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Abstract

This paper is about multi-dimensional shocks and their interactions. The latter take
place either between two shocks or between a shock and a boundary. Our ultimate goal
is the analysis of the reflection of a shock wave along a ramp, and then at a wedge.
Various models may be considered, from the full Euler equations of a compressible fluid,
to the Unsteady Transonic Small Disturbance (UTSD) equation. The reflection at a wedge
displays a self-similar pattern that may be viewed as a two-dimensional Riemann problem.
Most of mathematical problems remain open. Regular Reflection is the simplest situation
and is well-understood along an infinite ramp.

More complicated reflections occur when the strength of the incident shock increases
and/or the angle between the material boundary and the shock front becomes large. This
is the realm of Mach Reflection. Mach Reflection involves a so-called triple shock pattern,
where typically the reflection of the incident shock detaches from the boundary, and a
secondary shock, the Mach stem, ties the interaction point to the wall. The triple shock
pattern is pure if it is made only of the incident, reflected and secondary shocks, but of no
other wave. As predicted by J. von Neumann, pure triple shock structures are impossible.
A common belief was that this impossibility is of thermodynamical nature. We prove here
that the obstruction is of kinematical nature, thus is independent either of an equation
of state or of an admissibility condition. This holds true for all situations: Euler models,
irrotational flows and UTSD, the latter case having been known for a decade.

Because the Regular Reflection problem along a wedge gathers several major technical
difficulties (a free boundary, a domain singularity, a solution singularity, a mixed-type
system of PDEs, a type degeneracy across the sonic line), its solvability is still far from
our knowledge, except in the simplest context of potential flows with small incidence, for
which G.-Q. Chen & M. Feldman announced recently a solution. Good though partial
results have been obtained by S. Čanić & al. for the UTSD model and by Y. Zheng for
the Euler system.

As far as the Euler equations are concerned, we improve and derive with higher math-
ematical rigour our pointwise estimates of 1994. Our improvements concern most of the
estimates:
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research of the author was partially supported by the European IHP project “HYKE”, contract # HPRN–CT–
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• We give a now rigorous proof of the minimum principle for the pressure,

• Our new bound of the size of the subsonic domain applies now to data of arbitrary
strength and incidence,

• This together with the observation that the entropy increases, yields much better
pointwise estimates of field variables,

• We prove that there must exist a vortical singularity, at least in the barotropic case:
the vorticity of the flow may not be square integrable,

• Last but not least, we give a rigorous justification that the flow is uniform between
the ramp, the pseudo-sonic line and the reflected shock, the latter being straight.
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Definitions

Let d = 2 or 3 be the dimension of the physical space. Although d = 3 is relevant for the real
world, many phenomena are two-dimensional at the leading order and we shall often assume
that d = 2. We denote by t the time variable and by x = (x1, ..., xd) ∈ Rd the space variable.

Gases in thermodynamical equilibrium are described by a velocity field u ∈ Rd and scalar
internal variables, namely the mass density ρ, the specific internal energy e, the pressure p, the
temperature T , the entropy S and a few others. These are functions of t and x. Thermodynamics
tells us that the internal variables are not fully independent but are determined by two of them.
It is classical to make the choice of (ρ, e) as the primary variables, but other choices are useful
in some questions, as (p, T ) or (p, τ) where τ := 1/ρ denotes the specific volume. The way ρ
and e determine the other quantities proceeds from an equation of state

(1) p = P (ρ, e),

where the function P describes the gas under consideration. A perfect gas, also called an
ideal gas1, obeys p = (γ − 1)ρe, where the adiabatic constant γ > 1 equals 1 + 2/N , N being
the number of freedom degrees (translational, rotational, vibrational,...) of a molecule. For
instance, γ = 5/3 for a monatomic gas (Helium, Argon,...) and γ = 7/5 for a di-atomic gas
(hydrogen, oxygen, nitrogen,...). At moderate pressure and temperature, air may be considered
as a perfect diatomic gas. The temperature and entropy are then obtained through the identity
between differentials

(2) TdS = de + pd
1

ρ
.

The evolution of the field U := (ρ, u, e) obeys the Navier–Stokes equations for compressible
fluids. In the absence of external forces, they consist in the conservation laws of:

• mass,

• momentum,

• energy.

For this reason, we shall call the densities of mass ρ, of momentum ρu and of mechanical energy
1
2
ρ|u|2 + ρe the conserved variables of the system.

In suitable regimes, one may neglect the shear stress (Newton viscosity) and heat diffusion
(Fourier law). Then the system reduces to first order in space and time and is called the full
system of Euler equations:

∂tρ + div(ρu) = 0,(3)

∂t(ρu) + div(ρu⊗ u) +∇p = 0,(4)

∂t

(
1

2
ρ|u|2 + ρe

)
+ div

((
1

2
ρ|u|2 + ρe + p

)
u

)
= 0.(5)

1Some people prefer saying that a gas is perfect if pτ = RT where R is a constant. Then it is ideal if
moreover e is proportional to T .
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As for general first-order systems of conservation laws, the Euler system is scale-invariant,
in that if (x, t) 7→ U solves (3,4,5) and if λ is a positive real number, then Uλ(x, t) :=
U(λx, λt) is a solution too. Together with the translation invariance and the Galilean in-
variance (ρ, u, e, x, t) 7→ (ρ, u− ū, e, x+ tū, t) (ū a constant vector), this allows for a rather large
set of explicit simple solutions. At the simplest level are all the constant fields. Next, there
are simple centered waves, which are purely one-dimensional: planar rarefaction wave, contact
discontinuities and shock waves. Beginners will find thorough descriptions of these waves in
Dafermos’ book [29] or in the Handbook article by G.-Q. Chen & D. Wang [22]. In this paper,
we investigate truly two-dimensional simple patterns:

• Planar shocks reflecting along a planar wall,

• Planar shocks reflecting at a wedge.

These problems amount to solving a system of nonlinear partial differential equations, together
with boundary conditions. The flow is steady in the first case and pseudo-steady in the second
one. The latter terminology means that the governing PDEs are the same, up to lower order
derivatives, as in the former case. We warn the reader however, that in pseudo-steady flows, the
relevant unknown is (ρ, u− x

t
, e) instead of (ρ, u, e). The field u−x/t is called the pseudo-velocity.

When the strength of the incident shock is moderate, or when its angle of incidence is not
too small, the reflection along a planar wall is solved by means of two shocks (incident and
reflected), separating three constant states. This pattern is known as a Regular Reflection and
is designated by the acronym RR. Since the incident shock and the states that it separates
are given data, one needs only to determine the reflected shock and the state behind. This is
done through explicit algebraic manipulations. Such computations had been known as soon
as 1940, and are due to von Neumann [56, 57]. As we shall see below, the nonlinear equation
to solve has generally two solutions for a moderate incident strength, yielding two types of
Regular Reflection, a weak and a strong one. Physical and numerical experiments suggest that
the strong RR is unstable, its instability being presumably of Hadamard type. See the analytic
study by Teshukov [73].

When the strength of the incident shock increases, the boundary-value problem fails to
admit a RR and one needs to consider a more elaborate reflection configuration, called a Mach
Reflection and designated by MR. This terminology was coined by J. von Neumann after the
very first description by Ernst Mach [51] in 1878. The common feature to all kinds of MR is the
presence of a triple point where three shock waves meet, together with a slip line (vortex sheet).
Numerical or physical experiments suggest several types of MR, called single (SMR), transitional
(TMR), double (DMR) or complex (CMR) ; this list is ordered by increasing complexity.

In some regimes, a Mach Reflection occurs where it is not allowed by the theory based on
shock polar analysis. For some reason, the approximation of the flow by plane waves separating
constant states is not valid. Numerical experiments suggest that slightly different configurations
may occur, for which several scenarii have been proposed. In one of them, called von Neumann
Reflection (vNR), the reflected shock degenerates into a compression wave near the triple point
(see [7, 8, 16]) while the incident shock and the so-called Mach stem (the third shock) seem to
have a common tangent at the triple point. In another one, called Guderley Mach Reflection,
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an array of triple points takes place along the Mach stem immediately after the reflection point;
at each of these points one observes an interaction between the Mach shock and a wave that
bounces between this Mach shock and the sonic line. This wave is alternatively a shock and an
expansion fan (see [43, 71]). Since there is essentially no rigorous mathematics on such patterns,
we shall mainly limit our study to RR, although MR is relevant in most of realistic situations.
The reader interested in MR theory should consult the nice review by G. Ben-Dor [5] on the
experimental side, and the papers by Hunter & coll. and by Čanić and coll. given in references,
on the theoretical side. His book [4] displays a lot of experimental results and describes, at least
on a phenomenological basis, the various strategies for transition from one kind of reflection to
another. See also the review paper by Hornung [41]. The present paper is devoted on the one
hand to the basics of the theory, like shock polars and terminology, and on the other hand to
rigorous qualitative results that could be used in a strategy toward well-posedness of reflection
problems.

Galilean invariance. As mentioned above, the unsteady models are Galilean invariant: If
(ρ, u, e) is a solution (even in the sense of distributions), and ū is a constant vector, then

(ρ̂, û, ê)(x, t) := (ρ(x + tū, t), u(x + tū, t)− ū, e(x + tū, t))

defines another solution. This observation is particularly useful when dealing with simple flows
as shock waves for instance: it will be enough to consider steady shock waves.

Remark that, because of Galilean invariance, the notions of supersonic, sonic and subsonic
flows do not make sense in the absence of a specified reference frame, since the sound speed is
independent of the Galilean frame, while the flow velocity is not.

1 Models for gas dynamics

Besides the full Euler system (3,4,5), there are a variety of models, each depending on some
simplifying assumptions.

1.1 Barotropic models.

We begin by extracting from (3,4,5) equations that are not in conservative form. First of all,
(3) and (4) imply

(6) (∂t + u · ∇)u +
1

ρ
∇p = 0, u · ∇ :=

d∑
α=1

uα
∂

∂xα

.

Eliminating between (6) and (3,5), we obtain

(7) (∂t + u · ∇)e +
p

ρ
div u = 0.
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Finally, (3) and (7) yield the following transport equation for the entropy:

(8) (∂t + u · ∇)S = 0.

We notice that all these computations involve the chain rule and do not make sense when the
field experiences a discontinuity. Therefore the conclusion that S is constant along the particle
paths (these are integral curves of the equation dx/dt = u(x, t)) is not correct when such a
trajectory crosses a shock. However, it is known that the jump [S] of the entropy at a shock is
of the order of the cube of the shock strength. This reflects the transmission identity

(9) [e] + 〈p〉
[
1

ρ

]
= 0, 〈p〉 :=

p+ + p−
2

,

which should be compared with (2). When the oscillations of the flow are small, it is therefore
reasonable to assume that S does not vary across shocks. Under this simplification, and if S
was constant at initial time, we conclude that S remains constant forever. The flow is then
called isentropic. The constancy of S means that ρ and e are not any more independent of
each other: the specific energy and therefore the pressure become functions of the density. We
denote p = P (ρ). For this reason, such models are also called barotropic. For a perfect gas,
one has P (ρ) = A(S)ργ. As in the full Euler equation, the equation of state P determines
everything else. For instance, starting from (2) and expressing that dS = 0, we obtain

de

d(1/ρ)
= −P,

or equivalently

(10) e(ρ) =

∫ ρ

p(s)
ds

s2
.

We check easily that for an isentropic flow, (5) is formally a consequence of (3) and (4). There-
fore we feel free to drop it and retain the following shorter system, called improperly the
isentropic Euler equation:

∂tρ + div(ρu) = 0,(11)

∂t(ρu) + div(ρu⊗ u) +∇P (ρ) = 0.(12)

Another way to end with a barotropic model is to assume that heat dissipation is strong
enough drive the temperature to a constant value. The model is called isothermal. The con-
stancy of the temperature is again a relation between ρ and e, and thus implies an equation of
the form p = P (ρ). The isothermal case of a perfect gas yields a linear P . In this situation, (5)
is not any more a consequence of (3) and (4). However, it may be dropped with the following
argument: the right-hand side of the conservation law of energy is not zero, but accounts for
the heat diffusion. Since we assumed that heat diffusion is dominant, the convective part of
this equation (the left-hand side of (5)) may be dropped. The rest just ensures that T ≡ cst.
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1.2 Irrotational models.

Barotropic models still satisfy formally Equation (6). However, the fact that p = P (ρ) ensures
that ρ−1∇p is curl-free. Taking the curl of (6), we thus obtain an equation for u only, which
reads in dimension d = 3:

(13) (∂t + u · ∇)ω + (div u)ω = (ω · ∇)u, ω := ∇× u.

We notice that when d = 2 the right-hand side is absent in (13). Nevertheless, in both cases,
(13) is a linear transport equation in ω. Therefore irrotationality propagates as long as the
vector field u is Lipschitz continuous. Once again, Equation (13) is not valid across shocks2 ;
it is therefore an approximation to claim that the flow is irrotational forever.

When the flow is irrotational, one may introduce a velocity potential φ by u = ∇φ and
work in terms of the unknown (ρ, φ). A clever choice of φ and an integration of (6) yield the
equation

(14) ∂tφ +
1

2
|∇φ|2 + i(ρ) = 0, i′(s) = p′(s)/s.

The function ρ 7→ i(ρ) is called the enthalpy. Equation (14) is to be coupled with the conser-
vation of mass that we rewrite now

(15) ∂tρ + div(ρ∇φ) = 0.

We notice that i = e + ρ−1p, with e(ρ) given by (10).

1.3 Steady flows, potential flows.

A flow is steady when (ρ, u, e) depend only on the space variable, but not on the time variable.
For instance, the full Euler system becomes

div(ρu) = 0,

div(ρu⊗ u) +∇p = 0,

div

((
1

2
ρ|u|2 + ρe + p

)
u

)
= 0.

Combining the first and the third line above, we immediately obtain

(16) u · ∇B = 0, B :=
1

2
|u|2 + e +

p

ρ
.

The quantity B is called the Bernoulli invariant. Equation (16) tells that B is constant along
the particle paths, at least as long as the solution is smooth (see below for a better result).
This constant may vary from one particle path to another. In some cases, it may be relevant to

2See Section 2.3. The jump of vorticity is proportional to the curvature of the shock front when the state is
constant on one side.
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assume that this constant does not depend on the particle and therefore B ≡ cst. For instance,
the flow might be uniform in some remote region, while every particle path comes from this
region. This assumption allows us to eliminate e and to work with the conservation of mass
and momentum only. We warn the reader that such a reduced system is not of barotropic form,
as the pressure becomes a function of both ρ and |u|.

In the barotropic case, the conservation of momentum reads formally

(u · ∇)u +∇i(ρ) = 0.

Multiplying by uT , one obtains again

(17) u · ∇B = 0, B :=
1

2
|u|2 + i(ρ) =

1

2
|u|2 + e +

p

ρ
.

Steady irrotational flow. The same observations as above hold true when curl u ≡ 0. The
assumption that B equals a constant now yields an equation of the form ρ = F (|u|). If moreover
the flow is irrotational, then the barotropic model reduces to a single second order equation in
the velocity potential:

(18) div(F (|∇φ|)∇φ) = 0.

Equation (18) may be rewritten in the quasilinear form

(19) F (|∇φ|)∆φ +
F ′(|∇φ|)
|∇φ|

∑

α,β

∂αφ∂βφ∂α∂βφ = 0.

It follows that its type depends on the local state of the fluid. Since F is positive, this equation
is elliptic (respectively hyperbolic) whenever F (|u|) + |u||F ′(|u|)| is positive (resp. negative).
From

i ◦ F (r) +
1

2
r2 ≡ i0,

we derive F ′(r)i′ ◦ F (r) = −r. In particular F ′ is negative. We may rewrite this as F ′(r)p′ ◦
F (r) = −rF (r), from which we find that ellipticity amounts to saying that |u|2 < p′(ρ).
Likewise, hyperbolicity of (18) is equivalent to |u|2 > p′(ρ).

Remark. Since the conservation of energy reads div(ρBu) = 0 (for steady flows), B does not
vary across steady shocks (i.e. discontinuities with non-zero mass flux). Thus the assumption
that B is constant is reasonable when it is so in the far field, provided we know that the vortex
sheets have small enough amplitude.

1.4 Characteristic curves

The previous analysis shows that c(ρ) :=
√

p′(ρ) plays a fundamental role and has the dimension
of a velocity. This quantity turns is called the sound speed. In a non-barotropic flow (full Euler
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system), it is given by the expression

(20) c(ρ, e) :=

√
∂p

∂ρ
+

p

ρ2

∂p

∂e
.

For a perfect gas we obtain the well-known formula

c =

√
γp

ρ
.

Coming back to Equation (19), we may eliminate F and F ′, and find its equivalent form

(21) c2∆φ−
∑

α,β

∂αφ∂βφ∂α∂βφ = 0.

In unsteady models, the notion of sound speed is relevant too, and one can show that the
corresponding system is hyperbolic whenever c2 is positive, that is c is a non-zero real number.
Then the Cauchy problem is locally well-posed in spaces of smooth functions. See [22, 29, 64]
for instance.

Characteristic curves are well-defined in two independent variables, which may be either
(t, x) if d = 1, or x = (x1, x2) if d = 2. Let us begin with the time-dependent flows that
depend only on one space variable. Characteristic curves are integral curves, that is solutions
of differential equations

(22)
dx

dt
= λ(x, t),

where λ, a function of U , is one of the characteristic velocities. For a general hyperbolic
quasilinear system

(23) ∂tU + A(U)∂xU = 0,

the characteristic velocities are the eigenvalues of the matrix A(U) ; hyperbolicity tells that
these eigenvalues are real.

For the full Euler system, the characteristic speeds are λ− = u − c(ρ, e), λ0 = u and
λ+ = u + c, whence three characteristic families. Notice that the characteristic curves for the
second family are particle paths. The other ones “propagate” sound waves. For the barotropic
model, we still have λ− = u − c and λ+ = u + c, and it seems that λ0 = u is dropped. This
observation is correct if the conservation of momentum is restricted to momentum in the x
variable, but it is not if we also take in account the momenta in the transverse directions (think
of a gas in 3-d, of which the flow is planar).

The situation for steady flows in 2-d is significantly different, for the evolution is governed
by some quasilinear system

(24) A(U)∂xU + B(U)∂yU = 0.
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If we take x (for instance) as a time-like variable, the characteristic velocities are generalized
eigenvalues:

(25) det(B(U)− λ(U)A(U)) = 0.

Characteristic curves are therefore integral curves of

(26)
dy

dx
= λ(x, y),

or in other words and more generally

(27) det(A(U)dy −B(U)dx) = 0.

Although hyperbolicity tells that ξ1A(U) + ξ2B(U) is diagonalizable with real eigenvalues for
every choice of ξ ∈ R2, there is no reason why (25) would admit real solutions. The only
general remark that can be made is that there is at least one such solution in the barotropic
case because the matrices are 3× 3 and 3 is an odd integer.

To go further, let us denote λj(U ; ξ) (j = 1, ...) the eigenvalues of ξ1A(U) + ξ2B(U). Then
λ = −ξ2/ξ1 solves the problem (25) as soon as λj(U ; ξ) = 0 for some j. Since there holds

(28) λ−(U ; ξ) = u · ξ − c|ξ|, λ−(U ; ξ) = u · ξ, λ+(U ; ξ) = u · ξ + c|ξ|,

we find the following characteristic directions R(1, λ) = R(ξ2,−ξ1) for the steady problem:

• In all situations, Ru, the direction of the particle paths.

• When |u| > c (supersonic flow), and only in this case, the directions V such that
det(u, V ) = c|V |. There are two such directions, which make an angle α with the particle
path, where | sin α| = c/|u|.

• In the borderline case where |u| = c, these two directions coincide with the direction of
the flow. This is a rather degenerate situation.

• If the flow is subsonic (that is |u| < c), we still have two such vectors V , but they are
complex conjugate and cannot serve to define characteristic directions.

We conclude that a steady supersonic flow is hyperbolic, in every direction that is not char-
acteristic. For a subsonic flow, the model is of mixed type hyperbolic-elliptic: the hyperbolic
mode corresponds to the sole real characteristic direction u, while the elliptic one accounts for
the two complex conjugate characteristic directions V .

Real characteristic directions are crucial in the study of propagation of singularities. Let us
assume that U is a continuous, piecewise C1, solution of a first-order system in two independent
variables. Then the locus of the singularities (here discontinuities of the first derivatives) is a
union of characteristic curves. In particular, for a smooth solution that is constant on some open
domain, the boundary of that domain consists of a union of characteristic curves that have a
very simple geometry. This is an important remark when constructing explicit steady flows, for
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it is not hard to match local flows along characteristic lines as long as they are supersonic, but
it is harder to deal with subsonic flows, because of the rigidity of solutions of elliptic problems
(analyticity, maximum principle,...) In particular, a flow must have some regularity properties
in its subsonic domain, though not in the supersonic region.

Let us end this paragraph by warning the reader: when a discontinuity separates two regions
in which the flow is smooth, the discontinuity does not need to be a characteristic line. The
characteristic property of interfaces is only valid for discontinuities of derivatives of order one
at least.

Remark. In Section 4, we shall encounter systems of the form

(29) A(U)∂xU + B(U)∂yU = g(U),

where g is some smooth function. The same theory as above applies. The characteristics of
the system (24) do propagate the weak singularities (i.e. those of derivatives) of the piecewise
smooth solutions of (29), in spite of the presence of an additional lower order term. These
characteristics are defined by the same equation (27).

1.5 Entropy inequality

Since the unsteady Euler equations (full or barotropic) form a first-order hyperbolic system of
conservation laws, its solutions usually develop singularities in finite time. These singularities
are most often discontinuities along moving hypersurfaces. Of course, the conservation laws
have to be understood in the sense of distributions. It turns out that too many piecewise
smooth solutions exist, so that the uniqueness for the Cauchy problem fails dramatically.

Parallel to this mathematical difficulty, thermodynamics tells us that discontinuous solutions
are not reversible, despite the formal reversibility of the conservation laws.

These two remarks suggest that some of the discontinuities that solve the PDEs must be
ruled out by some criterion, which has to be of mathematical nature while having a physical
relevance. The most popular criterion, the entropy inequality, was introduced by Jouguet [46]
for gas dynamics and then generalized to hyperbolic first-order systems by Kruzkov [48] and
Lax [49]. It states that for every conservation law

∂tη + div Q = 0

that is formally consistent with the model, where η and Q are given functions of the conserved
variables with η convex, a weak solution is admissible if and only if it satisfies moreover

(30) ∂tη + div Q ≤ 0.

A function η as above is called an entropy by mathematicians (sometimes a convex entropy).
This terminology differs from that of physicists. As a matter of fact, there is essentially one
non-trivial entropy inequality for gases, where η := −ρS for the full Euler system (with Q =
ηu = −ρSu), and η := 1

2
ρ|u|2 + ρe for the barotropic model (with Q = (η + p)u). It is worth
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noticing that in the latter case, the energy is not conserved across shocks, and its global decay
plays the role of an entropy condition!

For a perfect gas, one has S = log e− (γ−1) log ρ. It is an interesting exercise to prove that
(

ρ, ρu,
1

2
ρ|u|2 + ρe

)
7→ −ρS

is a convex function.
For a general equation of state, (30) is a necessary condition for admissibility but might

not be sufficient. A wide literature exists on this topic, for which we refer to Chapter VIII of
[29]. Several refined conditions are known, with various degrees of efficiency. For perfect gases
however, all admissibility conditions are equivalent to (30). For this reason, we shall content
ourself with the entropy inequality, assuming that the gas is perfect or close to be so.

Minimum principle for the full Euler system. For the full Euler system, it has been
shown by L. Tartar [70] and independently by A. Harten & coll. (see also Exercise 3.18 in ([64]))
that, besides the conservation laws, the mathematical entropies are all of the form ρf(S) with
f : R → R. For a perfect gas, the convex ones correspond to non-increasing functions f
such that s 7→ e−s/γf ′(s) is non-decreasing. For such functions, the solutions must obey the
generalized entropy inequality

(31) ∂t(ρf(S)) + div(ρf(S)u) ≤ 0.

In particular, choosing for f a function of the form s 7→ max{0, S0 − s}, we obtain (see in
particular [67] and also [28, 62]) a minimum principle that fits with the physical intuition that
the entropy S tends to increase:

Theorem 1.1 For an entropy solution of the full Euler system in an isolated domain (meaning
that u · ν = 0 along the boundary), the physical entropy S is globally non-decreasing:

(32) t 7→ inf{S(x, t) ; x ∈ Ω}
is a non-decreasing function of time.

1.6 Other models

Since the Euler equations form a rather complicated system of PDEs, with strong interaction
between nonlinearity and the characteristics, simplified models have been used in order to
reduce the complexity, while catching the main features of the flows under consideration.

The unsteady transonic disturbance equation. In the course of this article, we shall be
concerned with the transition between Regular Reflection (RR) and Mach Reflection (MR) at
a wedge of angle 2α. Following [42, 54, 43], and assuming that the strength of the incident
shock is weak, this transition occurs when

(33) M − 1 = O(α2),
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M being the Mach number of the incident shock. This regime allows for a competition between
nonlinearity and diffraction. In the sequel, the parameter

(34) a :=
α√

M − 1

is kept fixed.
Since only small disturbances of the rest state (ρ0, 0, p0)

T are considered, we may assume
that the gas is ideal for some γ > 1. With ε := 2(M − 1), one defines new unknowns v and w
by the expansion

(35)




ρ
u
p


 =




ρ0

0
p0


 + ε

2

γ + 1
v




ρ0

c0~ex

γp0


 + ε3/2 2

√
2

γ + 1
w




0
c0~ey

0


 + O(ε2).

Rescaling now the space and time variables by

(36) X :=
x− c0t

ε
, Y :=

√
2

y

ε1/2
, T = c0t,

we obtain the Unsteady Transonic Small Disturbance equation (UTSD)

∂T v + ∂X

(
1

2
v2

)
+ ∂Y w = 0,(37)

∂Y v − ∂Xw = 0.(38)

This system is sometimes called the 2-D Burgers equation. We notice that, because of the
anisotropic change of scales, (37,38) is neither Galilean nor rotationally invariant. We point
out that the parameter a in (34) determines the slope dX/dY of the incident shock.

Since the UTSD admits shock waves, there must be a selection criterion, in order to eliminate
those discontinuities that are physically irrelevant. This can be done thanks to an entropy
inequality as for general first-order systems of conservation laws. For every parameter k ∈ R,
classical solutions of (37,38) satisfy

∂T
(v − k)2

2
+ ∂X

(
v3

3
− kv2 + w2

2

)
+ ∂Y ((v − k)w) = 0,

and the admissible discontinuous solutions should satisfy the inequality

(39) ∂T
(v − k)2

2
+ ∂X

(
v3

3
− kv2 + w2

2

)
+ ∂Y ((v − k)w) ≤ 0

in the distributional sense. On a single shock, it just tells that the jump of v is negative from
the left to the right in the X-direction.

The UTSD is especially useful in that it catches many of the features of the Euler equations
in the presence of shock reflection. For large a, it admits a strong and a weak Regular Reflection
(see Paragraph 3.3.2), while it displays a transition to Mach Reflection when a diminishes.
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Like the Euler models, it does not admit pure triple-point configurations (see Section 2.2). At
last, fewer computational ressources are required to solve it numerically. It has been studied
intensively at the theoretical and numerical level as well ; see for instance [7, 10, 11, 13, 15, 16,
17, 30, 54, 66, 71] and the references cited above. This series of papers culminates with the proof
of existence of a local solution to the transonic (see [11]) and the supersonic Regular Reflection
(see [13]). A major difficulty in these works is of course the presence of a free boundary (the
reflected shock, see Section 4), for which tools were elaborated in [15]. In the supersonic case,
one also faces an elliptic equation whose symbol degenerates at the boundary, say along the
sonic line.

The pressure-gradient model. For numerical purposes (see [1]), one may be tempted to
split the full Euler system into two evolution problems, one in which we drop the pressure and
energy terms, and one in which we drop the convection term. The latter reads

∂tρ = 0,

∂t(ρu) +∇p = 0,

∂t(ρe) + p divu = 0,

where ρe =: ε(ρ, p). Assuming that ρ was a constant ρ0 at initial time, it stays a constant
forever because of the first equation. Elimination of u between the last two equations yields

∂t

(
ρ0

p
∂tε(ρ0, p)

)
= ∆p.

This is a non-linear wave equation of the form

∂2
t ψ(p) = ∆p,

with

ψ′ =
ρ0

p

∂ε(ρ0, p)

∂p
.

For an ideal gas, ψ(p) is a positive constant times log p. After a rescaling, the pressure-gradient
system may be rewritten as

∂tu +∇p = 0, ∂tE + div(pu) = 0, E :=
1

2
|u|2 + p.

According to Zheng [81], this model is a good approximation of the Euler system when the
velocity is small and γ is large3.

3A large γ is not realistic when speaking of gases, of course.
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2 Multi-dimensional shocks

2.1 Jump relations for a single shock

Beyond constant flows, we consider piecewise constant flows of the form

(40) U(x, t) =

(
U−, for x · ν < σt,
U+, for x · ν > σt,

)

where ν, the direction of propagation, is a unit vector and σ ∈ R is the normal velocity of the
shock. Hereabove, U stands for the set of unknowns, say (ρ, u, e) in the full system, (ρ, u) in
the isentropic case and the irrotational case. Since a constant flow is obiously a solution of any
of these models, U is a solution if and only if it satisfies the correct transmission conditions,
called Rankine–Hugoniot relations.

The first one is that associated to the conservation of mass (3),

(41) [ρ(u · ν − σ)] = 0,

from which we may define the mass flux across the interface:

j := ρ−(u− · ν − σ) = ρ+(u+ · ν − σ).

It is positive when the fluid flows from the negative side (that defined by x · ν < σt) to the
positive side, and negative in the opposite configuration.

Besides (41), we write jump relations that depend on the model under consideration:

Full system: We write the Rankine–Hugoniot conditions for (4,5), namely

[ρ(u · ν − σ)u] + [p]ν = 0,[(
1

2
ρ|u|2 + ρe

)
(u · ν − σ)

]
+ [pu · ν] = 0.

Because of (41), they read equivalently:

j[u] + [p]ν = 0,(42)

j

[
1

2
|u|2 + e

]
+ [pu · ν] = 0.(43)

Barotropic case: We only write the first two jump conditions (41,42).

Irrotational flow: We write the jump condition (41), plus that associated to ∇ × u = 0,
namely

(44) [u]× ν = 0.
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From this, φ is given by φ(x, t) = u · (x−σtν) + cst. We insert this formula into (14) and
get our last relations

(45)

[
1

2
|u|2 − σu · ν

]
+ [i(ρ)] = 0.

We notice that thanks to (44), (45) is equivalent to

(46)
1

2
[(u · ν − σ)2] + [i(ρ)] = 0.

In the subsequent analysis, we must distinguish the contact discontinuities (CD, for which
j = 0), from the shock waves (or just shocks), which correspond to j 6= 0. CDs do not happen
in the irrotational case, because i′ is positive for realistic gases and therefore

(j = 0) =⇒ ([i(ρ)] = 0) =⇒ ([ρ] = 0).

In a CD of the full or a barotropic model, there holds [p] = 0 and u± ·ν = σ. Conversely, any set
(U−, U+; ν, σ), satisfying these two identities, defines a CD. In the barotropic case, the constancy
of the pressure implies [ρ] = 0 and therefore CDs are slip lines, also called vortex sheets. In the
full Euler case, one may have [u] = 0 since [p] = 0 does not imply (ρ+, e+) = (ρ−, e−).

The description of shocks is a bit more involved. On the one hand, (42) implies

j2

[
1

ρ

]
+ [p] = 0,(47)

[u]× ν = 0.(48)

On the other hand, combining (42,43) and the following identities

[
1

2
|u|2

]
= 〈u〉[u], [pu] = 〈p〉[u] + [p]〈u〉,

gives

(49) j[e] + 〈p〉[u · ν] = 0.

This proves (9), because of [u · ν] = j[1/ρ], which is nothing but the definition of j.
We show now that the jump of the entropy is of cubic order in the shock strength. It is

not hard to see that (9) defines a curve in the (ρ, e)-plane when one of the states, say (ρ0, e0)
is fixed. Let s be a smooth, non-degenerate parameter along this Hugoniot curve. With dots
standing for derivations along the curve, we have

T Ṡ = ė + pτ̇ , τ :=
1

ρ
.

On the other hand, we have

ė +
1

2
ṗ[τ ] + 〈p〉τ̇ = 0,
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whence
2T Ṡ = [p]τ̇ − [τ ]ṗ.

Differentiating once more, we have

2
d

ds

(
T

dS

ds

)
= [p]

d2τ

ds2
− [τ ]

d2p

ds2
.

These identities imply
dS

ds
=

d2S

ds2
= 0

at the origin (ρ0, e0) of the curve. Whence [S] = O(s3). This estimate is accurate for most of
equations of state, for instance that of an ideal gas, but a degeneracy could cause the jump of
the entropy to be of higher order.

Entropy conditions for shocks. Besides the Rankine–Hugoniot conditions, a shock has to
satisfy the jump relations associated to the entropy inequality (30). Since Lipschitz solutions of
the Euler equations do satisfy the entropy equality, selecting admissible shocks among all dis-
continuities is precisely the role of the entropy inequality. The jump condition that is obtained
is, of course, an inequality, which reads either

(50) j[S] ≥ 0,

in the full Euler case (meaning that the entropy of a small part of fluid increases when one
crosses a shock), or

(51) j

[
1

2
|u|2 + e

]
+ [pu · ν] ≤ 0

in the barotropic case. The latter apparently violates the conservation of energy, but this is
due to the fact that we do not take in account one form of the bulk energy ; the inequality just
tells that there is some heat release. Of course, one may eliminate u from (51) as we did in the
full Euler case. We obtain the equivalent form of entropy inequality across a discontinuity:

(52) j

(
[e] + 〈p〉

[
1

ρ

])
≤ 0.

Shocks are compressive. Let us restrict to the equation of state of an ideal gas. In the full
Euler case, p = (γ − 1)ρe and S = log e − (γ − 1) log ρ. Thanks to (9), we may eliminate e±
and obtain

(53) exp(S+ − S−) = Xγ 1− µ2X

X − µ2
, X :=

ρ−
ρ+

, µ2 :=
γ − 1

γ + 1
.

As a matter of fact, (9) implies also that the ratio of the densities is bounded by 1/µ2. From
(53), we immediately find the equivalent formulation of the entropy inequality:

(54) j[ρ] ≥ 0.
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We examine next the barotropic case. We have p = Aργ where A is a positive constant.
Then e = p/((γ − 1)ρ). We may assume A = 1. We eliminate again e±, now in inequality (51)
and we end with the same entropy condition (54).

In conclusion, shocks are compressive in ideal gases: the density is higher in the domain into
which the gas flows. This domain is usually named downstream while the region from which
the gas flows is named upstream.

Because of the above analysis, we also impose (51) in the irrotational model.

Shocks are supersonic on the front side. Given a steady shock (U−, U+), one may always
modify the velocities by adding the same constant vector, provided the latter is parallel to the
shock front. Since the tangential component of the velocity is continuous, we see that it may
be cancelled simultaneously on both sides. Hence, not only there holds |u| ≥ |u · ν|, but also
we may choose a reference frame in such a way that the shock be still steady, and that it hold
|u| = |u · ν|. This explains why the super-/sub-sonic property of one of the states with respect
to the shock, is encoded only in the normal component of the velocity: We say that a steady
shock between U− and U+ is supersonic (resp. subsonic) with respect to a neighbouring state
U if |u · ν| > c(ρ, e) (resp. |u · ν| < c(ρ, e)). Accordingly, a state U = U± is said to be subsonic
relatively (resp. supersonic relatively) to the the shock if |u · ν| is smaller (resp. larger) than
the sound speed.

Theorem 2.1 Consider a steady shock for a perfect gas with the full Euler model. Say that
p− < p+. Then there holds ρ+ > ρ−. Furthermore, the shock is relatively supersonic on the
front side (upstream) and relatively subsonic on the back side (downstream):

|u− · ν| > c−, |u+ · ν| < c+.

Proof
Inserting the assumption ρ+e+ > ρ−e− in (9), we obtain ρ+ > ρ−.
Let us define c∗ =

√
[p][ρ]. Eliminating j, we have

(55) (u− · ν)(u+ · ν) = c2
∗.

On the other hand, simple manipulations transform (9) into

(56) (1− µ2)((u · ν)2 − c2) = (u · ν)2 − c2
∗

on both sides.
From ρ− < ρ+ we have |u+ · ν| < |u− · ν|. With (55), this implies

(57) |u+ · ν| < c∗ < |u− · ν|.
Finally, (57) and (56) yield

(58) |u+ · ν| < c+, c− < |u− · ν|.
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We point out that the above proof works for a more general equation of state, provided that
the ratio

p− p0

ρ− ρ0

(p = p(ρ, e), p0 = p(ρ0, e0))

increases with ρ when (ρ0, e0) is kept fixed, along the Hugoniot curve defined by

e− e0 +
p + p0

2

(
1

ρ
− 1

ρ0

)
= 0.

As a matter of fact, such a property yields c− < c∗ < c+. Since (57) still holds true, we deduce
(58).

Let us turn towards the barotropic case, with p = Aργ. We still have (55) and |u+ · ν| <
|u− · ν|, hence (57). On the other hand, p being convex, there holds c− < c∗ < c+. Whence
(58). Remark that this proof needs only the convexity of p. This proves

Theorem 2.2 Consider a steady shock for a barotropic gas with p′ > 0 and p′′ > 0. Say that
p− < p+. Then there holds ρ+ > ρ−. Furthermore, the shock is relatively supersonic on the
front side (upstream) and relatively subsonic on the back side (downstream):

|u− · ν| > c−, |u+ · ν| < c+.

For more general equations of state, it may be necessary to reinforce the admissibility
condition for shock waves. The most popular admissibility condition is the Lax shock condition,
which tells that if a hyperbolic system of conservation laws consists of n scalar conservation
laws, there must be exactly n + 1 incoming characteristic curves in a shock. This is an obvious
necessary condition, at the linearized level, for the well-determination of the solution and of
the shock front, from the PDEs on each side and their associated Rankine–Hugoniot relations
only (see for instance [52]). In gas dynamics, this means that with ν the unit normal to the
shock front pointing towards the plus region, then

either (u · ν)+ − c+ < 0 < (u · ν)− − c−, or (u · ν)+ + c+ < 0 < (u · ν)− + c− .

This condition ensures that the shock is supersonic with respect to one of the states, the minus
one in the first case, or the plus one in the second case. We unify these cases by saying that
a steady shock is always supersonic with respect to the upstream flow. Since on the other
hand the pressure is lower upstream than downstream, we have that the shock is supersonic
with respect to the side of lower pressure. An equivalent statement is that if a steady shock is
subsonic with respect to the state on one side, then the pressure on this side is higher than on
the other one.

A subtlety about subsonic states. We warn the reader that the state on the subsonic side
of a steady shock may be either subsonic or supersonic in the coordinate frame! The subsonicity
holds with respect to the shock, thus exactly means that |u · ν| < c, while the supersonicity
with respect to the coordinate frame means that |u| > c. Obviously these two inequalities are
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compatible. On the other hand, the state on the supersonic side of the shock is supersonic in
every sense, since we have

|u| ≥ |u · ν| > c.

This subtlety is of some importance, as supersonicity in the reference frame means precisely
that the model, which is a system of PDEs in the (x, y)-plane, is hyperbolic in some direction,
though not in every one. When we consider a 3-D steady flow, saying that the state is subsonic
with respect to the steady shock means that the model is not hyperbolic in the direction normal
to the shock. More generally, the steady Euler system is hyperbolic in a direction N ∈ R3 if and
only if |u · N | > c|N |. For the sake of simplicity, we illustrate this claim with the barotropic
case. Working with unknowns V = (ρ, u1, u2, u3)

T , the system reads in the quasilinear form(
A1(V )∂1 + A2(V )∂2 + A3(V )∂3

)
V = 0.

Defining A(V ; ξ) =
∑

α ξαAα(V ), we have

A(V ; ξ) = (u · ξ)I4 +

(
0 ρξT

c2

ρ
ξ 0

)
.

Let P (V ; ξ) := det(A(V ; ξ)) be the principal symbol of the operator
∑

α Aα∂α. Let N ∈ R3

be such that P (N) 6= 0 (the normal plane to N is not characteristic). Then the system is
hyperbolic in the direction N if the roots of the polynomial s 7→ P (sN + ξ) are real for every
ξ. In our problem, P is written

P (V ; ξ) = (u · ξ)2
(
(u · ξ)2 − c2|ξ|2) ,

thus there is always a double real root −(u·ξ)/(u·N) in the fourth degree polynomial P (sN+ξ).
Taking ξ normal to N and u, we observe that the two remaining roots are real if and only if
|u ·N | ≥ c. Actually, these roots are the eigenvalues of some matrix and hyperbolicity requires
in addition that this matrix be diagonalizable . This rules out the borderline case |u·N | = c|N |.

About notations. When a steady shock is given, we always label U+ the subsonic state and
U− the supersonic one. Therefore we always have ρ− < ρ+ and p− < p+. Also, we choose the
unit normal ν that points toward the “plus” zone. Since U− is upstream and U+ downstream,
we have u± · ν > 0. In particular, there holds

j > 0, c− < u− · ν, u+ · ν < c+.

In many shock problems, a state U0 is given and a pair (U1; ν) is sought so that (U0, U1; ν) is
a steady shock. Such notations are employed as long as one does not know whether the zero
state is sub- or super-sonic (mind that this depends on ν). In some circumstances, it may be
necessary to employ both notations in the same paragraph.

2.2 Triple shock structures

A shock interaction is the simplest pattern that is genuinely two-dimensional. At first glance,
it would be a point where three shocks meet. We shall see below that it must be of even higher
complexity, because of a very general obstruction result. Typically, such a configuration needs
at least an additional wave: a vortex sheet or an expansion wave.
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Figure 1: The (impossible) pure triple shock structure.

2.2.1 Vorticity flows

In this paragraph, the flow is governed by either the full Euler system, or that of a barotropic
fluid. As a matter of fact, we only use the conservation of mass and momentum, without
any information about the pressure. To our knowledge, the following result is new in its
generality, especially because the obstruction appears to be of kinematical nature, rather than
thermodynamical.

Theorem 2.3 Consider a planar steady flow. There does not exist a pure triple shock structure,
that is a piecewise constant flow with only three states separated by straight shocks.

Amazingly enough, the proof involves only the kinematics, that is the conservations of mass
and momentum.

Proof
Let us denote U0, U1, U2 the constant states. We choose an orientation around the triple

point. The unit normal to the shocks are, in cyclic order, ν0, ν1, ν2, meaning that the line of
equation x · να = 0 separates Uα+1 from Uα+2, the normal being oriented from the (α + 1)-zone
to the (α + 2)-zone ; see Figure 1. The mass fluxes across the shocks are denoted as well ; for
instance,

j0 = ρ1u1 · ν0 = ρ2u2 · ν0.

We recall that jα 6= 0 for every α. Notice that the να’s are pairwise distinct unit vectors. We
do not exclude that two normals be parallel, for instance ν1 = −ν0, but at least two of them
are linearly independent.

We make use of (42) and of its equivalent form (thanks to (47) and to j 6= 0)

(59) [u] = j

[
1

ρ

]
ν.

In both (42) and (59), we sum circularly on the triple of shocks, in order to eliminate the [u]’s.
We obtain an identity ([h]0 denotes h2 − h1, and so on) that we may write in two forms:

(60)
∑
circ

[p]α
να

jα

= 0 or
∑
circ

[
1

ρ

]

α

jανα = 0.
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Since on the other hand we have

∑
circ

[p]α = 0,
∑
circ

[
1

ρ

]

α

= 0,

where the jumps of p and of 1/ρ do not vanish4, (60) tells us that the vectors Pα := j−1
α να are

collinear, and that the Qα = jανα are collinear too. Let L be the line passing through the Pα’s.
Since there is a pair of linearly independent να’s, L does not pass through the origin. Thus its
image under inversion with respect to the unit circle is a circle C passing through the origin.
Since the Qα’s belong to this circle and are collinear, two of them must be equal: say we have
j1ν1 = j2ν2. The ν’s being pairwise distinct, this implies ν1 = −ν2 (and thus jβ = −jα). Now,
any of the equalities in (60) tells that ν3 is collinear to the other ones, a contradiction.

Remarks.

• Theorem 2.3 is a folk result in multi-dimensional gas dynamics. However, it seems that
all the previous proofs needed specific assumptions on the equation of state. Courant and
Friedrichs ([27], paragraph 129) stated it for a polytropic gas. Henderson and Menikoff
[40] considered a more general gas, but still with a restriction on the equation of state.

• Henderson and Menikoff’s proof is based on the variation of the entropy across a sequence
of shocks, at given final pressure. This estimate, which has its own interest, gives a
rigorous basis to the following claim made several times by von Neumann [56, 57, 55]:
Among the wedges separated by the shocks, there must be an upstream wedge and a
downstream one. As the gas flows from upstream to downstream, it passes either on one
side of the triple point or on the other side. Thus some molecules cross only one shock,
while others cross two shocks. The increase of entropy should be higher in the former case
than in the latter. Hence the state downstream may not be uniform. We point out that
this entropy-based argument does not apply to the barotropic case. We do not exclude
that a similar argument, based on the variation of total energy, might work in this latter
case.

• Von Neumann’s claim looks to be a kind of convexity inequality. Therefore it certainly
needs some assumptions, like those of Henderson and Menikoff, in order to be proved. In
particular, it applies only within the class of entropy-admissible shock waves.

• On the other hand, Courant and Friedrichs’ proof, though being restricted to a small class
of equations of state, is valid even for non-admissible shocks, since it does not involve an
inequality at all. Thus it is completely independent from von Neumann’s claim.

• The proof above only assumes that the stress tensor is of the form −pId for some scalar
p. This means that, given an arbitrary interface Σ, the force applied by the fluid on one
side of Σ onto the fluid on the other side, is normal to Σ.

4If one of them vanished, we should find immediately [ρ] = [p] = 0 and [u] = 0, meaning that the shock was
not present.
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• It is remarkable that Theorem 2.3 holds true even if hyperbolicity fails in some region of
the phase space, when an equation of state is given. For instance, it applies to a van der
Waals gas.

• For the same reason, it is valid both for the full Euler model and the barotropic one.

• This two-dimensional result extends to three space dimensions, because the tangential
velocity is constant across a shock.

• Actually, the result is valid for time-dependent flows, in the following form: In 2+1 space-
time dimensions, there does not exist a (locally defined) piecewise smooth solution U(x, t)
of the (full or barotropic) Euler system, where the discontinuities are three shocks (the
normal velocities are non-zero) that meet transversally along a smooth curve t 7→ X(t).
This because at a given time t0, one may assume (thanks to Galilean invariance) that the
velocity Ẋ(t0) is zero. Then the field V defined by

V (x, t) := lim
r→0+

U(rx + X(t0), rt + t0)

is a steady triple shock pattern.

The most important consequence of Theorem 2.3 is the von Neumann paradox. Numerical
simulations as well as laboratory experiments show that in some parameter regimes, a Mach
Reflection takes place for which the flow seems to consist of three shocks separated by smooth
regions, without any slip line or rarefaction fan. This is clearly in contradiction with our
result. Collela & Henderson [26] suggested that such an irregular Mach Reflection actually
contains a very small rarefaction fan that ties the diffracted shock to the now smooth curve
formed by the incident shock and the Mach stem. Several authors have performed more and
more accurate simulations in order to give a refined description of this pattern, called a von
Neumann Reflection. An other plausible scenario is the one given by Tesdall & Hunter [71],
after careful numerical experiments: There is a supersonic region behind the triple point, which
consists of a sequence of supersonic patches formed by a sequence of expansion fans and shock
waves that are reflected between the sonic line and the Mach shock. Each of the reflected
shocks intersects the Mach shock, resulting in a sequence of triple points, rather than a single
one. The numerical results do not indicate whether there are finitely many such triple points
or not.

2.2.2 The one-dimensional case

The proof of Theorem 2.3 ressembles that of a well-known result about unsteady flows: In
one-space dimension, the interaction of two shocks cannot produce a single shock (see Exercise
4.12 in [64]). Here, u is scalar and each shock has its own velocity. Let us denote τ := 1/ρ.
The Rankine–Hugoniot conditions for conservations of mass and momentum are

[ρ(u− σ)] = 0,
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from which we define j := (ρ(u− σ))± (notice that the shocks are not steady), and

j[u] + [p] = 0.

We have again j2[τ ] + [p] = 0, and in particular

[u] = j[τ ] = ±
√

[p][τ ].

Summing circularly, we infer ∑
circ

±
√

[p][τ ] = 0.

The signs in this equality cannot be all equal. Therefore it reads
√

a2b2 =
√

a0b0 +
√

a1b1,

where in addition
ajbj > 0,

∑
aj = 0,

∑
bj = 0.

Developing, we have

(a0 + b0)(a1 + b1) = a2b2 = a0b0 + a1b1 + 2
√

a0b0a1b1,

from which we obtain a0b1 + a1b0 = 2
√

a0b0a1b1, whence a0b1 = a1b0. Coming back to the
definition of the a’s and b’s, this amounts to saying

p2(τ1 − τ0) + p1(τ0 − τ2) + p0(τ2 − τ1) = 0.

In other words, the three points (pj, τj) in the (p, τ)-plane are collinear. This implies that
the slopes between them be equal. Since these are the j2’s, two of the j’s must be equal, for
instance j0 = j1. But this reads ρ2(u2 − σ0) = ρ2(u2 − σ1). Whence σ0 = σ1: two among the
three shocks have the same velocity. It is straightforward to conclude that the configuration is
trivial.

Proposition 2.1 Consider unsteady flows in one space dimension. Whatever the equation of
state (which could be barotropic or not), there does not exist a pure triple shock configuration
satisfying the conservation of mass and momentum.

2.2.3 Irrotational flows

Slightly more difficult is the proof that a pure triple shock does not exist for potential flows.
Again, it is unclear whether the following result has been stated before. The analysis in [54]
(Appendix 2) proceeds only for weak shocks. It uses only approximate jump relations, thus it
is not a genuine proof.

Theorem 2.4 Consider a planar steady irrotational flow. There does not exist a pure triple
shock structure, that is a piecewise constant flow with only three states separated by straight
shocks.
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Proof
We proceed as in the proof of Theorem 2.3, except that the jump relations are

[u]× ν = 0, j2

[
1

ρ2

]
+ 2[i] = 0

and as usual

[u] = j

[
1

ρ

]
ν.

Once again, we do not need to know the way i is determined5 by the other parameters. We
thus have ∑

circ

j2
α

[
1

ρ2

]

α

= 0,
∑
circ

[
1

ρ

]

α

jανα = 0

while obviously ∑
circ

[
1

ρ

]

α

= 0,
∑
circ

[
1

ρ2

]

α

= 0.

Let us define the following nine points

Pα :=

(
jα

〈
1

ρ

〉

α

)−1

να, Qα := jανα, Rα := jα

〈
1

ρ

〉−1

α

να

The following identities come from above

∑
circ

j2
α

[
1

ρ2

]

α

Pα = 0,
∑
circ

[
1

ρ

]

α

Qα = 0,
∑
circ

[
1

ρ2

]

α

Rα = 0.

Since the sums of coefficients in each of these equalities vanish, we deduce that each triplet is
collinear: the points Pα lie on a line LP , the points Qα belong to a line LQ and the Rα’s are on
a line LR. Since the να’s are distinct and unitary, none of these line pass through the origin.

On another hand, each triplet (να, Pα, Qα, Rα) is on a ray Dα passing through the origin.
Each ray may be identified with the real line, on which we have ν2

αRα = PαQ2
α. Up to a rotation

we may assume that LQ has equation x1 = s with s a nonzero constant. Then the relation
between the P ’s and the R’s are

R = s2‖P‖2

x2
1P

P.

Let now ax1 + bx2 = c (c 6= 0) be an equation of LR. The above formula shows that in the
equation Ax1+Bx2−C = 0 (C 6= 0) of LP , the form Ax1+Bx2−C must divide the polynomial
s2(x2

1 +x2
2)(ax1 + bx2)− cx2

1. The ratio would be of degree two, and of valuation two also, hence
should be a quadratic form, and more precisely x2

1. This is clearly impossible.

5The context is ambiguous here. On the one hand, we do not use at all the way the enthalpy varies with the
density. On the other hand, we assume an equation of state p = p(ρ), otherwise (14) would not hold.
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Remark. Theorem 2.4 is a bit astonishing, because there is no possibility to resolve this
obstruction by inserting vortex sheets. The latter simply do not exist in potential flows. This
suggests that a correct pattern in a Mach stem involves at least a centered rarefaction wave.

2.2.4 The UTSD model

Rosales and Tabak [66] have shown result similar to Theorem 2.3 for the UTSD system (37,38).
We borrow our proof from Theorem 11.1 in [82]. Since (37,38) is not Galilean invariant6, we
must consider more general travelling waves U(x− at, y − bt).

Theorem 2.5 Consider travelling waves of the UTSD model. There does not exist a pure triple
shock structure, that is a piecewise constant flow with only three states separated by straight
shocks.

Proof
We may suppose that the wave travels only in the direction y, since there is a Galilean

invariance in the x direction. We assume that the shocks are non-trivial: [u]α 6= 0 for α = 1, 2, 3.
The Rankine–Hugoniot relations read

[
1

2
v2

]
νx + [w − bv]νy = 0, [w]νx = [v]νy.

In particular, the component νx is nonzero for each shock. Noticing that [v2] = 2〈v〉[v], we
obtain

〈v〉ν2
x − bνxνy + ν2

y = 0,

or equivalently
〈v〉 = bm−m2,

where m := νy/νx is the slope of the shock. Since [v] = −2[〈v〉], this yields

[v]α = 2[m2 − bm]α.

Using now [w] = m[v], we deduce

[w]α = 2pα[m2 − bm]α.

Suming up, there comes ∑
circ

mα[m2 − bm]α = 0,

which also reads ∏
circ

[m]α = 0.

6The UTSD model is Galilean invariant in the x direction but not in the y direction.
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Therefore at least two shocks are aligned. Since [u]× ν = 0, this means that two of the jumps
[u]α are collinear. By difference, the third one is also collinear with them, meaning that the
three normal are aligned. This is a contradiction.

Let us point out that the UTSD model does not allow any kind of contact discontinuity.
Since numerical experiments strongly suggest that we do encounter triple-point configurations,
we must decide which additional phenomenon prevents Theorem 2.5 to apply, in order to solve
this von Neumann paradox. Guderley [33, 34] suggested that there is a supersonic region
behind the triple point, in which an additional expansion fan develops. The presence of a tiny
supersonic region was validated by careful numerical experiments of Hunter & Brio [43]. Next,
Tesdall & Hunter [71] refined the calculations and found an array of at least four supplementary
triple points, next to the main one along the Mach shock. They are produced by a wave
bouncing between the Mach shock and the sonic line. At each bounce, the nature of the wave
flips, from shock to expansion fan, and back.

The possibility of a rarefaction fan is ruled out in the transonic case because hyperbolicity
of the stationary equations is lost. Then there remains the possibility that the solution be
non-smooth at the triple-point. This situation is plausible, after a nice analysis by Gamba &
al. [30]. Notice that the v component must remain bounded because of physical considerations,
so that the singularity manisfests itself at the leading order in the component w only. This
is similar to the situation of an elliptic first-order linear system, say the Cauchy–Riemann
equations, when one of the components is only piecewise continuous on the boundary. Then
the other component experiences a logarithmic singularity at every point of discontinuity of its
conjugate.

2.2.5 Four shocks and more

Let us go back to the obstruction found in Paragraph 2.2.1. It is interesting to know whether
a pure shock interaction pattern exists with more than three shocks. This question turns out
to have a simple answer, found by Bleakney & Taub [6].

Let us anticipate a little bit. We shall construct in Section 3.1 simple patterns called
Regular Reflection along a planar wall, denoted by the acronym RR. This patterns is described
in Figure 4. The flow is piecewise constant, varying only across two straight shocks that meet
at a boundary point. Along the wall, the normal component of the velocity vanishes.

Having in hands such a RR, we may built a four-shocks pure pattern in the plane, by making
a reflection across the wall:

(x2 < 0) =⇒




ρ(x) := ρ(x1,−x2),
e(x) := e(x1,−x2),

u1(x) = u1(x1,−x2),
u2(x) = −u2(x1,−x2)


 .

Hence pure four-shocks patterns do exist, contrary to triple-shock patterns. We point out that
the manifold of all pure four-shocks patterns is a priori of dimension four (the four states and
four shocks being described by 16 scalar parameters, while the Rankine–Hugoniot conditions
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giving 12 scalar constraints). On the other hand, the symmetric patterns built by Bleakney
& Taub are described by four scalar parameters, say the upstream flow and the angle that it
makes with the incident shock. Hence it is likely (though this claim would need a more detailed
analysis) that every pure four-shock pattern has the symmetric form described above.

This mandatory symmetry makes the class of pure four-shocks patterns useless. An alterna-
tive to it consists in introducing a rarefaction fan or a slip line, instead of a fourth shock. The
choice of a slip line yields the so-called Mach Reflection (MR) ; see Section 3.2. The existence
of patterns with three shocks and a rarefaction fan was proved by Bargmann & Montgomery
[3]. However, this latter class does not seem as useful as the MR class. Notice that in old
papers, as [3, 6], a rarefaction fan is called a Prandtl–Meyer variation. It has the property that
the component of the flow normal to the radius vector is always sonic (|uθ| = c(ρ)).

Of course, we may consider a more general pattern organized around a center. Typically,
the flow will depend only on the polar angle θ and not on the radius r. Such a flow is made of
constant states, shocks, rarefaction fans and slip lines. For a barotropic flow with a reasonable
equation of state p = p(ρ), say with p′ > 0 and p′′ ≥ 0, one proves easily that a shock is
adjacent to constant states only. Except across slip lines, the flow is irrotational and thus we
can it derive from a potential that is homogeneous of degree one. Along the unit circle, the
local extrema of the potential must arise in zones where the flow is uniform.

2.3 The generation of vorticity across shocks

This section is devoted to the barotropic model, for which the vorticity ω := ∇× u obeys the
transport equation (13). As seen in Section 1.2, this gives ω ≡ 0, provided the initial vorticity
vanishes and the flow remains Lipschitz continuous. In steady flows, (13) reduces to

(u · ∇)ω + (divu)ω = (ω · ∇)u,

again a transport equation along the flow. Thus ω vanishes downstream if it does upstream
and the flow is Lipschitz continuous. Notice that in two space dimensions, ω equals ∂1u2−∂2u1

and satisfies

(61) (u · ∇)ω + (divu)ω = 0.

Notice that if we assume conversely that the flow be steady and irrotational, then we find that
the fluid behaves locally like either a barotropic gas or an incompressible one, because of the
identity

0 = curl(ρ(u · ∇)u) = curl

(
1

2
ρ∇|u|2 + ρωu⊥

)
,

from which it follows, when ω ≡ 0,

∇ρ×∇|u|2 = 0.

Thus either ρ is locally constant, or |u|2 = h(ρ) for some function h, at least locally. But then

(62) ∇p = −ρ∇1

2
|u|2,
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whence

(63) p = H(ρ), H ′(s) = −s

2
h′(s).

We point out however that we do not need that a barotropic equation of state be given a priori.
What does happen if the flow experiences a discontinuity, while being irrotational on one

side ? The answer depends of course on the type of discontinuity. Along a vortex sheet V ,
the tangential velocity admits a nonzero jump [u× ν] (this is the only discontinuous quantity
there), meaning that ω has a non-trivial singular part [u× ν]⊗ δV .

The situation is a little more interesting across a shock wave S. Our first observation is that
because of (48), the vorticity does not have a singular part on S, but is an ordinary function
away from slip lines, as long as the flow is piecewise smooth. In the simple case of a planar
shock wave separating two constant states, the vorticity is thus identically zero, even in the
distributional sense: the flow is irrotational. It turns out that this is not true once the shock is
curved. For the sake of simplicity, the following result is stated in two space dimensions.

Theorem 2.6 Let U be a two-dimensional steady flow, constant on one side Ω− of a C1 shock
curve S and of class C1 on the other side Ω+. If ω vanishes on Ω+, then S is a straight line.

Proof
We proceed in two steps. We first show that if ρ has a regular point (∇ρ 6= 0) at some point

P ∈ S+, then the normal ν to S is constant in a neighbourhood of P . There remains the case
where ρ is locally constant, and there we obtain the same conclusion.

We begin with the easier second case. Thus let ρ ≡ ρ+ be constant in Ω+ near P ∈ S+, say
in D+. From (62), we have

p = p0 − 1

2
ρ+|u|2

in D+ (p0 a constant). Let us write the Rankine–Hugoniot conditions

ρ+u · ν = ρ−u− · ν, u× ν = u− × ν, [p] = −j2

[
1

ρ

]
.

Elementary calculations yield an equation for the normal (since the flow is constant in Ω−,
p ≡ p− is constant there)

N(ν) := 2(p− − p0) + ρ+(u− × ν)2 +

(
2

ρ−
− 1

ρ+

)
ρ2
−(u− · ν)2 = 0.

Since N is a quadratic trigonometric polynomial, its roots are isolated. The only exception to
this rule is when N is constant, but this means

ρ+ =

(
2

ρ−
− 1

ρ+

)
ρ2
−,

or in other words [ρ] = 0. But then we obtain [u] = 0 and there is no shock at all.
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Since the roots of N are isolated and ν varies continuously along S, we deduce that ν is
locally constant, hence S is locally straight.

We turn now to the case where ∇ρ 6= 0 at P . Then we may write locally |u|2 = h(ρ) and
p = H(ρ) with H as in (63), and h, H are C1 functions. We denote θ = h−1. Let us introduce
the sine s := (u− × ν)/|u−| (with say

√
1− s2 = (u− · ν)/|u−|). We may choose a system of

coordinates in which s does not vanish at P . We write the Rankine–Hugoniot equations in the
form (recall that τ = 1/ρ)

M




j
τ
s


 :=




j2(τ − τ−)−H(ρ) + p−
τθ (τ 2j2 + |u−|s2)− 1

j − ρ−|u−|
√

1− s2


 = 0.

A lengthy computation gives the Jacobian of M at any root:

(M = 0) =⇒ (
det(dM) = s|u−|2[ρ]2(1 + 2j2τ 3θ′(τ 2j2 + |u−|s2))

)
.

The last parenthesis vanishes precisely when the flow on the + side is sonic with respect to the
shock (see Section 2.1). When this happens, we find easily that

dM =




2j[τ ] 0 0
−j−1 0 −sj−2ρ2|u−|2

1 0 js/(1− s2)


 .

The rank of this matrix equals two. Its kernel is spanned by the vector (0, 1, 0)T . Therefore the
derivatives of j and s along S+ vanish. In particular, ν is constant, so that S is a straight line.

Remarks.

• If the flow is C3, we may continue the calculation above. Assuming that τ is non-constant
along S+, we find two other equations which involve j, τ , θ′ and θ′′. Eliminating j and
τ , we conclude that

θθ′′ = 3θ′2.

This means exactly that the fluid behaves locally like a Chaplygin gas. In all other cases,
a shock between a constant state and an irrotational flow separates two constant states.

• Since we do not prescribe a priori an equation of state, the proof above indicates that
the generation of vorticity across curved shocks is, at least at the qualitative level, a
phenomenon of kinematical nature. We may see Theorem 2.3 as a variant of Theorem 2.6,
because a wedge formed by two shocks can be viewed as a unique shock with curvature
concentrated at one point. Thus the impossibility of pure triple shock configuration
expresses the fact that the vorticity generation at each of the three wedges cannot cancell.
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The barotropic case. When a barotropic equation of state is prescribed, it becomes possible
to predict in a quantitative way the generation of vorticity across a curved shock. We again
assume that the flow is uniform in Ω−.

Let τ be the unit tangent to the shock and κ be the curvature. In the following calculations,
the dot is the derivative along S with respect to arc length:

τ̇ = κν.

Denoting by B := i(ρ) + |u|2/2 (with i′(s) = s−1p′(s)) the Bernoulli invariant, we have

Ḃ = τ · ∇B = u · (τ · ∇)u +
1

ρ
τ · ∇p = (∇u) : (u⊗ τ − τ ⊗ u) = ωu× τ = j

ω

ρ
,

where we drop the subscript on the plus side. Since the identity

[B] = [i(ρ)]−
〈

1

ρ

〉
[p(ρ)] =: F (ρ)

holds true, because of (47), this gives

(64) F ′(ρ)ρ̇ = j
ω

ρ
.

On the other hand, the Rankine–Hugoniot conditions give

u− · ν =

√
ρ[p(ρ)]

ρ−[ρ]
=: G(ρ).

Differentiating along the shock, we obtain

G′(ρ)ρ̇ = κ(u− × ν),

from which we deduce the formula

(65) G′(ρ)jω = κ(u− × ν)ρF ′(ρ).

This identity shows that, given the states ρ−, ρ = ρ+, j and the direction of the shock, the
vorticity on the non-constant side is proportional to the curvature of the shock front. It is also
proportional to the tangential component of the velocity, hence vanishes at points where the
shock is normal. With Theorem 2.6, this shows that such points are isolated along a curved
shock.

2.4 Diffraction for the full Euler system

We aim to give in this section a precise description of the planar steady shocks in which the
state U0 is prescribed on one side, and the unit normal ν pointing from the state U0 to the
state U is given. For convenience, we shall use coordinates (ρ, u, p) in state space.
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The important point is that, whenever the shock front is not normal to the speed u0 (that is,
ν is not parallel to u0, one speaks of an oblique shock), the direction of the speed must change
across the shock, i.e. u1 is not parallel to u0. More precisely, the angle between the velocity
and the normal to the front is larger downstream7 than upstream. This is clear from the fact
[ρu · ν] = 0 while ρ+ > ρ−, hence |u+ · ν| < |u− · ν|, while [u × ν] = 0. This is the diffraction
phenomenon, analogous to the one that arises in optics.

Since shock reflection in presence of walls imposes a direction to the velocity in the diffracted
flow (because of the boundary condition u · n = 0), it is important to describe quantitatively
the diffraction angle across a shock, in terms of the shock strength and of the incidence angle.
This is not too hard since an oblique shock, that is a shock where u × ν 6= 0, is nothing but
the superposition of a normal shock (namely one with u × ν = 0) with an arbitrary (though
continuous) tangential component of the velocity u − (u · ν)ν. Notice that, given U0 and the
direction of the shock front, we just have to determine a normal shock, ignoring the tangential
part of the velocity ; this normal shock will usually be completely determined by (ρ0, u0 · ν, p0)
and the fact that the shock is steady. The worst situation is when these data lie beyond some
threshold, so that there does not exist any such normal shock. This usually happens when the
incidence angle is too large, exactly as in optics, where a light ray cannot enter a medium of
higher refraction index when the incident angle exceeds a critical angle. This phenomenon is
one of the ingredients that are responsible for the transition from RR to MR.

The steady shock curve (full Euler system). Our first observation is that the thermo-
dynamical variables (ρ, p(ρ, e)) on the other side of the shock front must belong to the curve
(the Hugoniot curve) defined by (9), namely (recall that τ denotes the specific volume 1/ρ)

(66) e− e0 +
p(ρ, e) + p0

2
(τ − τ0) = 0.

On an other hand, the mass flux j across the shock is j = ρ0u0 ·ν. Hence the Rankine–Hugoniot
condition for the conservation of momentum is linear in (p, τ):

(67) j2(τ − τ0) + p− p0 = 0 (j := ρ0u0 · ν).

Conversely, assume that (j, p, τ) satisfies (66, 67). We define u by

u · ν := jτ, u× ν = u0 × ν.

By definition, we have [ρu · ν] = 0. From (67), we immediately have [ρ(u · ν)2 + p] = 0. With
[u× ν] = 0, this gives the Rankine–Hugoniot condition for the conservation of momentum. At
last, we have

[
1

2
|u|2 + e + pτ

]
=

[
j2

2
τ 2 + e + pτ

]
= [e + pτ ]− [p][τ 2]

2[τ ]

= [e + pτ ]− 〈τ〉[p] = [e] + 〈p〉 [τ ] = 0,

7Notice that we do not specify whether U0 is downstream or upstream.
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which is the Rankine–Hugoniot equation for the conservation of energy.
In summary, a solution (j, p, τ) of (66,67) yields a piecewise constant solution of the full

Euler model, where the front is normal to ν. This discontinuity is an admissible shock if j, or
equivalently u0 · ν, has the sign of τ0 − τ . In conclusion, the set of admissible shocks with the
state U0 on one side is a curve parametrized by the angle of incidence.

Calculations. We consider the system (66,67) when the equation of state is that of an ideal
gas, pτ = (γ−1)e. Then (66) reads [pτ ]+(γ−1)〈p〉[τ ] = 0. In other words, [p]〈τ〉+γ〈p〉[τ ] = 0.
Eliminating [τ ] with (67), we obtain [p](j2〈τ〉 − γ〈p〉) = 0. The case [p] = 0 corresponds
to the trivial pattern where U = U0. Hence non-trivial patterns obey the linear equation
j2〈τ〉 − γ〈p〉 = 0. Using again (67), we obtain the unique value of p:

(68) p = (1− µ2)j2τ0 − µ2p0.

We notice that in the limit of an infinitesimal shock, that is p = p0, one has (1 + µ2)p0 =
(1−µ2)j2τ0, which yields |u0 ·ν| = c0. In other words, the small shocks behave like sonic waves.

From (68), we derive the value of the specific volume

(69) τ = µ2τ0 + (1 + µ2)j−2p0.

Although (69) gives a positive value, this is not alwaystrue for (68). A value of p is relevant as
a pressure only if being positive. Denoting by θ0 the angle of incidence on the (0) side, namely
the angle between the shock normal ν and the velocity u0, this relevance is equivalent to

(70)

√
γ − 1

2γ
< M0 cos θ0, M0 :=

|u0|
c0

,

where M0 is the Mach number8 on the (0) side. We point out that this inequality imposes a
lower bound for the Mach number on either side of a steady shock wave:

(71)

√
γ − 1

2γ
< M0.

Notice that (71) is automatically satisfied when the state is supersonic (M0 > 1). For a given
state U0, the Hugoniot curve is parametrized by the incidence angle θ0 ∈ [0, θ0∗) where θ0∗ < π/2
is given by the equality in (70). This interval is non trivial when (71) is fulfilled, in particular
when U0 is supersonic. Notice that, contrary to the optics, the maximal reflected angle that is
obtained when θ0 = θ0∗ is smaller than π/2 ; it is given by

tan θ∗ = µ2 tan θ0∗.

8This is an absolute Mach number, with respect to the reference frame, rather than a Mach number with
respect to the shock, whose value is M0(ν) := |u0 · ν|/c0. In terms of the latter, the positivity of p amounts to
saying that M0(ν) >

√
(γ − 1)/(2γ). But since we shall let θ0 vary while keeping u0 fixed, it is better to make

use of M0, which remains fixed.
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From [u× ν] = 0 and [ρu · ν] = 0, we get |u| sin θ = |u0| sin θ0 and ρ|u| cos θ = ρ0|u0| cos θ0.
This gives [τ tan θ] = 0. Together with (69), this yields

tan θ =
tan θ0

µ2 + (1 + µ2)j−2ρ0p0

.

Equivalently, we obtain the relation between the incident and reflected angles:

(72) tan θ =
(γ + 1)M2

0 sin θ0 cos θ0

(γ − 1)M2
0 cos2 θ0 + 2

.

This yields a function θ0 7→ θ that is not necessarily monotonic at a fixed Mach number.
However, it has at most one change of monotony.

It is more interesting to consider the deviation angle [θ] = θ−θ0. From the addition formula
for tangents, and from (72), we obtain

(73) tan[θ] = 2
M2

0 sin θ0 cos θ0 − tan θ0

2 + (γ − 1)M2
0 + 2M2

0 sin2 θ0

[θ] := θ − θ0.

Notice that if we use the relative (to the shock front) Mach number m0 = |u0 ·ν|/c0 = M0 cos θ0,
then Formula (73) reads

tan[θ] = 2
m2

0 − 1

2 + (γ + 1)M2
0 − 2m2

0

tan θ0.

This expression is interesting in that it shows that [θ] vanishes only for θ0 = 0 (that is for
normal shocks) and for m0 = 1. The latter case necessitates M0 ≥ 1, and then is always
compatible with condition (70).

Variations of θ0 7→ [θ]. The function θ0 7→ [θ] must be studied on the interval [0, θ0∗). Its
derivative vanishes when P (m2

0) = 0, where P is the polynomial

P (X) := 2γX2 + (4− (γ + 1)M2
0 )X − 2− (γ + 1)M2

0 .

This polynomial has always one positive real root X0, which corresponds to an admissible angle
θ0 if and only if

X0 ∈
(

γ − 1

2γ
,M2

0

]
.

This means precisely that

P

(
γ − 1

2γ

)
< 0 ≤ P (M2

0 ).

These inequalities read M2
0 > (γ − 3)/(3γ − 1) and M2

0 ≥ 1 respectively, and the second one
implies the first one. Hence the function θ0 7→ [θ] is monotonic decreasing when M0 ≤ 1 (the
state U0 is subsonic in the reference frame), but has exactly one maximum if M0 > 1 (the state
U0 is supersonic). We recall that in the latter case, U0 may be either subsonic or supersonic
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with respect to the shock. Actually, P (1) = 2(γ + 1)(1 − M2
0 ) being negative, we see that

θ0 7→ [θ] is monotonic increasing on the interval [0, θ0s) for which U0 is supersonic with respect
to the shock. In particular, we have

[θ] ∼ 2
M2

0 − 1

2 + (γ − 1)M2
0

θ0

for small incident angles (almost normal shock).

Shock polar. We summarize the above calculations.

If M0 ≤
√

γ−1
2γ

, there does not exist any steady shock from U0.

If
√

γ−1
2γ

< M0 ≤ 1, the interval [0, θ0∗) is non-trivial, and θ0 7→ [θ] is monotone decreasing.

Both θ0∗ and the corresponding reflected angle θ∗ are less than π/2.

If M0 > 1, the function θ0 7→ [θ] is monotone increasing until a critical angle, and then is
decreasing towards a negative value.

Notice that in all non-trivial cases, the deviation is negative at the end point, meaning that
θ∗ < θ0∗. The patterns are represented in Figure 2, called shock polars.

Small strength. We say that a shock has small strength if [U ] is small, but the incidence θ0

is not. In particular, [θ] << 1, meaning that m0 ∼ 1. Such a shock is therefore almost sonic and
is close to an acoustic wave9. We have M ∼ M0, and since one of the states must be supersonic,
we see that both states are absolutely supersonic:

M > 1, M0 > 1.

9A acoustic wave is a continuous, piecewise C1, solution of which the pressure is not C1.
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On the other hand, both m and m0 are close to one, but they are on opposite sides of the unity:

(m− 1)(m0 − 1) < 1,

as it must be for every steady shock.

Small vs strong shocks. Small shocks correspond to the part of the curve around its in-
tersection with the upper semi-axis in Figure 2 (b). The deviation angle of such a shock is
small, as well as the jump of the state ; as mentioned above, the shock is approximately a sonic
wave, meaning that c ∼ c0 ∼ u · ν ∼ u0 · ν. More generally, we say that a shock is small if
it corresponds to an angle θ where the slope of the shock polar is negative, while it is strong
if this slope is positive. With this terminology, a normal shock is always strong, although we
may built a one-parameter family of normal shocks whose strength tends to zero at some value
of the parameter. The flow behind a strong shock is always absolutely subsonic (see [72]).

2.5 Diffraction for a barotropic gas

When the fluid is barotropic, we have only the conservation of mass and momentum, which
yield the Rankine–Hugoniot conditions

[ρu · ν] = 0, [ρ(u · ν)u] + [p]ν = 0.

With the same notations as in the previous section, they read

j := (ρu · ν)±, j[u] + [p]ν = 0.

Once again, we have [u× ν] = 0, from which we derive easily

tan θ = φ−1 tan θ0, φ :=
ρ

ρ0

.

We determine the ratio φ through
j2[τ ] + [p] = 0,

which we rewrite as

(74) φ
[p]

[ρ]
= c2

0M
2
0 cos2 θ0, M0 :=

|u0|
c0

.

For a perfect gas with p(ρ) = ργ, this reads

(75) F (φ) = M2
0 cos2 θ0, F (s) :=

s(sγ − 1)

γ(s− 1)
.

As before, it is more interesting to work with the angle of deviation [θ]:

(76) tan[θ] =
(1− φ) tan θ0

φ + tan2 θ0

.
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Figure 3: Incident shock along a planar wall (the reflected pattern is to be determined).

The same description as in the previous section holds. The deviation angle vanishes for θ0 = 0
(normal shock). It vanishes also if φ = 1 (infinitesimal shock), a property that happens, when
M0 > 1, for some angle that solves

cos θ0 =
1

M0

.

The shock polar has the same general form (see Figure 2) as in the case of the full Euler system.
Notice that the relative Mach number m0 := M0 cos θ0 is not limited here, contrary to the

general case.

3 Reflection along a planar wall

Let us consider the case where the physical domain is a half-plane, bounded by a rigid wall, say
the horizontal axis. We give ourselves (see Figure 3) an incident steady shock I. This means
that the states U0 and U1, as well as the angle α, are given. By incident, we always mean that
α ∈ (0, π/2) and U flows into the shock. With our convention, we have (U−, U+) = (U1, U0)
with respect to the incident shock.

Although we shall not make use of the data U1 and α, it is worth saying that (U0, U1; α)
satisfies the Rankine–Hugoniot relations and the entropy condition, together with the natural
boundary condition that u1 is parallel to the boundary: u1 · n = 0.

In general10, U0 does not satisfy the slip boundary condition and therefore the picture given
in Figure 3 is not complete. We are thus looking for a reflected shock R, that is a state U behind
U0, and an angle β, which satisfy the Rankine–Hugoniot relations and the entropy condition ;
naturally, we require the boundary condition that u is parallel to the boundary (see Figure 4
for the simplest pattern).

10It may happen exceptionally that u0 · n = 0: When M1 > 1, there is a critical angle αc for which the
deviation angle is zero (see Figure 2 (b).)
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Figure 4: Regular Reflection (RR) along a planar wall.

Remark. The state U0 will flow into the reflected shock ; thus U0 will play the role of U− with
respect to the reflected shock, contrary to what held along the incident shock. We summarize
this important remark in the formula

(77) UR
− = U I

+.

We notice that, U0 being supersonic with respect to the reflected shock, we need that M0 be
larger than one11. We have seen above that this requirement is automatically satisfied if the
strength of the incident shock is weak enough.

3.1 Regular Reflection

Figure 4 displays the Regular Reflection (RR), where the exact solution of our problem is
piecewise constant, the only discontinuities being the straight lines where the incident and
reflected shocks take place. The shocks meet at a point located along the boundary, which can
be taken as the origin.

The problem to solve: Since U0 is given, and in particular its angle δ with respect to the
wall, we only have to select a steady shock from U0 to a state U , such that the deviation [θ]
across the shock equals δ. Coming back to Formula12 (73), we have to solve the equation

(78) 2
M2

0 sin θ0 cos θ0 − tan θ0

2 + (γ − 1)M2
0 + 2M2

0 sin2 θ0

= tan δ, θ0 ∈ [0, θ0∗(M0)),

where θ0 is the (unknown) incidence angle of U0 in the reflected shock. This amounts to taking
the intersection of the shock polar (Figure 2) with the vertical line of abcissa δ. Then the

11Hence U0 is absolutely supersonic, though subsonic relatively to the incident shock.
12For definiteness, we consider a perfect gas obeying the full Euler system. We leave the reader to carry out

the calculations in the barotropic case. The results are qualitatively similar.
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reflected angle β will be given by

(79) β =
π

2
− θ0 − δ.

We point out that, since U0 is given as part of a steady shock (the incident one), (71) holds
true. Therefore θ0∗ is positive and the interval [0, θ0∗) where the left-hand side of (78) is defined
is non trivial.

Since the range of θ0 7→ [θ] is strictly contained in (−π/2, π/2), we see that there is a
critical angle δc beyond which (78) has no solution. In this regime, there is a need for a
more complicated pattern, say a Mach Reflection (see Section 3.2). Actually, experiments
suggest that the transition from RR to MR happens at some angle δt strictly smaller than
δc. In this situation, a Mach Reflection occurs, while a Regular Reflection is still theoretically
possible. This anticipated transition must be due to some instability, but has not been explained
rigorously so far.

3.1.1 Weak and strong reflections.

Although small values of δ do not always correspond to a weak incident shock, this will be the
case in RR, according to both physical and numerical experiments. Hence we shall restrict to
this case. As seen above, we have M0 > 1 and M > 1. The figure 2 (b) is thus relevant for
both the incident and the reflected shocks. In the former, the angle of incidence is close to that
at which the curve intersects the upper semi-axis. Hence α is not close to π/2 : the incident
shock is significantly not perpendicular to the wall. The deviation δ may be either negative or
positive (the figure 3 displays a positive δ).

Concerning the reflected shock, the situation depends whether δ is positive or negative. In
the former case, there are two solutions of Equation (78). One of them is small (θ0 << 1),
meaning that β is close to π/2. We warn the reader that the corresponding [U ] is not small,
and we call this a strong reflection. The other solution is associated to a weak shock and is
called a weak reflection. For a negative δ, there is only one solution, which is the weak one.

The physical and numerical experiments suggest that a strong reflection, though perfectly
defined at a mathematical level, does not happen in practice. This might be related to a
Hadamard instability with respect to the evolutionary problem. Such instability is not that of
one of the shock waves, these being individually stable, as shown by Majda [52]. It must be a
property of the whole pattern formed by the initial-boundary value problem and both shocks.
This phenomenon has been investigated by Teshukov [73], se Paragraph 3.3.1.

We therefore restrict in the sequel to the case of weak RR. Notice that if the incident
shock strength is small, both incident and reflected shocks are approximately sonic waves. In
particular, we have u0 · νR ∼ c0 ∼ u0 · νI . Since δ is small, that is u0 is approximately parallel
to the wall, this reads M0 sin β ∼ M0 sin α. We conclude that a weak RR with small incident
strength follows approximately the law of optical (specular) reflection:

(80) β ∼ α.
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Transonic vs supersonic RR. In a RR, we know that the state U2 behind the reflected
shock R is subsonic with respect to R. However, it may happen that this state be either
subsonic (if |u2| < c2) or supersonic (if |u2| > c2) with respect to the reference frame. In the
first case, we say that the reflection is transonic. In the latter case, we say that it is a supersonic
reflection. Teshukov [72] has shown that under a mild assumption on the equation of state, a
strong RR is always transonic.

3.1.2 Normal reflection

When we let the angle α tend to zero, a limit situation happens, where it is not possible any
more to keep the reflection point at a finite distance : the incident shock becomes parallel to
the wall and bounces against the wall at time t = 0. For this reason, the strong reflection does
not happen (another insight that a strong reflection is not physical) and the reflected shock is
parallel to the wall too. However, the incident shock is present only at negative times, while
the reflected one is there only at positive times (Figure 5).

In this problem, the state U1 is the only data. It defines a Hugoniot curve of normal shocks,
parametrized by the shock velocity s. The rest states U0 and U1 are found by saying that
their velocities vanish. For a reasonable equations of state, there is exactly one solution with a
positive s (the incoming shock) and one with a negative s (the reflected shock). Let us see the
calculations.

Barotropic gas. Let U be the rest state and j be the net flow across the shock. We identify
the velocitiy vectors with their normal component. We have j = ρ1(u1 − s) = −ρs and
p(ρ) = p(ρ1) + ju1. Eliminating j and s, we arrive at the equation

(81) p(ρ) = p(ρ1) +
ρρ1

ρ− ρ1

u2
1.

Let g(ρ) denote the right-hand side of (81). Apart from a ole at ρ = ρ1, this is a decreasing
function (see Diagram 6). When p is monotone increasing, Equation (81) admits precisely two
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solutions ρ0 and ρ2 with ρ0 < ρ1 < ρ2. There correspond the rest states U0 and U2, with
corresponding shock speeds sI > 0 and sR < 0.

Full Euler system. The identity (81) still hold true, except that now p = p(ρ, e) and p1 =
p(ρ1, e1). We have to solve the system made of (81) and the analogue of (66):

(82) e− e1 +
p(ρ, e) + p1

2
(τ − τ1) = 0.

Let us define g(ρ, e) := p− p1 − ρρ1

ρ−ρ1
u2

1, which is a piecewise increasing function of ρ (provided
pρ > 0, with a pole at ρ = ρ1 and

g(0, e) = −p1 < 0, g(ρ1 − 0, e) = +∞, g(ρ1 + 0, e) = −∞, g(+∞, e) = +∞.

Equation (81) thus defines two functions ρ−(e) < ρ1 < ρ+(e), which are decreasing under the
natural assumption that pe > 0. In terms of the specific volume, we have increasing functions
τ+(e) < τ1 < τ−(e). Because of (81)), solving (82) amounts to solving

(83) e + p1τ±(e) = e1 + p1τ1 +
1

2
u2

1.

Since the left-hand side is an increasing function of e, it is enough to verify that

p1τ±(0) < e1 + p1τ1 +
1

2
u2

1.

This is true provided

(84) e1 >
1

2

u2
1

p1

,
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because τ−(0) = τ1 + u2
1/p1 and τ+(0) = 0. Condition (84) is precisely that which ensures the

existence of an incoming normal shock with downstream state U1. As a matter of fact,

s = −ρ1u1

[ρ]

is of the sign opposite to that of [ρ]. Hence ρ− corresponds to s > 0, that is to the incoming
shock, while ρ+ correspond to the reflected shock.

In summary, for reasonable equations of state, a normal incident shock always
result in a uniquely defined normal reflected shock. This one is the limit of the weak
Regular Reflection as the angle α tends to zero.

3.1.3 Regular Reflection for a barotropic gas

For a barotropic gas, the equation to solve is

(1− φ) tan θ0

φ + tan2 θ0

= tan δ,

where φ and θ0 are related through (75). Recall that M0 and δ are given, and that θ0 is our
unknown. This problem amounts, as above, to finding the intersection of a shock polar with a
vertical line of abcissa δ, yielding a strong and a weak reflection. On an analytical level, tan θ0

may be eliminated, thanks to the formula

1 + tan2 θ0 =
1

cos2 θ0

=
M2

0

F (φ)
.

There remains an “algebraic” equation in φ, of degree 2(γ + 1). For a polytropic gas with D
degrees of freedom, this is a genuine algebraic equation in φ2/D, since γ = 1 + 2/D.

3.2 Mach Reflection

When the incident shock is too strong, or the angle α between the front and the wall is too large,
the RR does not happen, either because Equation (78) does not have a solution, or because
its solutions yield unstable patterns (see Section 3.3). Experiments suggest that the reflection
point P is removed from the wall. There is a reflected shock R, but the point P where I and R
meet is not any more along the boundary. Of course, the extreme states U1 and U2 are distinct
(as they were in the simpler situation of the RR) and there is a need of a third shock to match
them. Thus we expect a triple shock pattern at point P . Since we have proved in Section 2.2
that a pure triple shock structure does not exist, we also need a fourth wave at P . The simplest
possibility is that of a slip line V (for vortex sheet), giving rise to a Mach stem shown in Figure
7. This terminology is due to von Neumann, after the experiments by Ernst Mach [51].

At a first glance, the Mach stem is a piecewise constant steady solution, thus has the
advantage of being explicit (algebraic calculations). However, its flaw is that it cannot fit the
boundary condition u·n = 0. Were U3 to satisfy the boundary condition, V would be horizontal
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Figure 7: A Mach stem. The velocities u2 and u3 are parallel though not equal. The pressures
p2 and p3 are equal, but the entropies S2 and S3 are not.

since it is parallel to the flow ; but then U2 would be horizontal too so that I and R could be
used to make a RR. Hence the third shock would be useless. This argument also shows that in
a Mach stem, the slip line cannot be horizontal.

Another difficulty in the matching of the Mach stem with the boundary condition is that
since U3 and U1 are parallel, the third shock S must be normal. If S is straight, it must be
vertical, but this is a severe restriction that makes the construction overdetermined.

From this analysis, we must take the following conclusion. First of all, the shock reflection
is not piecewise constant. Although the shock S and the slip line V may be straight near P
when either of U2 or U3 is supersonic, they must be curved when approaching the boundary.
In particular, the tangent to S at P can be determined algebraically using shock polars, while
it is perpendicular to the wall. Next, the solution is unsteady. What we may expect in general
is a self-similar solution generated, for instance, by the interaction of the incident shock with a
very thin wedge. Then the state U(x, t) will depend only on the self-similar variable y = x/t.
As a matter of fact, it is hard to imagine a physical experiment yielding automatically a steady
shock reflection. When a RR occurs, it is only as part of a self-similar solution, and it actually
travels at constant speed in the laboratory frame.

3.3 Uniqueness of the downstream flow in supersonic RR

Let us consider a supersonic RR, meaning that we assume that the flow U2 behind the reflected
shock is supersonic (|u2| > c2). In particular, the RR is a weak one. For instance, in a near-
to-normal weak RR, u2 is very large (in the reference frame where P is fixed) and therefore we
do have |u2| > c2.

Under this assumption, the steady Euler system is hyperbolic in the direction of the flow,
that is in the direction of the horizontal axis. Thus we may view this system as an evolution
system of PDEs, and consider the determination of the downstream state and of the reflected
shock as a kind of Boundary Value problem (BVP). Actually, since R is a free boundary, this
is a Free Boundary Value Problem (FBVP), with data U1 and boundary conditions. The latter
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Figure 8: A Mach stem in presence of a boundary. The vortex sheet and the shock S are
curved.

are the no-flow condition along the wall, and the Rankine–Hugoniot condition across R.
We constructed in Section 3.1 a solution (actually two solutions) of this FBVP by assuming

a priori that R was straight and the downstream flow uniform. These assumptions were natural
since the incident pattern is self-similar and the steady Euler system is invariant under space
dilations. In particular, if a germ of solution defines uniquely the solution, then the latter
must be self-similar, which means that R is straight and the downstream flow is uniform. The
purpose of this paragraph is to get rid of these assumptions, by showing that in reasonable
regimes, they are necessary. In other words, we are concerned with a uniqueness problem.

The FBVP has a rather special form, since the boundaries meet at initial “time”. They
form a wedge at P , so that there is no “initial data”. We assume however that the solution is
piecewise smooth ; in particular, the downstream state has a limit U(P ) and R has a tangent
R at P . From the invariance of the Euler equations under dilation, we see that U(0) and R do
provide a uniform solution of the FBVP, that is a uniform RR. Thus U2 := U(0) must be one
of the states computed in Section 3.1. The behaviour at P of any piecewise smooth solution
is given therefore by either the weak RR or the strong RR. Our problem here is whether such
a limit value must extend downstream. This is a uniqueness question concerning the FBVP,
related to the well-posedness. The general theory for that kind of problem has been developed
by Li & Yu [65].

Since the FBVP is quasilinear and first-order, we shall analyze first the linearized problem
at the state (weak or strong RR) U2 = (ρ2, u2, e2). It consists of linearized PDEs. For the sake
of simplicity, we restrict to the barotropic case. The PDEs are

(85) u2 · ∇ρ + ρ2divu = 0, ρ2(u2 · ∇)u + c2
2∇ρ = 0.

Along the ramp, we just write

u ·
(

cos α
sin α

)
= 0,

while along R we set the linearized Rankine–Hugoniot condition. After elimination of the
increment δν of the normal, this reads MU = 0 with M a 2 × 3 matrix. Using characteristic
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components (U−, U0, U+), these boundary conditions are respectively13

U+ = c0U0 + c−U−

along the ramp, and
U0 = b0U+, U− = b−U+

along R.
We describe now the analysis of [65]. The solution in the interior is completely determined

thanks to (85), once we know the trace of U− on R and of U0, U+ on the ramp. Denoting by
t > 0 a time-like variable (t = 0 at P ), these traces f−(t), f0(t), f+(t) are to be determined by
a kind of difference equations:

(86) f+(t) = c0f0(σ0t) + c−f−(σ−t), f0(t) = b0f+(θ0t), f−(t) = b−f+(θ+t),

where the numbers 0 ≤ σ0, . . . , θ+ < 1 involve the characteristic velocities and the slopes of
the boundaries, while the coeffcients b0, . . . , c− come from the boundary conditions. There
remains to check the local well-posedness of the linear problem (86). The appropriate tool
is the Laplace transform in terms of the logarithm of t. A natural space is L2(dt/t), though
we may also consider Sobolev spaces associated to the same weight, and we need them when
considering the non-linear well-posedness. The linear BVP is strongly well-posed in these spaces
if and only if the modulus of the following Evans function is bounded away from zero in the
right complex half-plane (<z ≥ 0):

∆(z) := 1− b0c0(σ0θ0)
z − b−c−(σ−θ+)z.

It is strongly ill-posed in Hadamard’s sense (lack of uniqueness) if ∆ vanishes somewhere in the
open half-space (<z > 0). Remark that ∆(z) vanishes precisely when (86) admits a non-trivial
solution homogeneous of (complex) degree z.

For general coefficients b, c, σ and θ, it is not easy to determine whether ∆ vanishes in the
closed right-half plane. Since we clearly have

|∆(z)| ≥ 1− |b0c0| − |b−c−|,

one often contents oneself with the sufficient condition |b0c0| + |b−c−| < 1 for uniform well-
posedness. However, in the present problem, a simplification arises, because c0 = 0, while
σ−θ+ > 0. Then ∆(z) = 1 − b−c−(σ−θ+)z. Therefore it becomes clear that a necessary and
sufficient condition for strong well-posedness is

(87) |b−c−| < 1.

Remark that although b− and c− depend on the normalization of the eigenmodes of System
(85), the amplifying ratio b−c− does not.

13The fact that U+ can be taken as the output on the ramp, or the input on the shock, amounts to the
normality of the boundary conditions.
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Eigenmodes. We begin by computing the eigenmodes and characteristic directions of (85).
This amounts to solving

(u2 · ξ)ρ + ρ2u · ξ = 0, ρ2(u2 · ξ)u + c2
2ρξ = 0.

The characteristics are either parallel to the flow (u2 · ξ = 0) or normal to the vectors ξ± given
by u2 · ξ = c2|ξ|. We normalize |ξ±| = 1, so that u2 · ξ± = c2. Remark that this equation
has two solutions because of our assumption c2 < |u2|. The corresponding modes are, in (ρ, u)
variables,

r± =

( −ρ2

c2ξ±

)
, r0 =

(
0
u2

)
.

We point out that this eigenbasis becomes ill-conditioned as we approach a sonic shock, since
we have r+ = r− in the limit.

Calculation of c0 and c−. Let us write the boundary condition u · ν = 0 along the wall,
with U = U−r− + U0r0 + U+r+:

c2(U+ξ+ + U−ξ−) · ν + U0u2 · ν = 0.

Since we already have u2 · ν = 0, this reduces to

U+ξ+ · ν + U−ξ− · ν = 0,

confirming that c0 = 0. We obtain additionally that c− = −(ξ− · ν)/(ξ+ · ν). Since ξ+ and ξ−
are symmetric to each other with respect to u2, that is to the wall, we deduce

(88) c− := 1.

Calculation of b−. We now perform the calculation of b−. We start with the linearized
boundary condition

ρu2 · ν + ρ2u · ν + [ρu] · δν = 0,(89)

ν · δν = 0,(90)

ρ1u1 · δν[u] + ju + [p]δν + c2
2ρν = 0.(91)

We have used the following notations: [p] = p(ρ2)− p(ρ1) and so on, while δν is the increment
of the unit normal vector ν. We point out that since δν is a tangent vector, we have [u] ·δν = 0.
In particular, the last term in (89) can be written [ρ]u2 · δν, while in (91), we may replace u1

by u2.
Let us investigate first the case of an infinitesimal incident shock. Recall that there are

two cases: either the reflected shock is strong, or it is weak. Since the the downstream flow
is subsonic in the former case14, we concentrate to the latter case. Then the reflected shock is
infinitesimal too, hence is characteristic. This makes our FBVP in a corner a little bit harder

14The reflected shock in a strong RR is almost normal, thus |u2| ∼ |u2 · ν| < c2.
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to analyze. However, we can use the fact that the background state is constant everywhere.
Therefore, our stability problem is equivalent to the stability of the constant state (ρ2, u2) =
(ρ1, u1) = (ρ0, u0) in a standard IBVP, where the “time variable” is −x1 and the boundary is
x2 = 0. This 1-d IBVP needs exactly one boundary condition, a normal one, a fact that is easy
to check. In conclusion, our FBVP is well-posed in this limit case.

We now pass to the general case. To understand what is going on, it is easier to concentrate
first on the problems which are transitional between the strongly well-posed ones and the
strongly ill-posed. This means b− = ±1.

If b− = −1, the solution (U, δν) of (89,90,91) satisfies U = U+(r+ − r−) + U0r0, meaning that
ρ = 0. We easily obtain that u2 ‖ ν ; that is, the shock is normal. This is not the case,
for any weak or strong RR. We point out that this situation occurs only in the limit of a
strong RR, when the incident shock strength tends to zero.

If b = 1, we have U = U+(r+ + r−) + U0r0, meaning that u ‖ u2. After some calculations
that we leave to the reader, we find that a transition occurs when the following quantity
vanishes

(92) G := ((u2 · ν)2 + c2
2)(u2 × ν)2 + ((u2 · ν)2 − c2

2)(u2 · ν)(u1 · ν).

The conclusion of this analysis is that Property (87) depends only on the sign of G. Notice
that, since |u2 · ν| < c2 < |u2|, the sign of G is not obvious. We have shown above that
the FBVP is well-posed for the weak reflection of an infinitesimal incident shock. Hence we
have to determine signG in this limit case, in order to decide which sign of G gives well-
posedness : we have |u2 · ν| = c2 (an infinitesimal shock is characteristic) and u1 = u2. Whence
lim G = 2c2

2(u2 × ν)2 is positive. Thus we obtain

Theorem 3.1 Consider a supersonic RR for a barotropic gas. Then the FBVP (96,97), in the
wedge defined by P , the wall and the reflected shock, is strongly well-posed locally at P whenever
G, defined by (92), is positive.

This FBVP is strongly ill-posed if G < 0.

Applications. We have seen above that at fixed angle α, the weak reflection is strongly stable
as the incident strength goes to zero. Consider now the weak reflection for a quasi-normal shock.
In the limit α → 0, we find that P escapes to infinity, while the reflected shock tends to that
of the perfectly normal reflection, thus remains at finite distance of the origin. This shows that
|v2 × ν| → ∞, while |v2 · ν| = O(1). Therefore

G ∼ ((v2 · ν)2 + c2
2)(v2 × ν)2

is positive. We conclude that, given an incident shock, the FBVP associated to the weak shock
reflection is strongly well-posed when the angle α is small enough.

Non-linear stability. The passage from linear stability to the nonlinear one is performed by
a fixed point argument and integration along charcteristics. See [65] for details. Strong linear
well-posedness implies nonlinear well-posedness. The limit case when b−c− = 1 is unclear.
Strong linear instability is likely to imply ill-posedness.
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Uniqueness and constancy of the downstream flow. From the non-linear stability, we
deduce that, under the assumption that G is positive at (U2, ν), there is only one stationary
solution downstream the state U1, achieving the limit U2 at P . By a solution, we mean a flow U
of the Euler system, together with a reflected shock (a free boundary in this problem) between
U and U1. This unique solution is made of the constant state U2 and the straight reflected
shock with normal ν.

3.3.1 Dynamical stability

Teshukov has considered in [73] the most important dynamical stability of the RR as a stationary
solution of the (full) Euler system. For this purpose, he linearizes the system about the RR.
This resembles our analysis above, but with an extra ∂tU . A Laplace transform in time replaces
this term by τU , and one is reduced to the study of a stationary PDE system, where additional
terms come from the fact that the shocks are free boundaries originally. The problem is to get
an estimate in L2(H) (H the physical half-plane), uniform with respect to τ when <τ > 0.
Notice that the limit case where τ = 0 yields exactly the same system as the one we studied in
Section 3.3.

Since the background state is constant along rays, it makes sense to use polar coordinates
(r, θ), at the expense that the new problem has variable coefficients. Teshukov chooses to
perform a second Laplace transform in r (instead of log r as above), though this does not
reduce the complexity of the problem, since the r-dependency of the coefficients turns into
partial derivatives in the new Laplace frequency.

After a rather much elaborated analysis, which involves the solvability of a Riemann–Hilbert
problem, Teshukov obtains the result that for realistic gases, in particular for a perfect gas, the
steady RR is dynamically stable if and only if it is a weak RR. We emphasize that this result
is independent of ours, since we dealt instead with a static property, of the steady supersonic
RR only. Teshukov’s analysis applies to the transonic case also, which is relevant in particular
for every strong RR.

3.3.2 The analysis for the UTSD model

The UTSD model is an approximation near the reflection point, valid for small strength and
small angle (thin wedge), with the strength of the order of the square of the angle. With
these restrictions in mind, it is interesting to consider RR for this model, as well as stability
properties. The characterization of the RR regime was done in the seminal paper by Hunter
[42].

In moving coordinates associated to the sound wave of the state U0, the UTSD reads (see
Paragraph 1.6)

(93) vt +

(
v2

2

)

x

+ wy = 0, vy − wx = 0.

The coordinate x is parallel to the wall and y is normal. The unknowns v and w do not represent
a velocity, but leading coefficients in an asymptotic expansion of U in terms of α2/|U1 − U0|.
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System (93) is Galilean invariant with respect to (x, v), but not in terms of (y, w). Therefore,
we may look for a steady state, where the incident shock is given only in terms of w0, w1 and
the jump v1 − v0. Typically, v1 > v0, because the shock is compressive. Since the system is
invariant under the scaling (t, x, y, v, w) 7→ (δ−1t, δx, y, δ2v, δ3w), we may also fix this jump to
[v] = 1. Then the strength of the incident shock wave is small when [w] is large. Using the
Rankine–Hugoniot conditions, the slope of I is

dx

dy
= a :=

√
〈v〉 =

√
−v0 + v1

2
.

Notice in particular that we need 〈v〉 < 0. Because of [w] = −a[v] = −a, the parameter a plays
the role of an inverse of the shock strength.

The boundary condition along y = 0 is written w = 0. Therefore the data satisfies w0 = 0.
This implies w1 = −a < 0. Looking for a RR, we have to solve

(94) w1 = b(v1 − v2), b =

√
−v1 + v2

2
,

where −b is the slope of R, and we have used the boundary condition w2 = 0. This yields an
algebraic equation of degree 3, P (v3) = 0, where

P (v) := (v + v1)(v − v1)
2 + 2w2

1,

and the restriction that v1 < v2 < −v1. It is easy to see that a solution exists if and only if
a ≥ √

2. Actually, when a >
√

2, there are two admissible solutions v∗ ∈ (v1,−v1/3) (strong
RR) and u∗ ∈ (−v1/3,−v1) (weak RR).

The state U2 is supersonic provided that v2 is negative and subsonic otherwise. It is im-
mediate that it is subsonic in a strong RR, while in a weak RR it can be either supersonic, if

a > as :=
√

1 +
√

5/2, or subsonic, if a ∈ (
√

2, as).

Let us assume that U2 is supersonic (in particular, the RR is weak). We perform the same
stability analysis as in Section 3.3., by looking at the stationary model

(
v2

2

)

x

+ wy = 0, vy − wx = 0.

as a hyperbolic system in the direction of negative x’s. The boundary conditions along the
wall (w = 0) and the reflected shock (Rankine–Hugoniot) are clearly normal. There remains to
check an Evans condition. Once again, the latter reduces to |ρ| < 1, where ρ is an amplifying
factor. We compute easily

ρ =
4αw1 − P ′(v2)

4αw1 + P ′(v2)
, α :=

√−v2

where α is the sound speed. On the one hand, we have P ′(v2) < 0 because the RR is weak.
On the other hand, we already know that w1 < 0. Therefore |ρ| < 1. We conclude that this
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Figure 9: An incoming shock at a wedge. The upstream flow is at rest: u0 = 0. At time t = 0
the pattern is self-similar.

stationary problem in the wedge between the wall and the reflected shock is strongly well-
posed. In particular, the state remains constant and R remains straight. This remains true in
the self-similar problem

(
v2

2

)

x

+ wy = xvx + yvy, vy − wx = 0,

until one reaches the sonic locus. Since U ≡ U2 on one side of the sonic curve, the latter is (an
arc of) the parabola given by the equation

y2 = 4(v2 − x).

4 Reflection at a wedge

We now consider a more complex as well as interesting geometry, presented in Figure 9. A
solid wedge is surrounded by the gas. For t < 0, a planar shock wave is approaching the wedge
and the state is piecewise constant, the gas being at rest near the wedge. This is clearly an
admissible solution of the initial-boundary value problem. At time t = 0, the shock wave hits
the wedge and something happens, since the flow downstream does not satisfy the slip boundary
condition. A kind of reflection develops, which is plainly two-dimensional. As a matter of fact,
the incoming shock plays the role of an incident shock on both sides of the wedge, yielding two
reflected shocks, and these latter interact in a complicated way.

4.1 A 2-D Riemann problem

At first glance, the problem is genuinely time dependent. However, considering the state at
time t = 0 as an initial data, we observe that it is invariant under space dilations. The same
is true for the spatial domain Ω (the complement of the wedge). Since the system to solve is
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quasilinear of first order, we expect therefore that the solution (if there is any) be self-similar:

U(x1, x2, , t) = Ũ
(x1

t
,
x2

t

)
(x ∈ Ω, t > 0).

Denoting the self-similar variable by y := x/t ∈ Ω, we may rewrite the Euler equations as a
stationary-like system. Generally speaking, a fist-order system of conservation laws

(95) ∂tu +
∑

α

∂αfα(u) = 0

yields ∑
α

∂αfα(ũ) = (y · ∇y)ũ

for self-similar solutions (mind that now ∂α is the derivative with respect to yα). Such a system
has the bad feature of having variable coefficients on its right-hand side. It is a remarkable
property of the Euler equations, a consequence of Galilean invariance, that these variable
coefficients may be removed, at the price of the introduction of a pseudo-velocity v. This vector
field is defined by

v(y) := ũ(y)− y = u(x, t)− x

t
,

where as usual, u is the fluid velocity.
The full Euler equations (3,4,5) in self-similar variables then can be rewritten

div(ρv) + 2ρ = 0,(96)

div(ρv ⊗ v) + 3ρv +∇p = 0,(97)

div

((
1

2
ρ|v|2 + ρe + p

)
v

)
+ 2(ρ|v|2 + ρe + p) = 0.(98)

Likewise, the entropy inequalities (31) yield

(99) div(ρf(S)v) + 2ρf(S) ≤ 0

for the same set of functions f .
Away from discontinuities, Equation (97) may be combined with (96) to give

(100) ρ(v · ∇)v + ρv +∇p = 0,

while (98) may be rewritten as

(101) v · ∇
(

1

2
|v|2 + e +

p

ρ

)
+ |v|2 = 0.

This equation generalizes (16). Recall that when v is replaced by the genuine velocity u, the
expression in parenthesis above has been called the Bernoulli invariant:

B :=
1

2
|u|2 + e +

p

ρ
.
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In the self-similar case, we should merely speak of the pseudo-Bernoulli invariant:

B :=
1

2
|v|2 + e +

p

ρ
.

Of course, in a barotropic flow (isentropic or isothermal), we have p = P (ρ). Equation (99)
must be dropped, while (98) becomes an inequality:

(102) div

((
1

2
ρ|v|2 + ρe + p

)
v

)
+ 2(ρ|v|2 + ρe + p) ≤ 0.

Boundary conditions. In a self-similar problem, the initial data is equivalent to a boundary
condition at infinity, since t → 0+ amounts to |y| → +∞. Hence we search a solution of
(96,97,98) (only the first two equations in the barotropic case), such that U(ry) → V (y) as r →
+∞, where V is the shock data at time t = 0. However, we point out that a hyperbolic system
has the property of finite speed of propagation. This means that given a (small) domain ω, our
solution U must equal, at time t = 1 in ω, any other solution U ′ such that U ′(y, 0) = U(y, 0) for
y in a large enough domain ω0, called the dependence domain of ω. Typically, ω0 ⊂ ω+B(0; Λ),
where Λ is the maximum of the propagation velocities. Of course Λ depends on the solution
itself, and it is therefore important to establish pointwise bounds on the solution, in order to
have an explicit bound of Λ, justifying a posteriori our qualitative assumptions.

Since our initial data U(·, 0) and our physical domain are piecewise one-dimensional data,
we first apply the above idea by choosing Ω′ = R2 and extending U(·, 0) by U0 in the wedge.
The corresponding solution U ′ is just a travelling wave U(x − sItνI) (sIνI the velocity of the
incident shock), and the equality U = U ′ is valid away from the influence domain of the wall.
Thus U is piecewise constant for d(y : ∂Ω) > Λ.

A more involved choice allows to treat points in the strip d(y : ∂Ω) < Λ that are not in the
influence domain of the wedge tip: |y| > Λ. If there exists a regular reflection (in the sense of
Section 3.1) when we extend infinitely one of the walls of the wedge, we may take for U ′ the
corresponding exact RR and Ω′ the corresponding half-plane. Mind that U ′ will be a travelling
wave of constant speed parallel to the ramp, since our incident shock is moving. If its velocity is
larger than Λ, we deduce that in our true solution U , the incident shock remains straight until
it meets the ramp, where it reflects according to the calculations of Section 3.1. Additionally,
the reflected shock is straight and the state behind it is constant, as long as one stays away
from B(0; Λ). This pattern is again called Regular Reflection. See Figure 10 for the case where
the incident shock propagates in the direction of the symmetry axis of the wedge.

Self-similar vs steady flows. It is worth to notice that the system (96,97,98) for self-
similar flows differs from (3,4,5) for steady flows, only by low order terms 2ρ,... We see two
important consequences. The first is that the type may be determined in exactly the same terms
(though with v replacing u) as in Section 1.4. The second is that the discontinuities (shocks,
contacts) obey the same set of Rankine–Hugoniot conditions and admissibility criteria. In
particular, a shock must separate a supersonic state from a subsonic one (in the pseudo sense,
see immediately below). Mind however that the low order terms play a crucial role in the
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sequel, as they allow to get a priori estimates that would be false in the stationary case. See
Section 6.2.

Sub- or supersonic self-similar flows. In a time-dependent problem, the notions of sub-
sonic or supersonic flows are not well-defined, because the Galilean invariance makes us free to
add a constant to the velocity. When some external relation between time and space is given,
these notions become meaningful. This is the case for steady flows, as we have discussed in
Section 1.4. This is also relevant in self-similar flows. In this latter case, sonicity refers to the
pseudo-velocity v. We say that the flow is pseudo-subsonic (respectively pseudo-supersonic)
when |v| is smaller (respectively larger) than the sound speed |c|. Finally, the flow is sonic
where |v| = c. Thus it makes sense to introduce the pseudo-Mach number

M :=
|v|
c

.

When M < 1, the self-similar system is not hyperbolic in any direction, while if M > 1, it is
hyperbolic in directions ξ ∈ S1 such that |v · ξ| > c. In the former case, the principal part
defines only one family of characteristic lines through the equation ẏ = v. In the latter case,
there are two other families of characteristic lines, which obey |v × ẏ| = c, using arclength
parametrization.

It is worth noticing that if the real flow U is constant in some open set (as it will be in
applications), v = u−y and M are non constant. In particular, the sonic line defined by M = 1
will be an arc of the circle centered at u, with radius c. For a weak incident shock, u vanishes
upstream and is small downstream for weak reflection, so that the center of this circle is close
to the origin.

A note about figures. For a self-similar flow, Ũ is identical to U at time t = 1. Thus
we always display the flow at time one. In practice, only the geometrical features are shown:
incident (I), reflected (R) and diffracted (∆) shocks, vortex sheet (if any), sonic line (S) and the
walls. Special points are denoted by P (reflection point), O (wedge tip), and Q (pseudo-sonic
point on R). We point out that α is now the angle between the ramp and the horizontal axis.
Since the incident shock is vertical, it makes an angle π/2 − α with the wall, instead of α in
Section 3.

Flow and pseudo-flow. The pseudo-velocity turns out to have a physical meaning. For let
t 7→ x(t) be a particle trajectory of the flow:

dx

dt
= u(x, t) = u

(x

t

)
.

For y := x/t, we have
dy

dt
=

1

t
v(y),

or in other words
dy

dτ
= v(y), τ := log t.
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Figure 10: The symmetric RR. Incident (I), reflected (R) and diffracted (∆) shocks, sonic line
(S) and subsonic domain D. Upstream (U0) and downstream (U1) flows are given.

This shows that the physical flow is identical, up to the parametrization of the trajectories, to
the pseudo-steady flow generated by the pseudo-velocity field.

4.2 Patterns

There are several possible patterns, depending on the strength of the incident shock and on
its angles with the walls of the wedge. Ordered in increasing complexity, we mention Regular
Reflection (RR), the Mach Reflection (MR), the Double Mach Reflection (DMR) and the Com-
plex Mach reflexion (CMR). Though realistic phenomena often involve an MR or more shaky
patterns, we shall address mainly the RR in the sequel, since there are more mathematical
results available in this case.

4.2.1 The symmetric RR

We say that the reflection is symmetric when the incident shock is normal to the axis of the
wedge. Then we expect (if uniqueness holds) that our solution is symmetric:




ρ
v1

v2

e


 (y1,−y2) =




ρ
v1

−v2

e


 (y1, y2).

In particular, the vertical velocity vanishes along the vertical axis y2 = 0. This amounts to
considering the half-domain Ω+ bounded below by the wedge and the horizontal axis. The
latter plays the role of another rigid wall. Figure 10 displays the symmetric regular reflection.

This reduction may seem useless at first glance. Actually, it is of great importance in a priori
estimates, because the reduced domain Ω+ is convex. This will allow us to establish a minimum
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subsonic domain D. Upstream (U0) and downstream (U1) flows are given.

principle for the pressure ; the possibility of such a property is unclear in the non-symmetric
case.

Both numerical and physical experiments suggest that, if the incident shock strength ε :=
∆ρ/ρ0 is small, and if the ratio εα−2 is small too, then the domain of influence of the wedge tip
does not contain the intersection point P . Then the reflected shock is a straight line and the
state (ρ, u, e) remains constant, until the sonic line at point Q (this will be discussed in Section
4.3). The interaction with the sonic line gives rise to the diffracted shock, which bends until it
reaches the symmetry axis. The pattern consisting of the states U0, U1 and U2, separated by
the incident and reflected shock waves can be computed explicitly with the help of shock polars
(see Sections 3.1 and 4.1). Since the state equals the constant U2 on one side of the sonic line,
this must be a circle (or an arc of the circle) with equation |y−u2| = c2. The present picture is
characterized by a weak RR at point P , which is supersonic in the pseudo sense (|u2−yP | > c2).

There is another possibility for a RR, when the state U2 given by shock polar analysis gives
a subsonic pseudo-state yP−u2 (transonic RR). Then we do not exclude that the incident shock
still reaches the ramp and the diffracted shock begins at P . In this case, there is no sonic line,
and the subsonic zone fills the domain between ∆ and the wall. See Figure 11.

4.2.2 Mach Reflections

When the incident shock strength increases, or when α decays, there happens a transition from
a RR to a MR. The interaction between the incident shock and the ramp has been described
in Section 3.2. The rest of the picture resembles much the RR for moderate data (SMR),
but becomes increasingly complex (DMR and CMR) as the angle α decreases or the shock
strength increases. If the pseudo-state U2 behind P is subsonic, there occurs a simple Mach
Reflection. Otherwise, the pattern depends on whether the slip line reflects against the ramp
before crossing the sonic circle attached to U2, or not. In one case, a fourth shock will interact
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Figure 12: The three kinds of Mach Reflection. Left (a) simple (SMR) ; center (b) complex
(CMR), right (c) double (DMR).

again with the reflected shock, giving rise to a secondary Mach stem typical of a DMR. In the
other case, the reflected shock suffers only a kink, which characterizes a CMR, intermediate
between SMR and DMR. A detailed analysis based on shock polars can be found in [4, 5, 41]
and [18], while [26, 60, 61] provide convincing numerical experiments. We point out however
that an existence theory remains to be worked out.

For the convenience of the reader, we display in Figure 12 the various kinds of Mach Reflec-
tion, although we do not intend to attack them at a mathematical level. Notice that experiments
suggest that a transition occurs between every pair of types RR, SMR, CMR, DMR, but the
pair (SMR,DMR).

4.3 The supersonic domain behind the reflected shock

In the case of a supersonic RR, it is usually taken from granted that the state U (the physical
one, but not the pseudo-state) is constant in the supersonic region D2 surrounded by the
reflected shock R, the ramp and the pseudo-sonic line S defined by |v| = c. In particular, the
sonic line obeys the equation

(103) |u2 − y| = c2.

The sonic line is therefore an arc of the circle C of radius c2, centered at u2. Additionally, the
reflected shock, separating two constant states U1 and U2, remains straight until it reaches the
sonic line.

This constancy, though a little bit intuitive, deserves some mathematical investigation. In
the sequel, we assume only that the state U is smooth in D2 and tends to U2 as y → yP within
D2. Our task is to prove that U remains constant in D2. The idea is to apply a uniqueness
result for a boundary value problem (refered to as BVP in the sequel) associated with an
evolution system of PDEs. The system is of course given by the self-similar Euler equations.
The assumption that the reflected state U2 be pseudo-supersonic at P tells that this system
is hyperbolic in the direction of the flow. Defining a time-like variable in the direction of the
ramp, from P to O, we see on the one hand that the system is (at least locally) evolutionary
and hyperbolic in this direction, and on the other hand that D2 is locally in the “future” of
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P . These properties will remain valid as long as U stays close enough to U2. We point out
that the domain of this BVP is wedge-like. The boundary value problem is completed by the
slip condition u · ν along the ramp and the Rankine–Hugoniot condition along R. Notice that
R is a free boundary. A particular solution of our BVP consists of U ≡ U2, together with the
straight reflected shock given by the shock polar analysis, and the circular sonic line defined by
(103). Hence a uniqueness result will solve the question.

We decompose the uniqueness problem in three parts:

• A local uniqueness for the BVP in the wedge-like domain at P . This is essentially the
problem addressed in Section 3.3, with v instead of u. The lower order terms play no role
in the strong well-posedness or in the strong instability, though we do not exclude that
they be important in the marginal case of weak linear well-posedness.

• Local uniqueness for standard BVPs, either along the ramp, or along the free boundary
R.

Following Section 3.3, we thus assume that the quantity

(104) G := ((v2 · ν)2 + c2
2)(v2 × ν)2 + ((v2 · ν)2 − c2

2)(v2 · ν)(v1 · ν)

is positive. For instance, this is true for the weak RR when either the incident strength is small,
or the angle α is close to π/2 (near normal reflection).

Since the state is pseudo-supersonic, the system is hyperbolic in D2. It has three charac-
teristics, a backward one, a forward one and a third one in between. The words backward and
forward refer to an evolution, with the coordinate along the boundary as a pseudo-time ; recall
that this coordinate increases from the reflection point P to the tip of the wedge. Forward char-
acteristics emerge from the wall when the pseudo-time increases, that is when one escapes from
P ; on the contrary, backward characteristics approach the ramp as the pseudo-time increases
(see Figure 13). The remaining characteristics are tangent to the boundary, because of the
no-flow boundary condition ; they are flow line (ẏ = v), with multiplicity two in the case of the
full Euler system or one in the barotropic case. Because of hyperbolicity, there is a propagation
property, implying that the region K where U ≡ U2 is bounded either by boundaries of D2, or
by pseudo-characteristics. Since U is smooth, these characteristics are either the tangents to
the pseudo-sonic circle C associated to the state U2:

(105) (y − w) ·N = 0, N :=
w − u2

c2

,

where w is some point of the circle, or flow lines. We point out that each tangent consists
in two characteristic lines, a forward one and a backward one, both separated by the point of
tangency ; see Figure 13.

Because of local uniqueness at P , K is non void. Assume also that K is strictly contained
in D2. Then the boundary of K contains at least one straight characteristic described above,
which meets either the ramp (if it is forward) or R (if it is backward or a flow line). Thus
we have to verify the uniqueness property for two special BVPs, associated with the following
domains. Such BVPs have been studied thoroughly by Li & Yu [65].
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Figure 13: A forward (f) and backward (b) characteristics. The arrow shows the time-like
direction in the supersonic domain D2.

The domain of the first BVP is bounded by the ramp and a characteristic Γ, which is
either backward or forward. On the latter, we have a Goursat problem, on which the state is
prescribed in a consistent way. Along the ramp, one characteristic is incoming, one is glancing
and one is outgoing. Thus we need precisely one boundary condition. Since there are 1 + 1
dimensions, the BVP is well-posed provided the boundary condition, here u1 cos α+u2 sin α = 0
is normal and Γ is forward. Normality means that the unique incoming mode does not satisfy
the boundary condition, a fact that can be verified easily. We conclude that either K extends
along the ramp up to the sonic line, or it is bounded by a backward charateristic Γ. We point
out that such a Γ cannot meet the circle within the physical domain ; the tangency point lies
below the ramp.

If K is bounded by a backward characteristic Γ, we face the second BVP, which is actually
a FBVP (free boundary value problem). Its domain is bounded by Γ and the shock R. Along
the former, we still have a Goursat problem and the state is prescribed in a consistent way. On
the reflected shock, two characteristics15are incoming, because the flow is pseudo-incoming to
D2. The forward characteristic is outgoing, because the flow is subsonic, relatively to the shock.
Was the boundary fixed, we should need precisely two (barotropic case) or three (full Euler
case) scalar boundary conditions. Since the shock is a free boundary, we actually need one more
boundary condition, that is as many as the number of equations in the system. The Rankine–
Hugoniot conditions give exactly the right number of boundary conditions. The verification
that they form a normal boundary condition at U2 is straightforward. Therefore the FBVP
is locally well-posed, whence the uniqueness property. This proves that K extends along the
ramp up to the sonic line.

In conclusion, K extends between the ramp and R, till S. Thus we have proved that

Theorem 4.1 Consider a symmetric RR past a wedge. Assume that this reflection is super-
sonic: |u2−P | > c2, in particular, the reflection is a weak one. Assume in addition that G > 0
(with G defined in (104)). Then

15One being double in the full Euler case.
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1. the reflected shock R is straight between P and the circle C (of equation |u2 − y| = c2),

2. the state U remains constant, equal to U2, within the domain bounded by the ramp, the
reflected shock and the circle C.

When the incident shock strength increases, G may become negative even though the re-
flection remains supersonic at P . In such a case, one does not expect either that R remains
straight, or U remains constant, till C. In particular, C does not any more coincide with the
sonic line of the pseudo-flow. The instability of the accepted pattern could explain why the RR
gives way to Mach Reflection in cases where the planar RR still exists.

4.4 Mathematical difficulties

The following list displays the mathematical difficulties that are encountered in the mathemat-
ical treatment of reflection past a wedge. All of them but the slip line arise already in the
simplest RR pattern.

Vertex at the origin. The boundary of the physical domain has a singularity at the origin.
It will be responsible for a lack of smoothness of the solution. In view of Equation (118),
it is unclear whether the pressure has a singularity, or the velocity vanishes.

Sonic line. This difficulty arises in a supersonic RR. Across the sonic line S, the type of the
Euler system changes from hyperbolic (in the supersonic zone labelled 2) to hyperbolic-
elliptic (in the subsonic domain D). In D, the elliptic part of the system degenerates
as one approaches the boundary. When the strength of the incident shock is small, we
are tempted to use linear of weakly non-linear geometrical optics (see next Paragraph),
which suggest that the flow is Hölder continuous across the sonic line, with a singularity
of order

√
d(y; S) where d(·; S) is the distance to S in D ; see for instance the acoustic

approximation of Keller & Blank [47]. This picture turns out to be incorrect. It has been
uncovered recently by G.-Q. Chen & M. Feldman [21] that the nonlinearity in the system
yields Lipschitz continuity, at least in the potential case, where the system reduces to a
nonlinear wave equation.

Vertex at P . Alternatively, in a transonic RR, the subsonic zone extends till P , and we have
to solve a nonlinear system of PDEs in a domain that has a vertex at P .

Mixed type. In the subsonic domain D, the system is of mixed type hyperbolic-elliptic, mean-
ing that one characteristic field is real, while the other ones are complex. This makes the
analysis very hard, since it is not possible either to apply standard techniques of hyper-
bolic problems or to employ ideas from elliptic theory.

Vortical singularity. We shall see in Section 6.6 that the vorticity ∇ × u cannot be square
integrable in D, at least in the barotropic case. A singularity is expected at some point
along the ramp. It is unclear whether this singularity is present in full gas dynamics.

60



Slip line In Mach Reflection, the interaction point P (defined as the point where the reflected
and the incident shocks meet) is detached, and a secondary shock called Mach stem
connects P to the ramp. Since the Rankine–Hugoniot relations are the same as in the
steady case, a pure three-shocks pattern is not possible (Theorem 2.3). Hence a fourth
wave must originate from P . Experiments suggest that it is a slip line, or in other words a
vortex sheet. According to Artola & Majda [2], such jumps are known to be dynamically
unstable unless the jump of the tangential velocity exceeds 2

√
2 c, which is unlikely16.

Finally, one observes that the slip line rolls up endlessly.

Diffracted shock. The solution is known everywhere but in the subsonic zone D. However,
the part of the boundary of D formed by the diffracted shock is a free boundary. For an
incident shock of small strength, this curve is approximately a circle, the continuation of
the sonic line.

Triple point. The sonic line and the reflected shock form a corner at their meeting point Q.
This is a singularity of the boundary of the subsonic domain. This singularity is non
uniform in terms of the shock strength, as both lines tend to become tangent when the
strength vanishes.

We point out that the vortical singularity and the slip line are obviously not present in
irrotational flows. Additionally, the system becomes purely elliptic in D. This makes the irro-
tational RR much more tractable, with only the difficulties of non-uniform ellipticity, boundary
vertex, triple point and free boundary. In particular, one may expect that the flow be of class
H1 within D. Y. Zheng [84], as well as G.-Q. Chen & M. Feldman [21] anounced recently an
existence result in this case, when the incident shock is almost normal.

Another simplification occurs in the transonic case (|u2 − P | < c2). Then we avoid the
degeneracy problem across the sonic line and the triple point Q. In conclusion, the simplest
situation for a RR is that of an irrotational flow for which the subsonic zone reaches the
point P . Then the mathematical problem is to solve a scalar second order nonlinear elliptic
equation in terms of the potential. The remaining difficulties are the free boundary and two
geometrical singularities, at O and P . We point out on the one hand that this problem does
not seem to follow from the minimisation of some action. On the other hand, it happens in
some intermediate (very narrow) range of parameters and thus is not a perturbation of some
trivial configuration. Therefore it cannot be attacked by pertubative tools.

Finally, let us mention the work by S.-X. Chen [23], who proves the existence of a local
solution for the reflexion of a shock against a smooth convex obstacle. Of course, this result is
sensitive to the curvature of the boundary, and does not survive when the shape of the obstacle
becomes sharp. S.-X. Chen also proved a local stability result, near the triple point, of a Mach
configuration ; this result is in the spirit of Paragraph 3.3.

16In a three dimensional setting, vortex sheets are unconditionally unstable.

61



5 Reflection at a wedge: Qualitative aspects

5.1 Weak incident shock

When the strength of the incident shock tends to zero, the initial data (at t = 0) of the
evolutionary Euler system tends to a constant state, say U0. This constant being a rest state,
it is a solution of the IBVP. Since it is a smooth one, we may apply stability results (see for
instance Dafermos [29], Chapter 5.2)17. Thus the expected solution must be close18 to U0.
Although this has not been proved yet, we shall assume that this proximity holds uniformly:

(106) sup
y
|U(y)− U0| << 1.

Assuming also that the solution has the piecewise smooth structure described in Figure 10,
it should be described, at first order, by weakly nonlinear geometric optics, applied to the
background state U0. This approach has been introduced in [47] and developed further in [45].

Linear and nonlinear geometrical optics. We begin with linear geometrical optics, which
gives the leading order for the evolution of the singularity locus. It was worked out by Keller
& Blank [47]. There are two types of initial disturbances. First the incident shock itself, and
then the vertex, where the downstream state is not compatible with the boundary condition. In
general, every pointwise disturbance generates a front that travels at one of the velocities ±c0

or 0 associated to U0. The zero speed means that a part of the singularity stays fixed, while the
velocity ±c0 concerns every direction: a pointwise singularity surrounded by a constant state
generates a circular front. In particular, we must have a direct wave along a (approximate)
circle S whose center is located at the wedge tip. The situation is a bit different when the
disturbance is localized along a line. In general, the initial front splits into three fronts, of
which two move apart in opposite directions at normal velocity c0, and one stays fixed. In our
problem, the pattern is simpler since the initial disturbance is compatible with the Rankine–
Hugoniot conditions: the front that originates from the incident shock remains the part of this
shock that is not influenced by the vertex.

Besides these direct waves, we must keep track of secondary waves (as well as ternary,... if
any) that are generated by the interactions between them, and between one of them and the
wall. We have already seen the effect of an incident shock along a wall, which gives rise to
a reflected shock with (asymptotically) specular reflection. It is immediate that, in the limit
of zero strength, this reflected wave is tangent to the circular wave S. Hence the direct and
secondary waves do not produce ternary waves. On an other hand, the wave S is already
compatible with the boundary condition (its velocity is normal to the wall) and does not yield
a secondary wave. More importantly, because of compatibility at the tangency point Q, there
is no need to continue the straight reflected shock beyond this point ; the proper continuation
is the circle itself ! One may say that the reflected shock is bent once it meets the sonic line.

17Recall that stability results use relative entropy estimates, and they are closely linked to weak-strong
uniqueness.

18In terms of the relative entropy, or of the relative energy in the barotropic case.
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Figure 14: The limit pattern as the incidence strength tends to zero.

Finally, it is clear that S does not meet the incident shock, because the point P in Figure 10
travels at speed c0/ cos α, hence faster than S.

We summarize the previous analysis: In the limit of zero incident strength, the solution
exhibits three singularities along curves. Direct ones are the incident shock I moving forward
and touching the wall at point P , and a circular curve S emanating from the vertex. The
reflected shock is made of a part ∆ of this circle (the diffracted wave) and a secondary wave R
along the tangent to this circle between P and Q. The remaining part of the circle is the sonic
line. See Figure 14.

At the analytical level, the linear theory yields a second-order equation of the form

(107) r∂r((1− r2)∂rρ̄) + r∂rρ̄ + ∂2
θ ρ̄ = 0,

where ρ̄ := ∆ρ/ρ0 is the relative density disturbance, and (r, θ) is a polar coordinate system,
rescaled in such a way that the circle |y| = c0 has equation r = 1. Equation (107) is elliptic for
r < 1. The boundary condition is of Dirichlet type along the circle

(108) ρ̄(1, θ) = ρb(θ) :=

{
1 along ∆
2, along S,

and of Neumann type
∂ρ̄/∂ν = 0

along the wall. The solution was found in explicit form by Keller & Blank, thanks to the
Busemann transformation

R :=
r

1 +
√

1− r2
.

They found that ρ− ρb behaves like h(θ)
√

1− r for some function h 6= 0, everywhere but in a
neighbourhood of the triple point (θ = 2α).
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A more elaborate analysis carried out by Hunter & Keller [44, 45] uses weakly nonlinear
geometrical optics. It yields a refined description of the flow in a neighbourhood of the diffracted
shock. There, the leading-order approximation satisfies a one-dimensional cylindrical Burgers
equation. The asymptotic expansion at the triple point Q was described by Harabetian [35].

When α is small together with I, the sonic circle and the triple point approach the interaction
point P . Then the description of the flow near P needs the more involved UTSD approximation
of [42], which combines a multi-dimensional context with a nonlinearity.

More about the supersonic domain. Let δ << 1 denote the quantity supy |U(y) − U0|.
Since the wave velocities are bounded by c = c0 + O(δ), we can prove (see again [29]) that the
solution U at (x, t) depends only on the data and the geometry of the domain in a ball D(x; ct).
At time t = 1, this means that the solution, outside of the disk D(0; c), is not influenced by
the vertex. In particular, it coincides with solutions that are known explicitly:

• For |y| > c, y2 cos α− y1 sin α > c and y1 < c, one has U ≡ U1 (downstream data),

• For |y| > c, y2 cos α− y1 sin α > c and y1 > 0, one has the incident shock, namely U ≡ U1

for y1 < sI (sI the incident shock speed) and U ≡ U0 for y1 > sI ,

• For |y| > c and 0 < x2 cos α − x1 sin α < c, we have the piecewise constant reflection
described in Section 3. In particular, the reflected shock is straight near the reflection
point P and the solution U ≡ U2 is constant in some wedge bounded by P , the rigid wall
and the reflected shock. We warn the reader that a constant u means a non-constant v !
We shall see below that the constancy of U and the straightness of R extend up to the
sonic line.

Remarks.

1. Perhaps the most important point is that, using the qualitative assumptions made above
about the structure of RR, we shall be able (see Section 6) to make quantitative pointwise
estimates, and therefore to justify the smallness assumption (106) made at the begining
of this paragraph.

2. Since the reflected shock is of small strength O(δ), the reflection at point P is a weak one,
and the reflection angle equals approximately the angle of incidence. Such a reflection
follows approximately the laws of optics.

3. If the wedge angle α is small, it may happen that the sonic line travels faster than the
point P along the ramp. A sufficient condition for this to happen is

(109)

∣∣∣∣u2 −
(

sI

sI tan α

)∣∣∣∣ < c2.

In this case, we might have either a Regular Reflection (as in Figure 11), or a Mach
Reflection with interaction point remote from the wall. Of course, we do not claim that
equality in (109) is the criterion for the transition from RR to MR.
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scaling at the origin yields the UTSD model of Brio and Hunter.

4. In some regimes, an RR solution is technically possible in a neihbourhood of P , but is not
observed in numerical and/or physical experiments, presumably for instability reasons.
This does happen for incident shocks of moderate strength. In this case, one observes a
MR instead.

5.2 Small and large angle

Another asymptotic limit occurs when one keeps the incident shock strength constant, while
making α → 0+. It was considered by Lighthill [50], with the idea that in the limit problem
(α = 0), there is no reflection at all since the shock travels parallel to the wall. Therefore,
in spite of the fact that a Mach Reflection must occur, we expect that the reflected pattern
consists only of weak waves. Hence the problem can be studied through linearization behind
the incident shock. The resulting system is essentially the same as that of Keller & Blank19. It
reduces to a second order equation in the pressure, which can be solved thanks to Busemann’s
transformation. Remark that the reflected pattern fills approximately the acoustic disk D of
center O and radius c1, the sound speed behind I. Since the incident shock is of Lax type, c1

is larger than the shock speed σI , so that the disk is truncated by the shock locus (as well as
by the wall). This makes clear the relevance of a Mach Reflection.

The opposite case, when α tends to π/2, yields in the limit the normal reflection described
in Paragraph 3.1.2. Since it has coordinates (σI , σI tan α), the point P escapes to infinity. In
particular, this kind of reflection is supersonic. The rest of the pattern in the weak RR has
a limit which is piecewise constant. In this limit, we have u2 = 0 and the reflected shock is
straight and vertical. The subsonic domain coincides with the part of the disk |y| < c2 to the
right of R. The velocity in D vanishes identically. Remark that σR is less than c2, so that the

19It is more chronologically correct to say that the analysis by Keller & Blank has similarities with Lighthill’s.
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sonic line is transverse to the reflected shock, contrary to the other limits considered above.
This happens because R has a non zero limit strength, hence is not sonic. The pattern is
nonlinear in essence at the leading order.

5.3 Entropy-type inequalities

This section is not specific to gas dynamics and may be skipped in a first reading. However,
we believe that it has some interest for numerical purposes.

We consider self-similar solutions of a first-order system of conservation laws (95), endowed
with an entropy inequality

∂tη(u) + divx~q(u) ≤ 0,

η being strictly convex (D2η > 0n). The corresponding PDEs

(110) divy
~fj(u) = (y · ∇y)uj, (j = 1, ..., n), divy~q(u) ≤ (y · ∇y)η(u)

are understood in the distributional sense, and u(y) is locally bounded. As pointed out in [37],
these equations can be combined to give inequalities in conservative form, though involving
variable coefficients. Given any open subdomain ω with smooth boundary, we denote by n the
outgoing unit normal to ω, by |ω| the volume and by d the space dimension (d = 2 in our
reflection problems). Then every self-similar solution satisfies

(111) η

(
1

d|ω|
∫

∂ω

((n · y)u− f(u;n)) ds(y)

)
≤ 1

d|ω|
∫

∂ω

n · (η(u)y − ~q(u)) ds(y),

where f(u;n) :=
∑

α nαfα(u).
It is remarkable that, as ω runs over all subdomains, (111) is equivalent to (110). Therefore

it can be used to give a posteriori estimates in numerical simulations. Given a finite volume
method where fluxes across control volumes are practically computable, one should either make
a correction on those volumes where (111) fails, or refine the grid there. This idea has not yet
been implemented to our knowledge, though it looks promising.

6 Regular Reflection at a wedge: Quantitative aspects

The purpose of this section is mainly to establish pointwise estimates for Regular Reflection.
Both the barotropic and the full Euler cases are considered, except in Paragraphs 6.1 (non-
barotropic model only) and 6.6 (barotropic model only). We assume throughout the section
that the solution (if any), is piecewise smooth and obeys the qualitative description given in
Section 4 for a supersonic RR20. The only places where U is singular are

• the incident and reflected shocks, where we have discontinuities,

• the sonic line, where U is likely to be at most Lipschitz continuous,

20However, most of our estimates are valid for either transonic RR or MR, as long as the flow is piecewise
smooth.
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• possible vortex sheets (slip lines) in the interior of the subsonic domain D. Notice that,
according to Theorem 2.2, steady shocks are forbidden between two subsonic states,

• the origin, where we shall see that the pressure gradient experiences a Dirac mass,

• the likely vortical singularity, located at some point of the ramp, where the vorticity lacks
square integrability.

6.1 Minimum principle for the entropy

This paragraph is devoted to the case of full Euler system. The easiest pointwise estimate
has been known for two decades [67] and follows directly from (31) or from (99). As stated
in Theorem 1.1, the minimum of the entropy is a non-decreasing function of time. Since the
initial data experiences two states U0 (upstream) and U1 (downstream), we deduce

S(y) ≥ min{S0, S1}.

It turns out that in a shock (here, the incident one), the entropy is lower upstream than
downstream, so that S0 < S1, whence the estimate

(112) S(y) ≥ S0.

We emphasize that this is a sharp estimate, since S(y) equals S0 for y1 ≥ sI/ cos α. However,
the better estimate

(113) S(y) ≥ S1.

holds true whenever y1 ≤ sI/ cos α. This can be proved from the transport equation v ·∇S = 0,
and the fact that S increases across shocks when following the pseudo-flow.

6.2 Minimum principle for the pressure

The next estimate is more involved, but still sharp. We begin by defining the angle θ(y) of the
flow :

v = |v|
(

cos θ
sin θ

)
.

Of course, this definition makes sense only away from stagnation points, and θ can be chosen
in a smooth way in every simply connected domain where v is smooth and does not vanish.
The important point is that the gradients of p and θ are related by a linear identity (see [63])

(114) ρ|v|2∇θ⊥ + ρv = (I2 − c−2v ⊗ v)∇p,

where X 7→ X⊥ is a rotation by 90◦. Notice that (114) is valid even across contacts, because
the pressure and the angle are continuous across a vortex sheet21.

21Actually, the angle θ equals that between the tangent of the contact curve with the horizontal axis.
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After dividing by ρ|v|2, one eliminates θ from (114) by taking the curl. A kind of miracle
happens here because the low order term yields again the gradient of the pressure:

(115) div

(
1

ρ|v|2 (I2 − c−2v × v)∇p

)
+
|v|2c−2 − 2

ρ|v|4 v · ∇p = 0.

We notice that for the moment, we do not know whether ρ may vanish, but we shall see soon
that it does not, because of an explicit lower bound. This expresses the fact that the wedge
has an obvious compressive effect.

We interpret (115) as a linear second order equation Np = 0 in the pressure, with variable
coefficients. For cosmetic reasons, our operator N is given by the left-hand side of (115),
multiplied by ρ|v|2. We have

N =
2∑

i,=1

aij∂i∂j +
∑

i

bi∂i,

where the second order terms are precisely

∑
i,j

(δj
i − qiqj)∂i∂j,

(
q :=

v

c

)
.

We point out that the first order terms bi in N have singularities at stagnation points, namely
when v vanishes. There, (115) becomes a first order equation.

The operator N is elliptic precisely in the subsonic domain |q| < 1, because of the inequality
between symmetric matrices:

v ⊗ v < c2I2.

We thus have an extremum principle for the pressure: it cannot achieve a local minimum or a
local maximum at an interior point, unless v vanishes simultaneously.

Of course, the steady problem yields an equation similar to (115) (the right-hand side being
replaced by zero) and the same conclusion can be stated. Even the incompressible case is
relevant, with equation

div

(
1

|u|2∇p

)
= 0,

as pointed out by H. Weinberger (private communication).
For the moment, we have shown that the pressure cannot achieve an local extremum in the

interior of the subsonic domain, except at stagnation points. However, it is known that in the
steady case, p does achieve local extrema a stagnation points. Typically, p may be maximal at
saddle points of the flow, and minimal at foci (see Figure 16). Thus it seems hopeless to get an
a priori bound for the pressure in general. It is therefore remarkable that the lower order terms
present in the self-similar problem help in establishing a minimum principle for the pressure !

Stagnation points. Let y0 be a stagnation point (v(y0) = 0) and assume that p achieves
a local minimum at y0. Let M denote ∇v(y0). From (96), we have TrM = −2. Hence the
spectrum of M consists in eigenvalues −1±λ where λ is either real or purely imaginary, because
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b)a)

Figure 16: Steady flows with a stagnation point. Left (a): saddle point, the pressure achieves
a local maximum. Right (b): a focus, the pressure achieves a local minimum.

M has real entries. Differentiating (100) yields D2p(y0) = −ρ(M2 +M). Since the spectrum of
a symmetric matrix is real, we deduce that λ is real. Then one of the eigenvalues −ρλ(λ± 1)
is non-positive. Since D2p(y0) must be non-negative, we deduce that λ = 0 and therefore

(116) D2p(y0) = 02.

Concerning M , we already have two conclusions. On the one hand, its spectrum reduces to
{−1}, while on the other hand we have M2 +M = 02. Since the polynomial X2 +X has simple
roots, M is semi-simple and therefore equals −I2. We conclude that22

(117) Dv(y0) = −I2.

The analysis of [63] stopped there, so that the minimum principle for the pressure remained
a formal result, leaving aside the marginal case where p is flat at y0. We complete it here with
a rigorous proof, assuming only that U is locally smooth. There remains to treat the case of
a stagnation point with (116,117). To begin with, we remark that, thanks to (117), y0 is an
isolated stagnation point and that v(y) = −z + O(|z|2) with z := y − y0. Our key observation
is that, because of (117), N has bounded coefficients at y0 ! More precisely, we have

N ∼
2∑

i,=1

aij∂i∂j +
∑

i

b0
i ∂i,

where

b0
i = −∂iρ

ρ
+

2

|z|2
∑

k,l

zkzl
∂2vi

∂yk∂yl

.

The boundedness of the coefficients and the uniform ellipticity of N allows (see [58], Chapter
2, Theorem 5) us to apply the maximum principle at y0. Therefore the pressure cannot reach
a local minimum at some interior point.

Various components of the boundary. Since we have shown that the minimum of the
pressure over D must be achieved somewhere on the boundary ∂D, we now investigate on which
part it occurs.

22This equality means that u = y holds at second order at the point y0.
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The wall. This minimum cannot occur along the wall, because of the following consequence
of (114) and of the boundary condition:

∂p

∂ν
= 0,

where the left-hand side is the normal derivative. This, together with the elliptic equation
(115) tells that p does not achieve a local minimum at such a point. There are however
two subtleties:

• At the corner of the wedge, which is a geometrical singularity. Remark that our
domain Ω is convex and could be approximated by smooth convex domains by
smoothing out the vertex at the origin. Then the boundary condition is written,
in terms of the pressure,

(118)
∂p

∂ν
= ρ|v|2κ,

where κ is the curvature of the boundary, positive in this case. Hence ∂p/∂ν is
positive (treat the stagnation points as above) and p cannot be minimal along the
wall.

• Once again, the maximum principle does not apply directly at a boundary point
where v vanishes. At such a point, ∂p/∂ν vanishes because of (118). The mini-
mality along the boundary tells also that the tangential derivative vanishes, whence
∇p(y0) = 0. But then the same arguments as in the case of an interior stagnation
point are valid. We find that ∇v(y0) and the coefficients of N are locally bounded.
Therefore the maximum principle holds at such boundary points.

We point out that the same argument works in the steady case and has a natural inter-
pretation. If the ramp is compressive (α > 0 as in our case), the pressure is likely to
increase ahead, while if the corner is expansive (α < 0), we have the opposite situation ;
the pressure cannot be maximal at a boundary point and it is likely to decrease ahead.

The sonic line. Along the sonic line, the solution is continuous, thus p ≡ p2. Since U2 is the
subsonic state in the reflected shock between U1 and U2, we have p2 > p1 and therefore
p > p1 along the sonic line.

The diffracted shock. The last component of ∂D is the part of the reflected shock between
the point Q and the symmetry axis. Since the flow is subsonic on the inner side and
supersonic in the outer, we have that the inner trace of the pressure is higher than p1.

In conclusion, the following minimum principle is expected for the pressure:

(119) p(y) ≥ p1, ∀y ∈ D.

We point out that this justifies a posteriori the fact that the density does not vanish, provided
the internal energy remains bounded.
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6.3 Estimate for the diffracted shock

We still follow [63] and assume that the reflection agrees with Figure 10, and use the fact that
the state U1 is (pseudo-)supersonic relative to the reflected shock:

(120) |v1 · ν| > c1.

Here, v1 = u1 − y and u1, c1 are constants. Hence this reads

|(y − u1)× ẏ⊥| > c1,

when parametrizing the shock by arclength. In particular, the vector product does not vanish.
By continuity, it must keep a constant sign, which is positive if the arc length is measured from
Q. We have therefore

(121) (y − u1)× ẏ⊥ > c1,

For the moment, let us study the curves passing through Q, which are defined by equality in
(121):

(122) (Y − u1)× Ẏ ⊥ = c1, |Ẏ | = 1.

The system (122) defines two well-posed differential equations for |Y − u1| > c1, where Y
determines two values Ẏ as intersection points of a circle and a straight line. It degenerates on
the circle C1 of equation |Y −u1| = c1, where Ẏ must be the unit tangent to C1. If |Y −u1| < c1,
there is no solution Ẏ . We infer that the integral curves are made of an arc of C1, followed at
each extremity by the tangents to the circle23. One or two parts (a tangent and/or the arc) may
be omitted. Since |yQ−u1| > c1 (because the downstream flow is supersonic at Q), we see that
an integral curve originating at Q must follow the tangent to C1, the one that approaches C1

counterclockwise. Then it is free to follow C1 until it leaves it along another tangent. Several
integral curves are shown on Figure 17.

If the inequality in (121) held in the weak sense (≥ instead of >), we could only say that
the reflected shock stays below the upper extreme integral curve of (122), at least the one going
towards C1. This was the result obtained in [63], which gives a rather poor information, both
in terms of sufficient condition for the boundedness of D, and in terms of estimates. But since
the inequality in (121) is strict, we know that the reflected shock stays actually below every
integral curve of (121) (because it is below every one near Q). Therefore, it is bounded by the
extreme integral curve defined as the tangent from Q towards C1, followed by the circle till the
horizontal axis.

As a conclusion, we have the following estimate of the subsonic domain, which is illustrated
in Figure 18:

The subsonic domain D is contained in the convex set whose boundary is made of
a part of the wall (horizontal axis and ramp), a part of the circle C1 of equation
|Y − u1| = c1, a part of the tangent to C1 passing through Q, and the part of the
sonic circle |Y − u2| = c2 between the ramp and the point Q.

23The conclusion in [63] was erroneous, because we did not pay attention to the degeneracy of (122) along
the circle.
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extreme curve ends at point M−. The other one is the continuation of the tangent passing
through Q ; M+ might not exist.
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Figure 18: The convex set D contains the subsonic domain. It is bounded by the arc SQ of
the sonic circle of state U2, the arc TM− of the sonic circle of state U1, plus its tangent at T
through Q, and finally the part of the wall M−OS.
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6.4 Using the Bernoulli invariant

We still follow [63]. We know that, away from the discontinuities, the pseudo-Bernoulli invariant

B :=
1

2
|v|2 + e +

p

ρ
=

1

2
|v|2 + γe

satisfies the damped transport equation

v · ∇B + |v|2 = 0.

We recall that the damping term |v|2 is due to self-similarity. Given a smooth function f , we
deduce

v · ∇f(B) + |v|2f ′(B) = 0.

Multiplying by ρ and using (96), we obtain

(123) div(ρf(B)v) + 2ρf(B) + ρ|v|2f ′(B) = 0.

Restricting our attention to D, (123) is valid everywhere in the sense of distributions, because
there is no shock, and the slip condition (v · ν)± = 0 along contacts is harmless. Therefore we
may integrate over D and find

(124)

∫

∂D

ρf(B)v · ν dl +

∫

D

ρ(2f(B) + |v|2f ′(B)) dy = 0.

Let us discuss the boundary integral in (124). On the one hand, the integrand ρf(B)v · ν is
a trace taken from the subsonic side. On another hand, it vanishes along the wall because
v · ν = 0. Hence the integral can be taken on the upper part ∂D+ only, made of the sonic line
SQ and the diffracted shock.

Let us denote by B̄ the supremum of the inner trace of B along ∂D+. We now choose a
non-decreasing and smooth function, such that f vanishes all along (−∞, B̄] and is positive
elsewhere. Then the boundary integral in (124) vanishes, and the last term is non-negative,
whence ∫

D

ρf(B) dy ≤ 0,

from which we deduce a maximum principle:

(125) B(y) ≤ B̄, ∀y ∈ D.

We then need an explicit bound for B̄. Since U is continuous across the sonic line, we have
on the one hand

B =
1

2
|u2 − y|2 + γe2 ≡ c2

2

2
+ γe2 =

γ(γ + 1)

2
e2

along QS. We denote this constant by B2.
On the other hand, because of (102) (which is even an equality for the full Euler system), we

have j[B] ≤ 0 across a shock, say the reflected shock. However, we know that the pseudo-flow

73



enters24 D, meaning that j < 0 when we orient the normal to the exterior of D. Therefore the
inner trace is less than the outer trace, the latter being

B1(y) :=
1

2
|y − u1|2 + γe1.

Of course, B1(y) is not explicit along the reflected shock, because this curve is not known
with precision. However, the previous paragraph gives us a rather good estimate for D: the
diffracted shock is bounded by the extreme integral curve QM− of Figure 17. Therefore it is not
difficult to bound B1 on this part by the supremum of B1 along QM−, that is by B1(Q) (outer
trace). Remarking as before that the outer trace B1(Q) dominates the inner trace B(Q) = B2,
we deduce at last an explicit upper bound B̄ ≤ B1(Q). Finally, we have

(126) B(y) ≤ B1(Q), ∀y ∈ D.

This is an accurate bound for the pseudo-Bernoulli invariant, except for the fact that B1(Q) is
the largest value of the outer trace, which is strictly larger than the corresponding inner trace ;
B2 is likely to be a more accurate upper bound, though we do not have a satisfactory argument
for this claim.

6.5 Conclusion ; pointwise estimates

Let us begin with the full Euler system. We use estimates (113,119,126), which imply

eρ1−γ ≥ exp(S1), ρe ≥ ρ1e1, γe ≤ B1(Q).

Altogether, these inequalities give us explicit lower and upper bounds for the density and
specific energy (hence for the pressure and the temperature):

(127) (ρ1e1)
1−1/γ exp S1

γ
≤ e ≤ B1(Q)

γ
, γρ1e1

B1(Q)
≤ ρ ≤

(
B1(Q)

γ

)1/(γ−1)

exp S1

1−γ
.

Additionally, (126) gives |v|2 ≤ 2B1(Q), which, together with the estimate of the size of D, say
D ⊂ B(0; R) for an explicit R, yields

(128) |u| ≤ R +
√

2B1(Q).

We now turn to barotropic flow. The difference with the previous case is that there is no
entropy. Hence we use only estimates (119) and (126):

ργ ≥ ργ
1 ,

γ

γ − 1
ργ−1 ≤ B1(Q).

We deduce the bounds

(129) ρ1 ≤ ρ ≤
(

γ−1
γ

B1(Q)
)1/(γ−1)

Then the same estimate as in (128) holds true.

24This might not agree with common sense, but we must keep in mind that the pseudo-flow satisfies div(ρv) <
0 and thus is somehow convergent.
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6.6 The vortical singularity

We show here that the vorticity cannot be square integrable. Our computation is valid for
piecewise smooth solutions in the barotropic case. More precisely, we show that if the solution
is (piecewise) smooth enough, then

(2− p)

∫

D

ρ

∣∣∣∣
ω

ρ

∣∣∣∣
p

dy (ω := ∂1v2 − ∂2v1)

admits a nonzero limit as p → 2− ; in particular, it is not smooth. We recall that D denotes the
subsonic zone, the domain bounded by the wall, the reflected shock and the sonic line (actually,
ω vanishes everywhere else).

Up to Equation (131) below, our calculations are valid in Dr, the complement in D of
discontinuities25. We start with Equation (100), which we divide by ρ (we have seen that
the density does not vanish). Remark that ρ−1∇p is the gradient of enthalpy ∇i(ρ), where
i′(s) = s−1p′(s). Taking the curl, we obtain

(130) (v · ∇)ω + (1 + divv)ω = 0.

Combining with (96), we deduce the transport equation

(131) (v · ∇)
ω

ρ
=

ω

ρ
.

Let f be a Lipschitz continuous function of one variable. Multiplying (131) by f ′(ω/ρ), we get

(132) (v · ∇)f

(
ω

ρ

)
=

ω

ρ
f ′

(
ω

ρ

)
.

We now recombine with (96) and get

(133) div

(
f

(
ω

ρ

)
ρv

)
= ρg

(
ω

ρ

)
, g(s) := sf ′(s)− 2f(s).

We emphasize that (133) is valid off vortex sheets. However, since the normal component of v
along vortex sheets vanishes, the divergence in (133) does not present any singular part. Hence
this identity holds in the distributional sense in D. We now integrate over D and obtain

∫

∂D

f

(
ω

ρ

)
ρv · ν dl =

∫

D

ρg

(
ω

ρ

)
dy,

where we warn the reader that the boundary integral involves inner traces. Choosing f(s) :=
|s|p, this yields

(134) (2− p)

∫

D

ρ

∣∣∣∣
ω

ρ

∣∣∣∣
p

dy = −
∫

∂D

∣∣∣∣
ω

ρ

∣∣∣∣
p

ρv · ν dl.

25We recall that these discontinuities are only slip lines, because steady shocks are forbidden between two
subsonic states, according to Theorem 2.2.
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Let us examine the limit of the right-hand side as p → 2:

(135) F := −
∫

∂D

∣∣∣∣
ω

ρ

∣∣∣∣
2

ρv · ν dl.

The integral over ∂D decomposes as a sum over the wall, and the rest of the boundary ∂D−.
The first part vanishes because of the boundary condition. It vanishes along the sonic line too,
because the irrotationality of U2 propagates across this line26. Along the reflected shock, we
know that ω is non zero27 and that the normal pseudo-velocity v · ν is negative. In conclusion
the limit F is positive. We summarize our results in the following statement

Theorem 6.1 Let U be a piecewise smooth symmetric RR for a barotropic gas, with qualitative
features as described in Figure 10. Then the vorticity ω := ∂1u2 − ∂2u1 cannot be square
integrable.

We point out that the vortical singularity is located at a stagnation point. As a matter of
fact, (131) is an ODE that transports and amplifies ω/ρ. The amplification remains finite as
long as v does not vanish. Only at stagnation points can ω/ρ blow up. Of course, since ρ and
1/ρ are uniformly bounded, the singularity concerns only ω.

A reasonable expectation is that the vortical singularity arises somewhere along the ramp.
As a matter of fact, there must exist a stagnation point along the boundary, since v ·ν = 0 holds
and the pseudo-velocity field is incoming at both ends. This does not rule out the possibility
that several stagnation points exist. But, assuming the generic property that they are non-
degenerate, there must be N + 1 attractors and N saddle points for some N ≥ 0, since the
total degree of the pseudo-flow in the subsonic zone is +1. Remark that Equation (96) forbids
repellors. If N ≥ 1, then the stable manifolds of the saddle points come from the exterior of
the subsonic zone and divide D into N +1 regions, each one containing precisely one attractor.

6.6.1 A formal description of the vortical singularity

We wish to describe qualitatively the behaviour of the flow near the vortical singularity located
at some point y0, using Equation (131) and the conservation of mass (96). Because of v(y0) = 0,
this point is critical for the pressure, thus for ρ, since the equation of state is barotropic. For
this reason, we make the approximation that ρ is locally constant. Therefore, we base our
analysis upon the simplified system

(136) div v = −2, v · ∇ω = ω, ω = curl v.

Because of the evidence given by Theorem 6.1, the solution must be such that the integral of
ω2 diverges precisely at y0.

We begin with the simpler case (maybe not realistic) that y0 is an interior point. Then
system (136) admits a one-parameter family of rotationally invariant solution. Using polar

26This means somehow that the vorticity is continuous across the sonic line, in spite of the fact that the rest
of ∇u is unbounded.

27Were it to vanish, the reflected shock would remain straight, which is false. As a matter of fact, the proof
of Theorem 2.6 is easily adapted, since (130) still propagates irrotationality.
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ccordinates around y0, we have vr = −r and vθ = vθ(r). There comes ω = v′θ + 1
r
vθ. Since ω

depends only upon r, we have
v · ∇ω = −r∂rω.

Thus ω must be of the form ω0/r, meaning that (rvθ)
′ = ω0. Since the pseudo-velocity is locally

bounded (see Section 6.5), we conclude that

(137) v ∼ −r~er + ω0 ~eθ, ω ∼ ω0

r
.

We point out that ω0 is the amplitude of the singularity. This amplitude must be somehow
proportional to the vorticity generated across the diffracted shock.

We now turn to the situation where the singularity occurs at a boundary point. Then the
description given by (137) is not satisfactory, because the trajectories of this flow are transversal
to the boundary. A refined analysis seems unable to give a solution where ω is of order 1/r
at the singularity. Thus we look for a slightly more singular solution of (136). We begin by
introducing a potential φ such that v = −r~er + curlφ, thanks to the first of (136) ; we have
ω = ∆φ. Then we search for a φ of the form

φ ∼ m(r)a(θ).

Several choices of m are possible a priori, with the only constraint that

∫

0

(∆φ(r))2dr

r
= +∞,

because of Theorem 6.1. Let us first try m(r) = rα, where we need α < 1. This gives
respectively

(138) v · ∇ω ∼ r2α−4
[
αa(α2a + a′′)′ + (2− α)a′(α2a + a′′)

]

and
ω ∼ rα−2(α2a + a′′).

Since r2α−4 dominates rα−2, the dominant term in (138) must vanish. This means that

aγ(α2a + a′′) = cst =: κ, γ :=
2− α

α
.

This autonomous equation of the form a′′ = F (a) is integrable by quadrature, as is well known.
We want a(0) = a(π/2) = 0, in order that the trajectories be tangent to the boundary28. If
κ = 0, then a(θ) = cst sin(αθ), with α an integer. With the constraint, we obtain α = 1, but
then ω is smaller than 1/r and is unlikely to satisfy Theorem 6.1.

If κ 6= 0, a remarkable phenomenon happens. The solution of a′′ = F (a) with a(0) = 0
is monotonic on some interval (0, θ0) until a point where a′(0) = 0. Thus we need that π be

28We choose the angle θ such that the boundary is given by θ ≡ 0 ( mod π).
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a mutiple of 2θ0. It turns out that θ0 ≥ π/2, with equality in the case where a satisfies the
integrated equation

(139) a′2 + α2a2 = κ1a
1−γ (κ1(1− γ) = κ).

Thus a must be precisely one of the solutions of (139). However, these solutions behave like θα

near θ = 0. Since α < 1 and vθ ∼ m′(r)a(θ), we find that the trajectories are still transversal
to the boundary (because a is not Lipschitzian, or quasi-Lipschitz, at θ = 0).

Thus let us try a slight modification of the interior case, with m(r) = r log r. We then find

v · ∇ω ∼
(

log r

r

)2

(a(a + a′′))′.

Once again, this dominant term must vanish, giving

a(a + a′′) = cst = κ.

It is unlikely that κ vanishes. If it does not, a rescaling yields

a′′ + a = − 1

2a
,

and therefore

a′2 + a2 = log
δ

a
,

δ a positive constant. An analysis as above yields a solution for which a(0) = 0 and a′(θ0) = 0,
where

θ0 :=

∫ a∗

0

da√
log δ

a
− a2

,

and a∗(δ) is the root of the denominator in (0, δ). It turns out that θ0 is always less than π/2,
and approaches this value when δ → +∞. It also tends to zero when δ → 0+.

Taking such a solution on (0, θ0(δ)) and extending by parity, we obtain a solution with
a(0) = a(2θ0) = 0. We think that it is reasonable to match it with a ≡ 0 on (2θ0, π), which still
cancels the dominant term in v ·∇ω. One advantage of this construction is that we do expect a
zone where the vorticity vanishes identically: this is the influence domain of the sonic line ; see
Figure 19. An other convenience is that the corresponding vθ is quasi-Lipschitz at θ = 0 and
therefore the streamlines all converge to the stagnation point, instead of crossing the material
boundary.

In conclusion, the singularity of ω may not be significantly larger than 1/r, otherwise the
streamlines rotate too much and do cross the material boundary. On the other hand, it cannot
be significantly smaller, because of Theorem 6.1. Thus the real singularity must be of order
1/r, up to say a logarithmic correction.
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Figure 19: A vortical singularity at a boundary point. The streamlines converge to V . The
dotted ones come from the sonic line. The dashed ones come from the diffracted shock. The
vorticity vanishes identically in the doted zone.

Remark. At first glance, the identity (134), and the fact that the limit F given by (135) is
finite, suggest a singularity of order exactly 1/r. This is in contradiction with the impossibility
to build such a vortical singularity at a boundary point. However, the derivation of (134) as-
sumed an amount of regularity that is not valid. Being more carefull, we should have integrated
(133) over D \ Bε, with Bε a small (half-)disk around y0. Then there is a contribution from
∂Bε in (134), which does not vanish when ε → 0, and may even tend to infinity. With this
correction, a singularity of order higher than 1/r becomes coherent.

Open problems. We conclude this discussion with two important questions that remain to
be solved:

• Describe in more detail and with higher rigor the vortical singularity.

• Is there a vortical singularity for the full Euler model ?

This is unclear. It could be that the vortical singularity is just a consequence of the
barotropic assumption. Whatever the answer to this question, we keep in mind that the solu-
tion must be singular, even in the full Euler model, because the transport equation v · ∇S = 0
that follows from the self-similar equations, and the fact that the entropy may not be constant
along the diffracted shock, imply a discontinuity of S at the center V of the pseudo-flow (see
Figure 19). If moreover the pressure is continuous, as suggested by the elliptic equation (115),
then the discontinuity of S induces a discontinuity of the density ρ.
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