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Mechanical measurements

Deformed Polycarbonate
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Fig. 3. Evolution of tap(d] = o707 with temperature for
successive heatng runs tor deformed polvcarbonate (apphed
deformanon close o 3006, 1n compression at ambaent tempeer-
ature). (@) first scan up o 339 K (00 second scan up to 368 K,
(o) thurd scan up o 213 K () last scan up o 248 K, simular to
undetormed sample. Between two successive heaung runs, the
sample 15 cooled at 6 Kiman down to T k.



Dielectric measur ements

G pure PC
& PC+EG heating scan
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FIG. 4. Dielectric loss vs temperature at 1.2 Hz for pure PC and
PC-EG systems during heating and cooling.



Relaxation times
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Vogel-Fulcher-Tamman law for T>Tg
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Type of glasses

 Structural glasses

 Magnetic glasses

eColloids



Frustation

Spin is frustrated!

Spin Frustration on the Kagome Lattice
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Aging and Memory 420
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(a) Experimental set-up for PMMA. PMMA is the
dielectric of a capacitor whose vacuum capacitance is
Co = 230pF..

e=¢c 4+ 1€ is the PMMA dielectric constant.

(b-d) Typical thermal cycles applied to the sample



Aging of PMMA ( Tg= 388K)
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Dependence on t of € after a quench.

(a) Aging measured at f = 1Hz after a quench at vari-
ous Tisiop-

(b) Aging measured after a quench at Tg,, = 365K at
various f.



Memory effect in PMMA

Evolution of € at f=0.1Hz as a function of T

6 400
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ST Reference curve
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- - - Reference curve
— Curve with a cooling stop

€r = dielectric constant measured with continuous ram

€Em, = dielectric constant measured with a cooling stop



Memory effect in PMMA
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Memory effect in spin glasses
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From:

V. Dupuis, E. Vincent, J.P. Bouchaud, J. HammanHpA.
H. Aruga Katori,

Aging, rguvenation and memory effectsin Ising

and Helsenberg spin glasses,

Phys. Rev B 64 (17),174204,(2001).

Also in cond-mat/0104399



K ovacs Effect
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Memory effects and trap model

Fig. 6. Schematic picture of the hierarchical structure of the metastable states as a
function of temperature.



Aging in glassy materials

Aging has been often characterized by studing
the response functions of the systems

Smart experimental procedures, based either

on multiple cycles of cooling, heating and waitingds
or

on the modulation of the applied external fields

have shown the existence of spectacular effects
of aging in glassy materials, such as

rejuvenation and memory.

These studies have been extremely useful to figrsgv
Important constraints for the phenomenological nedeé

aging.

Question: is the analysis of
fluctuations useful ?
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QOutline

Thermal fluctuations and the Fluctuation
Dissipation Relations during aging

The electrical thermal noisd two materials:
a) a polymer after a guench
b) a colloidal glass during the sol-gel tramsiti

Comparisons of the experimental results with
those of other experiments and of models of

aging.
The mechanical noise.

Conclusions



FLUCTUACTION DISSIPATION THEOREM
In thermodynamic equilibrium

V and g are two conjugate variables
oV(w)
oq ()

The thermal fluctuation spectruma3€ <| V(w)| 2> is

R(w) = IS the response function

4KT
S(=—""—Im{ R(w)}
(6))
Typical examples are
Ua) (LF) (Mh)
Nyquist chr;iz){ions 3
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Fluctuation Dissipation Relation (FDR)

In a weakly out of equilibrium system
(Cugliandolo,Kurchan 1992.)

In a glass at T <Jthe physical properties of the

material depend on the aging timg after the
temperature quench. Thus FDR takes the following

form:

S(w,tw) =

A KpT t
B Tefr(w,tw) I { Ry (@, £a)}

FDR can be used to define an effective
temperature of the system

Teff(wv t”w) —

S(w,tw) w

At equilibrium T, rp(w,tw) =T

—C(t, tw) + C(tw tw) = Kg Topp(t tw) Rt ty)

where C(t,tw) is the correlation function
and R(t,tw) the integrated response

In terms of correlation function FDR takes the form




KOB , BARRAT, Fluctuation dissipation ratio
In an aging Lennard-Jones glass, Europhys. Lett. 46, 637 (1999)
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FDR in out of equilibrium system
4 Kp Tepp(w,tw)

S(w,tw) = Im{ Ry ¢(w,tw) }

_C(tatw)_l_c(tw?t’w) — KB Teff(tvtw) qu(t,tw)

Theoretical Background

1) This definition of temperature seems to be apqate for
several systems.
Cugliandolo, Kurchan, Peliti (1997), Kob, Barrh999)
Berthier, Barrat (2002), Liu, Nagel (2002),
Sciortino(2002).........ceeee ...

2) The robustness of this definition of temperaturelieen
guestioned .
S. Fielding, P. Sollich, (2002), Perez-Madrid, Rague
Rubi (2002).

Experiments
- 1970 x-ray scattering on PMMA (Weandorf and Fisher
- 1999 Grigera, Israeloff, super-cooled liquid
- 2001 Bellon, Ciliberto, sol-gel transition
- 2002 Herisson and Ocio, spin-glass

- 2002 et 2005 Buisson, Ciliberto, polymer

g




X-ray experiments
Intensity I(0) of scattered x-rays at small angles is re-
lated to the density fluctuations ép:

2
<o > 5[)2 > o 1(0)
P
From FDT
Kpg T p?xr
V
where xr is the isothermal compressibility.

<Spt > =

Weandorf and Fisher found a violation between 2.5 and
5 of this expression for various polymers.

Comparison with theory:
—C(tw +7,t0) + Ctw,tw) = K T R(tw + 7, tw)

only two points on the plane (C, R) are available

. 08
= FDT
CU =
=~ 06} R slope= -1/T
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Spin Glass experiment
Herisson and Ocio

Insulating spin glasCdCry 7Ing 3S,

Tg=16K

Quench at 0.8Tg.

0 2000 4000 6000
t(s)

Fig. 4. A typical thermal istory of the sample for a 4. 50 srecord at
10 K. In mset, detail on the crucial part, the last 3 K's cooling,



Spin Glass experiment
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FIG. 1@ a) Schematic of the detection circuit. The pick-up
coll (right side), containing the cylindrical sample, 15 a third
order gradiometer made of +3 -6 +6 -3 turns, b) Calibration
1% obtained by measuring relaxation versus correlation in a
high conductivity copper sample at equilibrium at 4.2K.



Shin Glass experiment
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FIG. 2: Apging and scaling of (a) correlation (b) relaxation
at 7' = 0.87,. Both are measured for waiting times ¢’ = 100
(o), 200 (4A) , B00(V), 1000(<c), 2000 (+) , SO0 = ), 10000 =)
seconds from bottom to top. Reported error-bars on correla-
tion have a length of two standard-deviation, corresponding
to averages over records. In insets, scaling of the aging parts
versus { = (117 —"1#) /(1 — p), using p = 0.87. The sta-
tionary parts are found to obey a power-law decrease with an
exponent a = 0.05.



Spin Glass experiment
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FIG. 3: FD-plot. Relaxation measurements are plotted versus
correlation functions for each t'. The dot-dashed line (FDT
line) is calculated for T = 0.87g = 13.3K, from the cali-
bration obtained with the copper sample. The dashed line
represents the scaling extrapolation for ' — oo, The branch-
g point with the FIOT line, corresponds to C = = gr A (sqQuare
symbol, with size giving the error range). In Inset, the same
data in the whole range.



