

Gelatin liquid-solid transition

Gelatin :

liquid for Tm>32°C solid for Tg<28°C

In our experiment we use 10%wt concentration in water

For T<Tg gelatin presents : aging and memory effects at 10%wt concentration after a cooling at 26°C it takes ~2h to solidify

Gelatin liquid-solid transition

For T<Tg gelatin presents : aging and memory effects

at 10%wt concentration after a cooling at 26°C it takes ~2h to solidify

Gelatin liquid-solid transition

For T<Tg gelatin presents : aging and memory effects

at 10%wt concentration after a cooling at 26°C it takes ~2h to solidify

Gelatin liquid-solid transition (heating)

Infrared Laser switched on for a few minutes

Gelatin liquid-solid transition (quench)

The infrared laser is switched off and the liquid drop cools very fast

At t=1ms after the switch off we obtain:

A drop of an unstable liquid at 26°C inside a stable solid

Trapped glass particle R=1 μ m

Gelatin liquid-solid transition (quench)

Drop of an unstable liquid at 26°C inside a stable solid

What happens?

How long does it take to solidify?

Does the transition start from the frontier?

What is the nature of the bead fluctuations inside the drop?

Dynamics of the bead

 $T = 27^{\circ}C < T_{gel}$

100

50

Dynamics of the bead

Particle motion during the gelation process

Probing nonequilibrium particle dynamics through the variance σ_X^2 of its position X [Gomez-Solano et al., arXiv:1102.4750]:

- Nonstationarity: \(\sigma_x(t)\) computed at each t over an ensemble of independent quenches.
- Fluctuations of x are Gaussian for all $t \ge 0$.

Time evolution of the variance

The measured $\sigma^2(t)$ is compared to the equilibrium value σ^2_{eq} of the trap

From equipartition

ENS DE LYON

Time evolution of the variance

From equipartition

The measured $\sigma^2(t)$ is compared to the equilibrium value σ_{eq}^2 of the trap

Active microrheology

Motion of a Brownian particle trapped by a laser Beam

Viscoelastic Langevin dynamics

$$\int_{-\infty}^{t} \Gamma(t - t', t_w) \dot{x}(t') dt' + k \ (x - x_o) = \xi(t),$$

The applied oscillating force

$$f_o(t) = k x_o(t)$$

The linear response
$$\hat{\chi}(\omega, t_w) = \frac{\hat{x}(\omega, t_w)}{\hat{f}_0(\omega)}$$

$$G'(\omega, t_w)$$
 6 π $r = Re\left[\frac{1}{\chi(\omega, t_w)}\right] - k$ Elastic modulus

$$G''(\omega, t_w)$$
 6 π $r = Im \left[\frac{1}{\chi(\omega, t_w)}\right]/\omega$ Viscosity

Gelatine liquid-solid transition

Time evolution of the viscous and elastic modulus

- I. Pure viscous
- II. Negligible elasticity
- III. Logarithmic growth of G' etG"

$$\Delta U_{\tau}(t_w) - W_{\tau} = Q_{\tau}(t_w),$$

For $F = 0$: $W_{\tau} = 0$ and
$$\Delta U_{\tau}(t_w) = Q_{\tau}(t_w)$$
$$\Delta U_{\tau}(t_w) = \frac{1}{2}k(x(t_w + \tau)^2 - x(t_w)^2) + \int_{t_w}^{t_w + \tau} \dot{x}(t)(K_t * x)(t, t_w)dt,$$

$$\Delta U_{\tau}(t_w) - W_{\tau} = Q_{\tau}(t_w),$$

For $F = 0$: $W_{\tau} = 0$ and
$$\Delta U_{\tau}(t_w) = Q_{\tau}(t_w)$$

Gel elasticity
$$\Delta U_{\tau}(t_w) = \frac{1}{2}k(x(t_w + \tau)^2 - x(t_w)^2) + \int_{t_w}^{t_w + \tau} \dot{x}(t)(K_t * x)(t, t_w)dt,$$

$$\Delta U_{\tau}(t_w) - W_{\tau} = Q_{\tau}(t_w),$$

For $F = 0$: $W_{\tau} = 0$ and
$$\Delta U_{\tau}(t_w) = Q_{\tau}(t_w)$$

Gel elasticity
$$\Delta U_{\tau}(t_w) = \frac{1}{2}k(x(t_w + \tau)^2 - x(t_w)^2) + \int_{t_w}^{t_w + \tau} x(t)(K_t * x)(t, t_w)dt,$$

for $t_w < 200s$

$$\Delta U_{\tau}(t_w) - W_{\tau} = Q_{\tau}(t_w),$$

For $F = 0$: $W_{\tau} = 0$ and
$$\Delta U_{\tau}(t_w) = Q_{\tau}(t_w)$$

Gel elasticity
$$\Delta U_{\tau}(t_w) = \frac{1}{2}k(x(t_w + \tau)^2 - x(t_w)^2) + \int_{t_w}^{t_w + \tau} x(t)(K_t * x)(t, t_w)dt,$$

for $t_w < 200s$

For $t_w < 200$ s, Q_{τ} can be computed from ΔU_{τ} .

Energy PDF

Energy PDF and mean heat

Mean heat

Fluctuation theorem

FT fixes the symmetries of the PDF $\rho(q_{\tau}) = \log \frac{P(q_{\tau})}{P(-q_{\tau})}$

$$ho(au) = \Delta eta_{t, au} \; q_{ au} \; ext{for} \; au o \infty$$

Fluctuation theorem

FT fixes the symmetries of the PDF

 $\rho(q_{\tau}) = \log \frac{P(q_{\tau})}{P(-q_{\tau})}$

$$ho(au) = \Delta eta_{t, au} \ q_{ au}$$
 for $au o \infty$

What is the value ?

Data analysis

Using the experimental observation that P(x) are Gaussian One gets from a simple model in the limit of large τ :

Data analysis

Using the experimental observation that P(x) are Gaussian One gets from a simple model in the limit of large τ :

$$P_t(q_{\tau}) = \frac{A_{t,\tau}}{\pi} K_0\left(B_{t,\tau}|q_{\tau}|\right) \exp\left(-\frac{\Delta_{t,\tau}A_{t,\tau}}{2}q_{\tau}\right),$$

where K_0 is the zeroth-order modified Bessel function of the second kind,

$$\Delta_{t,\tau} = \frac{\sigma_x(t)}{\sigma_x(t+\tau)} - \frac{\sigma_x(t+\tau)}{\sigma_x(t)}, \quad A_{t,\tau} = \frac{k_B T}{k\sigma_x(t)\sigma_x(t+\tau)} \text{ and } \quad B_{t,\tau} = A_{t,\tau}\sqrt{1 + \Delta_{t,\tau}^2/4}$$

Data analysis

Using the experimental observation that P(x) are Gaussian One gets from a simple model in the limit of large τ :

$$P_t(q_{\tau}) = \frac{A_{t,\tau}}{\pi} K_0\left(B_{t,\tau}|q_{\tau}|\right) \exp\left(-\frac{\Delta_{t,\tau}A_{t,\tau}}{2}q_{\tau}\right)$$

where K_0 is the zeroth-order modified Bessel function of the second kind,

$$\Delta_{t,\tau} = \frac{\sigma_x(t)}{\sigma_x(t+\tau)} - \frac{\sigma_x(t+\tau)}{\sigma_x(t)}, \quad A_{t,\tau} = \frac{k_B T}{k\sigma_x(t)\sigma_x(t+\tau)} \text{ and } \quad B_{t,\tau} = A_{t,\tau}\sqrt{1+\Delta_{t,\tau}^2/4}$$
from which
$$\Delta\beta_{t,\tau} = \frac{k_B T}{k} \left[\frac{1}{\sigma_x(t+\tau)^2} - \frac{1}{\sigma_x(t)^2}\right].$$

Hence, the linearity of $\rho_t(q_\tau)$ is analytically satisfied

Energy PDF

Using an equipartition-like relation : $k_B T_{eff}(t) = k \sigma_x(t)^2$

$$\Delta\beta_{t,\tau} = \left[1/T_{eff}(t+\tau) - 1/T_{eff}(t)\right]T,$$

Similar relations have been theoretically derived :

Comparisons with other results

Using an equipartition-like relation : $k_B T_{eff}(t) = k \sigma_x(t)^2$

$$\Delta\beta_{t,\tau} = \left[1/T_{eff}(t+\tau) - 1/T_{eff}(t)\right]T,$$

Similar relations have been theoretically derived :

A) In the stationary case for the heat flux between two reservoirs at different temperatures heat flux

$$\ln \frac{P(Q_{\tau})}{P(-Q_{\tau})} = \left(\frac{1}{T_C} - \frac{1}{T_H}\right) \frac{Q_{\tau}}{k_B}$$

Comparisons with other results

Using an equipartition-like relation : $k_B T_{eff}(t) = k \sigma_x(t)^2$

$$\Delta\beta_{t,\tau} = \left[1/T_{eff}(t+\tau) - 1/T_{eff}(t)\right]T,$$

Similar relations have been theoretically derived :

A) In the stationary case for the heat flux between two reservoirs at different temperatures heat flux

$$\ln \frac{P(Q_{\tau})}{P(-Q_{\tau})} = \left(\frac{1}{T_C} - \frac{1}{T_H}\right) \frac{Q_{\tau}}{k_B} \qquad \qquad T_H$$

B)

In the non-stationary case during the aging of spin glasses A. Crisanti and F. Ritort, Europhys. Lett. 66, 253 (2004).

What this is useful for ?

From Fluctuation Theorem

 $\Delta S_{\tau} = -k_B \Delta \beta_{t,\tau} q_{t,\tau}$

is the entropy production rate of the relaxation process

Comparing this result with numerical data of aging spin-glasses

Aging can be interpreted as an heat transfer (cooling) of the slow modes towards the heat bath

A. Crisanti and F. Ritort, Europhys. Lett. 66, 253 (2004).

- a) The fluctuations of heat are asymmetric, i.e. the dynamics transfer heat towards the bath
- b) The Fluctuation Theorem is satisfied in a non-stationary regime

- a) The fluctuations of heat are asymmetric, i.e. the dynamics transfer heat towards the bath
- b) The Fluctuation Theorem is satisfied in a non-stationary regime
- c) The Fluctuation Dissipation Theorem is violated

ENS DE LYON

Fluctuations and Linear response

mercredi 20 mars 2013

Fluctuations and Linear response

75<t<90s 00 0<t<15s PSD (m² / Hz) $(z_{10}^{-16} - 10^{-16})$ $f_c = (2\pi\tau_k)$ S(f,t)10⁻¹⁸ Passive Passive 0 -Active - Active 10⁰ 10⁰ 10¹ 10^{-1} 10^{-1} 10^{1} f(Hz)f(Hz)

> FDT $S(f,t) = \frac{2k_B T}{\pi f} Im[R(f,t)] \qquad \text{in equilibrium}$

FDT is violated in our experiment

As in the generalized FDT for NESS the extra additive term is related to the heat flux. (Chetrite, Gawedzki, Seifert Speck, Maes, Lipiello, Corberi) heat dissipated in the time interval $[t,t+\Delta t]$

- a) The fluctuations of heat are asymmetric, i.e. the dynamics transfer heat towards the bath
- b) The Fluctuation Theorem is satisfied in a non-stationary regime

- a) The fluctuations of heat are asymmetric, i.e. the dynamics transfer heat towards the bath
- b) The Fluctuation Theorem is satisfied in a non-stationary regime
- c) The Fluctuation Dissipation Theorem is violated. The amount of the violation is related to the heat flux as for the Generalized FDT for NESS.

Fast quench of the droplet to T = 27° C < T_{gel} by decreasing the laser power: heat diffusion into the gel bulk in ~1 ms.

Experiment in gelatine at 10%wt sol-gel transition at 28°C

The stochastic resonance and Fluctuation Theorem P.Jop. A. Petrosian, S. Ciliberto, Eur. Phys. Lett. **81**, 50005 (2008) Brownian particle trapped by two laser beams

The non linear potential

At $f \simeq r_k$ the hops of the particle synchronise with the external forcing

Stochastic Resonance

CNIS

$$W_{\tau} = c \int_{t_i}^{t_i + \tau_n} \dot{x} \sin(2\pi ft) dt$$
 with $\tau_n = n/f$

Fluctuation Theorem for W

CINS

f=0.25Hz and τ = n / f

Fluctuation Theorem for Q

Theoretical comparison

A. Imparato, P. Jop, A. Petrosyan and S. Ciliberto, J. Stat. Mech. (2008) P10017

PDF of the heat computed on a single period :

(initial phase=0)

(averaged over different initial phases)

Experimental data - Theoretical prediction based on Fokker-Planck equation

Conclusions on FT (partial)

- □ We have studied the energy fluctuations of a harmonic oscillator driven out of equilibrium by an external force.
- □ We have measured the **finite time corrections** for SSFT and compared to the theoretical predictions. TFT is instead verifed for all times.
- □ The "trajectory dependent entropy "has been measured and we checked that SSFT is verified for all times for the "total entropy".
- □ We have shown that in this specific example the **''total entropy''** takes into account only the entropy produced by the external driving, without the **entropy fluctuations at equilibrium**.
- □ We have applied also **SSFT** to the strongly non-linear case of the **stochastic resonance**