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1
Causal hierarchy



Some epidemiological questions

Do people who exercise more tend to have lower rates of
heart disease?
Can we predict who is at higher risk of developing diabetes
using BIG DATA?
Does exercising reduce cholesterol?
What happens to blood pressure if we prescribe a new
hypertension drug?
Would COVID-19 outcomes in France have changed with a
different policy?
Would air pollution affect mortality if it didn’t affect
respiratory diseases?
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Pearl causal hierarchy

Counterfactuals
▶ Questions: What if I had done ...? Why?
▶ Would COVID-19 outcomes in France

have changed with a different policy?
▶ Would air pollution affect mortality if it

didn’t affect respiratory diseases?
Interventions
▶ Questions: What if I do ...? How?
▶ Does exercising reduce cholesterol?
▶ What happens to blood pressure if we

prescribe a new hypertension drug?
Associations
▶ Questions : What if I see ...?
▶ Do people who exercise more tend to

have lower rates of heart disease?
▶ Can we predict who is at higher risk of

developing diabetes using BIG DATA?
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Causal effect

The causal effect of A on Y
= E(Y | do(A = a))− E(Y | do(A = a′))

The operator do() represents interventions.

Population Y
Sub-
populations

Y | A=0

Y | A=1

Conditioning
Y | A=0

A=1

A=0

Y | A=1

Intervening Y | do(A=0) Y | do(A=1)
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Gold standard: Randomized controlled trials

Population

Control group

Placebo

Impact

Treatment group

Exposure

Impact

Control:
Eliminate temporal bias

Random selection:
Eliminate confounding bias

Limitations:
Costly
Unethical
infeasible

=⇒ Sometimes we have to rely on observational studies
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Simpson paradox [3]

In a study, we measure weekly exercise and cholesterol levels for
various age groups.
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2
Bayesian networks



Notations

Sets: A = {X, Y, Z}
Statistical independence: ⊥⊥P
Statistical dependence: ⊥̸⊥P
P (Y = y | X = x) ≡ P (y | x)
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Directed graphs

A graph G = (V,E) is said to be a directed graph iff
V is the set of vertices (usually each vertex corresponds to
a random variable),
E is the set of edges,
∀(X, Y ) ∈ E, there is an arrow pointing from X to Y.

Causal Inference Bayesian networks 8 / 67



Directed graphs: basic concepts

Consider the following directed graph G =
(V,E):

Path: D ← B → E ← C
Directed path: A→ B → E → F → G
Parents: Pa(E) = {B,C}
Ancestors: An(E) = {A,B, C, E}
Descendants: De(E) = {E, F, G}
Non-descendants: Nd(E) = {A,B, C,D}
Neighbors: Ne(E) = {B,C,E}
Skeleton of G

A

B C

D E

F

G

B C

D E

A

B

E

F

G

B CB C

A

EE

F

G

B C

A

D

B C

F
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DAGs

A directed graph G = (V,E) is said to be a directed acyclic
graph (DAG) iff

∀X ∈ V, An(X) ∩De(X) = {X},

i.e., there are no cycle in G.

From now on, we will only deal with DAGs.
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Python code: graphs using networkx package

#Load the networkx package
import networkx as nx
#Def ine the Directed graph
g = nx . DiGraph ( )
g . add_nodes_from ( [ ”A” , ”B” , ”C” ] )
g . add_edge ( ”B” , ”A” )
g . add_edge ( ”B” , ”C” )
g . add_edge ( ”A” , ”C” )
g . remove_edge ( ”A” , ”C” )
#Print nodes and edges
p r i n t ( g . nodes )
p r i n t ( g . edges )
#Print parents and c h i l d r e n
p r in t ( g . p r e d e c e s s o r s ( ”A” ) )
p r i n t ( g . s u c c e s s o r s ( ”B” ) )
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Definition

A distribution P (V) is compatible with a DAG G = (V,E) if

P (V) =
∏
X∈V
P (X | Pa(X))

⇔ ∀X ∈ V, X ⊥⊥P Nd(X) | Pa(X) (Markov condition)

A DAG G = (V,E) is a Bayesian network iff there exists a joint
distribution P (V) that is compatible with G.
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Reading conditional independencies in graphs

Example

A
?

⊥⊥P D | B

A

C B

D

A

B C

D E

F

G

A

C B

D

E F

G

H I
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Basic structures

Fork: contains a confounder
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Chain: contains a mediator or an intermediate cause
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Collider : contains a common effect
A C B A C

A
?

⊥⊥P B | C

C

B

D

A
?

⊥⊥P B | D

A⊥⊥P B

A collider is unshielded if its extremities are not adjacent.

Causal Inference Bayesian networks 14 / 67



Basic structures

Fork: contains a confounder
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Chain: contains a mediator or an intermediate cause
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Collider : contains a common effect
A C B A C

A
?

⊥⊥P B | C

C

B

D

A
?

⊥⊥P B | D

A⊥⊥P B

A collider is unshielded if its extremities are not adjacent.

Causal Inference Bayesian networks 14 / 67



Basic structures

Fork: contains a confounder
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Chain: contains a mediator or an intermediate cause
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Collider : contains a common effect
A C B A C

A
?

⊥⊥P B | C

C

B

D

A
?

⊥⊥P B | D

A⊥⊥P B

A collider is unshielded if its extremities are not adjacent.

Causal Inference Bayesian networks 14 / 67



Basic structures

Fork: contains a confounder
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Chain: contains a mediator or an intermediate cause
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Collider : contains a common effect
A C B A C

A
?

⊥⊥P B | C

C

B

D

A
?

⊥⊥P B | D

A⊥⊥P B

A collider is unshielded if its extremities are not adjacent.

Causal Inference Bayesian networks 14 / 67



Basic structures

Fork: contains a confounder
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Chain: contains a mediator or an intermediate cause
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Collider : contains a common effect
A C B A

C

A
?

⊥⊥P B | C

C B

D

A
?

⊥⊥P B | DA⊥⊥P B

A collider is unshielded if its extremities are not adjacent.

Causal Inference Bayesian networks 14 / 67



Basic structures

Fork: contains a confounder
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Chain: contains a mediator or an intermediate cause
A C B A C B

A
?

⊥⊥P B A⊥⊥P B | C

Collider : contains a common effect
A C B A

C

A
?

⊥⊥P B | C

C B

D

A
?

⊥⊥P B | DA⊥⊥P B

A collider is unshielded if its extremities are not adjacent.
Causal Inference Bayesian networks 14 / 67



Artificial correlation in Colliders: example 1

Example

A C B

A =

{
Mother carrier
Mother not carrier

B =

{
Father carrier
Father not carrier

C = (A or B) =

{
Child carrier
Child not carrier

If C = Child carrier =⇒{
If A = Mother not carrier then B = Father carrier
If B = Father not carrier then A = Mother carrier
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Artificial correlation in Colliders: example 2

Example

A C B

A,B ∼ U(−1, 1) ξc ∼ N(0, 12) C = 2AB + ξc

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

A

B

Cor r(A;B) = 0.002

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

A | C > 0.5

B
|C
>
0
.5

Corr(A;B | C > 0.5) = 0.8
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A | C > 0.5

B
|C
>
0
.5

Corr(A;B | C > 0.5) = 0.8
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Blocked paths

A path is said to be blocked by a set of vertices Z ∈ V if:
it contains a chain A→ B → C or a fork A← B → C and
B ∈ Z; or
it contains a collider A→ B ← C such that no descendant
of B is in Z.

A path that is not blocked is active.
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Blocked path: examples

Example
A

B C

D E

F

G

B C

D E

A

B

E

F

G

Is the path < D,B,E, C > blocked? Yes
Is the path < D,B,E, C > blocked by E? No
Is the path < A,B,E, F, G > blocked? No
Is the path < A,B,E, F, G > blocked by E? Yes
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d-separation

Given disjoint sets X,Y,Z ⊆ V, we say that X and Y are
d-separated by Z if every path between a vertex in X and a
vertex in Y is blocked by Z and we write X⊥⊥G Y | Z.

If one path is not blocked, we say that X and Y are d-connected
given Z and we write X⊥̸⊥G Y | Z.

Theorem
X⊥⊥G Y | Z⇒ ∀P compatible with G,X⊥⊥P Y | Z

but X⊥̸⊥G Y | Z ̸⇒ ∀P compatible with G,X⊥̸⊥P Y | Z instead
X⊥̸⊥G Y | Z⇒ ∃P compatible with G,X⊥̸⊥P Y | Z

X⊥⊥G Y | Z⇒ X⊥⊥P Y | Z

X⊥̸⊥G Y | Z⇒ X
?

⊥⊥P Y | Z
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Reading conditional independencies using d-separation

Example
Is A⊥⊥P D | B?

A

C B

D

C B

< A,C,D > is not
blocked

=⇒ A
?

⊥⊥P D | B

A

B C

D E

F

G

B

All paths are
blocked

=⇒ A⊥⊥P D | B

A

C B

D

E F

G

H I

BBCC

E

C

E F

G

B

I

F

G

C

H

F

G

< A,B, I, G, F,D >

is not blocked

=⇒ A
?

⊥⊥P D | B
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Python code: d-separation using networkx package

#Load the networkx package
import networkx as nx
#Def ine the Directed graph
g = nx . DiGraph ( )
g . add_nodes_from ( [ ”A” , ”B” , ”C” ] )
g . add_edge ( ”B” , ”A” )
g . add_edge ( ”B” , ”C” )^^ I ^^ I
#Check i f B d - s epa ra t e s A and C
dsep = nx . is_d_separator ( g , ”A” , ”B” , ”C” )
p r i n t ( dsep )
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Simpson paradox [3]

In a study, we measure weekly exercise and cholesterol levels for
various age groups.

Z: Age

A: Exercise Y: Cholesterol

Z: Age

A: Exercise Y: Cholesterol

Z: Age

A: Exercise Y: Cholesterol

Z: Age

A: Exercise Y: Cholesterol
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3
Causal DAGs



Bayesian networks vs causal DAGs

Z: Age

A: Exercise Y: Cholesterol

Not a causal DAG

Z: Age

A: Exercise Y: Cholesterol

Causal DAG
Z: Diabetic ketoacidosis

A: Bad breath Y: Coma

Not a causal DAG

Z: Diabetic ketoacidosis

A: Bad breath Y: Coma

Causal DAG

Oracle for conditional
independence Oracle for intervention

It is impossible to determine, without additional assumptions,
which of the two DAGs is causal based solely on the observed
distribution!
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Causal Bayesian networks - Causal DAG

Truncated factorization [2]: If we intervene on a subset S ⊂ V,
then

P (v1, · · · , vd | do(s)) =
∏
Vi ̸∈S
P (vi | Pa(vi))

Let P (V) be a probability distribution and let P∗ denote the set
of all interventional distributions P (V | do(s)). A bayesian
network G is said to be a causal DAG compatible with P∗ iff G
and P∗ satisfy the truncated factorization.
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Structural causal model

A

B C

D

E F

G

H I

ξc

ξa

ξb

ξd

ξe ξf

ξg

ξh ξi

ξc

ξa

ξb

ξd

ξe ξf

ξg

ξh ξi

A

G

B C

D

E F

H I

M :



A := fa(ξa)

B := fb(A,H, ξb)

C := fc(A,B, I, ξc)

D := fd(C, F, ξd)

E := fe(B,G, ξe)

F := ff (C,G, ξf )

G := fg(ξg)

H := fh(G, ξh)

I := fi(G, ξi)

A structural causal model (SCM) is a tuple that contains:
Endogenous variables Exogenous variables
Causal mechanisms for generating endogenous variables
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Guidlines for constructing causal DAGs

In causal DAGs, the information lies in the absence of edges
and the direction of arrows, rather than merely in the presence
of edges.

Think carrefully about the orientation
When you are not sure if you need to add or not an edge
(for example Z → A) to the graph, ADD IT! (as long as
you keep the graph acyclic)

If you cannot keep the graph acyclic, do not worry, there exists
new tools for cyclic graphs.
But in this lecture, we will focus only on acyclic graphs.
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DAG Vs DAG causal: exemples

Example
Gene FTO

Gene MC4R

Gene TMEM18

Gene GNPDA2

Fat mass

Bone mineral density

Is this DAG causal?

No

Hypertension Renal function Is this DAG causal?

Yes
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4
Causal reasoning



Identifiability and positivity

A causal effect is said to be identifiable if it is uniquely
computable from an observational distribution P (V).

The causal effect of A on Y
= E(Y | do(A = a))− E(Y | do(A = a′))

A Y

Z

M

The causal effect is identifiable iff P (y | do(a)) is identifiable.

Causal reasoning involves utilizing a causal DAG to determine
whether P (y | do(a)) is identifiable.
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Key challenges of not using a causal DAG (1/3)

Confounding bias (e.g., Simpson paradox):

A Y

Z

M

We must eliminate all confounding bias by adjusting for
confounders.
Should we always adjust for all available variables? No!
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Key challenges of not using a causal DAG (2/3)

Bias due to adjusting for colliders:

A Y

Z

C

Bias due to incorrect adjustment for mediators:

A Y

Z

M

Should we adjust on everything that is temporally prior to the
exposure?
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Key challenges of not using a causal DAG (3/3)

Let Z be the set of observed variables in a problem that are not
affected by A. The set Z satisfies Association Criterion if each
element Z ∈ Z meets the following conditions:

Z is associated with A; and
Z is associated with Y , conditionally on A.

Counterexample

A Y

Z

W U

Z is associated with A and Z is associated with Y , conditionally
on A

.

Should we adjust on Z? No!
This criterion is incorrect!
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Simpson paradox and a simple solution

Example
In a study, we measure weekly exercise and cholesterol levels for
various age groups.

Age

Exercise Cholesterol

What is the effect of exercise on cholesterol P (c | do(e))?

P (a, e, c) = P (a)P (e | a)P (c | a, e) (Compatibility)

P (a, c | do(e)) = P (a)P (c | a, e) (Truncated factorization)

P (c | do(e)) =
∑
a

P (a)P (c | a, e) (Marginalizing)
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A simple solution: direct causes adjustment [2]

Theorem
Given a causal DAG G in which a subset V of variables are
measured, the causal effect P (y | do(a)) is identifiable whenever
{A ∪ Y ∪ Parents(A)} ⊆ V, and is given by:

P (y | do(a)) =
∑

Z∈Pa(A)
P (y | a, z)P (z)
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Limitations of the direct causes adjustment

Sometimes the set of parents is too large. Is it possible to
find a smaller set?

Sometimes the set of observed parents is not sufficient for
adjustment. Is it possible to find another set?

A Y

Z

X B
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The back-door criterion

A set of variables Z satisfies the back-door criterion relative to
an ordered pair of variables (A, Y ) in causal DAG G if:

No node in Z is a descendant of A; and
Z blocks all paths between A and Y that contain an arrow
pointing toward A.

Theorem
If Z satisfies the back-door criterion with respect to (A, Y ) and
if P (a, z) > 0, then P (y | do(a)) is identifiable and is given by:

P (y | do(a)) =
∑
z

P (y | a, z)P (z).

This criterion can be extended to a set A and a set Y.
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The back-door criterion: intuition

Why ”no node in Z is a descendant of A”?

A YZ

ξy

To avoid blocking on inter-
mediate causes.

A Y Z

Uy

To avoid introducing artifi-
cial confounding bias result-
ing from conditioning on a
collider.

To avoid selection bias!

Why ”Z blocks all paths between A and Y that contain an
arrow pointing toward A”?

To eliminate confounding bias.
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Back-door criterion in action (1/2)

Example
P (y | do(a))?

A Y

Z

X B

C

Z ?

No

X ?

No

B ?

No

C ?

No

X,B?

No

Z,X ?

Yes

Z,B ?

Yes

Z,X,B ?

Yes
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Back-door criterion in action (2/2)

Example
Suppose that all variable are temporally prior to A and Y .
P (y | do(a))?

A Y

Z3 Z4 Z5 Z6 Z7 Z8 Z9

Z10

Z0

Z1 Z2

Z10
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Back-door criterion in a real application

Example
In this study, we aim to estimate the effect of the
neighborhood’s socioeconomic status (N) on the reduction of
walking within the neighborhood (R), P (r | do(n))?

N: Low
neighborhood
socioeconomic
position

L1: Lack of
services

E:Exposure
to high crimi-
nality levels

R: Reduced
walking in
one’s neigh-
borhood

L2: Low accessibil-
ity to green spaces

P : Proximity to
polluting industry

L2: Low accessibil-
ity to green spaces

P : Proximity to
polluting industry

P (r | do(n)) =
∑
l2,p

P (r |n, l2, p)P (l2, p)
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Incompleteness of the back-door criterion

The back-door criterion is sound but not complete:

▶ If there exists a set that satisfy the back-door criterion for
P (y | do(a)), then P (y | do(a)) is identifiable;

▶ If there exists a no set that satisfy the back-door criterion
for P (y | do(a)), then P (y | do(a)) is not necesarly not
identifiable.
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Going beyond the back-door

Z : Tar Y : CancerA : Smoking

U : Genotype

P (z | do(a)) = P (z | a) (No back-door path)

P (y | do(z)) =
∑
a P (y | z, a)P (a) (A blocks the back-door)

P (y | do(a)) =
∑
z

P (y | do(z))P (z | do(a))

=
∑
z

P (z | a)
∑
a′

P (y | z, a′)P (a′)

Causal Inference Causal reasoning 41 / 67



Going beyond the back-door

YA

U

Z

P (z | do(a)) = P (z | a) (No back-door path)

P (y | do(z)) =
∑
a P (y | z, a)P (a) (A blocks the back-door)

P (y | do(a)) =
∑
z

P (y | do(z))P (z | do(a))

=
∑
z

P (z | a)
∑
a′

P (y | z, a′)P (a′)

Causal Inference Causal reasoning 41 / 67



Going beyond the back-door

YA

U

Z

P (z | do(a)) = P (z | a) (No back-door path)

P (y | do(z)) =
∑
a P (y | z, a)P (a) (A blocks the back-door)

P (y | do(a)) =
∑
z

P (y | do(z))P (z | do(a))

=
∑
z

P (z | a)
∑
a′

P (y | z, a′)P (a′)

Causal Inference Causal reasoning 41 / 67



Going beyond the back-door

YA

U

Z

P (z | do(a)) = P (z | a) (No back-door path)

P (y | do(z)) =
∑
a P (y | z, a)P (a) (A blocks the back-door)

P (y | do(a)) =
∑
z

P (y | do(z))P (z | do(a))

=
∑
z

P (z | a)
∑
a′

P (y | z, a′)P (a′)

Causal Inference Causal reasoning 41 / 67



Going beyond the back-door

YA

U

Z

P (z | do(a)) = P (z | a) (No back-door path)

P (y | do(z)) =
∑
a P (y | z, a)P (a) (A blocks the back-door)

P (y | do(a)) =
∑
z

P (y | do(z))P (z | do(a))

=
∑
z

P (z | a)
∑
a′

P (y | z, a′)P (a′)

Causal Inference Causal reasoning 41 / 67



Going beyond the back-door

YA

U

Z

P (z | do(a)) = P (z | a) (No back-door path)

P (y | do(z)) =
∑
a P (y | z, a)P (a) (A blocks the back-door)

P (y | do(a)) =
∑
z

P (y | do(z))P (z | do(a))

=
∑
z

P (z | a)
∑
a′

P (y | z, a′)P (a′)

Causal Inference Causal reasoning 41 / 67



Front-door criterion

YA

U

Z

A set of variables Z satisfies the front-door criterion relative to
an ordered pair of variables (A, Y ) in causal DAG G if:

Z intercepts all directed paths from A to Y ;
There is no back-door path from A to Z;
All back-door paths from Z to Y are blocked by A.

Theorem ([1])
If Z satisfies the front-door criterion relative to (A, Y ) and if
P (a, z) > 0, then the causal effect of A on Y is identifiable and
is given by

P (y | do(a)) =
∑
z

P (z | a)
∑
a′

P (y | a′, z)P (a′).
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Back-door and Front-door criteria in a real application

In this study, Piccininni et al. were interested in estimating the
effect of Mobile Stroke Unit dispatch (M) on functional
outcomes (F). In other words, P (f | do(m))?

F
T: Time from
dispatch to
thrombolysis

M

U

S1: Stroke severity S2: Systolic blood pressure

The back-door criterion is not satisfied for any set of variables.
However, it is possible to identify P (f | do(m)) by leveraging a

combination of the back-door and front-door criteria!
Best paper in Epidemiology in 2024!
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Incompleteness of the front-door criterion

The front-door criterion is sound but not complete:

▶ If there exists a set that satisfy the front-door criterion for
P (y | do(x)), then P (y | do(x)) is identifiable;

▶ If there exists a no set that satisfy the front-door criterion
for P (y | do(x)), then P (y | do(x)) is not necesarly not
identifiable.

The combination of the back-door and front-door criterions is
also not complete.
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Exercise 1

Consider that in the following causal DAG, only A and Y , and
one additional variable can be measured. Which variable would
allow the identification of P (y | do(a))?

A Y

Z

W

X B

C
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Exercise 2

Consider the following causal DAG. List all sets of variables
that satisfy the back-door criterion for P (y | do(a));

A Y

Z

X B

C
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Exercise 3

Is {Z} a good, bad or neutral adjustment set for P (y | do(a))?
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Z blocks all back-door paths and it is not a descendant of A
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Exercise 3

Is {Z} a good, bad or neutral adjustment set for P (y | do(a))?

A Y

Z

Selection bias
=⇒ {Z} is a bad control.
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5
Estimation



Linear regression and back-door criterion

Goal: estimate the causal effect

Q := E[Y | do(A = 1)]−E[Y | do(A = 0)] or Q := d
da

E[Y | do(A = a)]

Assume the back-door criterion holds with covariates Z.

E[Y | do(A = a)] =
∫

z
E[Y | A = a,Z = z]P (z)dz

=

∫
z
(α1A+ α2Z + α0)P (z)dz (linear model)

= α1A+ α2E[Z] + α0

Causal interpretation (under correct specification):

Q̂ = α̂1

E[Y | A = a,Z = z] can be estimated by OLS.
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Linear regression and front-door criterion

Goal: estimate the causal effect

Q := E[Y | do(A = 1)]−E[Y | do(A = 0)] or Q := d
da

E[Y | do(A = a)]

Assume the front-door criterion holds with variable Z.

Linear model:

E[Z | do(A = a)] = α0 + α1a (can be estimated by OLS)

E[Y | do(Z = z)] = β0 + β1z + β2E[A] (can be estimated by OLS)

E[Y | do(A = a)] = β0 + β1 E[Z | do(A = a)] + β2E[A]
= β0 + β1(α0 + α1a) + β2E[A]

= β0 + β1α0 + β1α1a + β2E[A]

Causal interpretation (under correct specification):

Q̂ = β̂1 × α̂1
Causal Inference Estimation 49 / 67



Limitations of linear regression

Model misspecification: incorrect functional form leads to biased
causal effects.
Poor extrapolation: limited overlap in covariates can make linear
predictions unreliable.

Machine learning (ML)?
ML methods can automatically capture nonlinear effects and
interactions without explicit specification.
But naive use of ML breaks standard inference guarantees

ML minimize prediction error: minf E[(Y − f (A,Z))2] ̸= E[Y | do(A = a)]

(simulated using
a linear model)
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Targeted Maximum Likelihood Estimation

TMLE relies on two nuisance models:

O(A,Z) = E[Y | A,Z] (outcome model),
E(Z) = P (A = 1 | Z) (exposure model).

A targeting step updates Ô using information from Ê to focus
estimation on the causal effect.
These models can be estimated using ML algorithms.

(simulated using a
linear model)

TMLE is doubly robust: Consistent Q̂ if either Ô or Ê is
correctly specified.
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Cross-fitting

Flexible ML models can overfit.
Overfitting leads to biased estimates and invalid confidence
intervals.

Cross-fitting idea:
Split data into folds.
Estimate nuisance models on one fold.
Predict on another fold.
Combine results across folds.

Take-home: TMLE + ML + cross-fitting = flexible estimation
with valid confidence intervals.
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Python code: causal estimation using zepid package

#Load data
import pandas as pd
data = pd . read_csv ( ” . / data . csv ” )
#Load zep id and sk l e a rn
from zepid . causa l . doublyrobust import TMLE
from sk l ea rn . ensemble import RandomForestRegressor as r f
#Estimate causa l e f f e c t
tmle = TMLE( df=data , exposure=’A ’ , outcome=’Y ’ )
tmle . exposure_model ( ’Z ’ )
tmle . outcome_model ( ’A+Z ’ , custom_model=r f ( ) )
tmle . f i t ( )
#Show r e s u l t s
tmle . summary ( )

Remark: cross-fitting is not implemented!
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Causal discovery using conditional independencies

Given observational data, is it possible to infer a causal DAG
using conditional independencies?

In general no!

We cannot even construct the skeleton of the graph because
⊥̸⊥P ̸ =⇒⊥̸⊥G
⊥⊥P ̸ =⇒⊥⊥G
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Additional assumptions

Causal sufficiency: No unmeasured confounding.

Faithfulness: All conditional independence relations true in P
are entailed by the d-separation applied to G:

A⊥⊥G B | S ⇐⇒ A⊥⊥P B | S

Given observational data, is it possible to infer a causal DAG
using conditional independencies under the assumptions of
faithfulness and causal sufficiency?

In general no!
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Markov equivalence class [7]

Equivalence in terms of conditional independence

X Y X Y X YZ

X YZ X YZ X YZ

Theorem
Two causal DAGs are Markov equivalent iff they have the same
skeleton and the same unshielded colliders.

All equivalent graphs can be represented by a completed
partially DAG (CPDAG)
This CPDAG is called the representative of the Markov
equivalence class

Given observational data, is it possible to infer a CPDAG using
conditional independencies under the assumptions of
faithfulness and causal sufficiency?

Yes!
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Two causal DAGs are Markov equivalent iff they have the same
skeleton and the same unshielded colliders.
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partially DAG (CPDAG)
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Finding skeleton and unshielded colliders

Theorem
If P (V) is faithful to some causal DAG G with vertex V then:

For X, Y ∈ V, X and Y are adjacent iff ∀S ⊆ V\{X, Y },
X⊥̸⊥P Y | S;

For X, Y, Z ∈ V such that X is adjacent to Z and Z is
adjacent to Y and X and Y are not adjacent, X → Z ← Y
in G iff ∀S ⊆ V\{X, Y } such that Z ∈ S, X⊥̸⊥P Y | S.

Point 1 can be used to discover the skeleton of G from P (V);
Given the skeleton of G, point 2 can be used to find all
unshielded colliders.
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Orientation rules

Suppose we already found the skeleton and all unshielded
colliders:

Meek-Rule 1:
X

YZ

X

YZ

Meek-Rule 2:
X

YZ

X

YZ

Meek-Rule 3:
X

YZ

W

X

YZ

W
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The PC algorithm [6]

Step 1: skeleton construction:
▶ Construct a complete non oriented graph
▶ Prune unnecessary edges (optimal) from the skeleton using
⊥⊥P

Step 2: orientation
▶ Find unshielded colliders (optimal)
▶ Meek-Rules 1, 2, 3

Theorem ([6])
Assume the distribution P is compatible and faithful to some
causal DAG G and assume that we are given perfect conditional
independence information about all pairs of variables. The PC
algorithm returns the CPDAG of G.
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Pseudocode of the PC algorithm

Algorithm 1 PC
Input: P (V)
Output: CPDAG G∗

1: Initialize a complete undirected graph G∗ on vertex set V
2: Let n = 0
3: repeat
4: for all X − Y in G∗ such that |Ne(X,G∗)\{Y }| ≥ n

and subsets S ⊆ Ne(X,G∗)\{Y } such that |S| = n do
5: if X ⊥⊥P Y | S then
6: Delete edge X − Y from G∗
7: Let sepset(X, Y ) = sepset(Y,X) = S
8: end if
9: end for

10: Let n = n + 1
11: until for each pair of adjacent vertices (X, Y ), |Ne(X,G∗)\{Y }| < n
12: For each triple X − Z − Y in G∗, if X ̸∈ Ne(Y,G∗) and Z ̸∈ sepsep(X, Y )

then orient the triple as X → Z ← Y
13: Recursively apply Meek-Rules until no more edges can be oriented
14: Return G∗
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PC in action

Suppose the causal DAG on the right
Input: Observational data
Output: CPDAG
Assumptions: causal sufficiency, faithfulness

A

B C

D

E

Skeleton construction:
A

B C

D

E

card = 0

A

B C

D

E

card = 1

A

B C

D

E

card = 2
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Incorporating background knowledge, extensions, and
more

The PC algorithm can effectively incorporate background
knowledge in the form of:

Forbidden edges
Required edges
Forbidden orientations
Required orientations

The PC algorithm has been extended to settings with
unmeasured confounding: FCI algorithm [6]

Many other causal discovery algorithms have been proposed;
some are able to recover the underlying DAG under additional
assumptions, such as semiparametric modeling assumptions:
LiNGAM, ANM, ... [4]
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Real application of PC [5]

Danish men born in 1953, followed from birth to age 65
Data sources: surveys at ages 12 and 51 + administrative
registers
33 variables measured across 5 life-course periods
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Python code: causal discovery using causallearn package

#Load data
import pandas as pd
data = pd . read_csv ( ” . / data . csv ” )
#Load the c a u s a l l e a r n package
from c a u s a l l e a r n . s earch . ConstraintBased .PC import pc
#Learn CPDAG
cg = pc ( data , alpha=0 . 05 , indep_test=’ f i s h e r z ’ )
#Plot CPDAG
cg . draw_pydot_graph ( )
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Applicability of the back-door criterion to CPDAGs

CPDAG

T

A Z

Y

W

Q

Is it possible to identify the causal effect of A on Y using
the CPDAG?

No

What about causal effect of Y on W ?

Yes
A set of variables Z satisfies the back-door criterion relative to
an ordered pair of variables (A, Y ) in a CPDAG if Z does not
contain a possible descendant of A; and Z blocks all possible
paths between A and Y that contain an arrow pointing toward
A.
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Exercise 4

T

X Z

Y

W

Q

Which orientation rules did PC use to orient this CPDAG?
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