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[ Population j

[ Control group j [ Treatment group }
[ Placebo ] [ Exposure j
[ Impact j [ Impact j
Control: Limitations:
m Eliminate temporal bias m Costly
Random selection: m Unethical
m Eliminate confounding bias m infeasible

—> Sometimes we have to rely on observational studies

Causal Inference Causal hierarchy 5/ 67



"\ SANTE

S Simpson paradox (3]

In a study, we measure weekly exercise and cholesterol levels for
various age groups.
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m Sets: A={X,Y,Z}

m Statistical independence: 11 p
Statistical dependence: p
PY=y|X=x)=P(y|x)
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A graph G = (V, ) is said to be a directed graph iff

m V is the set of vertices (usually each vertex corresponds to
a random variable),

m [ is the set of edges,
m V(X,Y) € E, thereis an arrow pointing from X to Y.
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A directed graph G = (V, ) is said to be a directed acyclic
graph (DAG) iff

VX €V, An(X) N De(X) = {X},

i.e., there are no cycle in G.

From now on, we will only deal with DAGs.
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#Load the networkx package
import networkx as nx
#Define the Directed graph
g = nx.DiGraph ()
g.add_nodes_from ([”A” "B ,7C”"])
.add_edge(”"B”, "A”)
.add_edge(”"B”, "C”)
.add_edge("A”, "C”)
g.remove_edge(7A”, 7C”)
#Print nodes and edges
print (g.nodes)

print (g.edges)

#Print parents and children
print (g.predecessors ("A”))
print (g.successors ("B”))

o 0° 0=
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A distribution P(V) is compatible with a DAG G = (V, E) if
PV) =[] P(X| Pa(X))

Xev

s v¥X eV, X LLp Nd(X) | Pa(X) (Markov condition)

A DAG G = (V, E) is a Bayesian network iff there exists a joint
distribution P(V) that is compatible with G.
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Sﬁﬁ.’*&%g‘#é Basic structures

Fork: contains a confounder

A C B A C B
?

Chain: contains a mediator or an intermediate cause

A C B A C B
? L]
All,B AllrB|C

Collider : contains a common effect
A C B A C B
?
AllerB AllrB|D

A collider is unshielded if its extremities are not adjacent.
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[~
A C B
- Mother carrier B— Father carrier
] Mother not carrier ] Father not carrier

Child carrier
Child not carrier

If C = Child carrier —
If A= Mother not carrier then B = Father carrier

C=(AorB)=

If B = Father not carrier then A = Mother carrier
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B|C>05
|

Corr(A; B) = 0.002 Corr(A;B|C>05)=0.8
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A path is said to be blocked by a set of vertices Z € V if:

m it contains a chain A — B — C or a fork A+ B — C and
BeZ;or

m it contains a collider A — B < C such that no descendant
of Bisin Z.

A path that is not blocked is active.
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Given disjoint sets X, Y, Z CV, we say that X and Y are
d-separated by Z if every path between a vertex in X and a
vertex in Y is blocked by Z and we write X 1L g Y| Z.

If one path is not blocked, we say that X and Y are d-connected
given Z and we write XJLLQ Y|Z.

Theorem

X 1l g Y |Z= VP compatible with G, X 1L pY|Z

but X_M_g Y | Z # VP compatible with G, X A, Y| Z instead
X ;Y| Z = 3P compatible with G, X A , Y |Z

XAgY|z=>x1lpy|Z
7
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gi‘éﬁlém; Reading conditional independencies using d-separation

UNIVERSITE

IsAlls,D|B?

s
C_’

D

< A, C, D >isnot
blocked G G

. All,D|B  Alpathsare <ABILGFD>
blocked is not E)locked

:>AJ_|_/3D|B :>AJ;L,DD|B
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Sﬁgmggg Python code: d-separation using networkx package

#Load the networkx package

import networkx as nx

#Define the Directed graph

g = nx.DiGraph ()

g.add_nodes_from ([”A”,”"B”,7C”])

g.add edge(”B”, "A”)

g.add_edge(”B”, 7C”)" 71771

#Check if B d-separates A and C

dsep = nx.is_d_separator(g, "A”, "B”, 7C”)
print (dsep)
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somowe  Simpson paradox (3]

UNIVERSITE

In a study, we measure weekly exercise and cholesterol levels for
various age groups.

Cholesterol

Exercise
Z: Age Z: Age
A: Exercise—Y: Cholesterol A: Exercise+—Y: Cholesterol
Z: Age Z: Age
A: Exercise—Y: Cholesterol A: Exercise+—Y: Cholesterol
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Z: Age Z: Age
A: Exercise—Y: Cholesterol A: Exercise—Y: Cholesterol
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S

Z: Age

7N

A: Exercise—Y: Cholesterol

Not a causal DAG

Z: Diabetic ketoacidosis

7N

A: Bad breath Y: Coma

Not a causal DAG

Causal Inference Causal DAGs

Bayesian networks vs causal DAGs

Z: Age

N

A: Exercise—Y: Cholesterol

Causal DAG
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<N

A: Bad breath Y: Coma
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Z: Age

7N

A: Exercise—Y: Cholesterol

Not a causal DAG

Z: Diabetic ketoacidosis

7N

A: Bad breath Y: Coma

Not a causal DAG

Oracle for conditional
independence

Z: Age

N

A: Exercise—Y: Cholesterol

Causal DAG

Z: Diabetic ketoacidosis

<N

A: Bad breath Y: Coma

Causal DAG

Oracle for intervention

It is impossible to determine, without additional assumptions,
which of the two DAGs is causal based solely on the observed
distribution!
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Ssoaaom«s Causal Bayesian networks - Causal DAG

UNIVERSITE

Truncated factorization [2]: If we intervene on a subset S C V,
then

P(vi,--- vy | do(s)) = T] P(vi| Pa(v))

VigS

Let P(V) be a probability distribution and let P, denote the set
of all interventional distributions P(V | do(s)). A bayesian
network G is said to be a causal DAG compatible with P, iff G
and P, satisfy the truncated factorization.

Causal Inference Causal DAGs 24 / 67
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Sitveme  Structural causal model
AP
B — C
D/ ()
© E/ \F ®

576
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Sggmggg Structural causal model

RAP
B—>/C
b +H—(&) ;
- VN o .

576

= fa(€a)

= fp(A H, &)
=1(A B, 1,&)
= fa(C, F, &4)
= fe(B, G, &)
= fr(C.G,&f)
= fg(&g)

= fn(G, &n)

= 1i(G, &)

T T OmMmMo Ol >
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Sggmggg Structural causal model

BAP
B — C
/
D
/\
F

A= (&)
B := (A H,&p)
C:=f(A B 1&)
D = fy(C, F &)
@ M: < E:="1f(B, G,E&)
F
G
H
/:

@ £ e = fr(C.G,&f)

HN /L = fg(&g)
G
5

= 1n(G, &n)
A structural causal model (SCM) is a tuple that contains:

= 1i(G, &)
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BAP
B—>/C
D A&
odd M

576

A= 1(&,)

B = fb(A, H, éb)
C:=f(A B 1&)
D .= fd(C, F, £d)
E:=1(B, G, &)
F = ff(C,G,Ef)
G = fy(&g)
H = (G, &n)
I:=1(G,&)

A structural causal model (SCM) is a tuple that contains:

m Endogenous variables
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Sagmggg Structural causal model
: @

/ N\

B — C

/

A=

B

C

D

D @ M:<E
© g

H

/

@ E/\F

516

fa(€a)
= fp(A H, &p)
=1(A B, 1,&)
= 14(C, F, &q)
= 1e(B, G, &)
= fr(C.G,&f)
= fg(&g)
= (G, &)

= £i(G. &)

A structural causal model (SCM) is a tuple that contains:
m Endogenous variables m Exogenous variables
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RAP
I
® ®

D
/N
HE\/‘F/
'
b1

M :

A= (&)

B = fb(A, H, Eb)
C:=f(A B 1&)
D .= fd(C, F, Ed)
E:=1(B, G, &)
F = ff(C,G,Ef)
G = fy(&g)
H = (G, &n)
I:=1(G,&)

A structural causal model (SCM) is a tuple that contains:

m Endogenous variables

m Exogenous variables
m Causal mechanisms for generating endogenous variables

Causal Inference Causal DAGs
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of edges.
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Slsmgggg Guidlines for constructing causal DAGs

In causal DAGs, the information lies in the absence of edges
and the direction of arrows, rather than merely in the presence
of edges.

m Think carrefully about the orientation

m When you are not sure if you need to add or not an edge
(for example Z — A) to the graph, ADD IT! (as long as
you keep the graph acyclic)
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"\ SANTE

Slsmgggg Guidlines for constructing causal DAGs

In causal DAGs, the information lies in the absence of edges
and the direction of arrows, rather than merely in the presence
of edges.

m Think carrefully about the orientation

m When you are not sure if you need to add or not an edge
(for example Z — A) to the graph, ADD IT! (as long as
you keep the graph acyclic)

If you cannot keep the graph acyclic, do not worry, there exists
new tools for cyclic graphs.
But in this lecture, we will focus only on acyclic graphs.

Causal Inference Causal DAGs 26 / 67
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Gene FTO
Gene MC4R Fat mass
! Is this DAG causal?
Gene TMEM18 Bone mineral density

Gene GNPDA2
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Siems DAG Vs DAG causal: exemples

UNIVERSITE

Gene FTO
Gene MC4R Fat mass
! Is this DAG causal?
. . No
Gene TMEM18 Bone mineral density

Gene GNPDA2

Is this DAG causal?

Hypertension

Renal function
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Siems DAG Vs DAG causal: exemples

UNIVERSITE

Gene FTO
Gene MC4R Fat mass
! Is this DAG causal?
. . No
Gene TMEM18 Bone mineral density

Gene GNPDA2

Is this DAG causal?
Yes

Hypertension

Renal function

Causal Inference Causal DAGs 27 / 67
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Ssoaaows Identifiability and positivity

UNIVERSITE

A causal effect is said to be identifiable if it is uniquely
computable from an observational distribution P(V).

The causal effect of Aon Y
=E(Y|do(A=a))—E(Y | do(A=2))
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Z
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Sﬁgmﬁggg Identiﬁability and pOSitiVity

A causal effect is said to be identifiable if it is uniquely
computable from an observational distribution P(V).

Z
N\
The causal effect of Aon Y /| e Y
— E(Y | do(A = a)) — E(Y | do(A = a")) \M/

The causal effect is identifiable iff P(y | do(a)) is identifiable.
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Sﬁﬁmﬁggé Identiﬁability and pOSitiVity

A causal effect is said to be identifiable if it is uniquely
computable from an observational distribution P(V).

Z
N\
The causal effect of Aon Y /| e Y
— E(Y | do(A = a)) — E(Y | do(A = a")) \M/

The causal effect is identifiable iff P(y | do(a)) is identifiable.

Causal reasoning involves utilizing a causal DAG to determine
whether P(y | do(a)) is identifiable.

Causal Inference Causal reasoning 28 / 67
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Z
7N
A m— Y

N

M

We must eliminate all confounding bias by adjusting for
confounders.
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Confounding bias (e.g., Simpson paradox):

Z
7N
A m— Y

N
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We must eliminate all confounding bias by adjusting for
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Should we always adjust for all available variables?
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Ssoaaows Key challenges of not using a causal DAG (1/3)

UNIVERSITE

Confounding bias (e.g., Simpson paradox):

Z
7N
A m— Y

N

M
We must eliminate all confounding bias by adjusting for

confounders.
Should we always adjust for all available variables? No!
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Bias due to adjusting for colliders:

Bias due to incorrect adjustment for mediators:

A — Y
'y
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Ssoaaows Key challenges of not using a causal DAG (2/3)

UNIVERSITE

Bias due to adjusting for colliders:

Bias due to incorrect adjustment for mediators:

A — Y
'y

Should we adjust on everything that is temporally prior to the
exposure?
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Let Z be the set of observed variables in a problem that are not
affected by A. The set Z satisfies Association Criterion if each
element Z € Z meets the following conditions:

m / is associated with A; and

m Z is associated with Y, conditionally on A.
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Let Z be the set of observed variables in a problem that are not
affected by A. The set Z satisfies Association Criterion if each
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Slsjgmggg Key challenges of not using a causal DAG (3/3)

Let Z be the set of observed variables in a problem that are not
affected by A. The set Z satisfies Association Criterion if each
element Z € Z meets the following conditions:

m / is associated with A; and
m Z is associated with Y, conditionally on A.

Counterexample

Z
A —Y

Z is associated with A and Z is associated with Y, conditionally
on A.
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Slsjgmggg Key challenges of not using a causal DAG (3/3)

Let Z be the set of observed variables in a problem that are not
affected by A. The set Z satisfies Association Criterion if each
element Z € Z meets the following conditions:

m / is associated with A; and
m Z is associated with Y, conditionally on A.

Counterexample

Z
A —Y

Z is associated with A and Z is associated with Y, conditionally
on A. Should we adjust on Z7
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Slsjgmggg Key challenges of not using a causal DAG (3/3)

Let Z be the set of observed variables in a problem that are not
affected by A. The set Z satisfies Association Criterion if each
element Z € Z meets the following conditions:

m / is associated with A; and
m Z is associated with Y, conditionally on A.

Counterexample

Z
A —Y

Z is associated with A and Z is associated with Y, conditionally
on A. Should we adjust on Z?7 Nol!
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Slsjgmggg Key challenges of not using a causal DAG (3/3)

Let Z be the set of observed variables in a problem that are not
affected by A. The set Z satisfies Association Criterion if each
element Z € Z meets the following conditions:

m / is associated with A; and
m Z is associated with Y, conditionally on A.

Counterexample

Z
A —Y

Z is associated with A and Z is associated with Y, conditionally
on A. Should we adjust on Z?7 Nol!
This criterion is incorrect!

Causal Inference Causal reasoning 31 /67
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50
Age
Y 40

Cholesterol

Exercise

What is the effect of exercise on cholesterol P(c | do(e))?
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somowee  Simpson paradox and a simple solution

UNIVERSITE

In a study, we measure weekly exercise and cholesterol levels for
various age groups.

50
Age
Y 40

Age
Cholesterol / \

Exercise —— Cholesterol

Exercise

What is the effect of exercise on cholesterol P(c | do(e))?
P(a, e, c) = P(a)P(e| a)P(c| a,e) (Compatibility)
P(a,c|do(e)) = P(a)P(c | a, e) (Truncated factorization)
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somowee  Simpson paradox and a simple solution

UNIVERSITE

In a study, we measure weekly exercise and cholesterol levels for
various age groups.

50

Age
Cholesterol / \

Exercise —— Cholesterol

Exercise

What is the effect of exercise on cholesterol P(c | do(e))?

P(a, e, c) = P(a)P(e| a)P(c| a,e) (Compatibility)
P(a,c|do(e)) = P(a)P(c | a, e) (Truncated factorization)
P(c| do(e)) =Y _P(a)P(c|a,e) (Marginalizing)
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'\ SANTE

Ssoaaows A simple solution: direct causes adjustment [2]

UNIVERSITE

Theorem

Given a causal DAG G in which a subset V of variables are
measured, the causal effect P(y | do(a)) is identifiable whenever
{AUY U Parents(A)} CV, and is given by:

P(yldo(a))= » Plylaz)P(z)

ZePa(A)
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Sggmggg Limitations of the direct causes adjustment

m Sometimes the set of parents is too large. Is it possible to
find a smaller set?

m Sometimes the set of observed parents is not sufficient for
adjustment. Is it possible to find another set?
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A set of variables Z satisfies the back-door criterion relative to
an ordered pair of variables (A, Y) in causal DAG @ if:

m No node in Z is a descendant of A; and

m 7 blocks all paths between A and Y that contain an arrow
pointing toward A.
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Samgggg The back-door criterion

A set of variables Z satisfies the back-door criterion relative to
an ordered pair of variables (A, Y) in causal DAG @ if:

m No node in Z is a descendant of A; and

m 7 blocks all paths between A and Y that contain an arrow
pointing toward A.

Theorem

If Z satisfies the back-door criterion with respect to (A, Y) and
if P(a,z) > 0, then P(y | do(a)) is identifiable and is given by:

P(y | do(a)) =) P(y|a z)P(2).
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"\ SANTE

Samgg:;g The back-door criterion

A set of variables Z satisfies the back-door criterion relative to
an ordered pair of variables (A, Y) in causal DAG @ if:

m No node in Z is a descendant of A; and

m 7 blocks all paths between A and Y that contain an arrow
pointing toward A.

Theorem

If Z satisfies the back-door criterion with respect to (A, Y) and
if P(a,z) > 0, then P(y | do(a)) is identifiable and is given by:

P(y | do(a)) =) P(y|a z)P(2).

This criterion can be extended to a set A and a set Y.
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m Why "no node in 7 is a descendant of A”?
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UNIVERSITE

m Why "no node in 7 is a descendant of A”?

-
A -> Y To avoid introducing artifi-
cial confounding bias result-
ing from conditioning on a

collider.
To avoid selection bias!

To avoid blocking on inter-
mediate causes.

m Why ”Z blocks all paths between A and Y that contain an
arrow pointing toward A”?
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SSORBONNE The back-door criterion: intuition

UNIVERSITE

m Why "no node in 7 is a descendant of A”?

-
A -> Y To avoid introducing artifi-
cial confounding bias result-
ing from conditioning on a

collider.
To avoid selection bias!

To avoid blocking on inter-
mediate causes.

m Why ”Z blocks all paths between A and Y that contain an
arrow pointing toward A”?

To eliminate confounding bias.

Causal Inference Causal reasoning 36 / 67
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P(y | do(a))?
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P(y | do(a))? 4 Z No
X B X 7?7 No

C ? No

\\\‘Z,// B ? No
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X B X 7 No
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P(y | do(a))? Z L N
X B X 7 No
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Ssoaaom«s Back-door criterion in action (1/2)

UNIVERSITE

P(y | do(a))? Z L N
X B X 7 No
\ 7O\ / o
X, B? No
A Y !
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Example

Suppose that all variable are temporally prior to A and Y.
P(y | do(a))?
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walking within the neighborhood (R), P(r | do(n))?
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In this study, we aim to estimate the effect of the
neighborhood’s socioeconomic status (N) on the reduction of
walking within the neighborhood (R), P(r | do(n))?

L>: Low accessibil-
ity to green spaces

!
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neighborhood
socioeconomic
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l

L1: Lack of
services

E:Exposure
to high crimi-
nality levels

|

R: Reduced
walking in
one’s neigh-
borhood

|

P: Proximity to
polluting industry
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UNIVERSITE

m The back-door criterion is sound but not complete:

» If there exists a set that satisfy the back-door criterion for
P(y | do(a)), then P(y | do(a)) is identifiable;

P If there exists a no set that satisfy the back-door criterion
for P(y | do(a)), then P(y | do(a)) is not necesarly not
identifiable.
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YT

A 7 Y

A set of variables Z satisfies the front-door criterion relative to
an ordered pair of variables (A, Y) in causal DAG @ if:

m 7 intercepts all directed paths from A to Y

m There is no back-door path from A to Z;

m All back-door paths from Z to Y are blocked by A.

Theorem ([1])

If Z satisfies the front-door criterion relative to (A, Y) and if
P(a, z) > 0, then the causal effect of A on Y is identifiable and
is given by

P(y | do(a)) =) P(zla))_ P(y|d.2)P().
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In this study, Piccininni et al. were interested in estimating the
effect of Mobile Stroke Unit dispatch (M) on functional
outcomes (F). In other words, P(f | do(m))?
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- ~/
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However, it is possible to identify P(f | do(m)) by leveraging a
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Ssoaaows Back-door and Front-door criteria in a real application

UNIVERSITE

In this study, Piccininni et al. were interested in estimating the
effect of Mobile Stroke Unit dispatch (M) on functional
outcomes (F). In other words, P(f | do(m))?

T: Time from
M —— dispatchto ———> F
thrombolysis

- ~/

S1: Stroke severity S»: Systolic blood pressure

The back-door criterion is not satisfied for any set of variables.
However, it is possible to identify P(f | do(m)) by leveraging a
combination of the back-door and front-door criteria!

Best paper in Epidemiology in 2024!
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Ssoaaom«s Incompleteness of the front-door criterion

UNIVERSITE

m The front-door criterion is sound but not complete:

P If there exists a set that satisfy the front-door criterion for
P(y | do(x)), then P(y | do(x)) is identifiable;

» If there exists a no set that satisfy the front-door criterion
for P(y | do(x)), then P(y | do(x)) is not necesarly not
identifiable.

The combination of the back-door and front-door criterions is
also not complete.
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g soronne — Foxercise 1

UNIVERSITE

Consider that in the following causal DAG, only A and Y, and
one additional variable can be measured. Which variable would
allow the identification of P(y | do(a))?
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S sorsonne  Fixercise 2

m Consider the following causal DAG. List all sets of variables
that satisfy the back-door criterion for P(y | do(a));

B

/

NS
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A Zl>y

m Z d-separates A from Y
= {Z} is a bad adjustment set.

Causal Inference Causal reasoning 47 / 67



'\ SANTE

S soronne  Foxercise 3

UNIVERSITE

Is {Z} a good, bad or neutral adjustment set for P(y | do(a))?

Causal Inference Causal reasoning 47 / 67



"\ SANTE

Si#itme  Exercise 3

Is {Z} a good, bad or neutral adjustment set for P(y | do(a))?

m Selection bias
= {Z} is a bad control.
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Slsmgg#g Linear regression and back-door criterion

Goal: estimate the causal effect
d
Q =E[Y|do(A=1)]-E[Y |do(A=0)] or Q:= E[E[Y | do(A = a)]

Assume the back-door criterion holds with covariates Z.

ElY | do(A=a)] = /[E[Y |A=a,7=17]P(z)dz
= /(alA +onZ + ag)P(z)dz (linear model)

= O(lA + O(Q[E[Z] + o

Causal interpretation (under correct specification):

~

Q=&
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Slsmgg#g Linear regression and back-door criterion

Goal: estimate the causal effect
d
Q =E[Y|do(A=1)]-E[Y |do(A=0)] or Q:= E[E[Y | do(A = a)]

Assume the back-door criterion holds with covariates Z.

E[Y | do(A = a)] = /[E[Y |A=aZ=2P(z)dz

= /(alA +onZ + ag)P(z)dz (linear model)

= O(lA + O(Q[E[Z] + o

Causal interpretation (under correct specification):

~

Q=0
E[Y | A= a,Z = z] can be estimated by OLS.
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Ssoaaows Linear regression and front-door criterion

UNIVERSITE

Goal: estimate the causal effect

d
Q=E[Y|do(A=1)]-E[Y |do(A=0)] or Q:= %[E[Y | do(A = a)]
Assume the front-door criterion holds with variable Z.

Linear model:
E[Z | do(A=a)] =ap+ aia (can be estimated by OLS)
E[Y | do(Z = z)] = Bo + B1z + B2E[A] (can be estimated by OLS)

E[Y | do(A = a)] =Bo + B1 E[Z | do(A = a)] + B2E[A]
= Bo + B1(ag + cza) + BoE[A]
= Bo + Biog + Braza + BoE[A]

Causal interpretation (under correct specification):

Q=0 xa
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Slsmgg#g Limitations of linear regression

m Model misspecification: incorrect functional form leads to biased
causal effects.

m Poor extrapolation: limited overlap in covariates can make linear
predictions unreliable.

Machine learning (ML)?

m ML methods can automatically capture nonlinear effects and
interactions without explicit specification.

m But naive use of ML breaks standard inference guarantees
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predictions unreliable.

Machine learning (ML)?
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Siéﬁlms Limitations of linear regression

UNIVERSITE

m Model misspecification: incorrect functional form leads to biased
causal effects.

m Poor extrapolation: limited overlap in covariates can make linear
predictions unreliable.

Machine learning (ML)?

m ML methods can automatically capture nonlinear effects and

interactions without explicit specification.

m But naive use of ML breaks standard inference guarantees

mindE[(Y — F(A, Z))?] #E[Y | do(A = a)]

ML minimize prediction error:
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Estimated causal effect

001 —- oLs
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----- True causal effect

100

Causal Inference

10*
Number of confounders p = 12| (log scale)
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(simulated using
a linear model)
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Ssoaaom«s Targeted Maximum Likelihood Estimation

UNIVERSITE
TMLE relies on two nuisance models:

O(A Z)=LE[Y | A Z] (outcome model),
E(Z)=P(A=1]|7Z) (exposure model).
A targeting step updates O using information from £ to focus

estimation on the causal effect.
These models can be estimated using ML algorithms.
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Ssoaaom«s Targeted Maximum Likelihood Estimation

UNIVERSITE

TMLE relies on two nuisance models:

O(A,Z) =E[Y | A Z]

(outcome model),

E(Z)=P(A=1]|7Z) (exposure model).

A targeting step updates O using information from £ to focus
estimation on the causal effect.
These models can be estimated using ML algorithms.
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UNIVERSITE
TMLE relies on two nuisance models:

O(A Z)=LE[Y | A Z] (outcome model),
E(Z)=P(A=1]|7Z) (exposure model).

A targeting step updates O using information from £ to focus
estimation on the causal effect.

These models can be estimated using ML algorithms.

-+-+ True causal effect
150 - oS
—#— Random Forest
g 125 J —— TMLE (Random Forest)
% 100 ;'# 'I ;
H 1 . .
2 s (simulated using a
o linear model)
8 oas — |
0.00

100 10!
Number of confounders p = 1ZI (loa scale)

TMLE is doubly robust: Consistent Q if either O or E is
correctly specified.

Causal Inference Estimation
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S SORBONNE CI‘OSS-ﬁtting

UNIVERSITE

m Flexible ML models can overfit.

m Overfitting leads to biased estimates and invalid confidence
intervals.

Cross-fitting idea:
m Split data into folds.
m Estimate nuisance models on one fold.
m Predict on another fold.

m Combine results across folds.

Take-home: TMLE + ML + cross-fitting = flexible estimation
with valid confidence intervals.
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Slsjg;cva&g#g Python code: causal estimation using zepid package

#Load data

import pandas as pd

data = pd.read_csv(”./data.csv”)

#Load zepid and sklearn

from zepid.causal.doublyrobust import TMLE

from sklearn.ensemble import RandomForestRegressor as rf
#Estimate causal effect

tmle = TMLE( df=data, exposure='A’, outcome="Y’ )
tmle.exposure model('Z")

tmle.outcome_ model ( "A+Z’, custom_model=rf ())

tmle. fit ()

#Show results

tmle . summary ()

Remark: cross-fitting is not implemented!
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Given observational data, is it possible to infer a causal DAG
using conditional independencies?
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Given observational data, is it possible to infer a causal DAG
using conditional independencies? In general no!

We cannot even construct the skeleton of the graph because

'%P/b%g

e Llpie llg
Diabetic ke- a .
. . Age — Exercise
toacidosis
N )
Bad breath Coma Cholesterol
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Causal sufficiency: No unmeasured confounding.
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Causal sufficiency: No unmeasured confounding.

Faithfulness: All conditional independence relations true in P
are entailed by the d-separation applied to G:

AllgB|S < AllpB]|S

Given observational data, is it possible to infer a causal DAG
using conditional independencies under the assumptions of
faithfulness and causal sufficiency?
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Equivalence in terms of conditional independence

X =Y

X <Y

X = Z <Y

X «—Z—Y

X «— Z Y

X == Z =Y
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Ssoaaows Markov equivalence class [7]

UNIVERSITE

Equivalence in terms of conditional independence

X =Y X <Y X = Z <Y

X «—Z—Y X «— Z Y X == Z =Y

Theorem

Two causal DAGs are Markov equivalent iff they have the same
skeleton and the same unshielded colliders.
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X «—Z—Y X «— Z Y X == Z =Y

Theorem

Two causal DAGs are Markov equivalent iff they have the same
skeleton and the same unshielded colliders.

m All equivalent graphs can be represented by a completed
partially DAG (CPDAG)

m This CPDAG is called the representative of the Markov
equivalence class
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m All equivalent graphs can be represented by a completed
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somome  Markov equivalence class [7]

UNIVERSITE

Equivalence in terms of conditional independence

X =Y X <Y X = Z <Y

X «—Z—Y X «— Z Y X == Z =Y

Theorem

Two causal DAGs are Markov equivalent iff they have the same
skeleton and the same unshielded colliders.

m All equivalent graphs can be represented by a completed
partially DAG (CPDAG)
m This CPDAG is called the representative of the Markov
equivalence class
Given observational data, is it possible to infer a CPDAG using
conditional independencies under the assumptions of
faithfulness and causal sufficiency? Yes!

Causal Inference Causal discovery 56 / 67
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Theorem
If P(V) is faithful to some causal DAG G with vertex V then:
m For X,Y €V, X and Y are adjacent iff VS C V\{X, Y},

XWpYis:
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Theorem

If P(V) is faithful to some causal DAG G with vertex V then:
m For X,Y €V, X and Y are adjacent iff VS C V\{X, Y},
XWpyIs;
m For X, Y, Z € V such that X is adjacent to Z and Z is

adjacent to Y and X and Y are not adjacent, X — Z <Y
in G iff V5 C V\{X, Y} such that Ze€ S, X A, Y | S.
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Slsmgg#g Finding skeleton and unshielded colliders

Theorem

If P(V) is faithful to some causal DAG G with vertex V then:
m For X,Y €V, X and Y are adjacent iff VS C V\{X, Y},
XWpyIs;
m For X, Y, Z € V such that X is adjacent to Z and Z is

adjacent to Y and X and Y are not adjacent, X — Z <Y
in G iff V5 C V\{X, Y} such that Ze€ S, X A, Y | S.

m Point 1 can be used to discover the skeleton of G from P(V);

m Given the skeleton of G, point 2 can be used to find all
unshielded colliders.
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Suppose we already found the skeleton and all unshielded

colliders:

X
Meek-Rule 1: | %>

X
Meek-Rule 2: | \ %>

X — W
Meek-Rule 3: \ \ | %>
Y
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S#itwe  The PC algorithm [6]

UNIVERSITE

m Step 1: skeleton construction:

» Construct a complete non oriented graph
» Prune unnecessary edges (optimal) from the skeleton using

Alp
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sawowe  The PC algorithm [6]

UNIVERSITE

m Step 1: skeleton construction:

» Construct a complete non oriented graph
» Prune unnecessary edges (optimal) from the skeleton using

Alp

m Step 2: orientation

» Find unshielded colliders (optimal)
» Meek-Rules 1, 2, 3

Theorem ([6])

Assume the distribution P is compatible and faithful to some
causal DAG G and assume that we are given perfect conditional
independence information about all pairs of variables. The PC
algorithm returns the CPDAG of G.
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§ittme  Pseudocode of the PC algorithm

UNIVERSITE

Algorithm 1 PC
Input: P(V)
Output: CPDAG G*

1: Initialize a complete undirected graph G* on vertex set V
2: Let n=0
3: repeat
4: for all X —Y in G* such that [Ne(X,G*)\{Y}| > n
and subsets S C Ne(X, G*)\{Y'} such that |S| = n do
5 if X 1LpY|S then
6: Delete edge X — Y from G*
7: Let sepset(X,Y) = sepset(Y,X) =S
8 end if
9:  end for
10 Letn=n+1
11: until for each pair of adjacent vertices (X,Y), [Ne(X,G)\{Y'}| < n
12: For each triple X — Z =Y in G*, if X &€ Ne(Y,G*) and Z & sepsep(X,Y)
then orient the triple as X — Z + Y
13: Recursively apply Meek-Rules until no more edges can be oriented
14: Return G*
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Sggmggg PC in action

m Suppose the causal DAG on the right
m Input: Observational data
m Output: CPDAG

m Assumptions: causal sufficiency, faithfulness
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m Suppose the causal DAG on the right
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m Output: CPDAG

m Assumptions: causal sufficiency, faithfulness

Skeleton construction:

B/A\C
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card =0
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gagmggg PC in action

m Suppose the causal DAG on the right A
m Input: Observational data B' ‘C
m Output: CPDAG «r
m Assumptions: causal sufficiency, faithfulness ?
E
Orientation:
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Qe Incorporating background knowledge, extensions, and
SORBONNE
S more

UNIVERSITE

The PC algorithm can effectively incorporate background
knowledge in the form of:

m Forbidden edges
m Required edges
m Forbidden orientations

m Required orientations

The PC algorithm has been extended to settings with
unmeasured confounding: FCI algorithm [6]

Many other causal discovery algorithms have been proposed;
some are able to recover the underlying DAG under additional
assumptions, such as semiparametric modeling assumptions:

LINGAM, ANM, ... [4]
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somome  Real application of PC [5]

UNIVERSITE

g

m Danish men born in 1953, followed from birth to age 65

m Data sources: surveys at ages 12 and 51 + administrative
registers

m 33 variables measured across 5 life-course periods

Un:%tnm Education
e All Teeth

No of Children
Cohabl ion

f e Family\Weekly
PalemaLSomal Class riend: eekl
- ullled In tact lh imily Weekly
_positive Toward Sch — ence Score  InC. F fonds Weekly
Length- = : Intellig noe’ﬁ Height — vaousIng Depression
PalernaLsocIaI Class CreanvnN/ ML
Mother Married Mat I Smoking
Paternal Smoking
Employment Status
(_|pisposable income
Depression
T T T T 1
Birth Childhood Youth Adulthood Early Old Age
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Slsjg;cva&ggg Python code: causal discovery using causallearn package

#Load data

import pandas as pd

data = pd.read_ csv(”./data.csv”)
#Load the causallearn package

from causallearn.search.ConstraintBased .PC import pc
#Learn CPDAG

cg = pc(data, alpha=0.05, indep_test="fisherz’)
#Plot CPDAG
cg.draw_pydot_ graph ()
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g§3§§5~~s Applicability of the back-door criterion to CPDAGs

UNIVERSITE

A/T\Z
CPDAG ANEVAR

Y < Q

e

m [s it possible to identify the causal effect of A on Y using
the CPDAG?

m What about causal effect of Y on W?
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g§3§§5~~s Applicability of the back-door criterion to CPDAGs

UNIVERSITE

A/T\Z
CPDAG ANEVAR

Y < Q

e

m [s it possible to identify the causal effect of A on Y using
the CPDAG? No

m What about causal effect of Y on W7 Yes

A set of variables Z satisfies the back-door criterion relative to
an ordered pair of variables (A,Y) in a CPDAG if Z does not
contain a possible descendant of A; and Z blocks all possible
paths between A and Y that contain an arrow pointing toward

A.
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S sorsomne  [oxercise 4

UNIVERSITE

X/T\Z
A

Y +— Q

| /
w
Which orientation rules did PC use to orient this CPDAG?
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