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1 Introduction

Structural causal models (SCMs) are a powerful framework for representing and reasoning about causal
relations between variables in dynamic systems with a long history in many fields such as genetics (Wright,
1920, 1921), econometrics (Haavelmo, 1943), social sciences (Duncan, 1975; Goldberger, 1972), and artificial
intelligence (Pearl, 2000). Such causal models are often represented as graphs in which vertices are variables
and edges are causal relations. This visual representation is easier to understand and validate by domain
experts. An active field of research called causal discovery (Pearl, 2000; Spirtes et al., 2000) attempts to find
the graph associated with the underlying SCM, given some data from a dynamic system. However, these
causal discovery algorithms struggle to perform on real data.

Another approach is to assume that the causal graph to be known and to ask some causal questions
regarding the system, such as estimating the direct effect of one variable on another. This can be done using
respectively single-door criterion (Pearl, 2000). For example, epidemiologists are interested in measuring
how smoking affects lung cancer risk without being mediated by genetic susceptibility (Zhou et al., 2021);
ecologists are usually focus on understanding direct effects such as competition, herbivory, and predation
(Connell, 1961); IT monitoring experts may try to identify the root cause of a system failure or a performance
issue by comparing the direct causal impact of different components on each other before and after the failure
(Assaad et al., 2023b).

In many areas, the data collected is a multivariate time series, thus the representation of systems in
causal graphs has been extended to this case (Assaad et al., 2022a). While working with time series can be
easier because it is assumed that causes cannot appear after effects, it also creates new challenges as experts
often only have little knowledge of the temporal lags of causal phenomena and struggle to provide some
insight concerning temporal information. Thus, there exists different types of graphs representing a system,
each containing a different level of temporal information (Assaad et al., 2022a).

EasyVista, develops IT monitoring software and is looking for new innovative ways to help its customers
manage their IT systems. Currently part of the research team is working on ways to automatize root cause
analysis. Indeed, since IT systems are highly interconnected, if there is an issue, a large part of the system
is likely to fail. As a result, it can be very challenging for experts to determine the root cause of the issue
and fix it. The aim is that when some measured variables are considered to be anomalous, a root cause
analysis algorithm would be able to provide experts with the set of root causes to enable a quick and lasting
resolution of the issue.

This report is divided into three main sections. Section 2 states some useful definitions in causality
and adapts them to time series. It also justifies the work presented in the other sections. During this
internship, the underlying goal was to perform root cause analysis. The state of the art methods of root
cause analysis mostly use causal discovery. Therefore, at the beginning of my internship I have participated
in a collaborative work that consisted on testing different causal discovery algorithms on real IT monitoring
data. The findings of this work are described in Section 3.1 which shows that causal discovery algorithms
are still unsatisfactory for real-world applications. Note that this work has led to a scientific paper which
was recently submitted to an international workshop:

Ali Aı̈t-Bachir, Charles K. Assaad, Christophe de Bignicourt, Emilie Devijver, Simon Ferreira, Eric
Gaussier, Hosein Mohanna, and Lei Zan. Case studies of causal discovery from it monitoring time
series. submitted, 2023

Section 3.2 presents a different framework for root cause analysis that does not rely primarily on causal
discovery. More specifically, Section 3.2 introduces the EasyRCA algorithm (Assaad et al., 2023b) which
makes a restrictive assumption of acyclicity of an abstraction of the system. Then in the same section I
investigated how relaxing the acyclicity assumption affects the EasyRCA algorithm and I proposed necessary
modifications to the EasyRCA algorithm to make it correct without the acyclicity assumption. This work
resulted in a small paper and a poster which were presented at two national colloquia:

Simon Ferreira and Charles Assaad. Challenges of root cause identification for collective anomalies in
time series given a summary causal graph. When Causal Inference meets Statistical Analysis, 2023a

The main conclusion of Section 3.2 is that it is necessary to find a new way to estimate direct effects given
a cyclic abstraction of the system. Therefore, Section 4, which constitutes my most valuable contribution of
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the internship, presents a new theoretical result for identifying direct effects from summary causal graphs and
proposes two adjustment sets that can be used to estimate direct effect from data, in the case of identifiability
This work led to writing a scientific theoretical paper which is available on arXiv and will soon be submitted
to one of the top AI conferences:

Simon Ferreira and Charles K. Assaad. Identifiability of direct effects from summary causal graphs.
arXiv preprint arXiv, 2023b

2 Problem setup

This section will go through the main definitions and concepts of causality along with some well-known
results. Firstly, we will see how the graphical approach has been used in Pearl (2000) to answer some causal
questions. Then, we will discuss on how this framework is extended to multivariate time series (Assaad et al.,
2022a). The basic graphical notions are defined in Section A.1 of the Appendix so that the reader may refer
to them at any moment.

2.1 Graphical criteria

In Pearl’s causal framework (Pearl, 2000) a system is firstly represented by a SCM in which some variables
are observed and others are not.

Definition 1 (Linear Structural Causal Model). Considering a finite set of random variables V, a linear
structural causal model (SCM) is a set of equations in which each variable (e.g., Y ∈ V) is defined as a
linear function of other variables and of some noise (e.g., ξY ). The noise variables are assumed to be jointly
independent i.e., ∀X,Y, X ̸= Y =⇒ ξX |= ξY .

Y :=
∑

X ̸=Y ∈V

αY,X ∗X + ξY (1)

Any coefficient α in Equation (1) can be zero. One could also define non-linear SCMs, however in our case
we will always assume linearity.

Intuitively, if αY,X ̸= 0 then X is said to cause Y . A SCM is represented as a causal graph in which
every vertex corresponds to a random variable in the SCM and every edge corresponds to a causal effect i.e.,
X → Y ∈ E ⇐⇒ αY,X ̸= 0. One could also imagine having some weighted edges which, if the distributions
of the noise variables are omitted, allow a bijection between causal graphs and linear SCMs. However, the
weights are often not known and thus, in the following, we will only distinguish between α = 0, which is the
presence of an edge, and α ̸= 0, which is the absence of an edge. Note that the remainder of this section as
well as Section 4 gives ways to recover the exact values of those coefficients.

Definition 2 (Intervention). Considering a SCM, intervening on a variable Y is modifying the equation
defining Y in the SCM without modifying the rest of the SCM. We can distinguish two types of interventions:

• Structural interventions: the new equation is of the form Y := y and thus Y looses its parents. This is
written do(y).

• Parametric interventions: the new equation is of the form
∑

X ̸=Y ∈V α̃Y,X ∗ X and thus Y does not
loose its parents. In this case we assume αY,X = 0 =⇒ α̃Y,X = 0 and thus Y does not gain any new
parent.

Assumption 1 (Causal Sufficiency, Spirtes et al. (2000)). We will assume that every variable of the system
is observed.

Given Definition 1, Property 1 shows how conditional independences can be helpful in recovering a
causal graph from statistical data. Moreover, some additional rules can allow to learn the orientation of
some arrows. Unfortunately, there exists multiple graphs which can be obtained from the same conditional
independences, this gives rise to the Markov properties and equivalence relation.
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Figure 1: An example of a MEC.

Property 1. Consider a SCM, its corresponding causal graph G = (V, E) and its skeleton Gsk = (Vsk, Esk)
(Definition 24 in Appendix). For every pair of vertices X,Y we have:

X − Y ∈ Esk ⇐⇒ ∄Z ⊆ V such that X |= Y |Z

where |= represents statistical independence.

Property 2 (Local Directed Markov Property, (Pearl, 1988)). A probability distribution verifies the local
directed Markov property for a graph G = (V, E) if:

∀V ∈ V, V |= V\(Parents(V,G) ∪Descendants(V,G))|Parents(V,G)

Property 3 (Global Directed Markov Property, (Pearl, 1988)). A probability distribution verifies the global
directed Markov property for a graph G = (V, E) if ∀X ,Y,Z ⊆ V with X ∩ Y = X ∩ Z = Y ∩ Z = ∅:

X ,Y are d-separated by Z =⇒ X |= Y|Z

Properties 2 and 3 are equivalent when considering DAGs (Pearl, 1988).

Definition 3 (Markov Equivalence Relation). Two DAGs are said to be Markov equivalent if they represent
the same conditional independences. The equivalence classes of this relation are called Markov equivalent
classes (MEC). An example of a MEC is given in Figure 1.

Property 4 ((Verma and Pearl, 1990)). Two DAGs G,G′ are Markov equivalent if and only if they have
the same skeleton (Definition 24 in Appendix) and the same v-structures (Definition 31 in Appendix) i.e.,
Gsk = G′sk and V (G) = V (G′).

Definition 4 (Completed Partially Directed Acyclic Graph (CPDAG)). A partially directed graph is a
graph with three type of edges: →,← and −. Property 4 shows that a MEC can be uniquely represented
by a so-called completed partially directed acyclic graph. The CPDAG G = (V, E) represents the MEC
{Gi = (Vi, E i)}1≤i≤n if:

• ∀1 ≤ i ≤ n, V = Vi, and

• U − V ∈ E ⇐⇒ :

– ∀1 ≤ i ≤ n, U − V ∈ E isk, and

– ∃1 ≤ i ≤ n, U → V ∈ E i, and

– ∃1 ≤ i ≤ n, U ← V ∈ E i, and

• U → V ∈ E ⇐⇒ ∀1 ≤ i ≤ n, U → V ∈ E i

This notion of Markov equivalence and the associated graphical criterion helps gain a better understand-
ing of the field and how statistical information can be represented as a graph. In the remainder of this
section, we will see how one can use graphical knowledge to learn some causal coefficients and answer causal
questions such as ”To what extend does this one variable cause that second one”.
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Definition 5 (Blocked Walks). In a graph G = (V, E), a walk π =< V 1, . . . , V n > is said to be blocked by
a set of vertices Z ⊆ V (or Z-blocked) if:

1. V 1 ∈ Z or V n ∈ Z, or

2. ∃1 < i < n such that V i ∈ Z and V i is not a collider (Definition 30 in Appendix) i.e., V i−1 ←
V i or V i → V i+1, or

3. ∃1 < i < n such that Descendants(V i,G)∩Z = ∅ and V i is a collider (Definition 30 in Appendix) i.e., →
V i−1 → V i ← V i+1.

A walk which is not blocked is said to be active. When the set Z is not specified, it is implicit that we
consider Z = ∅. In the case of condition 2, we say that π is manually Z-blocked by V i and in the case of
condition 3 we say that π is passively Z-blocked by V i.

Definition 6 (d-Separation). In a graph G = (V, E), two distinct variables X ̸= Y ∈ V are said to be
d-separated by Z ⊆ V if every path from X to Y is blocked by Z.

Definition 7 (Direct Effect, Pearl (2000)). Considering a SCM, the direct effect of X on Y is given by

P (y|do(x), do(vX,Y ))− P (y|do(x′), do(vX,Y ))

where VX,Y = V\{X,Y } and P (y|do(x), do(vX,Y )) is the distribution of Y while X and VX,Y are held con-
stant respectively at values x and vX,Y . In the linear case, the direct effect corresponds to the structural
coefficient1 αY,X .

The direct effect corresponds to how the distribution of a variable changes when one forces another
variable to take a arbitrary value and maintains the rest of the system to a fix value. It helps answer
questions such as ”What portion of patients have been healed thanks to the medication?”, ”What portion
of patients have been healed thanks to the placebo effect?”.

This direct effect is very useful to answer causal questions and thus has been accorded a lot of attention
from researchers. This focus has given rise to a criterion which explains how to compute the direct effect.

Definition 8 (Graphical Identifiability). Considering a linear SCM, the direct effect of a variable X on
another variable Y is said to be identifiable from a SCG if it can be computed uniquely from the observed
distribution without any further assumption on the distribution i.e., if it is possible to eliminate the do()
from Definition 7.

Definition 9 (Single-door Adjustment Set (Pearl, 2000)). Considering a SCM and its compatible graph
G = (V, E), let X ̸= Y ∈ V and Z ⊆ V\{X,Y }. Z is a single-door adjustment set if:

• Z ∩Descendants(Y,G) = ∅, and

• Z blocks every non-direct path from X to Y .

Property 5 (Single-door Criterion (Pearl, 2000)). Considering a SCM and its compatible graph G = (V, E),
let X ̸= Y ∈ V and Z a single-door adjustment set. The direct effect αY,X is computable with a simple
regression.

Property 5 allows to compute the direct effect.

2.2 Time series and their representations

Now that all these classical concepts have been formally defined this section will discuss of a particular
type of data and how to adapt the previous definitions for it. Multivariate time series are a set of variables
measured regularly. It is assumed that each variable is measured at the same instants. Therefore, we obtain
one point of data per variable per time instant. This causes some complications, for example, since there is
a potentially infinite amount of time instants, it can be difficult to represent such systems. However, it also
has some advantages as temporal information can be quite instructive because it is assumed that a cause
always comes before its effects.

Let us adapt the previous framework to time series.

1In Sewall Wright’s terminology the structural coefficient is called path coefficient (Wright, 1920, 1921).

4
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Definition 10 (Linear Dynamic SCM). Considering a finite set of variables V, a linear dynamic structural
causal model is a set of equations in which each instant t ∈ Z of each variable (e.g., Yt) is defined as
a linear function of past instants of itself (e.g., Yt−γ , γ > 0), past or present instants of other variables
(e.g., Xt−γ , X ̸= Y, γ ≥ 0) and of some noise (e.g., ξYt

). The noise variables are assumed to be jointly
independent (i.e., ∀X,Y ∀tX , tY , XtX ̸= YtY =⇒ ξXtX |= ξYtY

).

Yt :=

(∑
γ>0

αYt,Yt−γ
∗ Yt−γ

)
+

 ∑
X ̸=Y, γ≥0

αYt,Xt−γ
∗Xt−γ

+ ξYt
(2)

Any coefficient α in Equation (2) can be zero.

As for non-dynamic linear SCMs, in the case of a linear dynamic SCM, the direct effect of Xt−γ on Yt is
αYt,Xt−γ

. Just as before, one can represent a linear dynamic SCM with a causal graph. This graph is called
a full-time causal graph.

Definition 11 (Full-Time Causal Graph (FTCG)). Considering a finite set of variables and a SCM, one
can define the full-time causal graph (FTCG) Gf = (Vf , Ef ) associated to the SCM in the following way:

Vf :={Yt |∀Y ∈ V, ∀t ∈ Z}
Ef :={Xt−γ → Yt |∀Yt ∈ Vf , ∀Xt−γ such that αYt,Xt−γ

̸= 0}

As in many other works, we assume here that the FTCG is acyclic but we think that this assumption
can be relaxed for the main contribution given in Sections 4.

Assumption 2 (Acyclicity of the FTCG). Every FTCG is acyclic.

The FTCG is the most natural way to represent a SCM but it is unpractical as it is infinite. However,
given Assumption 3, it is possible to represent a FTCG in a finite graph which is called a window causal
graph (Assaad et al., 2022a).

Assumption 3 (Stationarity of direct effects). The causal mechanisms of the system considered do not
change and therefore ∀X,Y ∈ V, ∀t − γ ≤ t ∈ Z, αYt,Xt−γ

= αYt+1,Xt−γ+1
. There exists a maximum lag

γmax of a SCM as γmax := max{γ ∈ N|∃X,Y ∈ V, αYt,Xt−γ
̸= 0}

Definition 12 (Window Causal Graph). Considering a finite set of variables and a linear SCM and assuming
Assumption 3, one can define the window causal graph (WCG) Gw = (Vw, Ew) associated to the SCM in the
following way:

Vw :={Yt−γ |∀Y ∈ V, ∀0 ≤ γ ≤ γmax}
Ew :={Xt′−γ → Yt′ |∀Xt′−γ , Yt′ ∈ Vw such that αYt′ ,Xt′−γ

̸= 0}

Notice that under Assumption 3, there exists a bijection between FTCGs and WCGs. Indeed, it is easy
to obtain a WCG compatible with a FTCG by restricting to a subset of γmax + 1 consecutive instants. It
is also possible to obtain a FTCG compatible with a WCG by extending it to infinity to account for all
instants and adding all the edges using equivalence Xt−γ → Yt ∈ Ew ⇐⇒ ∀n ∈ Z, Xt−γ+n → Yt+n ∈ Ef .

While WCGs have the advantage of representing qualitatively a given linear SCM under Assumption 3,
it is in practice difficult to obtain the temporal lags. Causal discovery methods are not always efficient (Aı̈t-
Bachir et al., 2023) due to the strong assumptions they require that are not always satisfied in real applica-
tions. So we often rely on experts to obtain a causal graph. However, experts struggle to have any insight on
the temporal lags between causal relations. Therefore, it is much more reliable to ask for an abstraction of
this graph which contains little to no temporal information. There exists two such abstractions, the summary
causal graph (Assaad et al., 2022a) which has no temporal information and the extended summary causal
graph which only distinguishes lagged and instantaneous relations.

Definition 13 (Extended Summary Causal Graph). Consider a FTCG Gf = (Vf , Ef ) (or equivalently a
WCG). One can define the extended summary causal graph (ESCG) Ge = (Ve, Ee) in the following way:

Ve :={Vt, V−|V ∈ V}
Ee :={Xt → Yt |∀X,Y ∈ V such that Xt → Yt ∈ Ef}

∪{X− → Yt |∀X,Y ∈ V, ∃t′ < t ∈ Z such that Xt′ → Yt ∈ Ef}

5
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Definition 14 (Summary Causal Graph). Consider a FTCG Gf = (Vf , Ef ) (or equivalently a WCG). One
can define the summary causal graph (SCG) Gs = (Vs, Es) in the following way:

Vs :=V
Es :={X → Y |∀X,Y ∈ V, ∃t′ ≤ t ∈ Z such that Xt′ → Yt ∈ Ef}

Notice that a SCG may have cycles and in particular two arrows in opposite directions, i.e., if in the
FTCG we have Xt′ → Yt and Yt′′ → Xt then in the SCG we have X ⇄ Y .

The abstraction of summary causal graphs entails that, even though there is exactly one SCG compatible
with a given FTCG, WCG or ESCG, there are in general several FTCGs, WCGs and ESCGs compatible
with a given SCG.

For example, the FTCG, the WCG, the ESCG and the SCG of the following linear dynamic SCM, in
which the coefficients α equal to zero are omitted, are respectively given in Figures 2a, 2b, 2c and 2d.

Wt := αWt,Wt−1
∗Wt−1 + αWt,Xt

∗Xt + ξWt

Xt := αXt,Xt−1
∗Xt−1 + αXt,Zt−1

∗ Zt−1 + ξXt

Yt := αYt,Wt
∗Wt + αYt,Xt

∗Xt + αYt,Yt−1
∗ Yt−1 + ξYt

Zt := αZt,Wt−1
∗Wt−1 + αZt,Zt−1

∗ Zt−1 + ξZt
,

Yt−2 Yt−1 Yt

Xt−2 Xt−1 Xt

Wt−2 Wt−1 Wt

Zt−2 Zt−1 Zt

(a) Full time causal graph

Yt−1 Yt

Xt−1 Xt

Wt−1 Wt

Zt−1 Zt

(b) Window causal
graph

Y− Yt

X− Xt

W− Wt

Z− Zt

(c) Extended summary
causal graph

X

Z

W

Y

(d) Summary causal
graph

Figure 2: Different causal graphs that one can infer from three time series (Assaad et al., 2022a): full time
causal graph (2a), window causal graph (2b), extended summary causal graph (2c) and summary causal
graph (2d). Note that the first one gives more information but cannot be inferred in practice, the second
one is a schematic viewpoint of the full behavior, the third one only distinguishes lagged and instantaneous
relations whereas the last one is an abstraction and can be deduced from any other one.

As SCGs represent FTCGs, the walks in a SCG can represent the paths of compatible FTCGs. This is
gives rise to the notion of compatible walk.

Definition 15 (Compatible Walk). Let Gf = (Vf , Ef ) be a FTCG and Gs = (Vs, Es) the compatible SCG.
A path πf =< V 1

t1 , . . . , V
n
tn > in Gf can be uniquely represented as a walk πs =< V 1, . . . , V n > in Gs in

which the temporal information has been removed. We refer to πs as πf ’s compatible walk and we write
πs = ϕ(πf ). e.g., ϕ(< Xt−1, Xt, Yt, Zt, Zt+1, Xt+1 >) =< X,X, Y, Z, Z,X >.

An important graphical notion used in causal reasoning is the notion of blocked path (Pearl, 1998). The
classical definition was introduced for directed acyclic graphs (DAGs) and thus can be directly used for
FTCGs under Assumption 2. However, since the SCG compatible with a FTCG can be cyclic, one needs to
adapt it. Spirtes (1993) explains that under the linearity assumption the notion of blocked path is readily
extended. Moreover, Forré and Mooij (2017) introduced a more recent and general (non-parametric and

6
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allow for hidden confounding) adaptation called σ-blocked path. Forré and Mooij (2017)’s method relies on
strongly connected components and segments, it is briefly explained in the appendix. However, no method
has been adapted to summary causal graphs. In the following, we adapt Spirtes (1993)’s notion to time
series, we consider walks and we reformulate it to explicitly consider pairs of vertices with two opposite
arrows between them (e.g., X ⇄ Y ).

Definition 16 (Blocked Walk in SCGs). In a SCG Gs = (Vs, Es), a walk πs =< V 1, . . . , V n > is said to be
blocked by a set of vertices Zs ⊆ Vs if:

1. ∃1 < i < n such that V i−1 ← V i or V i → V i+1 and V i ∈ Zs, or

2. ∃1 < i ≤ j < n such that V i−1 → V i ⇄ · · ·⇄ V j ← V j+1 and Descendants(V i,Gs) ∩ Zs = ∅

A walk which is not blocked is said to be active. When the set Zs is not specified, it is implicit that we
consider Zs = ∅. In the case of condition 1, we say that πs is manually Zs-blocked by V i and in the case of
condition 2 we say that πs is passively Zs-blocked by {V k|i ≤ k ≤ j}.

Condition 1 in Definition 16 is a direct adaptation of condition 2 in Definition 5. Condition 2 of
Definition 16 is explained by the fact that for a walk πs =< V 1, . . . , V n > in a SCG Gs = (Vs, Es)
and a set of vertices Zs ⊆ Vs, if ∃1 < i ≤ j < n such that V i−1 → V i ⇄ · · · ⇄ V j ← V j+1 and
Descendants(V i,Gs)∩Zs = ∅ then ∀πf =< V 1

t1 , . . . , V
n
tn >∈ ϕ−1(πs), ∃1 < i ≤ k ≤ j < n such that V k−1

tk−1 →
V k
tk ← V k+1

tk+1 and Descendants(V k,Gs) ∩ Zs = ∅ so Descendants(V k
tk ,Gf ) ∩ Zf = ∅ where Zf ⊆ {Vt′ |V ∈

Zs, t′ ∈ Z}. Notice that there is no adaptation of condition 1 as having V 1 ∈ Zs or V n ∈ Zs does not
mean that the instants of interests V 1

t1 and V n
tn which are endpoints of compatible paths of interests, are in

Zf ⊆ {Vt′ |V ∈ Zs, t′ ∈ Z}. Moreover, in the remainder of this report we are interested in the direct effect
and therefore we will always have V 1

t1 , V
n
tn /∈ Zf . However, having V 1 ∈ Zs or V n ∈ Zs can activate or block

walks e.g., < X ←W → X ← Z → Y > and < X ←W → X → Z → Y >.
The purpose of this adaptation is to have some link between the sets Zs ⊆ Vs that blocks a walk in a

SCG and the sets Zf ⊆ Vf that block the corresponding paths in corresponding FTCGs. This link will be
discussed in Section 4.

3 Root cause analysis

As explained in Section 1, the main objective of this internship was to study methods of root cause analysis.
EasyVista works on IT monitoring, therefore they measure regularly many components of IT systems and
thus work with multivariate time series. The goal is, when a problem occurs and anomalies are detected, to
find quickly and automatically the root cause of the issue.

An anomaly is defined as a variable measured at some value which differs significantly from what was
expected. A basic example are outliers. Experts define a normal interval of values for each variable e.g.,
one could consider that any IT system should have at least 1GO of free memory space in order to function
properly. Any variable with a measured value outside of this interval is an outlier e.g., a measure of free
memory space under 1GO would then be considered as an outlier.

Assumption 4 (Anomalies (Assaad et al., 2023b)). We make many assumptions about anomalies in order
to facilitate the root cause analysis problem.

1. The anomalies are propagated through the SCM. In a FTCG, every children of an anomalous vertex is
anomalous.

2. Every anomaly is either due to a another anomaly or due to an intervention. In a FTCG, every
anomalous vertex has been intervened on or has an anomalous parent. Root causes are vertices which
have been intervened on.

3. The anomalies are considered to be collective i.e., to last in time (Chandola et al., 2009). Indeed, if
an anomaly does not last one most probably does not have enough data to do any statistical analysis.
Moreover, one could claim that an anomaly that does not last does not need to be solved.
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3.1 Causal discovery methods and limitations

In the state of the art, one can find multiple recent approaches to identify the root causes of anomalies in
multivariate time series. Most of these methods consist in discovering the anomalous causal graph (Pearl,
2000; Spirtes et al., 2000) (i.e., the causal graph of the anomalous regime of the dynamic system (Wang et al.,
2018, 2021)) before comparing it to the previously known normal causal graph. For example, one of the most
widely used method is MicroCause (Meng et al., 2020) and uses either PCMCI and PCMCI+ to discover the
anomalous causal graph. However, Assaad et al. (2023b) shows that this method does not have satisfactory
performances on real IT monitoring data collected by Easyvista. These low performances were expected as
causal discovery methods are known to rely on strong assumptions and need large data sizes (Malinsky and
Danks, 2018; Glymour et al., 2019; Assaad et al., 2022a). Thus, during this internship, I helped writing Aı̈t-
Bachir et al. (2023) which tests different causal discovery methods on real IT monitoring datasets collected by
Easyvista to estimate their performance. This participation allowed me to better understand the difficulties
of using causal discovery methods on real data which I will describe in Section 3.1.

Firstly, (Chickering et al., 2004) showed that causal discovery was NP-hard. Moreover, some current
algorithms such as LiNGAM assume non-Gaussian noise which is an assumption rarely verified. Other
algorithms which do not make this assumption only discover the CPDAG and not the full graph. In addition,
real data is often not of the best quality: there may be some missing data, the sampling rate may be different
or not synchronized for different variables, there may be some mixed data types, etc.

To verify the performance of causal discovery methods, Aı̈t-Bachir et al. (2023) tried to use 10 different
causal discovery algorithms to recover 4 different causal graphs which were previously known, either thanks
to experts or because of the architecture of the system.

3.1.1 The causal discovery algorithms

The causal discovery algorithms chosen to be tested on our real data have different theoretical foundations.
This is done in an effort to test a wide range of methods representative of the state of the art. In Table 1,
we classify causal discovery algorithms with respect to the assumptions they rely on in addition to different
characteristics.

GCMVL (Arnold et al., 2007) is multivariate Granger (Granger, 1969, 2004; Arnold et al., 2007) algorithm
that use a lasso-based technique for variable selection. Dynotears (Pamfil et al., 2020) is a score-based
method (Chickering, 2002) and was presented to infer a WCG from time series. Among the constraint-based
approaches (Spirtes et al., 2000), PCMCI (Runge et al., 2019) which infers a WCG was initially not able to
take into account instantaneous relations but this limitation was recently surmounted with the introduction
of PCMCI+ (Runge, 2020). Another algorithm in this family is PCGCE (Assaad et al., 2022b) which infers an
ESCG. In a different line, VarLiNGAM (Hyvärinen et al., 2008; Hyvärinen et al., 2010), which is an extension
of LiNGAM (Shimizu et al., 2011), and TiMINo (Peters et al., 2013), infer respectively a WCG and a SCG
by looking at independences between the noise and the potential causes. There exist also hybrid algorithms
which combine constraint-based with semi-parametric algorithms. Among hybrid methods, NBCB (Assaad
et al., 2021, 2023a) starts by discovering the causal order between time series through a semi-parametric
strategy, here VarLiNGAM, and then prunes unnecessary edges using a constraint-based strategy, either
PCMCI+ for NBCB-w or PCGCE for NBCB-e. CBNB-w and CBNB-e from the CBNB framework (Assaad
et al., 2023a) can be considered respectively as the backward versions of NBCB-w and NBCB-e. Links for
the source codes of these algorithms are in Section A.3.

3.1.2 The real datasets

EasyVista provided us with 7 real datasets coming from 4 different IT systems. Moreover, for each IT
system, a real summary causal graph was constructed either by IT monitoring experts or directly using the
system topology. In Table 1, we also classify datasets with respect to the different assumptions needed by
causal discovery algorithms and to other different characteristics.

A more thorough description of the datasets as well as their real summary causal graphs is available in
Aı̈t-Bachir et al. (2023) and in Section A.3 of the appendix.
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GCMVL S/E ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Dynotears W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
PCMCI+ W ✓ ✓ F ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
PCGCE E ✓ ✓ F ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

VarLiNGAM W ✓ ✓ M ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
TiMINo S ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
NBCB-w S/W ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
NBCB-e S/W ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
CBNB-w S/W ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
CBNB-e S/W ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

D
at
as
et
s MoM S ✓ ✓ ? ? ? ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗

Ingestion S ✓ ✓ ? ? ? ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗
Web activity S ✓ ? ? ? ? ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗
Antivirus S ✓ ? ? ? ? ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Table 1: Summary of the main characteristics of algorithms and different IT monitoring datasets considered in the
paper. For causal graphs, S means that the algorithm provides a summary causal graph, E means that the algorithm
provides an extended summary causal graph and W means that the algorithm provides a window causal graph; F
corresponds to faithfulness and M to minimality. An empty cell mean that the information given in the corresponding
column was not discussed by the authors of the corresponding algorithm. A question mark means that the expert of
the IT system do not know if the information given in the corresponding column is satisfied for the given dataset.

3.1.3 Results

For each algorithm and dataset, the obtained graph was compared to the real graph and attributed a
score. This score is called the F1-score and is defined as the harmonic mean of the precision and recall i.e.,
F1-score = 2

1
P + 1

R

where P = tp
tp+fp and R = tp

tp+fn and tp, fp, fn correspond to number of edges and are

respectively the true positives, false positives and false negatives. The results of this study are given in
Table 2.

One can see that the performance results of the causal discovery methods are not satisfactory. Moreover,
such algorithms can only detect structural interventions. Thus, we have tried a different approach which
does not rely on the discovery of the anomalous causal graph. This is described in Section 3.2.

MoM 1 MoM 2 Ingestion Web 1 Web 2 Antivirus 1 Antivirus 2
GCMVL 0.0 0.0 0.2 0.2 0.0 0.08 0.0

Dynotears 0.26 0.2 0.14 0.23 0.3 0.18 0.19
PCMCI+ 0.4 0.0 0.0 0.23 0.3 0.04 0.11
PCGCE 0.0 0.12 0.12 0.22 0.15 0.3 0.45

VLiNGAM 0.0 0.0 0.19 0.29 0.18 0.15 0.22
TiMINo 0.0 0.17 0.18 0.0 0.0 0.0 0.0
NBCB-w 0.4 0.0 0.13 0.23 0.3 0.14 0.24
NBCB-e 0.13 0.29 0.27 0.19 0.42 0.31 0.45
CBNB-w 0.4 0.0 0.15 0.23 0.3 0.17 0.16
CBNB-e 0 0.24 0.13 0.22 0.29 0.31 0.38

Table 2: Results for real IT monitoring datasets where γmax is set according to the 15 seconds delay rule for MoM
datasets and to the 15 minutes delay rule for Ingestion, Web and Antivirus datasets. We report the F1-score.
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3.2 EasyRCA

The EasyRCA algorithm (Assaad et al., 2023b) is capable to detect the root causes of an anomalous system
which is represented as an acyclic SCG with loops (Assumption 5). It takes as input the normal SCG,
the set of anomalous vertices, the instant at which each anomalous vertex has become anomalous and the
anomalous data. Figure 3 shows the framework around EasyRCA.

Assumption 5 (Acyclic SCG with Loops (ASCGL)). In the EasyRCA algorithm it is assumed that the
normal SCG is acyclic with loops. Loops are cycles of the form Y ⇄ Y and thus (Assaad et al., 2023b) only
considers SCGs Gs with Cycles(Gs) = {< V ⇄ V > |V ∈ V}.

The EasyRCA algorithm is decomposed in three distinct steps: the first one decomposes the ASCGL
into linked anomalous graph, the second step finds root causes from graphical information only, lastly the
third step finds every remaining root cause using the data. The following sections explain each step of the
EasyRCA algorithm in the classical case of an ASCGL and discuss its applicability in the case of a general
SCG.

Anomaly-
free time
series

Expert

Causal
discovery

Summary
causal
graph

Anomalous
time series

Root
cause
identi-
fication

Root
causes

Heuristics
Recommended

actions

Figure 3: EasyVista’s root cause analysis framework.

3.2.1 Step 1: Linked anomalous graphs

In the first step, EasyRCA divides the problem of root cause identification into sub-problems by dividing
the main acyclic summary causal graph into many sub-graphs called linked anomalous graphs:

Definition 17 (Linked Anomalous Graph). Given an SCG Gs = {Vs, Es} and a set of anomalous vertices
A ⊂ Vs, L = {L1, · · · ,Lm} is a set of linked anomalous graphs if ∀i ∈ {1, · · · ,m} Li = (Ai, E i) is a
sub-graph of Gs such that Ai ⊂ A and there exists a set of vertices S ⊆ Vs\A such that Ai and A\Ai are
d-separated given S. In other words the set of linked anomalous graphs is the set of anomalous connected
components.

Propositions 2 and 3 in (Assaad et al., 2023b) suggest that linked anomalous graphs are modular with
respect to each other, which implies that the set of root causes of each linked anomalous graph can be
identified independently of the rest of the anomalies in the graph. This step is described in Figure 4.

Considering a SCG Gs with a cycle C ∈ Cycles(Gs), Assumption 4 states that either every vertex of
the cycle C is anomalous or none of them are. Thus, a cycle is necessarily in a unique linked anomalous
graph. This first step can remain unchanged in the case of general SCGs but linked anomalous graphs may
themselves be cyclic.

3.2.2 Step 2: Finding external intervention from graph

In the second step, EasyRCA searches for root causes that can be identified purely from the graph and from
the appearance times of anomalies. If a node of the graph is anomalous, then either it is a root cause or the
anomaly has propagated from some of its parents and such parents are necessarily anomalous. Therefore,
while considering the full time causal graph, an anomalous node with no anomalous parent is a root cause.
In the summary graph, these nodes will be either anomalous nodes with no anomalous parents or nodes
which have become anomalous before every of their parents.

10
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(a) Linked
Anomalous
Graph 1

B

(b) Linked
Anomalous Graph 2

X

Z

Y

W

Figure 4: Step 1 of EasyRCA algorithm. The orange vertices are anomalous.

Definition 18 (Sub-root vertex). A sub-root vertex is root vertex in a linked anomalous graph.

Definition 19 (Time defying vertex). Consider a linked anomalous graph Li = (Vi, E i). Y is a time defying
vertex if and only if ∀X ∈ Parents(Y,Li) the appearance time of the anomaly on Y precedes the appearance
time of the anomaly on X.

t

t+ 1 t− 1

t+ 1

Sub root
vertex

Time defying
vertex

X

Z

Y

W

Figure 5: Step 2 of EasyRCA algorithm. The orange
vertices are anomalous and the red ones are root

causes.

Proposition 4 in (Assaad et al., 2023b) states
that if a vertex is a sub-root or a time-defying vertex
in a linked anomalous graph then it belongs to the
set of root causes. However, this does not mean that
every element in the set of root causes is necessarily
a sub-root or a time-defying vertex.

In an ASCGL, there is at least one sub-root per
linked anomalous graph. Therefore, it would be suf-
ficient to eliminate the anomalies detected as sub-
root vertices, to wait for some more data and to re-
peat computing new linked anomalous graphs and
new sub-root vertices in order to detect iteratively
every root cause. However, this method requires to
wait and collect some data while some anomalies are
not eliminated and thus is not fully efficient. This
step is described in Figure 5.

In the case of general SCGs, sub-root vertices
and time defying vertices are still root causes. Therefore, it remains interesting to detect them. However,
unlike in the case of ASCGLs, there may exist cyclic linked anomalous graphs with no sub-root vertices as
cycles do not have roots. This remark does not imply a modification of step 2 but it motivates the adaptation
of the third step.

3.2.3 Step 3: Finding external intervention from data

Therefore, in step 3, EasyRCA proceeds to find the rest of the root causes by estimating the direct causal
effect (Pearl, 2000) of X on Y in the normal regime, αYt,Xt−γxy

, and the direct causal effect of X on Y in
the anomalous regime, ˜αYt,Xt−γxy

, and comparing them. Indeed, if the estimation of the direct effect in the
anomalous regime and in the normal regime are equal up to some estimation error, then the SCM has not
been modified. Otherwise, if the direct effects are different, then the SCM has been modified which shows
that the children Y has been intervened on and thus is a root cause.

To estimate the direct causal effect expression, EasyRCA finds an adequate single-door adjustment
set. Since the SCG is assumed to have no cycles of length greater than two in Assaad et al. (2023b),
Ancestors(Y,G∫ ) ∩ Descendants(Y,Gs) = {Y }. Thus, using only parents of Y allows to block every path
between X and Y without risking to condition on a descendant of Y .

Note that using the direct causal effect, EasyRCA also distinguishes between parametric intervention
and structural intervention. Given that αYt,Xt−γxy

̸= ˜αYt,Xt−γxy
, if ˜αYt,Xt−γxy

= 0, one can conclude that

11
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there is a structural intervention on Y , otherwise there is a parametric intervention on Y .
The single-door adjustment set found by Assaad et al. (2023b) works in the context of Assumption 5 but

it does not transpose easily to general SCGs. Therefore, in the next section, we study the identifiability of
direct effects in general SCGs and we provide two adequate adjustment sets.

4 Direct effect in a general SCG

In Section 3.2.3 we discussed the need to compute the direct effect in the case of a cyclic SCG. However,
it is easy to see with the example of Figure 6 that a direct effect is not always identifiable in the case of a
cyclic SCG.

X Y

(a) A SCG. How to compute the
direct effect of Xt to Yt?

Yt−1 Yt

Xt−1 Xt

(b) A compatible FTCG.

Yt−1 Yt

Xt−1 Xt

(c) A compatible FTCG.

Figure 6: An example of an SCG for which the direct effect is not identifiable.

4.1 Identifiability result

In this section, we present the identifiability result stating in which case a direct effect is or not identifiable.
To do so, we first state some intermediate lemmas which are proven in Section A.5 of the Appendix. We
start with a trivial lemma that will be needed for the the general identifiability result.

Lemma 1. Let Gs = (Vs, Es) be a SCG. Consider the direct effect of Xt−γxy
on Yt given by αYt,Xt−γxy

. If
X /∈ Parents(Y,Gs) then αYt,Xt−γxy

is identifiable.

Lemma 2. Let Gf = (Vf , Ef ) be a FTCG, Xt−γxy
̸= Yt ∈ Vf and πf =< V 1

t1 , . . . , V
n
tn > a path from Xt−γxy

to Yt in Gf . If tmax(πf ) > t then πf is passively blocked by any Zf ⊆ Vf such that Zf ∩{Vt′ ∈ Vf |t′ > t} = ∅.
If tmin(πf ) < t−γxy then πf is manually blocked by any Zf ⊆ Vf such that {Vt′ ∈ Vf |t−γmax ≤ t′ < t} ⊆ Zf .

Lemma 1 and Lemma 2 respectively show that the case where X /∈ Parents(Y,Gs) is trivial and that
the cases where tmin(πf ) < t− γxy and tmax(πf ) > t are trivial. Thus we will consider X ∈ Parents(Y,Gs)
and t− γxy ≤ tmin(πf ) ≤ tmax(πf ) ≤ t in the following Lemmas.

In these cases, one might think that to block all activated non-direct paths between Xt−γxy
and Yt, it

is simply sufficient to adjust on all vertices in the FTCG which do not temporally succeed the effect Yt

and have compatible vertices on an activated path between X and Y in the SCGs. In Figure 7 we give an
example where this is not true. In particular, in the FTCG in Figure 7b which is compatible with the SCG
in Figure 7a, one can visually check that all gray vertices block all activated non-direct paths between Xt

and Yt and do not create any artificial bias since none of the gray vertices is a descendant of Yt. Notice
that this adjustment set is still valid if any of the black edges is omitted and if the orientation of the green
edges is inverted and the new FTCG is still compatible with the SCG. One might also notice that Wt do
not create any artificial bias in the FTCG in Figure 7b so it can be added to the adjustment set. However
the general validity does not hold if we add Wt to the adjustment set because there exist another FTCG
compatible with the same SCG in which the green edge between W and Y has been inverted such that Wt

is a descendant on Yt. Therefore, if only the SCG is known, Wt should not be used in the adjustment set.
It turns out that this observation can be generalized. In the following we start, by formally defining an
adjustment set for any SCGs that share the same characteristics as the adjustment set of Figure 7 and then
we give a lemma that shows the usefulness of such a set.
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(a) A SCG.

Xt
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Xt−1
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Wt−1

Zt−1

Yt−1

Xt−2

Ut−2

Wt−2

Zt−2

Yt−2

(b) A compatible FTCG.

Figure 7: An example of SCG and its compatible FTCG where red and blue vertices respectively represent
the cause and the effect we are interested in, the thick edge corresponds to the the edge between them, and
the gray vertices in the FTCG correspond to an adjustment set. In the given FTCG, one could choose to
add Wt to the adjustment set to block every non-direct path from Xt−γxy

to Yt. However, there exist
another FTCG compatible with the SCG in (a) such that Wt is a descendant on Yt. Therefore, if only the

SCG is known, Wt should not be used in the adjustment set.

Definition 20 (A first finite adjustment set). Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two
vertices X and Y with X ∈ Parents(Y,Gs) and a lag γxy. A≤t is defined as the set of instants of non-
descendants of Y smaller or equal to t and greater or equal to t− γmax except Xt−γxy

, i.e.

A≤t = {Vt′ |V ∈ Vs\Descendants(Y,Gs), t− γmax ≤ t′ ≤ t}\{Xt−γxy
},

and D<t is defined as the set of instants of descendants of Y strictly smaller than t and greater or equal to
t− γmax except Xt−γxy

, i.e.

D<t = {Vt′ |V ∈ Descendants(Y,Gs), t− γmax ≤ t′ < t}\{Xt−γxy}.

Zf = A≤t ∪ D<t is called an adjustment set relative to (Xt−γxy , Yt).

Lemma 3. Let Gs = (Vs, Es) be a SCG and γmax a maximal lag. For every non-direct walk πs =<
V 1, . . . , V n > between X and Y such that < V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs), every compatible path
πf (i.e., πf ∈ ϕ−1(πs)) from Xt−γxy to Yt for γxy ≥ 0 can be blocked by the adjustment set Zf = A≤t ∪D<t

defined in Definition 20.

For the same SCG, the direct effect betweenX and Y can depend on the lag betweenX and Y . Therefore,
for a same SCG and X,Y the direct effect from Xt−γxy to Yt can be identifiable if γxy even though it is not
identifiable if γxy = 0.

Furthermore, the only graph with a path made of descendants of Y in which the direct effect αYt,Xt−γx,y

is always identifiable is Figure 19c. This can be explained by the fact that the path is initially passively
blocked as Z is a collider and this is generalized in Lemma 7.

Among the remaining figures, the ones in which αYt,Xt−γx,y
is identifiable if and only if γxy > 0 are those

in which the path has an edge strictly pointing to the left, towards X (e.g., X ← Z in Figures 19e and 19f,
Z ← Y in Figure 19g, U ← Z in Figures 20f and 20g and Z ←W in Figures 20f and 20h). This observation
is generalized in Lemmas 4 and 6. Lastly, Lemma 5 focuses on the case X ⇄ Y .

Lemma 4. Let Gs = (Vs, Es) be a SCG and γmax a maximal lag. For every non-direct walk πs =<
V 1, . . . , V n > from X to Y such that ∃1 ≤ i < n, V i ← V i+1 (i.e., not V i → V i+1 and not V i ⇄ V i+1), ev-
ery compatible path πf (i.e., πf ∈ ϕ−1(πs)) from Xt−γxy to Yt for γxy > 0 can be blocked by Zf = A≤t∪D<t

because Zf ∩ D≥t = ∅ where:

• A≤t, D<t are defined in Definition 20 and
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(b) A compatible FTCG.

Figure 8: An example of SCG and its compatible FTCG where red and blue vertices respectively represent
the cause and the effect we are interested in, the thick edge corresponds to the the edge between them, and
the gray vertices in the FTCG correspond to an adjustment set. In the given FTCG, one could choose to
add Xt, Ut, Zt and Wt to the adjustment set to block every non-direct path from Xt−γxy

to Yt. However,
there exist another FTCG compatible with the SCG in (a) such that Xt, Ut, Zt and Wt are a descendant on

Yt. Therefore, if only the SCG is known, Xt, Ut, Zt and Wt should not be used in the adjustment set.

• D≥t is the set of instants of descendants of Y greater or equal to t, i.e. D≥t = {Vt′ |V ∈ Descendants(Y,Gs), t′ ≥
t}.

Note that πs =< V 1, . . . , V n > from X to Y is non-direct, X ∈ Parents(Y,Gs) by Lemma 1 and ∃1 ≤ i <
n, V i ← V i+1 implies that n ≥ 3.

Now we give the complementary of Lemma 4 is the case where X ⇄ Y .

Lemma 5. Let Gs = (Vs, Es) be a SCG and γmax a maximal lag. For every non-direct walk πs =<
V 1, . . . , V n > from X to Y where ∃1 < i < n, V i = Y , every compatible path πf (i.e., πf ∈ ϕ−1(πs))
from Xt−γxy to Yt for γxy > 0 can be blocked by Zf = A≤t ∪ D<t (notice Zf ∩ D≥t = ∅) where A≤t, D<t

are defined in Definition 20 and D≥t is defined in Lemma 4.

In the following two lemmas, we show that the conditions given in Lemma 3 and 4 are not only sufficient
for blocking all non-direct active paths but they are also necessary.

Lemma 6. Let Gs = (Vs, Es) be a SCG. Consider the direct effect of Xt−γxy
on Yt given by αYt,Xt−γxy

. If

there exists a path πs =< V 1, . . . , V n > from X to Y with < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) and
∄1 ≤ i < n, V i ← V i+1 and either n ≥ 3 or X ∈ Descendants(Y,Gs) and ∃C ∈ Cycles(X,Gs) with Y /∈ C
then αYt,Xt−γxy

is not identifiable.

Lemma 7. Let Gs = (Vs, Es) be a SCG. Consider the direct effect of Xt−γxy
on Yt given by αYt,Xt−γxy

.

If γxy = 0 and there exists an active non-direct path πs =< V 1, . . . , V n > from X to Y in Gs with <
V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) then αYt,Xt−γxy

is not identifiable.

Since Lemmas 3,4 and 5 consider walks in SCGs while Lemma 6 and 7 consider paths in SCGs, in the
following we provide a list of properties to reconcile these two notions. Let Gs = (Vs, Es) be a SCG and πs =<

V 1, . . . , V n > a walk from X to Y . π′
s =< U1, . . . , Um > such that U1 = V 1 and Uk+1 = V max{i|V i=Uk}+1

is called the subpath of πs. It verifies the following properties.

Property 1 If π′
s is passively blocked by U i then πs is passively blocked by at least a descendant of U i.

Property 2 If π′
s is direct then either πs is direct or < V 1, . . . , V n−1 >∈ Cycles(X,Gs).

Property 3 If < U2, . . . , Um−1 > ̸⊆ Descendants(Y,Gs) then < V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs).
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Property 4 If m ≥ 3 and ∃1 ≤ i < m, U i ← U i+1 then n ≥ 3 and ∃1 ≤ i < n, V i ← V i+1.

Lemma 1 deals with the trivial case of identifiability, Lemma 3 together with Property 3 states that we
will always be able to block paths in which some vertices are not descendants of Y , Lemmas 4 and 5 together
with Property 2 and Property 4 show that in the case of positive lag (i.e., γxy > 0) we can use this temporal
information to block other specific paths, and lastly, Lemmas 6 and 7 prove that these identifiability criteria
are necessary. Together, these lemmas give a set of necessary and sufficient conditions for a direct effect to
be identifiable. This is summarized in the following theorem.

Theorem 1. Let Gs = (Vs, Es) be a SCG, X ̸= Y ∈ Vs and γmax a maximal lag. Consider the direct effect of
Xt−γxy on Yt given by αYt,Xt−γxy

. X ∈ Parents(Y,Gs) and there exists an active path πs =< V 1, . . . , V n >

from X to Y in Gs such that < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs), and

• γxy = 0 and πs is non-direct or

• γxy > 0, and

– n ≥ 3 and ∄1 ≤ i < n, V i ← V i+1 (i.e., ∀1 ≤ i < n, V i → V i+1 or V i ⇄ V i+1), or

– n = 2 and X ∈ Descendants(Y,Gs) and ∃C ∈ Cycles(X,Gs) with Y /∈ C.

if and only if αYt,Xt−γxy
is not identifiable.

The proof is given in Section A.5 of the Appendix.
We give some examples of SCGs of with 3 vertices in Figure 19 and with 5 vertices in Figure 20 that are

categorized by whether the direct effect αYt,Xt−γx,y
is always identifiable, identifiable if and only if γxy > 0

or never identifiable. Note that in Figure 20, for any SCG changing the edge type of the edges U ⇄ X or
W ⇄ Y would either keep the same identifiability result or make the causal effect identifiable or identifiable
if and only if γxy > 0. Which means that at least for SCGs with the same skeleton as the skeletons of
Figures 19 and 20 and such that X → Y (with a strict right arrow) the number of cases of non identifiability
is fewer than the number of cases of identifiability.

4.2 Finding adjustment sets

4.2.1 Soundness results

Theorem 1 gives a graphical criterion to determine whether a direct effect is identifiable from a SCG Gs. For a
FTCG Gf and two vertices Xt−γxy and Yt it is necessary and sufficient to know a finite set of vertices Zf such
that Zf ∩ (Descendants(Yt,Gf )∪{Xt−γxy

, Yt}) = ∅ which blocks every non-direct path from Xt−γxy to Yt in
order to identify the direct effect ofXt−γxy on Yt. Thus, for a SCG Gs, a maximal lag γmax, two verticesX and
Y and a lag γxy one needs to find a set of vertices Zf such that Zf∩(Descendants(Yt,Gf )∪{Xt−γxy , Yt}) = ∅
which blocks every non-direct path from Xt−γxy to Yt in every FTCG Gf compatible with Gs of maximal
lag at most γmax.

Corollary 1. Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two vertices X and Y with X ∈
Parents(Y,Gs) and a lag γxy. Suppose the direct effect of Xt−γxy

on Yt is identifiable following Theorem 1.
Zf = A≤t ∪ D<t defined in Definition 20 and used in the proof of Theorem 1 verifies:

• Zf ∩ (Descendants(Yt,Gf ) ∪ {Xt−γxy
}) = ∅, and

• Zf blocks every non-direct path from Xt−γxy
to Yt in every compatible FTCG Gf of maximal lag at

most γmax.

which allows to estimate the direct effect αYt,Xt−γxy
.

Proof. The proof of the backward implication of Theorem 1 proves this corollary.

However, there may exist multiple such sets and in practice each one does not induce the same estimation
error. Therefore, it is interesting to search for other such set in order to use the best one to optimize the
identification of the direct effect. In the following, we give another (smaller) adjustment set that is sufficient
for estimating direct effects when they are identifiable.
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Definition 21 (A second finite adjustment set). Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two
vertices X and Y with X ∈ Parents(Y,Gs) and a lag γxy. Consider the following sets:

• DAnc(Y )
t′ = {Vt′ |V ∈ Ancestors(Y,Gs) ∩Descendants(Y,Gs), t′ ∈ [t− γmax, t[}\{Xt−γxy

}

• AAnc(Y )
t′ = {Vt′ |V ∈ Ancestors(Y,Gs)\Descendants(Y,Gs), t′ ∈ [t− γmax, t]}\{Xt−γxy}

• Zf = DAnc(Y )
t′ ∪ AAnc(Y )

t′

Zf is called a adjustment set relative to (Xt−γxy , Yt).

Proposition 1. Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two vertices X and Y with X ∈
Parents(Y,Gs) and a lag γxy. Suppose the direct effect of Xt−γxy

on Yt is identifiable following Theorem 1.
The adjustment set Zf relative to (Xt−γxy , Yt) defined in Definition 21 verifies:

• Zf ∩ (Descendants(Yt,Gf ) ∪ {Xt−γxy
}) = ∅, and

• Zf blocks every non-direct path from Xt−γxy to Yt in every compatible FTCG Gf of maximal lag at
most γmax.

which allows to estimate the direct effect αYt,Xt−γxy
.

The proof is given in Section A.5 of the Appendix.

4.2.2 Discussion towards completeness

The adjustment sets described in Section 4.2.1 are sound, which means that they allow to estimate every
identifiable direct effect The ultimate goal would be to obtain a characterization of every such finite set
Zf ⊆ Vf which allow for the identification of the direct effect of Xt−γxy on Yt. This would allow to
try and find an optimal one which induces the smallest estimation error. While this would be the ideal
result, since the SCGs offer very little information on lags we decide to firstly search for sets of the form
Zf = ({Vt′ |V ∈ A, t′ ∈ τA} ∪ {Vt′ |V ∈ D, t′ ∈ τD})\{Xt−γxy

} with

• A ⊆ Vs\Descendants(Y,Gs), τA = [tinf , t].

• D ⊆ Descendants(Y,Gs), τD = [tinf , t[.

Indeed, one can notice that no Vt′ with t′ > t is necessary to block a path from Xt−γxy
to Yt as Lemma 2

shows that every path πf in a compatible FTCG with tmax(πf ) > t has a collider → Vtmax(πf ) ←∈ πf which
will not be activated if Zf ∩ {Vt′ |V ∈ Vs, t′ > t} = ∅.

Moreover, Figure 9 gives the intuition that paths in FTCGs can go back infinitely back in time through
unblocked cycles. Therefore, when manually blocking a path πs =< V 1, . . . , V n > in a SCG Gs with V i, one
should either take tinf = t −∞ or one should also be careful to block every cycle intersecting a border of
the path (i.e.,

⋃
1≤j<i Cycle(V j ,Gs) or

⋃
i<j≤n Cycle(V j ,Gs)). Since we are looking for the finite sets Zf

the second solution is best and one should always have give a special care to borders.
However, even with this in mind, one can notice that in Figure 10 conditioning on relevant instant of

{W} can be sufficient to block the red path as the left border < X,U,Z > intersects no cycle but it is
necessary to take tinf = t− γxy − (|Vs| − 1) ∗ γmax. Unfortunately, this forces Zf to grow linearly in the size
of Vs even if most vertices are in no path between X and Y which is not satisfactory. Therefore, we have
decided to search for sets with tinf ≥ t−γxy−γmax despite the fact that this potentially forces A∪D∪X ∪Y
to be bigger.

The remaining figures show some special cases in a hope to give some intuition on what characteristics
a complete single-door criterion should have. Figure 11 shows that if X → X then it is mandatory to
condition on relevant time instant of X and Figure 12 shows that if Y → Y and γxy > 0 then it is
mandatory to condition on relevant time instant of Y . Figure 13 and 14 give some insights on the facts that
X ∈ Descendants(Y,Gs) =⇒ Parents(X,Gs) ⊆ {V |Vt′ ∈ Zf} and γxy > 0 & Cycle(Y,Gs) ̸= ∅ =⇒
{Y } ∪ Parents(Y,Gs) ⊆ {V |Vt′ ∈ Zf}. Figure 15 shows that in the case of γxy > 0 and a path made of
descendants of Y with a strict left arrow, one should surely block this path by conditioning on a vertex with
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X Y

WU

Z

(a) A SCG (see Figure 20a). The
direct effect of Xt−γxy to Yt for

γxy ≥ 0 is identifiable by Theorem 1.

Xt

Ut

Wt

Zt

Yt

Xt−1

Ut−1

Wt−1

Zt−1

Yt−1

Xt−2

Ut−2

Wt−2

Zt−2

Yt−2

(b) A compatible FTCG. The path in red gives the intuition that a path can
go infinitely back in time.

Figure 9: In this example, considering the SCG, one could choose to condition on relevant time instants of
Z to block every non-direct path from Xt−γxy to Yt. However, in this case and many others, the set of

relevant time instants of Z is infinite. Therefore, one should also condition on a border i.e.< X,U,Z > or
< Z,W, Y >.

X Y

WU

Z

(a) A SCG. The direct effect of
Xt−γxy to Yt for γxy > 0 is
identifiable by Theorem 1.

Xt

Ut

Wt

Zt

Yt

Xt−1

Ut−1

Wt−1

Zt−1

Yt−1

Xt−2

Ut−2

Wt−2

Zt−2

Yt−2

Xt−3

Ut−3

Wt−3

Zt−3

Yt−3

Xt−4

Ut−4

Wt−4

Zt−4

Yt−4

Xt−5

Ut−5

Wt−5

Zt−5

Yt−5

(b) A compatible FTCG. The path in red gives the intuition that even with
a cycle-free border (here < X,U,Z >), a path can go back in time up to the

instant t− (|Vs| − 1) ∗ γmax.

Figure 10: In this example, considering the SCG, one could choose to condition on relevant time instants of
W to block every non-direct path from Xt−γxy

to Yt. This does not cause the same problem as in Figure 9
as < X,U,Z > intersects no cycle. In this extreme case, the set of relevant time instants of W is

[t− (|Vs| − 1) ∗ γmax, t]. It is possible to see that t− (|Vs| − 1) ∗ γmax is the smallest relevant time instant
possible if every cycle of a border is blocked.

X Y

(a) A SCG. The direct effect of
Xt−γxy to Yt for γxy ≥ 0 is
identifiable by Theorem 1.

Yt−1 Yt

Xt−1 Xt

(b) A compatible FTCG with
γxy = 0

Yt−1 Yt

Xt−1 Xt

(c) A compatible FTCG with
γxy > 0

Figure 11: Example of a self-loop on X i.e., X → X. In order to estimate the direct effect (in bold), it
is necessary to block the secondary path (in red) which can only be done by conditioning on other time
instants of X.
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X Y

(a) A SCG. The direct effect of Xt−γxy to Yt for γxy ≥ 0
is identifiable by Theorem 1.

Yt−1 Yt

Xt−1 Xt

(b) A compatible FTCG with γxy > 0

Figure 12: Example of a self-loop on Y i.e., Y → Y . In order to estimate the direct effect (in bold), it is
necessary to block the secondary path (in red) which can only be done by conditioning on other time

instants of Y .

X YU

(a) A SCG. The direct effect of
Xt−γxy to Yt for γxy ≥ 0 is
identifiable by Theorem 1.

Yt−1 Yt

Ut−1 Ut

Xt−1 Xt

(b) A compatible FTCG with γxy = 0. The
red secondary path can be blocked only by

Ut−1 or Xt−1.

Yt−1 Yt

Ut−1 Ut

Xt−1 Xt

(c) A compatible FTCG with
γxy > 0. The red secondary path
can be blocked only by Ut−1 or Xt.

Figure 13: Example in the presence of a parent of X. In order to estimate the direct effect (in bold), it is
necessary to block the secondary path (in red) which is only possible by conditioning on X or on every one

of its parents.

X Y

U V

(a) A SCG. The direct effect of
Xt−γxy to Yt for γxy > 0 is
identifiable by Theorem 1.

Vt−1 Vt

Yt−1 Yt

Ut−1 Ut

Xt−1 Xt

(b) A compatible FTCG. The red
secondary path can be blocked only by
Ut−1. The orange one can be blocked by

Yt−1 and Vt−1.

Vt−1 Vt

Yt−1 Yt

Ut−1 Ut

Xt−1 Xt

(c) A compatible FTCG. The red
secondary path can be blocked by

Ut−1 and Xt. The orange
secondary path can be blocked by

Yt−1 or Vt−1.

Figure 14: Example of parents of X and parents of Y in the presence of two opposite arrows between X
and Y . In order to estimate the direct effect (in bold), it is necessary to block the secondary paths (in red

and orange) which is only possible by conditioning on the parents of X and Y .
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X U

W

V

Y

(a) A SCG. The direct effect of
Xt−γxy to Yt for γxy > 0 is
identifiable by Theorem 1.

Xt

Ut

Wt

Vt

Yt

Xt−1

Ut−1

Wt−1

Vt−1

Yt−1

(b) A compatible FTCG. The path in red
shows Vt ∈ Descendants(Yt,Gf ).

Xt

Ut

Wt

Vt

Yt

Xt−1

Ut−1

Wt−1

Vt−1

Yt−1

(c) A compatible FTCG. The path
in red can only be blocked by
conditioning on Ut−1 or Vt.

Figure 15: Example of a path made of descendants of Y and with a strict left arrow. Figure 15b show that
every vertex of the path at instant t can be a descendant of Yt. Figure 15c on the other hand shows
compatible paths can be blocked by past instants of the vertex with an outgoing strict left arrow.

an outgoing strict left arrow. However, this example does not give any intuition on which such vertex to
choose if there exists multiple ones. Lastly, a complex task is to block every path at once. Some paths as in
Figure 19c can only be passively blocked so one should make sure that the vertices chosen to block a path
or its border does not open another path.

5 Conclusion

During this internship, I have started to adapt the root cause analysis algorithm EasyRCA to remove the
Assumption 5 which states that the system is represented by a ASCGL. In order to do so, the main work has
been developing a new graphical criterion for the identifiability of direct effects in linear dynamic structural
causal models given any general summary causal graph. Theorem 1 has important ramifications to the theory
and practice of observational studies in dynamic systems. It implies that the key to graphical identifiability
of the direct effect of Xt−γxy on Yt from summary causal graphs lies not only in finding a set non-descendant
of Y in the summary causal graph that are capable of blocking paths between X and Y but also some
descendant of Y in case γxy > 0. Furthermore, Proposition 1 gives a possible adjustment set that satisfies
the identifiability result. Section 4.2.2 gives some insight on what to consider to find more adjustment sets.

These findings should be useful for many applications such as root cause identification in dynamic systems
and it should open new research questions. Namely, for future works, it would be interesting to have a single-
door criterion along with a completeness result describing every possible adjustment set. In addition, in this
work, we considered only linear dynamic SCMs, however, in many real world applications, causal relations can
be nonlinear so it would be interesting to extend this work to nonlinear SCMs and consider non parametric
direct effects (Robins and Greenland, 1992; Pearl, 2001). Finally, as many other works, we assumed that the
FTCG is acyclic but we think that this assumption can be relaxed, so it would be interesting to formally
check the validity of our results for cyclic FTCGs.

In parallel, some implementing work is still needed to add these findings to EasyRCA. Moreover, this work
allows EasyRCA to function on more systems but there is still some direct effects which are not identifiable.
Thus an important future work would be to fill this gap and allow for root cause analysis even when some
direct effects are not identifiable. This could be done by learning small subsets of the FTCG in advance
using different causal discovery algorithms which have the most coherent assumptions regarding the small
subset of the data of interest.
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A Appendix

A.1 Graphical notions

Definition 22 (Graph). A (directed) graph G is a pair of sets G = (V, E) where V is a set of vertices and
E ⊆ V2 is a set of edges.

An example of a graph is given in Figure 16a. We will often write U → V or V ← U to represent
(U, V ) ∈ E and (V,U) /∈ E as well as U ⇄ V to represent (U, V ), (V,U) ∈ E .

Definition 23 (Parents, Children, Adjacents, Ancestors, Descendants). In a graph G = (V, E) and for a
vertex Y ∈ V we define the following sets:

• Parents(Y,G) = {U ∈ V|U → Y ∈ E or U ⇄ Y ∈ E}

• Children(Y,G) = {U ∈ V|Y → U ∈ E or U ⇄ Y ∈ E}

• Adjacents(Y,G) = Parents(Y,G) ∪ Children(Y,G)

• Ancestors(Y,G) =
⋃

n∈N Pn where P0 = {Y } and Pk+1 =
⋃

U∈Pk
Parents(U,G)

• Descendants(Y,G) =
⋃

n∈N Cn where C0 = {Y } and Ck+1 =
⋃

U∈Ck
Children(U,G)

Definition 24 (Skeleton). To each graph G = (V, E) can be associated a unique undirected graph Gsk =
(Vsk, Esk) called skeleton of G such that:

• Vsk = V, and

• Esk = {(U, V ), (V,U)|(U, V ) ∈ E}

Edges of a skeleton are often noted without arrow heads i.e., U − V to represent (U, V ), (V,U) ∈ Esk

An example of a graph and its skeleton is given in Figure 16.

U

V W

(a) Graph G = (V, E) with
V = {X,Y, Z} and E = {(X,Y ), (Y,X), (Z,X), (Z, Y )}.

U

V W

(b) Skeleton of G.

Figure 16: An example of a graph and its skeleton.

Definition 25 (Walk). In a graph G = (V, E), a walk between two vertices X to Y is an ordered sequence
of vertices denoted as π =< V 1, . . . , V n > where the first vertex is X, the last vertex is Y and each two
consecutive vertices are adjacent, i.e.:

• V 1 = X, and

• V n = Y, and

• ∀1 ≤ i < n, (V i, V i+1) ∈ E or (V i+1, V i) ∈ E

Definition 26 (Path). In a graph G = (V, E), a path between two vertices X to Y is a walk π =<
V 1, . . . , V n > with no repeated vertices, i.e.:

• ∀1 ≤ i < j ≤ n, V i ̸= V j

Definition 27 (Non-Direct Walk). In a graph G = (V, E), a walk π from X to Y is said to be non-direct if:

• π ̸=< X,Y >, or
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• (Y,X) ∈ E

e.g., < X → Z → Y >, < X ⇄ Y > and < X ← Y > are non-direct.

Definition 28 (Directed Walk). In a graph G = (V, E), a walk π =< V 1, . . . , V n > is said to be directed if:

• ∀1 ≤ i < n, (V i, V i+1) ∈ E (i.e., V i → V i+1 or V i ⇄ V i+1)

Definition 29 (Cycle). In a graph G = (V, E), a cycle is a directed walk πs =< V 1, . . . , V n > from a vertex
to itself with no repeated vertices except the endpoints, i.e.

• V 1 = V n, and

• ∀1 ≤ i < j ≤ n, V i = V j =⇒ i = 1 and j = n.

The set of cycles with endpoints Y ∈ V is written Cycles(Y,G). A directed acyclic graph is called a DAG.

Definition 30 (Collider). In a graph G = (V, E), a triple of variable (U, V,W ) ∈ V3 is a collider if:

• U → V ∈ E , and

• V ←W ∈ E

An example of a collider is given in Figure 17.

V

U W

(a)

V

U W

(b)

V

U W

(c)

V

U W

(d)

Figure 17: Examples of colliders.

Definition 31 (V-Structure). In a graph G = (V, E), a collider (U, V,W ) ∈ V3 is a v-structure if U −W /∈
Esk. The set of v-structures of a graph G is written V (G).

An example of a v-structure is given in Figure 17a.

A.2 σ-separation (Forré and Mooij, 2017)

Forré and Mooij (2017) introduced the concept of segments and showed how to use it to block paths in cyclic
graphs. Even though I eventually decided not to use this work in my internship, it has been of great help to
better understand cyclic graphs and it would be very interesting to express the results of Section 4 in term
of segments.

Definition 32 (Strongly Connected Component). In a graph G = (V, E), two vertices X,Y are strongly
connected if there exists a directed path from X to Y and there exists a directed path from Y to X. The
relation of strong connection is an equivalence relation. The equivalence class of a vertex X is called its
strongly connected component and is written Sc(X).

Definition 33 (Path of Segments). In a graph G = (V, E), a path π =< V 1, . . . , V n > can be uniquely
written as a partition of sub-paths π =< σ1, . . . , σm > where ∀1 ≤ i ≤ m, ∃pi ≤ qi, σi =< V pi , . . . , V qi >
such that :

• ∀pi ≤ j ≤ qi, V j ∈ Sc(V pi), and

• V pi−1 /∈ Sc(V pi) and V qi+1 /∈ Sc(V pi)

Such sub-paths are called segments and ∀1 ≤ i ≤ m the left and right endpoints are written respectively σi,l

and σi,r (i.e.,σi =< σi,l, . . . , σi,r >).
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Definition 34 (σ-Blocked Path, Forré and Mooij (2017)). In a graph G = (V, E), a path of segments
π =< σ1, . . . , σm > is said to be σ-blocked by a set of vertices Z ⊆ V if:

• σ1,l ∈ Z or σm,r ∈ Z, or

• ∃1 ≤ i ≤ m such that σi−1 ← σi (or resp. σi → σi+1) and σi,l ∈ Z (or resp. σi,r ∈ Z), or

• ∃1 ≤ i ≤ m such that σi−1 → σi ← σi+1 and Descendants(σi,G) ∩ Z = ∅.

A path which is not σ-blocked is said to be σ-active. When the set Z is not specified, it is implicit that we
consider Z = ∅.

A.3 Causal discovery algorithms and datasets

Most source code of the tested algorithms are available online.
GCMVL (Arnold et al., 2007) ?
Dynotears (Pamfil et al., 2020) https://github.com/

quantumblacklabs/causalnex/

PCMCI+ (Runge et al., 2019; Runge, 2020) https://github.com/

jakobrunge/tigramite

PCGCE (Assaad et al., 2022b) https://github.com/ckassaad/

PCGCE

VarLiNGAM (Hyvärinen et al., 2008; Hyvärinen et al., 2010) https://github.com/cdt15/

lingam

TiMINo (Peters et al., 2013) http://web.math.ku.dk/

~peters/code.html

NBCB & CBNB (Assaad et al., 2021, 2023a) https://github.com/ckassaad/

NBCB

In this section, we present the summary causal graph (the window causal graph and the extended
summary causal graph are not available) for each case study. Note that all data points are collected using
Nagios2, an open-source software that monitors systems, networks and infrastructure, and which gives the
timestamp according to the collection time which does not necessarily correspond to the real time of the
value. In addition, on some of the case studies, the alignment between time series is not guaranteed as
data collection is performed by different plugins with different starting times and different sampling rates
(Holzinger et al., 2021).

A.4 Examples

The following examples can help the reader gain more intuition of Theorem 1. It also shows that many cyclic
summary causal graphs have an identifiable direct effect. Therefore, the work done during this internship
can have some real implication in many cases.

2https://www.nagios.org/
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Figure 18: Summary causal graphs for different datasets: MoM system based on Publish/Subscribe architec-
ture (a), Ingestion IT monitoring system (b), Web-Activity (c) and Antivirus-Activity (d). Those summary
causal graphs are constructed by EasyVista’s system experts.
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Figure 19: Examples of summary causal graphs with 3 vertices where in (a),(b),(c),(d) αYt,Xt−γx,y
is

identifiable for all γx,y, in (e),(f),(g) αYt,Xt−γx,y
is identifiable only for γx,y ̸= 0, and in (h),(i) αYt,Xt−γx,y

is
non identifiable only all γx,y.
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Figure 20: Examples of summary causal graphs with 5 vertices where in (a),(b),(c),(d),(e) αYt,Xt−γx,y
is

identifiable for all γx,y, in (f),(g),(h) αYt,Xt−γx,y
is identifiable only for γx,y ̸= 0, and in (i) αYt,Xt−γx,y

is
non identifiable only all γx,y.

A.5 Proofs

Lemma 1. Suppose X /∈ Parents(Y,Gs). Then Xt−γxy /∈ Parents(Yt,Gf ) and the direct effect is equal to
zero (i.e., αYt,Xt−γxy

= 0).

Lemma 2. Let Gf = (Vf , Ef ) be a FTCG, Xt−γxy
̸= Yt ∈ Vf and πf =< V 1

t1 , . . . , V
n
tn > a path from Xt−γxy

to Yt in Gf .

• Suppose tmax(πf ) > t. Since t − γxy ≤ t < tmax(πf ) there exists 1 < i ≤ j < n such that ti−1 <

ti = tmax(πf ) = tj > tj+1. Therefore, V i−1
ti−1 → V i

ti and V j
tj ← V j+1

tj+1 in πf . Thus, ∃i ≤ k ≤
j such that V k−1

tk−1 → V k
tk ← V k+1

tk+1 in πf and tk = tmax(πf ) > t. In conclusion, πf is passively blocked

by any Zf ⊆ Vf such that Descendants(V k
tk ,Gf )∩Zf = ∅ so by any Zf such that Zf ∩ {Vt′ ∈ Vf |t′ >

t} = ∅

• Suppose tmin(πf ) < t − γxy. Since tmin(πf ) < t − γxy < t and tn = t there exists 1 < i < n such
that ti < t ≤ ti+1. Therefore, V i

ti → V i+1
ti+1 in πf and t − γmax ≤ ti < t ≤ ti+1 so V i

ti ∈ {Vt′ ∈
Vf |t− γmax ≤ t′ < t}. In conclusion, πf is manually blocked by any Zf ⊆ Vf such that V i

ti ∈ Zf so by
any Zf such that {Vt′ ∈ Vf |t− γmax ≤ t′ < t} ⊆ Zf .

Lemma 3. Suppose there exists a non-direct walk πs =< V 1, . . . , V n > between X and Y such that
< V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs). Then, take πf =< V 1

t1 , . . . , V
n
tn > from Xt−γxy

to Yt com-
patible with πs (i.e., πf ∈ ϕ−1(πs)). Take j = max{1 < i < n|V i /∈ Descendants(Y,Gs)}. Notice

V j
tj /∈ Descendants(Y,Gs) and V j+1

tj+1 ∈ Descendants(Y,Gs) so V j
tj → V j+1

tj+1 ∈ πf . Therefore, since t −
γxy ≤ tmin(πf ) ≤ tmax(πf ) ≤ t by Lemma 2, t − γxy ≤ tj ≤ t and thus πf is manually blocked by

V j
tj ∈ A≤t ⊆ Zf .
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Lemma 4. Let πs =< V 1, . . . , V n > be a non-direct walk between X and Y such that < V 2, . . . , V n−1 >⊆
Descendants(Y,Gs) and γxy > 0 and ∃1 ≤ i < n, V i ← V i+1. Then, take πf =< V 1

t1 , . . . , V
n
tn > from Xt−γxy

to Yt compatible with πs (i.e., πf ∈ ϕ−1(πs)) and 1 ≤ i < n such that V i
ti ← V i+1

ti+1 . tmin(πf ) ≥ t− γxy and
tmax(πf ) ≤ t by Lemma 2.

If V i+1
ti+1 /∈ D≥t then since tmin(πf ) ≥ t− γxy and tmax(πf ) ≤ t, πf is manually blocked by V i+1

ti+1 ∈ Zf =
A≤t ∪ D<t.

Else, V i+1
ti+1 ∈ D≥t, so since γxy > 0 and tmin(πf ) ≥ t− γxy and tmax(πf ) ≤ t, there exists j = max{1 <

j ≤ i|V j−1
tj−1 → V j

tj}. Thus V j is a collider and V j ∈ D≥t so Descendants(V j
tj ,Gs) ⊆ D≥t. Therefore, πf is

passively blocked by V j
tj ∈ Zf = A≤t ∪ D<t.

In conclusion, πf is blocked by Zf .

Lemma 5. Let πs =< V 1, . . . , V n > be a non-direct walk between X and Y as described. Then, take
πf =< V 1

t1 , . . . , V
n
tn > non-direct from Xt−γxy to Yt compatible with πs (i.e., πf ∈ ϕ−1(πs)).

Since Y ∃1 < iy < n such that V iy = Y and because πf is a path, tiy ̸= t so by Lemma 2 t−γxy ≤ tiy < t.

• If ← V
iy
tiy

or V
iy
tiy
→ then πf is manually blocked by V

iy
tiy

. Since t− γxy ≤ tiy < t, V
iy
tiy
∈ Zf and πf is

manually blocked by Zf .

• If → V
iy
tiy
← V

iy+1

tiy+1 then πf is manually blocked by V
iy+1

tiy+1 . Using Lemma 2, t − γxy ≤ tiy+1 ≤ t.

Moreover, since t− γxy ≤ tiy < t and V
iy
tiy
← V

iy+1

tiy+1 , one can see that t− γxy ≤ tiy+1 < t. Lastly, πf is

a path so V
iy+1

tiy+1 ̸= Xt−γxy . Thus πf is manually blocked by V
iy+1

tiy+1 ∈ Zf .

Lemma 6. Let πs =< V 1, . . . , V n > be a non-direct path fromX to Y with< V 2, . . . , V n−1 >⊆ Descendants(Y,Gs)
and ∄1 ≤ i < n, V i ← V i+1 and either n ≥ 3 or X ∈ Descendants(Y,Gs) and ∃C ∈ Cycles(X,Gs) with Y /∈
C. If n ≥ 3 take π′

s =< U1, . . . , Um+1 >= πs. If n = 2 and ∃C =< U1, . . . , Um >∈ Cycles(X,Gs) with Y /∈
C, then take π′

s = C + πs in order to have a walk π′
s =< U1, . . . , Um+1 >.

• Firstly,

– if n ≥ 3 then < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) and π′
s =< U1, . . . , Um+1 >= πs give

< U2, . . . , Um >⊆ Descendants(Y,Gs), and
– if n = 2 since X ∈ Descendants(Y,Gs), C ⊆ Descendants(X,Gs) ⊆ Descendants(Y,Gs) so

π′
s = C + πs =< U2, . . . , Um >⊆ Descendants(Y,Gs).

Therefore, there exists a FTCG Gf compatible with Gs in which< U2
t , . . . , U

m+1
t >⊆ Descendants(Yt,Gf ).

• Secondly, since Y /∈ C, X and Y are not repeated in < U2, . . . , Um+1 > and because ∄1 ≤ i ≤
n, V i ← V i+1 and Um = X ⇄ Y = Um+1, there exists a FTCG G′f compatible with Gs in which

πf =< U1
t−γxy

→ U2
t → · · · → Um+1

t > is a path. In this case, πf is active and can only be blocked by

a Zf such that Zf∩ < U1
t−γxy

, U2
t , . . . , U

m+1
t > ̸= ∅.

Since adjusting on Xt−γxy
or descendants of Yt induces a bias, these two cases are irreconcilable and therefore

αYt,Xt−γxy
is not identifiable.

Lemma 7. Let πs =< V 1, . . . , V n > be an active non-direct path fromX to Y in Gs with < V 2, . . . , V n−1 >⊆
Descendants(Y,Gs) and γxy = 0. Since < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) there exists a FTCG Gf
compatible with Gs in which < V 2

t , . . . , V
n−1
t >⊆ Descendants(Yt,Gf ). Moreover, since πs is active there

exists a FTCG G′f compatible with Gs in which πf =< V 1
t , . . . , V

n
t > is an active path and can only be

blocked by a Zf such that Zf∩ < V 1
t , . . . , V

n
t > ̸= ∅. Since conditioning on Xt−γxy

or descendants of Yt

induces a bias, these two cases are irreconcilable and therefore αYt,Xt−γxy
is not identifiable.
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Theorem 1. The previous lemmas contain most of the proof, we will show here how to combine them to obtain
Theorem 1. Lemma 1 give the first trivial condition αYt,Xt−γxy

not identifiable =⇒ X ∈ Parents(Y,Gs) so
we assume in the remaining of the proof X ∈ Parents(Y,Gs). Lemma 7 gives the forward implication when
γxy = 0 and Lemma 6 gives the forward implication when γxy > 0. All what is left is to prove to backward
implication.

To prove the backward implication it suffices to prove that if we suppose that Gs does not contain any
path as described in Theorem 1, then there exists an adjustment set that:

1. does not contain any descendant of Yt in any FTCG that is compatible with Gs, and

2. blocks every non-direct path from Xt−γxy
to Yt in every FTCG that is compatible with Gs.

Consider Zf as defined in Definition 20. Condition 1 is satisfied since by construction Zf does not contain
any descendant of Yt. To prove condition 2, let us consider πf to be a path from Xt−γxy to Yt in a FTCG Gf
compatible with Gs. Let ϕ(πf ) = πs =< V 1, . . . , V n > its compatible walk in Gs and π′

s =< U1, . . . , Um >
the subpath of πs. In the following, we consider all cases where π′

s violates one of the conditions of Theorem 1
:

• if < U2, . . . , Um−1 > ̸⊆ Descendants(Y,Gs) then < V 2, . . . , V n−1 ≯⊆ Descendants(Y,Gs) by Property
3. Thus Lemma 3 shows that Zf blocks πf , or

• if < U2, . . . , Um−1 >⊆ Descendants(Y,Gs), γxy = 0 and π′
s is passively blocked by U i then πs

is passively blocked by at least a descendant of U i by Property 1. Then consider tmin(πf ) and
tmax(πf ). If tmin(πf ) < t or tmax(πf ) > t then Lemma 2 shows that Zf blocks πf . Else tmin(πf ) =
tmax(πf ) = t, since πs is passively blocked by at least a descendant of U i and Descendants(U i,G) ⊆
Descendants(Y,G), there exists V j

t ∈ D≥t such that πf is passively blocked by V j
t . Therefore, Zf

blocks πf , or

• if γxy = 0 and π′
s is direct then either πs is direct and πf is direct, or < V 1, . . . , V n−1 >∈ Cycles(X,Gs)

by Property 2. Then V 1 = V n−1 = X so since πf is a path, tn−1 ̸= t. Thus tmin(πf ) < t or
tmax(πf ) > t and Lemma 2 shows that Zf blocks πf .

• if γxy > 0, m ≥ 3 and ∃1 ≤ i < m, U i ← U i+1 then n ≥ 3 and ∃1 ≤ i < n, V i ← V i+1 by Property
4. Thus Lemma 4 shows that Zf blocks πf , or

• if γxy > 0, m = 2 and X /∈ Descendants(Y,Gs) or ∀C ∈ Cycles(X,Gs), Y ∈ C, either πs is direct
and πf is direct, or πs =< X ⇄ Y > and πf =< Xt−γxy

→ Yt > as γxy > 0 and πf is direct or
< V 1, . . . , V n−1 >∈ Cycles(X,Gs) by Property 2. If tmin(πf ) < t or tmax(πf ) > t then Lemma 2
shows that Zf blocks πf . IfX /∈ Descendants(Y,Gs) then since V n−1 = X and πf is a path, V n−1

tn−1 ∈ Zf

and thus Zf blocks πf . Else, ∀C ∈ Cycles(X,Gs), Y ∈ C so Y ∈< V 2, . . . , V n−1 > and Lemma 5
shows that Zf blocks πf .

Thus, any violation of any condition Theorem 1 leads to πf becoming Zf -blocked. In conclusion, if the
conditions of Theorem 1 are verified then Zf defined in Definition 20 allows to identify αYt,Xt−γxy

.

Property 1. Let Gs = (Vs, Es) be a SCG, X,Y ∈ Vs with X ∈ Parents(Y,Gs) and γxy be a lag. Suppose
the direct effect of Xt−γxy on Yt is identifiable following Theorem 1. Let Zf be the single-door set relative
to (Xt−γxy , Yt) defined in Definition 21. Let Gf = (Vf , Ef ) be a compatible FTCG of maximal lag at most
γmax compatible with Gs.

• Firstly, using the decomposition Zf = DAnc(Y )
t′ ∪AAnc(Y )

t′ as in Definition 21, and becauseDescendants(Yt,Gf ) ⊆
{Vt′ |V ∈ Descendants(Y,Gs), t′ ≥ t} it is clear that Zf ∩ (Descendants(Yt,Gf ) ∪ {Xt−γxy

}) = ∅.

• Secondly, let πf =< V 1
t1 , . . . , V

n
tn > be a non-direct path from Xt−γxy

to Yt in FTCG Gf and πs =<
V 1, . . . , V n >= ϕ(πf ) its compatible walk. If tmax(πf ) > t then ∃1 < k < n such that → V k

tmax(πf )
←

in πf with Descendants(V k
tmax(πf )

,Gf ) ∩ Zf = ∅ and thus πf is passively blocked by Zf . Therefore,

for the following we can suppose tmax(πf ) ≤ t.
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Because the direct effect of Xt−γxy on Yt is identifiable following Theorem 1 we know that πf ̸=<
V 1
t1 ← · · · ← V n

tn >. Therefore, ∃1 < k ≤ n such that → V k
tk ← · · · ← V n

tn with tk ≥ t and
V k ∈ Descendants(Y,Gs) and since πf is non-direct this forces n > 2.

– If k < n then Descendants(V k
tk ,Gf ) ∩ Zf = ∅ and thus πf is passively blocked by Zf .

– If k = n (i.e., V n−1
tn−1 → V n

tn) and πf =< V 1
t1 → · · · → V n

tn > then because the direct effect of Xt−γxy

on Yt is identifiable following Theorem 1 we know that ∃dmax = max{1 < d < n such that V d /∈
Descendants(Y,Gs)}. This forces either t − γmax ≤ tdmax ≤ t or ∃dmax < d < n such that t −
γmax ≤ td < t so since V dmax , V d ∈ Ancestors(Y,Gs), we have either V dmax

tdmax
∈ AAnc(Y )

t′ or

V d
td ∈ D

Anc(Y )
t′ and thus πf is manually blocked by Zf .

– If k = n (i.e., V n−1
tn−1 → V n

tn) and ∃lmax = max{1 < l < n|V l−1
tl−1 ← V l

tl} then V lmax ∈
Ancestors(Y,Gs)

∗ If tlmax < t then ∃lmax ≤ i such that V i
ti → V i+1

ti+1 and t − γmax ≤ ti < ti+1 = t and since
V i ∈ Ancestors(Y,Gs), V i

ti ∈ Zf and thus πf is manually blocked by Zf .

∗ If V lmax /∈ Descendants(Y,Gs) and tlmax = t then, since V lmax ∈ Ancestors(Y,Gs), V lmax

tlmax
∈

AAnc(Y )
t′ and thus πf is manually blocked by Zf .

∗ If V lmax ∈ Descendants(Y,Gs) and tlmax = t then we can distinguish the cases γxy = 0 and
γxy > 0:

· If γxy = 0 then, because the direct effect ofXt−γxy on Yt is identifiable following Theorem 1

we know that ϕ(πf ) is blocked so ∃rmax = max{1 < r < lmax|V r−1
tr−1 → V r

tr}.
· Similarly, if γxy > 0 since V lmax−1

tlmax−1 ← V lmax

tlmax
, then t = tlmax ≤ tlmax−1 ≤ t and there must

exists 1 < r < lmax such that V r−1
tr−1 → V r

tr with tr < tr+1 = t so ∃rmax = max{1 < r <

lmax|V r−1
tr−1 → V r

tr}.
Therefore, we have→ V r

tr ← and since V lmax ∈ Descendants(Y,Gs) and V rmax ∈ Descendants(V lmax ,Gs)
we have V rmax ∈ Descendants(Y,Gs) so Zf ∩Descendants(V rmax

trmax ,Gf ) = ∅ and therefore πf

is passively blocked by Zf .

In conclusion, πf is blocked by Zf .
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