
0.8 : aol
tw

1.4



Conclusions

Using a liquid crystal driven by an electric figltdthe Fréedericksz
transition we observe that :

* The probability distribution function of the ordesirameter
fluctuations are well described by a generalizedhGel,when
the correlation length is compared to the probe.siz

e After a quench close to the critical point the sygsfesents
power law decay. Aescaling similar to the one used in aging
materials, produces a master curve of correlations

« FDT is violated during the decay. The observedatioh
depends on the procedure used to define t and tw.

e Forthe "good procedure” an asympothigue tempa&tan be
defined, which is not the one computed from meaid fi




