
Scalable and Performant Graph Processing on GPU

using Approximate Computing

A THESIS

submitted by

SOMESH SINGH

for the award of the degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2021

THESIS CERTIFICATE

This is to certify that the thesis titled Scalable and Performant Graph Processing

on GPU using Approximate Computing, submitted by Somesh Singh, to the Indian

Institute of Technology, Madras, for the award of the degree of Doctor of Philosophy,

is a bona fide record of the research work done by him under my supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Dr. Rupesh Nasre
Research Guide
Associate Professor
Dept. of CSE
IIT-Madras, 600 036

Place: Chennai

Date: 9th June 2021.

ACKNOWLEDGEMENTS

“Nothing of me is original. I am the combined effort of everybody I’ve ever known.”

– Chuck Palahniuk

My Ph.D. journey at IIT Madras has been – in equal parts – inspiring, challenging

and humbling. Several people have been instrumental in enabling me to complete this

long journey.

First and foremost, I express my sincere gratitude towards my advisor Dr. Rupesh

Nasre. I had joined Ph.D. completely unaware of the rigors of research, and I owe a lot

of what I have learned during my Ph.D. to him. He gave me the freedom to explore the

ideas of my interest and also allowed me to work on problems that did not pertain to

my Ph.D. research. He was always available for both technical and non-technical dis-

cussions. He was extremely patient with me and was always very encouraging despite

the slow progress and the numerous discouraging results. It was immensely gratifying

to work with him. He will forever remain a source of inspiration for me.

I thank my doctoral committee members — Prof. V Krishna Nandivada, Prof.

Madhu Mutyam, Prof. M Ramakrishna, and Prof. C Chandra Sekhar, for their valuable

suggestions and comments on my research work. I am thankful to Prof. C Siva Ram

Murthy, Dr. John Augustine, and Dr. Rajsekar Manokaran for the useful discussions

and for sharing their thoughts on my work. Their suggestions were beneficial.

I had the privilege of collaborating with Dr. Felice Pantaleo, Dr. Riccardo De

Maria, and Martin Schwinzerl from CERN, during Google Summer of Code 2017 and

2018. I am grateful to them for the inspiring and enriching experience, and the many

learnings. The work happening at CERN has always fascinated me, and all credit to

them, I could make a minuscule contribution to these efforts. I especially enjoyed

working with Martin, one of the most humble, polite, and passionate people I have

come across.

i

I am thankful to MHRD and ACM SIGPLAN PAC for funding my conference

travel.

I had the good fortune of being a part of the vibrant PACE lab. I thank all my

present and past lab mates — Abhilash Bhandari, T V Kalyan, Tripti Warrier, John

Jose, Raghavendra K, Sudharsan J, Suyash Gupta, Pritam Majumder, Gnaneswara Rao,

Praveen Alapati, Raghesh Aloor, Joe Augustine, Jyothi Krishna V S, Anchu R S,

Rahul Shrivastava, Rakesh Patil, Shashidhar G, Dennis Varkey, Indu K, Arun T, Aman

Sharma, Aman Nougrahiya, Jyothi Vedurada, Manas Thakur, Saurabh Kalikar, Surya,

Sayantan Ray, Puneet Saraf, Anju M A, Shouvick Mondal, Diptanshu Kakwani, Ra-

jendra Dangwal, Sai Deepak, Jash Khatri, Praseetha M and Ramya, for the wonderful

moments and memories over the years. I would always fondly remember the lab talks,

the several technical and non-technical discussions, and the fun-filled lab outings.

I thank Jyothi, my neighbor in the lab, for all the conversations about research and

life in general. She kept me abreast with the research in the areas of programming lan-

guages and software engineering. Saurabh, Manas, Arun, and Aman(s) often accompa-

nied me for the "frequent" coffee breaks. Saurabh and Shouvick were my companions

during the late hours in the lab. Thanks, guys.

During my initial years at IIT Madras, I spent a lot of my time in the company of

my Ph.D. batchmates — Revathy Narayanan, Prasanna Karthik, and Ujjal Kumar Dutta.

My Ph.D.’s most cherished memories are from the times we spent together, especially

while preparing for the comprehensive exams. Thank you for the wonderful times.

I am thankful to Tejas (Rupesh’s M.Tech. student) for his work on approximate

betweenness centrality computation. I thank my interns, Ronak Jayesh Shukla (NIT

Nagpur) and Milind Srivastava (IIT Madras), for their works on image-segmentation.

I enjoyed working with all of them, and it also helped improve my understanding of

several aspects of graph processing, parallel computing, and approximate computing.

I thank Saurabh Kalikar, Shreyas Shetty, Prathamesh Deshpande, Amit Rawat, and

Arun T, my teammates for course projects or programming contests. I learned a lot

from working with all of them.

I am grateful to my Yoga teacher Mrs. Katyayini Reddy, for developing my interest

ii

in Yoga. Yoga has now become a part of my daily routine. I also thank Manas for

convincing me to join the Yoga classes despite my initial resistance.

I thank the administrative staff, especially Mr. Mani and Mrs. Sridevi, from the CS

office, for ensuring that paperwork was never a hassle. I am grateful to the Deans, and

the entire administration of IIT Madras for permitting me to stay on campus during the

COVID-19-forced lockdown, for working on my thesis.

I would surely miss the beautiful campus of IIT Madras. It was great to share the

campus with the blackbucks, the deers, and the (notorious) monkeys and observe them

in their natural habitat from such close quarters.

Last, I am indebted to my parents and brother for their unwavering support. It would

not have been possible for me to complete my Ph.D. without their cooperation.

iii

ABSTRACT

KEYWORDS: Graph Analytics; Parallelization; Approximate Computing;

Graphics Processing Unit.

A multitude of real-world problems is modeled as graphs where nodes represent entities

of interest, and edges capture the relationships among them. In recent years, Graphics

Processing Units (GPUs) have gained popularity as accelerators for compute-intensive

data-parallel applications due to the massive data-parallelism they offer and their high

memory bandwidth. Graph algorithms are inherently irregular, while GPUs are best

suited for structured data-parallel computation. Scaling graph algorithms is challenging

today due to the rapid growth of unstructured and semi-structured data. The prior art has

targeted parallelizing popular graph algorithms on various kinds of architectures such

as multi-core CPUs, many-core GPU, and distributed and heterogeneous systems. The

primary technical challenge posed by graphs is due to inherent irregularity in the data-

access, control-flow, and communication patterns. The recent past has witnessed the

emergence of very effective techniques to represent graphs compactly, tame irregular

computations, and efficiently map those to the underlying hardware. However, when

the graph sizes are huge (e.g., billion-scale networks), or the underlying processing is

expensive, it is not practically viable to compute the exact solution in time.

The focus of this thesis is on making graph processing more scalable. We look

to achieve this by enhancing the performance of parallel graph algorithms on GPU by

trading off computational accuracy, using approximate computing. We propose several

i) algorithm- and architecture-independent, ii) algorithm-independent but architecture-

specific, and iii) algorithm-specific but architecture-independent techniques for enhanc-

ing parallel graph processing efficiency using approximate computing. We present

Graprox, a set of four algorithm- and architecture-independent approximate computing

techniques that improve the performance of parallel graph analytics by exploiting the

general structure of the graph kernel and the flow of information in graph algorithms.

v

Graph analytics on GPU suffers from low coalesced accesses, high memory latency,

and high workload imbalance. To alleviate these issues, we present Graffix, a frame-

work with three novel graph transformation techniques that alter the graph structure to

enable faster processing in exchange for small inaccuracies in the final results. Graffix’s

method for improving memory coalescing creates a graph isomorph that brings relevant

nodes nearby in memory and adds a controlled replica of nodes. The second technique

reduces memory latency by facilitating the processing of subgraphs inside shared mem-

ory by adding edges among specific nodes and processing well-connected subgraphs

iteratively inside shared-memory. The third normalizes degrees across nodes assigned

to a warp to reduce thread divergence.

Third, we focus on algorithm-specific but architecture-independent approximate

computing techniques for improved parallel execution. Specifically, we propose

ParTBC, an ensemble of techniques targeted at speeding up the computation of top-

k betweenness centrality vertices on GPU. Our proposals restrict the computation of

shortest paths from only a fraction of the vertices in parallel betweenness centrality

computation, using online stopping criteria to terminate the computation faster.

All our proposals provide tunable knobs to change the degree of approximation in-

jected and control the performance-accuracy trade-off in graph applications. Further,

our approximate computing techniques complement (and do not compete with) the ex-

isting optimization techniques, and could be applied on top of these optimizations to

enhance the execution performance further.

We illustrate the efficacy of our proposed techniques on graphs of varying charac-

teristics and sizes and popular graph algorithms through extensive experimental evalu-

ation. Overall, we show that approximate computation of graph algorithms is a robust

way of dealing with irregularities. Approximate computing combined with paralleliza-

tion promises to make heavy-weight graph computation practical, as well as, scalable.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT v

LIST OF TABLES xii

LIST OF FIGURES 1

1 INTRODUCTION 3

1.1 Contributions . 7

1.1.1 Architecture-agnostic Techniques for Parallel Approximate
Graph Processing . 7

1.1.2 GPU-specific Optimizations for Graph Processing in the Pres-
ence of Approximations 8

1.1.3 Estimation of Top-k Betweenness Centrality Vertices on Het-
erogeneous Architectures 8

1.2 Organization of the Thesis . 9

2 Background 11

2.1 Basic Definitions . 11

2.2 Graph Storage Formats . 12

2.3 Classification of Graphs . 14

2.3.1 Scale-free Real World graphs 14

2.3.2 Recursive Matrix (R-MAT) graphs 14

2.3.3 Road networks . 14

2.3.4 Random graphs . 15

2.4 Parallel Graph Algorithms . 15

2.4.1 Breadth First Search (BFS) 15

2.4.2 Single Source Shortest Path (SSSP) 16

2.4.3 PageRank . 17

vii

2.4.4 Minimum Spanning Tree (MST) 18

2.4.5 Strongly Connected Components 18

2.4.6 Vertex Coloring . 19

2.4.7 Betweenness Centrality . 21

2.5 Summary . 22

3 Related Work 23

3.1 Exact Parallel Graph Processing 23

3.1.1 Parallel graph processing on multicore 23

3.1.2 Parallel graph processing on GPU 25

3.1.3 Parallel graph processing on distributed systems 27

3.2 Approximate Graph Processing . 28

3.2.1 Graph sampling based techniques 29

3.2.2 Graph compression based techniques 31

4 Parallel Approximate Graph Processing 33

4.1 Approximation Model . 35

4.1.1 Function Application Order 35

4.1.2 Idempotent Approximation 36

4.1.3 Approximation Structure 36

4.2 Approximating Graph Algorithms 36

4.2.1 Graph Algorithms . 37

4.2.2 Technique 1: Reduced Execution 37

4.2.3 Technique 2: Partial Graph Processing 38

4.2.4 Technique 3: Approximate Graph Representation 40

4.2.5 Technique 4: Approximate Attribute Values 41

4.3 Benefits to GPU-based Processing 43

4.3.1 Technique 1: Reduced Execution 44

4.3.2 Technique 2: Processing Part of the Graph 44

4.3.3 Technique 3: Approximate Representation 44

4.3.4 Technique 4: Approximate Attributes 45

4.4 Experimental Evaluation . 45

viii

4.4.1 Overall Results . 47

4.4.2 Effect of Reduced Execution 50

4.4.3 Effect of Partial Graph Processing 53

4.4.4 Approximate Graph Representation 56

4.4.5 Approximate Attribute Values 59

4.4.6 Effect on Graph Type . 61

4.4.7 Graprox techniques are platform-independent 61

4.5 Practicality of Graprox techniques 62

4.6 Summary . 62

5 GPU-specific Optimizations for Graph Processing in the presence of Ap-
proximations 65

5.1 Improving Memory Coalescing . 66

5.1.1 Coalescing in Graffix . 66

5.1.2 Renumbering Scheme . 69

5.1.3 Node Replication . 71

5.1.4 Confluence due to Replication 72

5.2 Reducing Memory Latency . 73

5.3 Reducing Thread Divergence . 75

5.4 Experimental Evaluation . 77

5.4.1 Effect of Coalescing . 78

5.4.2 Effect of Memory Latency 82

5.4.3 Effect of Thread Divergence 83

5.4.4 Preprocessing Overhead 84

5.4.5 Impact of Approximations on Energy 86

5.5 Summary . 87

6 Faster Estimation of Top-k Betweenness Centrality Vertices on Hetero-
geneous Architectures 89

6.1 Problem Statement and Preliminaries 90

6.2 ParTBC’s Approach . 91

6.3 Parallelization and Graph Layout 92

6.3.1 Parallelization Strategy . 92

ix

6.3.2 Graph Layout . 92

6.3.3 Improved Graph Layout 94

6.4 Techniques for Fast BC estimation 95

6.4.1 Random Selection of Source Vertices (Random) 98

6.4.2 Node Selection in Ascending Degree Order (Ascending) . . 99

6.4.3 Node Selection in Descending Degree Order (Descending) . 99

6.4.4 Selecting Low-Degree Neighbors of High Degree Vertices . 100

6.4.5 Dynamic Selection of Source 101

6.5 Experimental Evaluation . 103

6.5.1 Overall Results . 106

6.5.2 Effects of the fraction of source nodes 110

6.5.3 Controlling the number of outerloop iterations 112

6.5.4 Discussion on quality of the reported top-k 112

6.5.5 ParTBC techniques are platform-independent 114

6.6 Summary . 115

7 Conclusion and Future Work 117

7.1 Conclusion . 117

7.2 Limitations . 118

7.3 Future Work . 119

LIST OF TABLES

4.1 Instantiation of the approximation model with various values of D and
F . 34

4.2 Input graphs . 46

4.3 Execution time for exact versions of graph algorithms 46

4.4 Overall results . 48

4.5 Preprocessing overhead for partial graph processing 53

4.6 Preprocessing overhead for approximate graph representation 57

4.7 Preprocessing overhead for approximate attribute values 59

4.8 Effect of approximating attribute values. 60

4.9 Average execution time of the approximate versions of graph algorithms 63

5.1 Baseline-I: Execution time for the exact versions 78

5.2 Baseline-II: Execution time for Tigr 78

5.3 Baseline-III: Execution time for Gunrock 78

5.4 Effect of memory coalescing . 79

5.5 Effect of shared memory . 79

5.6 Effect of thread divergence . 79

5.7 Effect of memory coalescing . 79

5.8 Effect of shared memory . 79

5.9 Effect of thread divergence . 79

5.10 Effect of memory coalescing . 80

5.11 Effect of shared memory . 80

5.12 Effect of thread divergence . 80

5.13 Preprocessing overhead . 85

5.14 Effect of memory coalescing . 85

5.15 Effect of shared memory . 85

5.16 Effect of thread divergence . 85

xi

6.1 Input graphs . 104

6.2 Effect of vertex numbering on exact version (NVR: no vertex renum-
bering, VR: with vertex renumbering) 104

6.3 Effect of vertex renumbering on global memory coalescing 104

6.4 Performance of ParTBC w.r.t. exact parallel Brandes’ algorithm and
ABRA (VR: vertex renumbering) Error ∼ 6%. 105

6.5 Performance of ParTBC w.r.t. exact parallel Brandes’ algorithm and
ABRA Error ∼ 10%, 20%, 50%. 105

6.6 Overall results . 108

xii

LIST OF FIGURES

2.1 Graph representations . 13

4.1 Algorithm-wise effect of varying the percentage of outer loop iterations 51

4.2 Graph-wise effect of varying the percentage of outer loop iterations 51

4.3 Work done per iteration in SSSP for rmat26, USA-road, LiveJournal,
random26 and twitter . 52

4.4 Algorithm-wise effect of varying the percentage of graph processed 54

4.5 Graph-wise effect of varying the percentage of graph processed . . . 54

4.6 Work done across iterations in SSSP for rmat26, USA-road, LiveJour-
nal, random26 and twitter due to partial graph processing 55

4.7 Work done across iterations in Color for rmat26, USA-road, Live-
Journal, random26 and twitter due to partial graph processing . . 55

4.8 Algorithm-wise effect of varying the Jaccard’s coefficient 57

4.9 Graph-wise effect of varying the Jaccard’s coefficient 58

4.10 Work done per iteration for LiveJournal in SCC, SSSP, PageRank,
BC and MST for varying Jaccard’s coefficient 58

4.11 Work done per iteration in MST due to approximating attribute values 60

5.1 Original graph G and its CSR representation 68

5.2 (a) Graph G from Figure 5.1 with renumbered nodes (b) The same
graph reoriented for clarity . 70

5.3 Holes in nodes after renumbering G 71

5.4 Modified graph G′ with its CSR representation. 73

5.5 Reducing memory latency using shared memory 75

5.6 Handling thread divergence by graph transformation. 76

5.7 Effect of varying the threshold for node replication. 81

5.8 Effect of varying the threshold for clustering-coefficient 82

5.9 Effect of varying the threshold for degree normalization. 83

5.10 Effect of coalescing on energy consumption for BC (higher is better). 86

xiii

6.1 Original graph G and its CSR representation 93

6.2 Graph G with renumbered vertices 93

6.3 Neighbors of high-degree vertices 100

6.4 Layout for techniques . 100

6.5 Graph-wise effect of varying k on the error for α = 0.5 108

6.6 Effect of varying k on the error for DynRR 109

6.7 Graph-wise effect of varying α on the error for k = 500 111

6.8 Effect of varying α on the error for DynRR 111

6.9 Average rank of top-k vertices missed (expressed as a percentage of k) 113

6.10 Average rank of vertices erroneously included in top-k (expressed as k
/ Avg. rank) . 113

1

CHAPTER 1

INTRODUCTION

Graph is a fundamental data structure for modeling a broad spectrum of real-world

problems. Graph analytics pertains to various fields, such as bioinformatics, machine

learning, social network analysis, Computer-Aided Design (CAD), and computer secu-

rity, among others. Graph analytics algorithms extract useful information from graphs

by analyzing their structural properties and how information propagates through them,

such as the effect of a drug and identifying communities. Scaling graph algorithms is a

challenge today due to the rapid growth of unstructured and semi-structured data.

In recent years, there has been widespread adoption of parallel computing for large

scale graph processing. Graphics Processing Units (GPUs) have emerged as the plat-

form of choice for data parallel applications due to the massive data-parallelism they

offer and their high memory bandwidth. Our focus in this thesis is graph analytics

on GPUs. Former research has targeted parallelizing popular graph algorithms on

multi-core CPUs (Shun and Blelloch (2013); Harshvardhan et al. (2014, 2015); Gross-

man et al. (2018); Balaji and Lucia (2019)), many-core GPUs (Merrill et al. (2012);

Gharaibeh et al. (2012); Zhong and He (2014); Wang et al. (2017); Nodehi Sabet et al.

(2018)), as well as distributed and heterogeneous systems (Malewicz et al. (2010); Low

et al. (2012); Gonzalez et al. (2012); Slota et al. (2016); Dathathri et al. (2018)). Ac-

cording to the TAO model (Pingali et al. (2011)), the primary technical challenge posed

by graphs is the inherent irregularity in the data-access, control-flow, and communi-

cation patterns. This forces compilers to make pessimistic assumptions about them

as the graphs are available only at runtime, leading to reduced parallelization bene-

fits. The parallelization issues get exacerbated when GPUs are used to execute graph

algorithms. The recent past has witnessed emergence of very effective techniques to

represent graphs compactly (Shun et al. (2015); Sha et al. (2019); Chen et al. (2019a);

Besta et al. (2019)), tame irregular computations (Zhang et al. (2011); Wu et al. (2013);

Nodehi Sabet et al. (2018); Balaji and Lucia (2019)), and map those to the underlying

hardware (Wang et al. (2017); Nodehi Sabet et al. (2018)).

Despite successful parallelization of graph algorithms, when the graph sizes are

huge (e.g., billion-scale networks such as Facebook), and/or the underlying processing

is expensive, it is not always feasible to compute the exact solution in time. For instance,

finding the importance of a node in a network (using betweenness centrality) necessi-

tates an algorithm having time-complexity cubic in terms of the number of nodes. With

billions of nodes in a dynamic network, such a computation is prohibitively expen-

sive. The exact vertex betweenness centrality computation on the undirected graph

liveJournal (having∼4.8M nodes and∼69M edges) using a parallel implementation of

Brandes’ algorithm on a GPU takes several days to complete.

While an exact answer is required in mission-critical applications, there are graph

applications which do not always demand an accurate answer and are error tolerant. For

example, in network visualization tools such as Gephi, when employing a force-directed

graph layout algorithm (e.g., ForceAtlas2), there is a trade-off between the quality of the

simulation and the time for convergence. Similarly, we may estimate a set of k nodes

with the largest betweenness centrality (BC) in a network faster without computing the

exact BC values of the nodes. The exact pagerank values are often not required since

they evaluate the relative importance of webpages. The problem of genome assembly

lends itself well to approximate computing. Generating the genome sequence entails

constructing and traversing the de Bruijn graph. The quality of the generated genome

sequence is contingent on the constructed de Bruijn graph and the path traversed on the

de Bruijn graph. Other graph problems amenable to approximate computing include

clustering and community detection, among others. With the growing importance of

edge-computing and low-energy devices, a practical question is: "given an infrastruc-

ture, how to make the best use of resources to obtain an acceptable, inexact solution in

a reasonable time?"

As a step towards answering this question, in this thesis, we seek to look beyond

the inherent limitations of exact parallel graph processing, w.r.t. performance, using

approximate computing. We address the scalability issues in graph parallelization by

trading off computational accuracy for improved execution performance. While our

proposals embody approximations, they are a departure from the traditional approxi-

mation algorithms.

4

As a first contribution, we propose Graprox, a suite of algorithm- and architecture-

independent techniques for approximate parallel graph processing. These techniques

are generally applicable to graph processing on GPU and shared memory systems.

The basic execution unit on GPUs is a wavefront or a warp, wherein threads execute

in single-instruction-multiple-data (SIMD) fashion. For best performance, a GPU im-

plementation must be tailored for efficient warp execution. It needs to be optimized

along three important dimensions: memory coalescing (Zhang et al. (2011), mem-

ory latency Nasre et al. (2013c)), and thread divergence (Nodehi Sabet et al. (2018)).

Graph processing poses challenges for coalesced memory accesses due to arbitrary and

unknown connectivity between graph vertices. A common strategy for improving

coalescing is reordering of vertices. It is useful in improving the spatial locality of

vertices by assigning consecutive id’s to those that are likely to be accessed in tan-

dem (Nodehi Sabet et al. (2018); Balaji and Lucia (2019)). Thus, the graph vertices

could be pre-numbered based on the connectivity, so that neighbors of vertices being

processed by warp-threads are nearby in GPU memory (typically, the vertices are nu-

merically indexed). The second crucial dimension for efficient GPU execution is mem-

ory latency. Graph algorithms are often memory-bound due to the irregular memory

access patterns and the resulting reduced cache benefits, making them more sensitive

to memory latency. In the presence of hundreds of thousands of threads running on

the GPU, per-thread cache benefits are further diminished. Therefore, literature has

proposed various mechanisms such as kernel unrolling and usage of shared memory to

reduce memory latency (Nasre et al. (2013c); Khorasani et al. (2014)). Using shared

memory requires identifying reusable attribute data (at the vertex or the edge) in the

graph algorithm and taking advantage of the temporal locality. The third necessary di-

mension for efficient GPU execution is thread-divergence. It occurs when warp-threads

need to execute different instructions (or no-op) at the same time, resulting in loss of

parallelism. Thread-divergence is rampant in graph algorithms due to arbitrary degree-

distribution, leading to load-imbalance. For skewed degree distributions prevalent in

several real-world graphs, load-imbalance poses a sequentiality bottleneck. Former

research has proposed degree-sorting, nested kernels, loop-splitting, and edge-based

processing to reduce thread-divergence (Zhang et al. (2011); Balaji and Lucia (2019)).

5

As a second contribution, we propose algorithm-independent but architecture-

specific approximate techniques for parallel graph processing. We present Graffix, a

system of graph transformation techniques for making the graph more amenable to

GPU-based processing while adding controlled approximations. We target three impor-

tant GPU-specific aspects central to performance: memory coalescing, memory latency,

and thread-divergence. We improve memory coalescing by making the graph more

structured, reduce memory latency by processing the well-connected subgraphs inside

shared memory, and alleviate thread divergence by reducing the workload imbalance

among warp threads.

As mentioned earlier, graph algorithms that take excessively long to complete and

can tolerate some degree of inexactness in the output are well suited for approximate

processing. With this motivation, we look at the problem of identifying the most im-

portant nodes in a network, based on their betweenness centrality scores.

Betweenness centrality (BC) is a crucial centrality metric in graphs and networks

that measures the significance of a vertex. BC(n) is calculated using the number of

shortest paths in the graph passing through n. It is used in a variety of applications

such as detecting communities in social and biological networks (Girvan and Newman

(2002)), targeted advertising (Kim and Park (2012)), analysis of disease spreading (Lil-

jeros et al. (2001)), and identifying criminal networks (Coffman et al. (2004)), among

others. The state-of-the-art Brandes’ algorithm (Brandes (2001)) computes the exact

BC values for all nodes in a graph G = (V,E) in time O(|V ||E|) for unweighted

graphs, and time O(|V ||E|+ |V |2 log |V |) for graphs having positive weights. As sug-

gested by its complexity, computation of BC is quite time-consuming even on graphs

of moderate sizes, having hundreds of thousands of nodes and edges. For example, a

single-threaded execution of Brandes’ algorithm takes over 13 hours to terminate on an

undirected graph loc-Gowalla (having ∼196,600 vertices and ∼950,300 edges).

To make BC computations scalable, Brandes’ algorithm has been successfully par-

allelized on multi-core CPUs, many-core GPUs, and distributed systems (Madduri et al.

(2009); McLaughlin and Bader (2014); Prountzos and Pingali (2013); Solomonik et al.

(2017); Hoang et al. (2019)). Yet, the cost of BC computation is excessive on mod-

ern networks with millions of nodes and tens of millions of edges. Moreover, often

6

applications are interested in the relative ranking of the vertices according to their BC

scores, rather than their actual BC values. In addition, several applications demand

identifying nodes with highest BC values. Hence, an estimate of the top-k BC vertices

is sufficiently informative in such cases.

Thus, as a third contribution, we explore algorithm-specific but architecture-

independent techniques for parallel graph processing. Specifically, we propose

ParTBC, a framework for computing the top-k vertices with highest BC in a graph,

using approximate computing in conjunction with parallelization. We compute approx-

imate BC values of vertices, such that the relative ordering among the vertices is nearly

maintained.

1.1 Contributions

The thesis makes the following contributions towards increasing the efficiency of par-

allel graph algorithms in exchange for small inaccuracies in the final output.

1.1.1 Architecture-agnostic Techniques for Parallel Approximate

Graph Processing

We propose Graprox, a set of four architecture-agnostic techniques for parallel graph

processing that exploit the general structure of a graph kernel and the flow of informa-

tion in graph algorithms to arrive at an approximate solution early. Graph algorithms

are often iterative. We cut-short the outerloop iterations, based on a stopping criterion,

to compute an approximate solution faster, by reducing the overall work done. Further,

not all parts of the graph contribute equally to the final fixed-point information. So,

we propose to process a subset of the vertices/edges selectively, for each pass through

the graph, or for each iteration of the outermost loop. We also explore the effect of

storing the graph in an imprecise manner. Instead of working on the exact graph rep-

resentation, the (exact) algorithm runs on the compressed graph, obtained by merging

the nodes with significantly overlapping neighborhoods. We also propose techniques

to reduce the computation cost of large graphs by approximating the attribute values of

7

graph elements. We provide tunable knobs to control the accuracy-performance trade-

off. We empirically demonstrate the efficacy of our techniques using popular graph

algorithms and graphs of different characteristics.

1.1.2 GPU-specific Optimizations for Graph Processing in the Pres-

ence of Approximations

We propose Graffix, a framework for approximate computing techniques to improve co-

alescing, memory latency, and thread divergence of graph processing kernels on GPU.

Each of the proposed techniques modifies the graph structure to accomplish the goal.

Our techniques offer tunable knobs to control the amount of approximation injected.

Our technique for improving memory coalescing creates a graph isomorph that brings

relevant nodes nearby in memory and adds controlled replica of nodes to improve co-

alescing. The second reduces memory latency by facilitating the processing of sub-

graphs inside shared memory by adding edges among specific nodes and processing

well-connected subgraphs iteratively inside shared-memory. The third technique nor-

malizes degrees across nodes assigned to a warp to reduce thread divergence. As we

show, our techniques are effective in improving the performance by 1.13× on average

with inaccuracy in the ballpark of 10% across various real-world and synthetic graphs

for popular graph algorithms.

1.1.3 Estimation of Top-k Betweenness Centrality Vertices on Het-

erogeneous Architectures

We propose ParTBC, a bouquet of novel techniques for speeding up the estimation of

top-k vertices with the highest BC in a graph, using approximate computing on GPU.

Our techniques restrict the computation of shortest paths from only a fraction of the ver-

tices in parallel Brandes’ algorithm based on online stopping criteria that use tunable

knobs. The techniques govern the subset of the vertices that are picked as sources and

their order while ensuring that all graph vertices receive a sizeable fraction of their re-

spective BC scores in the early iterations of Brandes’ algorithm. BC scores of the nodes

8

so acquired (in the early iterations) cause the relative BC scores of the graph vertices

to be indicative of their relative exact BC values, leading to a high accuracy in top-k

computation with fewer iterations. On real-world and synthetic graphs, on average, we

achieve a speedup of 2.5× compared to the exact parallel Brandes’ algorithm on GPU,

with an error of less than 6%.

1.2 Organization of the Thesis

The thesis is organized as follows. Chapter 2 introduces the basic terminology related

to graphs and describes the popular graph representations. We describe the parallel

versions of the popular graph algorithms and the various graph classes used in the thesis.

Chapter 3 describes the prior art in the area of parallel and approximate graph pro-

cessing, and compares and contrasts those with the ideas presented in this thesis.

Chapter 4 describes in detail our proposed approximate techniques for parallel graph

processing. We present a theoretical model of approximation and instantiate it with con-

crete approximate computing techniques. Our techniques perform reduced execution,

process only part of the graph, store graph in an approximate manner, and approximate

attribute values to gain in efficiency. We also discuss how approximations can be ex-

ploited for an efficient GPU-based parallel processing. All the techniques provide tun-

able knobs to change the degree of approximation and control the performance-accuracy

trade-off. The experimental results validate the efficacy of our proposals.

Chapter 5 details our proposed approximate computing techniques targeting GPU-

specific aspects for efficient graph processing. We propose three graph transformations,

each targeting one GPU-specific aspect — memory coalescing, memory latency and

thread-divergence. The experimental results show that our techniques are indeed effec-

tive in improving the performance on real-world graphs and popular graph algorithms.

Further, our techniques do not compete with the existing GPU-specific optimizations,

but complement those.

Chapter 6 discusses our proposal for speeding up the identifation of the most impor-

tant nodes in a network based on their betweenness centrality values on GPU. We first

9

describe a graph reordering mechanism to improve the memory coalescing during BC

computation. We next discuss various heuristics for determining the sequence in which

to pick nodes as source (in the outermost loop) in Brandes’ algorithm, to enable quicker

identification of the top-k BC vertices with a very small error. Finally, we present the

experimental results which show that our techniques work well in practice.

Chapter 7 concludes the thesis and discusses a few future directions.

10

CHAPTER 2

Background

In this chapter, we introduce the terminology and notation used throughout the thesis

and present an overview of the concepts required for understanding the remainder of

the thesis.

2.1 Basic Definitions

Graph. A graph G(V,E) is a set of vertices, V , and a collection of edges, E, each

connecting a pair of vertices (u, v) where u and v ∈ V . If (u, v) is an ordered pair, the

graph is directed. If (u, v) is an unordered pair, the graph is undirected.

Degree of a vertex. The degree of a vertex u is the number of edges (u, v) ∈ E.

Tree. A tree is an undirected graph in which there is exactly one path between every

pair of vertices. A disjoint set of trees is called a forest.

Diameter of a graph. The length of the longest shortest path in the graph is its diame-

ter.

Clustering coefficient. Clustering-coefficient of a graph is a measure of the tendency

of vertices to occur in clusters.

Local clustering-coefficient (LCC) of a vertex, v:

LCC(v) =
number of pairs of v’s neighbors that are neighbors

number of pairs of v’s neighbors

The definition of local clustering coefficient can be extended to define the clustering

coefficient of a subgraph.

2-hop neighbor. The 2-hop neighbors of a vertex u are those vertices that are reachable

from u in exactly 2 hops. A vertex w is a 2-hop neighbor of u (u 6= w) if ∃ v ∈ V s.t.

(u, v) and (v, w) ∈ E.

2.2 Graph Storage Formats

There are two considerations when deciding on the graph representation:

1. space complexity of the representation

2. time-efficiency of accessing the graph elements

We describe two popular graph representations: 1) Adjacency matrix; 2) Com-

pressed Sparse Row (CSR)

Adjacency Matrix. An adjacency matrix is a |V | × |V | matrix, with the entry in row

u and column v set to 1 if there is an edge from vertex u to vertex v, and 0 otherwise.

This representation has a space complexity of |V |2 making it prohibitive even for graphs

with a few million vertices, which are very common. Figure 2.1a presents an example

graph G, whose adjacency list representation is shown in Figure 2.1b. Adjacency ma-

trices for real-world graphs are often sparse (i.e., most of the entries are 0), resulting in

suboptimal utilization of the allocated space. Processing a graph involves visiting the

neighbors of a vertex. The time complexity of accessing a vertex’s neighbors with this

representation is O(|V |).

Compressed Sparse Row. The CSR representation is a popular storage format for

sparse matrices. In the context of graphs, it stores only the non-zero elements of the

(sparse) adjacency matrix, i.e., the edges of the graph. Figure 2.1c shows the CSR

representation of the graph G. The CSR format requires two arrays to represent the

graph: offset array and edges array. The offset array is sorted by vertex-id and stores

each vertex’s starting offset into the edges array. The edges array stores the neighbors

of the vertices contiguously, that is, the neighbors of vertex 0, followed by neighbors

of vertex 1 and so on. The offset array is of size |V | + 1 and the edges array is of size

|E|. Thus CSR representation has a space complexity of O(|V | + |E|). Additionally,

12

2

4 3

10

(a) An example directed graph G
0 1 2 3 4

0

1

2

3

4

0

1

0

1

0

0

0

1

0

1

0

1

1

0

1

0 0 0

0 0 0

0 0

0 0

(b) Adjacency Matrix representation of G

1 0 2 4

0 3 5 7 7 7

0 1 2 3 4 5

edges

offset

3 4 3

0 1 2 3 4 5 6

(c) CSR representation of G

Figure 2.1: Graph representations

the degree of a vertex, v is given by (offset[v + 1] - offset[v]). The time complexity of

accessing a vertex’s neighbors is O(vertex degree).

Further, in GPU-based graph processing, the graph is read on the host and then

transferred to the GPU memory. The CSR representation offers an additional advantage

for data transfer to the GPU. The graph can be copied to the GPU using two calls to

cudaMemcpy(): one for the edges array and another for the offset array in the CSR

representation. Notwithstanding that CPU and GPU have separate address spaces, CSR

representation allows us to access the graphs identically on both the host and the device

without additional overheads.

This contrasts with using a traditional (space-efficient) adjacency list representation,

which uses an array of pointers (one per vertex) with each vertex pointing to a list of

its neighbors. Transferring such an array of adjacency lists to the GPU requires moving

the neighbor list of each vertex separately. Additionally, we are required to perform

serialization–deserialization of the pointers on the GPU.

We use the CSR representation in all our works.

13

2.3 Classification of Graphs

We describe the nature and characteristics of the class of graphs that we have used in

the evaluation of our proposed techniques.

2.3.1 Scale-free Real World graphs

Real-world graphs, such as social networks, are often scale free. A graph is said to be

scale free if the fraction of nodes with degree d follows a power law distribution d−α,

where α > 1.

A few properties of the real-world scale free graphs are:

• Very few nodes have large node degrees, while a large fraction of nodes has a
very low degree.

• There is a huge difference between the highest and the lowest node degrees.

• The diameter of the graph is small.

• There is a hierarchical community structure.

2.3.2 Recursive Matrix (R-MAT) graphs

R-MAT graphs (Chakrabarti et al. (2004)) are synthetic scale free graphs. The R-MAT

graph generation model generates graphs by recursively (sub)dividing a matrix of size

|V |× |V | into four equal partitions and distributing the edges among the partitions with

unequal probabilities α, β, γ, δ such that α + β + γ + δ = 1.

2.3.3 Road networks

In a road network, a vertex represents an intersection of roads, and the edges represent

the roads. The diameter of such graphs is large. Since the number of roads intersecting

at a junction is bounded and small, road networks have small node degrees, and the

difference between the highest and lowest node degrees is also low. Such networks are

nearly planar.

14

2.3.4 Random graphs

Random graphs are obtained by adding edges at random, starting from a set of dis-

connected vertices. The Erdős-Rényi model is frequently used for generating random

graphs. With this model, an edge is included with a constant probability, independent

of other edges. Random graphs have small diameters and the difference between the

highest and lowest vertex degrees is also small.

2.4 Parallel Graph Algorithms

We describe the parallel algorithms for the graph problems that we have used for eval-

uating the proposed approaches in this thesis. These graph algorithms are well-known

and are widely used in a myriad of applications.

2.4.1 Breadth First Search (BFS)

Breadth First Search is a graph traversal strategy, wherein starting from a designated

source node, the graph vertices are visited level by level. First, all the neighbors of

the source vertex are visited, followed by its 2-hop neighbors, and so on. BFS is well-

suited for parallelization. Algorithm 1 shows the pseudo-code for a work-efficient BFS

traversal. There is a worklist for the nodes to be processed. Initially, the worklist

contains only the BFS source (Line 3). The vertices in the worklist are processed in

parallel by different threads to update the level information of their neighbors (Line 4).

The worklist is updated with the nodes to be processed next. When the nodes at level l

are processed, nodes with level l+1 are added to the worklist. The algorithm terminates

when there are no more nodes left to be processed, i.e., the worklist is empty. It works

for a single connected component, and for a forest, it needs to be repeated for a source

in each component.

We use BFS traversal extensively in our work.

15

Algorithm 1 Breadth First Search Traversal on G(V,E)
1: v.level = 0 ∀v ∈ V . initialization
2: source.level = 1
3: Worklist wl = {source}
4: for all Node n : wl do . GPU parallel
5: for Node v : G.neighbors(n) do
6: if v.level == 0 then
7: v.level = n.level + 1
8: wl.push(v)
9: end if

10: end for
11: end for

2.4.2 Single Source Shortest Path (SSSP)

Algorithm 2 SSSP Computation over graph G(V,E)
1: v.dist =∞ ∀v ∈ V . initialization
2: source.dist = 0
3: Worklist wl = {source}
4: changed = true
5: while changed do . outer loop
6: changed = false;
7: for all Node u : wl do . GPU parallel
8: for Node v : G.neighbors(u) do
9: altdist = u.dist + weight(u→ v)

10: if altdist < v.dist then
11: v.dist = altdist . needs synchronization
12: wl.push(v)
13: changed = true;
14: end if
15: end for
16: end for
17: end while

SSSP computation finds the shortest distance of each vertex from a designated

source in a weighted graph. Bellman-Ford algorithm and Dijkstra’s algorithm are two

of the popular algorithms for SSSP computation. We implement a variation of Bellman-

Ford’s algorithm which is more amenable to parallelization than the work-efficient Di-

jkstra’s algorithm. Algorithm 2 presents the pseudo-code for SSSP computation that we

use in our work. The algorithm iteratively updates the distances of the graph’s nodes

from the designated source till a fixed point is reached. A worklist is maintained that

contains the nodes whose distances have been updated. Initially, the worklist contains

only the source node. The distance of the source is initialized to 0 while every other

node’s distance is initialized to∞. The nodes in the worklist are processed in parallel

16

(Line 7) and the distances of their neighbors are updated. Due to multiple threads writ-

ing to the same vertex’s distance, threads need to synchronize using atomics (Line 11).

2.4.3 PageRank

Algorithm 3 PageRank Computation over graph G(V,E)
1: PR_old[v] = 1

|V | ∀v ∈ V . initialization
2: PR_new[|V |]
3: adjustfactor = 1−d

|V | . d is the damping factor
4: for i = 1..M do . Number of iterations
5: PR_new[v] = 0 ∀v ∈ V . Reset PR_new
6: for all Node u : V do . GPU parallel
7: for Node v : G.neighbors(u) do
8: PR_new[v] += d×PR_old[u]

outDegree(u) . needs synchronization
9: end for

10: end for
11: – barrier –
12: for all vertices v ∈ V do . GPU parallel
13: PR_new[v] += adjustfactor
14: end for
15: – barrier –
16: swap(PR_new, PR_old)
17: end for

PageRank is a propagation-based algorithm to compute page rank values (related to

importance) of vertices in a web-graph. The algorithm uses a damping factor d, which

is usually set to 0.85. Then pagerank of a vertex v in a graph G(V,E) is defined as:

PR(v) =
1− d
|V |

+ d×
∑
∀u→v

PR(u)

outDegree(u)
(2.1)

Algorithm 3 presents the pseudo-code for PR that we use in our work. The algorithm

is iterative and is generally run for a fixed number of iterations depending on the re-

quired precision of the pagerank score. In our experiments, we run the algorithm for 10

iterations, i.e., M = 10. In each iteration, the nodes are processed in parallel (Line 6)

and the threads operating at a node update its neighbors’ pagerank values according

to equation 2.1. Due to multiple threads writing to the same vertex’s pagerank value,

threads need to synchronize using atomics (Line 8).

17

2.4.4 Minimum Spanning Tree (MST)

Algorithm 4 MST Computation over graph G(V,E)
1: MSTset = {} . set of edges in MST
2: union-find uf(V) . union-find data-structure
3: Workset W = V . set of components’ rep. elements
4: for all Node u :W do
5: Edge e = getMinWtEdge(u→ v) ∀ Node v ∈ G.neighbors(u)
6: Node x = uf.find(e.src)
7: Node y = uf.find(e.dst)
8: if x 6= y then
9: MSTset = MSTset ∪ {e} . include e in MST

10: rep = uf.union(x, y) . edge contraction
11: W.insert(rep) . include rep. element in W
12: end if
13: end for

MST computation finds a tree in a given graph having the minimum sum of the

tree’s edge-weights and which spans all the vertices of a connected graph. Popular

graph algorithms for MST computation are Prim’s algorithm, Kruskal’s algorithm and

Boruvka’s algorithm. We use Boruvka’s algorithm which offers better parallelism over

Prim’s or Kruskal’s algorithms. MST computation necessitates the maintenance of var-

ious components across multiple iterations and these components are processed in par-

allel, using union-find (or its variant), which is a standard data structure maintained to

process MST efficiently. Algorithm 4 presents the pseudo-code for MST that we use

in our work. In this algorithm, MST is computed using successive edge-contraction.

The algorithm starts with every node in a separate component (Line 3). The minimum-

weight edge from each node to a different component is identified in parallel (Line 5)

followed by finding the end-points of the minimum-weight edge between components

for every component (Lines 6,7). The end-points so identified are fused into a single

component in parallel (Line 10). The minimum-weight edge between components form

the MST. The algorithm terminates when only a single component is left.

2.4.5 Strongly Connected Components

A strongly connected component (SCC) of a directed graph G(V,E) is a set of vertices

V ′ ⊆ V such that there is a directed path between every pair of vertices in V ′. Find-

ing SCC is a fundamental problem which identifies cycles in a given graph. We use

18

the Forward-Backward (FB) algorithm for SCC which offers better parallelism over

a depth-first search based processing, such as Kosaraju algorithm. Forward-Backward

(FB) algorithm performs two traversals on the graph from each node, and forms two sets

of vertices F (v) and B(v) for each vertex v corresponding to forward set and backward

set respectively. The graph nodes can then be divided into four parts: V −(F (v)∪B(v)),

F (v) ∩ B(v), F (v) − (F (v) ∩ B(v)) and B(v) − (F (v) ∩ B(v)). The intersection

F (v) ∩B(v) is an SCC. This process is repeated on the remaining three disjoint sets in

parallel. Algorithm 5 presents the pseudo-code for SCC that we use in our work. The

pivot node is selected using a heuristic (Line 5). The forward and backward reachabil-

ity closures of the selected pivot are computed in parallel (Lines 6, 7). Further, each

of these is parallelized using a frontier-based BFS traversal. Since each of the residual

graphs (Lines 11–13) is disjoint, they are processed in parallel.

Algorithm 5 SCC Computation over graph G(V,E)
1: function FW-BW(G, SCC)
2: if |V | == 0 then
3: return
4: end if
5: u← pivot(G) . select a pivot vertex

begin in parallel
6: D ← BFS(G, u) . vertices reachable from pivot; GPU parallel
7: P ← BFS(GR, u) . vertices that can reach pivot; GPU parallel

end
8: S ← P ∩D . an SCC
9: SCC← SCC ∪S . the set of SCCs

10: R← V \ (P ∪D) . remaining vertices
begin in parallel

11: FW-BW(D \ S, SCC)
12: FW-BW(P \ S, SCC)
13: FW-BW(R, SCC)

end
14: end function

2.4.6 Vertex Coloring

Vertex coloring is the problem of assigning colors (or labels) to vertices of a graph

such that adjacent vertices are assigned distinct colors, using as few colors as possi-

ble. Vertex coloring is NP-hard, but several heuristics-based algorithms exist for vertex

coloring that try to reduce the number of colors used. In our work, we use a paral-

19

lel greedy independent-set based algorithm. Algorithm 6 presents the pseudo-code for

vertex coloring that we use in our work. It uses the observation that an independent

set of vertices can be assigned the same color. Further, we use the largest-degree-first

ordering (LDF) heuristic, i.e., the vertices with larger degrees are colored first. In each

iteration, an independent set is constructed in parallel by choosing vertices that have

the highest degree locally (Line 10). As a result, the nodes are colored in decreasing

degree order. The vertices belonging to an independent set are assigned the same color

in parallel (Line 26). In an iteration, the vertices are colored using the smallest available

color. The algorithm terminates when all nodes have been colored.

Algorithm 6 Vertex Coloring over graph G(V,E)
1: v.color = -1 ∀v ∈ V . initialization
2: v.weight = v.degree ∀v ∈ V
3: v.conflictRes = randomInt() ∀v ∈ V
4: U = V . U is the set of uncolored nodes
5: c = 0 . Color to be assigned
6: flag = true
7: while flag do . there are uncolored vertices
8: I = {} . Independent Set
9: while |U | > 0 do

10: for all Node v : U do . GPU parallel
11: w_max = 0
12: for Node w : G.neighbors(v) do
13: if w_max < w.weight then
14: w_max = w.weight
15: x = w
16: end if
17: end for
18: if v.weight > w_max then
19: I = I ∪{v}
20: else if v.weight > w_max then
21: if v.conflictRes > x.conflictRes then
22: I = I ∪{v}
23: end if
24: end if
25: end for
26: for all v′ ∈ I do . GPU parallel
27: v′.color = c
28: end for
29: end while
30: U = U \ I
31: if |U| == 0 then
32: flag = false
33: end if
34: c = c + 1
35: end while

20

2.4.7 Betweenness Centrality

Betweenness Centrality (BC) of a vertex, v, quantifies its importance based on the num-

ber of shortest paths in the graph passing through v. The state-of-the-art Brandes’ al-

gorithm (Brandes (2001)) computes the exact BC values for all nodes in a graph G =

(V,E) in time O(|V ||E|) for unweighted graphs, and time O(|V ||E| + |V |2 log |V |)

for graphs having positive weights. Algorithm 7 presents the pseudo-code for Brandes’

algorithm that we use in our work. In this algorithm, there is an outerloop over the

number of nodes (Line 2). Each of the computation steps (Lines 3, 7) is executed in

parallel for a single source, and different sources are processed in sequence.

Algorithm 7 Betweenness Centrality computation over graph G(V,E)
Require: An undirected, unweighted graph G(V,E)
Ensure: Vertex betweenness centrality

1: bc[v] = 0 ∀v ∈ V . initialization
2: for all s ∈ V do
. Forward Pass: form BFS DAG, D

3: for all v : Node ∈ G do . GPU parallel
4: compute σsv
5: compute pred(s, v)
6: end for
. Backward Pass: backward traverse DAG, D

7: for all v : Node ∈ D do . GPU parallel
8: compute δs(v)
9: bc[v] += δs(v)

10: end for
. Reset graph attributes

11: for all (u→ v) ∈ E do
12: reset(u→ v)
13: end for
14: end for

σsv (Line 4) is the number of shortest paths from s to v. The dependency of a vertex

v w.r.t. a given source vertex s is δs(v). It is computed (in Line 8) using the following

recurrence:

δs(v) =
∑

w|v∈pred(s,w)

σsv
σsw

(1 + δs(w)) (2.2)

pred(s, w) is a list of immediate predecessors of w in the shortest paths from s to w

(computed using the forward pass). The size of the pred list of a vertex is bounded by

its degree. pred lists of all the vertices together induce a directed acyclic graph (DAG)

D over the graph G. BC of each vertex is then computed (in Line 9) as a summation

21

over all the sources (computed using the backward pass):

bc(v) =
∑
s 6=v∈V

δs(v) (2.3)

2.5 Summary

In this chapter, we introduced the basic terminology related to graphs in general. We

discussed the relevant graph representations and the various types of graphs encoun-

tered in practice. Finally, we presented the parallel algorithms for the popular graph

problems, which we use to evaluate the techniques proposed in the thesis.

22

CHAPTER 3

Related Work

This chapter discusses the prior works in the realm of parallel graph processing and

approximate computing, and tries to place our contributions towards parallel approxi-

mate graph analytics in context. We divide the past works into two categories: 1) Exact

parallel graph processing 2) Approximate graph processing.

3.1 Exact Parallel Graph Processing

There has been a vast array of works on parallelization and optimization of graph algo-

rithms on various parallel architectures, including multicore CPU, manycore GPU and

distributed systems. We discuss a few prominent ones here.

3.1.1 Parallel graph processing on multicore

Shun and Blelloch (2013) present Ligra which is a framework for parallel graph pro-

cessing on shared memory systems. Ligra supports vertex based processing using fron-

tiers and edge-map. The active vertices are added to a frontier. The edge-map updates

the neighbor information of all the nodes present in the frontier and updates the fron-

tier. It uses coordinated scheduling for synchronization. It supports both push- and

pull-based operators and can switch between them based on the number of edges inci-

dent on the frontier.

Grossman et al. (2018) propose a framework for efficient pull-based processing on

shared memory systems. They present a scheduler-aware interface for parallel loops

which allows programmers to reduce the write-conflicts in scenarios where a thread ex-

ecutes several iterations of the parallel loop. This benefits the pull-based processing.

Further, they introduce a new graph representation called Vector-Sparse that facilitates

better vectorization of the loop over the in-neighbors of a vertex in pull-based process-

ing.

The approximate computing techniques presented in the thesis are designed for

push-based implementation of graph algorithms following the vertex-centric model of

parallelization.

Harshvardhan et al. (2014) introduce k-level asynchronous (KLA) paradigm for

parallel graph processing. KLA tries to bridge the gap between level-synchronous and

fully asynchronous processing. Tuning the value of k enables controlling the number

of (expensive) global and (cheap) local synchronizations. An appropriate choice of k

improves the performance of the traditionally level-synchronous graph primitives by

reducing the cost of synchronization.

In our implementation of graph algorithms, we pick either the level-synchronous or

fully asynchronous processing.

Madduri et al. (2009) propose an efficient parallel implementation for computing

vertex betweenness centrality on shared memory multicore architectures. They improve

the algorithm to use successors instead of predecessors in the computation of the DAG,

which produces a more efficient, locality-friendly algorithm.

With the purpose of alleviating the issues due to irregular accesses in parallel graph

processing, various graph reordering schemes have been explored such as LabelProp-

agation (Boldi et al. (2011)), Nested Dissection (Lasalle and Karypis (2013)), Slash-

Burn (Lim et al. (2014)), Gorder (Wei et al. (2016)) and ReCALL (Lakhotia et al.

(2017)). Reverse Cuthill-McKee (RCM) Liu and Sherman (1976) is a commonly used

algorithm for reordering sparse matrices and graphs. It uses a modification of BFS.

RCM performs level order traversal such that nodes at a level are visited in order of

their BFS parent’s position in the previous level. If multiple nodes have the same ear-

liest BFS parent, they are picked in descending degree order. Karantasis et al. (2014)

present a parallel version of RCM to reduce the cost of reordering. Balaji and Lucia

(2019) propose RADAR, which combines data duplication and graph reordering to ac-

celerate graph processing on shared memory systems. It uses degree-sorting to assign

consecutive id’s to the highly-connected hub vertices. Following the reordering, it cre-

24

ates per-thread copy for the hub vertices to reduce false sharing and the cost of atomic

updates.

We propose a graph reordering technique for better coalesced accesses of vertex-

centric graph algorithms on GPUs in Chapter 5, which involves vertex renumbering.

Our renumbering scheme is different from the previous ones in that it takes into account

the nodes that are likely to be accessed in tandem in GPU-based processing and tries to

place them together in memory.

To enable efficient processing of large graphs, out-of-core processing has been ex-

plored (Kyrola et al. (2012); Roy et al. (2013); Maass et al. (2017); Dhulipala et al.

(2018); Jun et al. (2017)). Harshvardhan et al. (2015) propose a hybrid approach for

out-of-core processing wherein a graph is partitioned into multiple subgraphs, each of

which can fit into the RAM. The subgraphs are swept in and out of the main memory for

processing using a paging-like approach. They cut down on disk I/O by implementing

optimizations such as deferred updates, avoiding redundant writes to disk, bringing in

multiple subgraphs into the RAM at a time. Their proposed scheme works well on sin-

gle shared-memory node, as well as, large distributed systems. Gill et al. (2020) study

graph analytics on large graphs using byte-addressable Intel Optane Persistent Memory

Modules.

Our proposals target static graphs that fit completely in memory and are not de-

signed to work for out-of-core processing.

3.1.2 Parallel graph processing on GPU

Parallelization of popular graph algorithms on GPUs has been well-studied and various

optimization strategies have been explored (Carrillo et al. (2009); Luo et al. (2010);

Hong et al. (2011); Nasre et al. (2013a,b); Khorasani et al. (2014); Ashari et al. (2014);

Sengupta et al. (2015); Pai and Pingali (2016); Han et al. (2017)).

Merrill et al. (2012) propose work-efficient frontier-based graph traversal on GPUs.

They use prefix-sum to determine the enqueue offset for each of the threads that en-

ables gathering the nodes in parallel while expanding the global vertex-frontier queue.

They further propose exploiting fine-grained and coarse-grained parallelism for reduc-

25

ing workload imbalance during expansion of the queue and filtering the already visited

and duplicate vertices.

Gharaibeh et al. (2012) present Totem, a framework for processing a graph on het-

erogeneous systems. Totem divides the graph into two partitions. One part is stored

in main memory and processed on multicore CPU. The other part is processed on the

GPU. The CPU and GPU processing proceeds simultaneously. It is able to process large

graphs that do not entirely fit in the GPU device memory. GStream due to Seo et al.

(2015) alleviates the issue of underutilization of GPU in Totem by using the concept of

nested-loop theta-join operation and utilizing asynchronous GPU streams. GPU kernel

is treated as the theta-operator and the attribute vectors and topology data are treated as

the outer and the inner join operands respectively.

Zhang et al. (2011) present techniques for removal of dynamic irregularities in GPU

computation, to effect better memory coalescing. They use data reordering and job

swapping, and runtime adaptation techniques for effective reduction in dynamic irreg-

ularities. Nasre et al. (2013c) discuss using shared memory for storing part of the

worklist, and maintaining local worklist needed for kernel unrolling in the case of data-

driven and topology-driven approaches respectively. Zhang et al. (2010) study methods

for thread divergence removal. They minimize thread divergence through runtime opti-

mizations with the support of a CPU-GPU pipeline scheme.

Wang et al. (2017) present Gunrock, a library for parallel graph analytics on GPU.

Gunrock operates on frontiers of nodes or edges. A filtering operation removes inactive

nodes or edges from the frontier followed by application of user-defined functors to the

items in the frontier in parallel. It also employs four parallel graph traversal throughput

optimization strategies to reduce workload imbalance in graph processing on GPU. We

compare our techniques against Gunrock in Chapter 5.

Hong et al. (2017) propose different graph representations based on the graph char-

acteristics and traversal patterns to alleviate the issues in GPU-based graph processing.

They present MultiGraph which preprocesses the graph to group the vertices into dif-

ferent categories based on their in-degrees and reorders the vertices such that those in

the same category are assigned consecutive id’s. Further, it chooses between the heavy-

block and the sparse block representation based on the estimate of the active vertices

26

during the frontier-based iterative processing of the graph.

Nodehi Sabet et al. (2018) present Tigr that addresses the graph irregularity issues

by transforming the graph to make it more structured. Tigr uses virtual split transforma-

tion and memory access optimization, called edge-array coalescing to reduce the thread

divergence and to improve the data locality in vertex-centric graph processing. Split

transformation introduces indirection arrays to maintain (virtual) replicas of nodes hav-

ing degree greater than the degree-bound and distributing the edges among the replicas,

to make node degrees uniform. The edge-array coalescing technique reorders the edges

among the replicated nodes during the construction of CSR arrays and the edge-array

is accessed in a strided manner to effect improved coalesced accesses of the edge-array

after the split transformation. We compare our techniques against Tigr in Chapter 5.

There have been works focusing on parallelizing betweenness centrality computa-

tion on GPUs. Prountzos and Pingali (2013) propose a space efficient scalable asyn-

chronous parallel algorithm for BC that is able to extract massive parallelism. They

express the BC computation in terms of operators, which act on nodes and edges to

update their attributes if the specified preconditions are satisfied. The set of operators

for the forward and the backward passes are different, since these capture the computa-

tion involved in the two phases. They also propose a set of schedules for applying the

operators.

McLaughlin and Bader (2014) present an efficient scheme for parallel BC computa-

tion on GPUs and heterogeneous architectures. They adopt a hybrid approach wherein

they choose one of work-efficient or edge-parallel approaches for each outer-loop iter-

ation of the algorithm based on whether the size of the vertex-frontier is small or large.

This reduces the load imbalance among threads while utilizing the available parallelism.

3.1.3 Parallel graph processing on distributed systems

Graph algorithms have been shown to bear enough parallelism in the context of dis-

tributed systems and various strategies for efficient parallelization and low communi-

cation have been studied (Malewicz et al. (2010); Low et al. (2012); Gonzalez et al.

(2012); Hong et al. (2015); LeBeane et al. (2015); Slota et al. (2016); Zhu et al. (2016);

27

Besta et al. (2017); Chen et al. (2019b)).

Dathathri et al. (2018) propose various communication optimizations and graph par-

titioning strategies for distributed memory graph analytics systems. They introduce the

proxy partitioning model wherein edges are distributed among the host machines. The

end points of these distributed edges are locally cached on the host to create proxy

vertices. One copy of a vertex in the graph is a master proxy, while others are mirror

proxies. During synchronization, the mirror proxies communicate their local values to

the master proxy, which will hold the canonical value. In order to reduce the communi-

cation overhead, they use vertex-id memoization which eliminates the need for sending

global vertex-id’s across hosts and the translation between global and local vertex-id’s.

Parallelization of BC computation on distributed memory systems has been exten-

sively explored. Solomonik et al. (2017) propose a parallel algorithm for BC computa-

tion using an algebraic formulation. They use the Bellman-Ford algorithm for shortest

path computation in order to achieve the maximum-sized vertex frontier at each step, en-

abling increased parallelism. Further, the frontier relaxations are achieved using sparse

matrix-matrix multiplication. The proposed algorithm also reduces the communication

by a factor of 3
√
p on p processors. Hoang et al. (2019) propose a round-efficient dis-

tributed BC algorithm in the CONGEST model. Their proposal reduces the number of

messages sent across edges. Further, they reduce the number of rounds by a factor of

14× over existing works on 256 hosts.

3.2 Approximate Graph Processing

Approximate graph computation has been well explored from the standpoint of both

theory and applications.

Mittal (2016) presents a survey of various approximate computing strategies includ-

ing precision scaling, loop perforation, memoization, selective memory accesses, data

sampling, voltage scaling, inexact reads/writes, lossy compression and using universal

function approximators in various domains for improving performance and reducing

the energy requirements in exchange for acceptable loss in output quality. Our tech-

28

niques for parallel approximate graph processing presented in the following chapters

may be categorized into loop perforation, selective memory accesses, memoization,

data sampling and lossy compression.

Yazdanbakhsh et al. (2017) present AxBench, which is a benchmark suite for evalu-

ating various approximate computing techniques using diverse applications running on

CPUs and GPUs. Each of the benchmarks contains annotations for the "approximable

regions", which are regions of code that consume the most time or energy during execu-

tion, or which are error-tolerant. Further, AxBench contains application-specific quality

metrics to measure and compare the efficacy of the different approximation techniques.

Shang and Yu (2014) propose a system to auto-synthesize the approximate versions

of iterative vertex-centric graph algorithms. They combine multiple approximate com-

puting techniques including task-skipping, sampling, memorization and interpolation

for generating the approximate version of the algorithm. In contrast the approximate

computing techniques discussed in the thesis provide tunable knobs to the user to con-

trol the performance-accuracy tradeoff. Further, each of the techniques has been con-

sidered in isolation.

3.2.1 Graph sampling based techniques

Several sampling-based approaches have been proposed for approximate graph com-

putation (Goldberg and Harrelson (2005); Leskovec and Faloutsos (2006); Wang et al.

(2011); Turk and Turkoglu (2019)). Most of these are sequential.

Benczúr and Karger (1996) propose non-uniform sampling of graph edges to obtain

a cut-sparsifier having the same number of vertices as the original graph. The com-

pressed graph is built by including an edge e with probability pe and assigning it a

weight of 1
pe

if it is included.

Gubichev et al. (2010) present a preprocessing-based technique for finding the ap-

proximate single source shortest path from a designated source node for a given graph.

The precomputation step involves sampling a set of nodes and computing for every

node in the graph, a shortest path to and from few landmark nodes in the sampled set

of nodes. The set of paths so obtained are stored in external memory. The precomputed

29

information is used to provide a fast approximation of the node distance at query time.

It works by combining the distance of the query nodes, s and d to or from a selected

landmark node l into the approximate distance d̃(s,d). They implement a few other

optimizations – Cycle Elimination, Shortcutting, on top of the basic scheme to further

reduce the query time.

A subset of the techniques presented in Chapter 4 and the techniques discussed in

Chapters 5 involve preprocessing the input graph. However, during preprocessing, we

do not precompute information for online processing, but transform the original graph.

Several approximation techniques developed for approximate BC computation have

graph-sampling at their core. Bader et al. (2007) propose an adaptive sampling based

approximation algorithm for accurate estimation of the BC scores of vertices with a

high probability. Their approach reduces the number of single-source shortest path

computations for vertices with high BC. Haghir Chehreghani (2013) proposes a generic

randomized framework that relies on sampling source vertices for unbiased approxima-

tion of vertex BC to achieve high efficiency and accuracy. The focus of this work is

to approximate betweenness centrality of a subset of vertices faster than computing be-

tweenness centrality of all vertices. Mumtaz and Wang (2017) propose an approximate

algorithm for BC maximization problem. They devise an estimation technique based on

progressive sampling with early stopping conditions to get better accuracy with smaller

sample sizes.

Riondato and Upfal (2018) propose progressive sampling schemes based on

Rademacher averages to compute high-quality approximation of the vertex BC values

for static and dynamic graphs. They extend their arguments to compute an approxima-

tion of top-k vertices with nice probabilistic guarantees. We compare our techniques

for estimation of top-k BC vertices against their work in Chapter 6. Borassi and Natale

(2019) present KADABRA, which is an improvement over the existing sampling based

schemes for computing approximate vertex BC scores and top-k vertices. They devise

an adaptive sampling scheme that takes into account the stochastic dependence between

the runtime of the algorithm and the approximation quality. Their scheme results in re-

duced sample sizes and also reaches the stopping condition early. Further, they use

bidirectional BFS to sample the pairwise shortest paths between vertices. van der Grin-

30

ten and Meyerhenke (2019) propose a parallel version of the KADABRA algorithm in

a distributed setup. Specifically, they parallelize the adaptive sampling phase.

The shemes for estimating the top-k BC vertices presented in Chapter 6 determine

the order in which to select the source vertices in Brandes’ algorithm to enable quicker

identification of top-k nodes. Further, our work applies these approximate techniques

in the context of GPUs.

3.2.2 Graph compression based techniques

Various graph compression techniques including spanners, sparsifiers, graph sketching

and graph summarization have been extensively studied for approximate graph process-

ing and storage (Spielman and Teng (2011); Ahn et al. (2012); Guha and McGregor

(2012); Koutis and Xu (2016); Shin et al. (2019)).

Bandyopadhyay et al. (2016) propose a graph sketching technique using minwise

hashing to sample neighborhood edges. They devise a mechanism to construct the

sketch incrementally. Their scheme preserves important topological properties of the

graph, such as clustering coefficient and pagerank.

Spielman and Teng (2004) construct spanners by performing a natural random

rounding of the graph to achieve a good approximation of the original graph.

Besta et al. (2019) present SlimGraph, a framework for lossy graph compression.

The framework enables users to define simple compression kernels based on the local

view of the graph. SlimGraph implements a large set of popular compression schemes

by application of these kernels. The compression proceeds by removing vertices, edges

or triangles from the graph until the compressed graph having a desired quality is ob-

tained. They propose several metrics to evaluate the quality of compression and the

impact of compression on the algorithm’s outcome.

In contrast, our technique for lossy graph compression in Chapter 4 compresses the

graph by successively merging similar nodes. We use Jaccard’s coefficient to determine

the nodes to be merged.

31

CHAPTER 4

Parallel Approximate Graph Processing

Graph analytics algorithms have been shown to bear sufficient parallelism. Parallelizing

graph algorithms is challenging due to the irregular memory accesses involved in graph

traversals. The parallelization issues get exacerbated on GPUs.

We attempt to address the scalability issues in parallel graph algorithms — improv-

ing the execution performance of exact parallel graph processing, w.r.t. performance,

by trading off computational accuracy, using approximate computing. Our focus is

propagation-based algorithms (which is a large subset), following the vertex-centric

model of parallelization, wherein the threads operating on the assigned set of nodes

propagate information to the nodes’ neighbors along their incident edges. A typical

implementation of a graph algorithm on GPU has the following structure:

Graph G(V,E) = read_input(); // CPU

transfer_input(); // CPU → GPU

do { // outermost loop

changed = false;

for all Node u : V do {

for Node v : G.neighbors(u) do {

if(condition) {

// Update attributes of v

changed = true;

}

}

}

} while(changed);

transfer_output(); // GPU → CPU

Listing 4.1: General Structure of a Graph Kernel

We target adding controlled approximations to graph algorithms to improve their

efficiency. Thus, instead of computing the exact answer, algorithms perform less

work to calculate only an approximate solution. Towards this goal, we propose four

Domain D Mapping function F Examples
Iterations iteration > K =⇒ void reduced execution (Section 4.2.2)

truncate iterations based on an error threshold more approximate computation
.

Graph processing process partial graph truncate computation to K vertices or edges (Section 4.2.3)
process top K graph elements sort based on a criterion such as degree and select top K vertices
conditional processing process only those graph elements that satisfy a condition
.

Graph representation lossy graph compression merge vertices based on neighborhood similarity (Section 4.2.4)
maximum degree K truncate graph beyond degree K per vertex
clustering merge nearby vertices
reduced storage store graph in a smaller adjacency matrix / lists
.

Attribute values integer division by K consecutive K entries similar
(both vertex and edge) round-off to the nearest power of 2 mapped to powers of 2 (Section 4.2.5)

modulus by K round-robin mapping from 0 to K-1
hashing similarity based on the hash function
.

.

Table 4.1: Instantiation of the approximation model with various values of D and F

architecture- and algorithm-agnostic techniques for parallel graph processing that ex-

ploit the general structure of a graph kernel (Listing 4.1) and the flow of information

in graph algorithms to arrive at an approximate solution early. These techniques target

various parts of computation and data. While many such heuristics-based techniques

are feasible (Table 4.1), we study two techniques directed towards computation and two

techniques directed towards data. Our investigation reveals that each of these techniques

is quite beneficial in improving the execution time, at the cost of accuracy. Interestingly,

a user can control the exhibited inaccuracy by controlling the injected approximation.

This chapter is organized as follows. In Section 4.1, we devise a theoretical model

of approximation and illustrate its generality by instantiating it with different kinds of

approximations. In Section 4.2, we propose Graprox, a host of techniques for execut-

ing graph algorithms on GPUs in an approximate manner. In particular, our techniques

perform reduced execution, process only part of the graph, store graph in an approxi-

mate manner, and approximate attribute values to gain in efficiency. We next discuss

how approximations can be exploited for an efficient GPU-based parallel processing in

Section 4.3. In Section 4.4, we evaluate our proposed techniques and show that they

work quite well in practice compared to the exact versions. Parameterized solutions

provide tunable knobs to change the degree of approximation. Using five large graphs

and six graph algorithms, we illustrate that approximate versions offer considerable

performance benefits with a small accuracy-loss.

34

4.1 Approximation Model

We define a theoretical model to characterize approximations. By instantiating this

model with various parameters, we obtain different approximation techniques.

An approximationA (D,F) is defined over domainD of entities, where functionF :

entity→ entity is used to approximate the entities. For instance, A (AttrVal, Div1024)

where Div1024(attrval) :- (attrval / 1024) approximates attribute values by making con-

secutive 1024 values non-distinguishable. In other words, F maps entities in D to a

subset of entities in D. Thus, F , in general, is a many-to-one function, which provides

the necessary approximation.

The mapping functionF can be arbitrary, ranging from identity function (indicating

no approximation) to constant function (indicating maximum approximation). A judi-

cious selection of F can help improve algorithmic performance (both time and space)

without losing much precision.

4.1.1 Function Application Order

The mapping function F is type-preserving, that is, it maps an entity in the domain

to another entity in the same domain. Therefore, F application can be cascaded:

F .F .F .x, leading to a chain of approximations. However, as long asF is deterministic,

the ordering in which various function applications are performed does not affect the

outcome. For instance, computing minimum among a set of values does not depend

upon the order. Such a property is crucial in a parallel setting where various thread or-

derings lead to the same approximate entity for the original domain entity. On the other

hand, a non-deterministic F may affect the outcome for a different thread-schedule;

e.g., merging nodes based on their neighborhood similarity. We experiment with both

kinds of approximation functions in this study.

35

4.1.2 Idempotent Approximation

Non-determinism in thread-scheduling may result in a different number of approximate

function applications. This non-determinism may, in general, lead to different amounts

of approximations added to the processing across different executions of the same pro-

gram. Such behavior may be unacceptable as it means different outputs across different

runs of the same program over the same input. Need for such a determinism necessitates

F to be an idempotent function. Thus, multiple applications of F should be equivalent

to a single application. Although expecting the mapping function to be idempotent may

sound restrictive, in practice, most of the standard approximation techniques are indeed

idempotent. For instance, mapping an edge weight (say 23) to the nearest power of two

(32) is an idempotent approximation, as a remapping (on 32) would maintain the value

(as 32). All the approximation techniques we propose are idempotent. This allows us

to faithfully assess the effect of approximations compared to the exact processing.

4.1.3 Approximation Structure

We define a relationR between a pair of entities induced by the approximation function

F . Thus, x1 R x2 iff F (x1) = F (x2). R is a reflexive (x R x), symmetric (x R

y =⇒ y R x) and transitive (x R y and y R z =⇒ x R z), forming an equivalence

relation. Thus,R partitions the domain D.

At one extreme, when the approximation function is an identity function, each el-

ement in the domain is in a separate partition, say with cardinality N . At the other

extreme, when the approximation function is a constant function, all the elements are in

the same partition with cardinality 1. In general, various approximation functions form

K partitions with 1 ≤ K ≤ N , leading to different precision values.

4.2 Approximating Graph Algorithms

We instantiate the approximation model with various values of D, and accordingly,

multiple values of F . Figure 4.1 presents such approximations. The number of instan-

36

tiations can be huge; we pick one interesting approximation technique for four domains

and explore it in depth.

4.2.1 Graph Algorithms

We work with a variety of algorithms: Single Source Shortest Paths (SSSP), Mini-

mum Spanning Tree (MST), Betweenness Centrality (BC) PageRank (PR), Strongly

Connected Components (SCC), and Vertex Coloring (Color). The details of these al-

gorithms are described in Section 2.4. The input to each graph algorithm is a directed

graph. The graph-edges have weights in case of SSSP, MST.

4.2.2 Technique 1: Reduced Execution

In the reduced execution technique, we cut-short the execution to compute an approxi-

mate solution. Graph algorithms are often iterative. We exploit this fact to add approx-

imation to the total amount of work done in terms of the number of iterations. That

is, we execute the main processing loop (outermost if there are nested loops) for fewer

iterations (compared to the corresponding exact version) with the hope of improving

performance. Less overall work forbids the algorithm from reaching the fixed-point or

the correct solution. For instance, consider single-source shortest paths (SSSP) compu-

tation shown in Algorithm 2. The outer while loop at Line 5 is cut-short. Reduced ex-

ecution approximation is useful for algorithms where a large amount of work gets done

in the initial iterations. One way to implement this approximation is by configuring a

percentage threshold on the number of loop iterations. This is feasible as long as the

loop executes a fixed number of iterations (such as Prim’s minimum spanning tree algo-

rithm, Brandes’ betweenness centrality computation, and Bellman-Ford shortest paths

processing). In general, a more effective way is to provide an inaccuracy-tolerance, and

the implementation chooses the maximum possible number of iterations respecting the

inaccuracy limit. The inaccuracy-tolerance refers to the amount of inaccuracy permitted

by an application, and varies with application. However, we also note that there may

exist computations wherein inaccuracy cannot be calculated without computing the ex-

act solution. Reduced execution can be applied in such scenarios too, but without any

37

guarantees on the approximation.

Our experimental evaluation shows that a small decrease in the outer loop iterations

achieves good benefits in execution time at the cost of small loss in accuracy. For

example, we find that for SSSP, reducing the outer loop iterations to 90% achieves an

average speedup of 1.6×, with an inaccuracy of up to 7%. However, the inaccuracy

increases rapidly as we further reduce the number of iterations. For instance, reducing

the loop iterations to 65% of the exact answer results in a performance gain of around

1.7× at the cost of 21% accuracy loss. We also found that SSSP is a good candidate

for reduced execution as most of the distances get settled within about 50% of the

iterations (Figure 4.3). In contrast, Color exhibits a much higher inaccuracy (29.18%)

for a modest (45%) performance improvement.

4.2.3 Technique 2: Partial Graph Processing

Our next proposal is to process only part of the graph, to improve execution time. Not

all parts of the graph contribute equally to the final fixed-point information. Ideally,

we would like to process only the highest-contributing parts – to reduce execution time

to the minimal, incurring minimal inaccuracy. However, such information is often not

efficiently computable, and, in fact, changes across iterations. Therefore, we would

need to depend upon heuristics to choose the part of the graph to be processed. Thus,

based on criteria, for each pass through the graph, or for each iteration of the outermost

loop, we choose to selectively process only a subset of the vertices/edges.

Partial graph processing resembles performing a random walk on the graph and

is performed as below. For one pass through the graph, for each node we choose to

process, we assign special values to its outgoing edges. The values are drawn uniformly

at random from the set of non-negative integers ∈ [0,m), where m is the number of

edges. In other words, we generate one of the permutations of the edge identifiers.

From among these values, we traverse only the highest few (say top 50% or 60%).

The other edges are omitted, and the nodes on which the omitted edges are incident

may not be processed in that iteration. An iteration is said to be complete when all

the threads have completed their share of work. The work of each thread is to process

38

the (selected) edges for the nodes assigned to it, once. We stop when the change in a

parameter (dependent on the algorithm) across two successive iterations is small.

In a nutshell, we select a subset of edges to process, at every node. The number of

edges selected uniformly at random at a node is a function of the node degree. So, the

technique takes into consideration the topology of the graph. The technique could be

refined and improved by considering other local and global characteristics of the graph.

For instance, in SSSP as shown in Algorithm 2, partial graph processing would

change the for loop at Line 7 to go over a subset of vertices. We may fix the same

edge-permutation for every iteration. But it leads to high deviation from the exact out-

put. Therefore, we propose generating a new permutation of edge identifiers in every

iteration. We also experimented with selectively skipping the same outgoing edges for

the vertices we process. Such a scheme considerably reduces precision. Note that our

method does not even traverse the edges not selected. In some graph algorithms (such

as finding the vertex with the maximum-degree) where the processing loop enumer-

ates through vertices or edges, the two approximations, namely, reduced execution and

partial graph processing may overlap.

Partial processing allows us to reduce the total number of graph operations com-

pared to the exact version. This also reduces the amount of synchronization required

in processing the graph. For instance, in SSSP computation, the number of atomics

reduces due to fewer vertices being processed. Since atomics on GPUs are costlier than

regular reads and writes, this leads to better execution time.

Our experiments show that if we process only a fraction of the graph without mod-

ifying the edge/vertex attributes, the inaccuracy grows fairly quickly as we reduce the

fraction of the graph processed. For instance, in SSSP, if we process 75% of the edges,

it achieves around 1.2× speedup, with 21% inaccuracy. However, when we process

only 25% of the edges, it achieves a speedup of around 2.8× but the inaccuracy shoots-

up to 63%. On the other hand, if we assign values edge/vertex attributes carefully, then

the error grows gradually even with the processing of a small fraction of the original

graph. In case of SSSP, when we assign edge weights after preprocessing the graph be-

fore applying this approximation, we observe that processing 75% of the graph causes

the answer to deviate from the exact value by 18% on an average. Also, with 25% of

39

the graph processed, the inaccuracy is close to 24% and does not increase drastically.

4.2.4 Technique 3: Approximate Graph Representation

Reduced iteration and partial graph processing discussed in the last subsections work

with the original (exact) graph. In the approximate graph representation technique, the

graph itself is stored in an imprecise manner. Thus, instead of working on the exact

graph representation, the (exact) algorithm runs on graph’s approximation. There are

multiple ways to implement this. One way is to assign the same vertex-id to multiple

vertices. Alternatively, we can store the graph in a probabilistic data structure (such

as bloom filters). In this work, we explore vertex-merging, which involves logically

merging the adjacency lists (both incoming and outgoing) of the vertices being merged.

Merging leads to a smaller graph containing fewer vertices (and edges), which reduces

the execution time. If there is a triangle a-b-c and a-b get merged, then we assign the

weight to the edge ab–c as the mean of the weights of the edges a-c and b-c.

The merging can, in general, be performed on an arbitrary pair of vertices. But

it reduces inaccuracy if performed carefully. We enable vertex-merging for a pair of

vertices if their neighborhoods are similar. Two vertices have similar neighborhoods if

their Jaccard’s coefficient is above a threshold. Jaccard’s coefficient Jij , for vertices vi

and vj with sets of neighbors N(vi) and N(vj) respectively, is:

Jij =
|N(vi) ∩N(vj)|
|N(vi) ∪N(vj)|

(4.1)

As vertices get merged, they form a meta-vertex, which, in turn, may get merged

with another vertex or meta-vertex, and so on. vi or vj in Equation 4.1 may represent

an original vertex or a meta-vertex. The merging order is important to the quality of the

approximate representation (see Section 4.1.1). We merge the vertices using a greedy

heuristic, prioritizing merging vertices with higher degrees. We observed that the nodes

with high degrees tend to have a larger overlap of neighbors. As a result, merging

such nodes helps in reducing the size of the graph (in terms of number of edges) faster

since we ensure that compressed graph does not have parallel edges throughout the

40

compression process. Further, we could merge such nodes when the threshold is set to

a high value (say 0.8) which leads to smaller inaccuracies.

Node-merging necessitates logical merging of the incoming and the outgoing edges

of the vertices being merged. That is, neighbors of the vertices become neighbors of

the merged vertex (removing self-loops if there was an edge between the vertices being

merged).

The minimized graph thus obtained is fed as an input to the exact version of the

algorithm. In our experiments, we find that decreasing the merging threshold of the

Jaccard coefficient increases the inaccuracy. Decreasing the threshold also increases the

speedups we obtain, in most cases. This is because decreasing the threshold decreases

the number of vertices in the minimized graph, though the number of outgoing edges

for a vertex may increase. The choice of Jaccard’s threshold is governed by the desired

compression factor, which in turn has a bearing on the inaccuracy injected. We need to

choose the Jaccard’s threshold judiciously so as to achieve good performance benefits

while keeping within the acceptable limits of inaccuracy compared to the exact version.

The appropriate threshold needs to be determined empirically.

4.2.5 Technique 4: Approximate Attribute Values

Our fourth proposal is to reduce the computation cost of large graphs by approximating

attribute values of graph elements. Numeric attribute values (such as vertex distances or

edge weights) can be rounded-off to discrete values, say powers of 2. This rounding-off

of the attribute values enables reaching the termination criteria faster, in fewer rounds.

Non-numeric values can be changed to be chosen from a smaller domain (e.g., vertex

colors). We discuss below applying such a discretization for SSSP.

In SSSP, discretization is a two-step process. In the first step, we perform a traversal

through the edges to find the maximum and the minimum weight edges. Let the max-

imum and the minimum edge-weights be wmax and wmin respectively. In the second

step, we perform another traversal on the edges to modify their edge-weights. wmin is

rounded-up to its nearest power of 2 and wmax is rounded-down to the nearest power

of 2. We call these new limits as w′min and w′max respectively. All the edge weights

41

are rounded to their nearest power of 2 in the range [w′min, w
′
max]. With the above

modification, we are guaranteed that any edge in the graph can take only one of the

k
∆
= {log2(w

′
max)− log2(w

′
min)} values. Assuming each edge takes any of these values

with equal likelihood, an edge has an expected weight calculated as below.

Let X be a random variable which is defined as the weight assigned to an edge

e ∈ E. X can take values from the set S = {w′min, . . . , w′max}. An edge can be

assigned any of these values with probability 1
k
. So,

E[X] =
∑
x∈S

x.Pr(X = x)

=
∑
x∈S

x.
1

k

=
2× wmax − wmin

k

So in expectation, the maximum distance between any two vertices can be

(graph diameter)× 2×wmax−wmin

k
.

We can make an informed choice about initial attribute values which would aid in re-

ducing the portion of the graph we process. For instance, in case of SSSP computation,

we can initialize the distance from the source to every vertex to some value other than

the customary∞. Such a value is computed as a preprocessing step as follows. We run

a single pass of the Breadth-First-Search (BFS) on the graph starting at the source ver-

tex s. This gives us the hop distance of every vertex from the source vertex. During the

traversal, we also find the largest edge-weight value. Now, we set the initial distance of

every vertex as: v ∈ V , dist(s, v) = (# of hops from s to v) × (max edge weight).

Approximation of edge-weights, with a careful extra preprocessing, can enable us to

transform the SSSP computation into an easily parallelizable BFS. As a preprocessing

step, we run BFS on the given graph, from the source vertex s to get the level infor-

mation of all the vertices with respect to s, in the form of the BFS tree rooted at s. In

this BFS tree, we compute a weighted mean of the weights of the edges from level i to

i+ 1, where i ∈ {0, 1, 2, . . . }. The weights are drawn from a uniform distribution with

values in the range (0, 1). We assign this weighted mean to all the edges from level

i to i + 1 and do the same for all the levels. After assigning the new edge-weights to

42

all the edges in the BFS tree, a traversal of the tree gives the approximate shortest path

distance of every vertex from the source node. For computing the weighted mean, the

weight assigned to an edge-value is inversely proportional to it, i.e., higher edge-value

is multiplied by a lower weight. This is done so that the weighted mean is not skewed

towards the higher edge-values and is only slightly away from the exact shortest path

length. This approximate technique makes it feasible to achieve good speedups of the

iterative SSSP computation with plausible error bounds.

Similarly, for the PageRank algorithm, we initialize the pageranks of all the vertices

to 1
n

and not to some arbitrary discrete value. This serves two purposes. First, 1
n

implies

that the surfer lands on each page with equal probability. Secondly, since the PageRank

computation essentially gives an estimate of the likelihood that the surfer lands on each

page, the value does not vary drastically from the initial value. Hence, even here, we

can afford to process the graph only partially and still have a reasonable solution. It has

the effect that in large graphs every unprocessed vertex can be reached with a fairly low

probability.

In case of MST, we round-up or -down the edge-weight to the closest power of 2. We

stop when the weight of the MST overshoots a threshold set to (n−1)×(mean weight)

rounded to the nearest power of 2, where n is the number of nodes in the graph. We

find that this scheme leads to better execution time compared to the exact version.

In BC, the betweenness centrality value of each vertex is in the range [0..1]. We sub-

divide this range into 10 equal-sized buckets, and the centrality value of each vertex is

rounded to the nearest tenth.

4.3 Benefits to GPU-based Processing

Though the proposed approximation techniques can be applied independent of the ar-

chitecture, employing them on a parallel GPU code is particularly useful since they

address important performance bottlenecks. Such bottlenecks are artifacts of issues

such as synchronization, workload-imbalance, CPU-GPU data transfer, etc. We discuss

how our approximation techniques help in diminishing their effect.

43

4.3.1 Technique 1: Reduced Execution

Typically, a graph algorithm gets modeled in a bulk-synchronous fashion where the

host code repeatedly calls the processing kernels. Such processing involves an implicit

barrier at the end of each kernel invocation (e.g., Line 16 in Algorithm 2). The approx-

imation technique of reducing the number of iterations of the algorithm reduces the

number of barriers invoked. For algorithms that require a large number of iterations,

the cumulative effect of reducing the number of barriers helps improve performance.

We also observe that in typical algorithms, the amount of work done in later iter-

ations is relatively much lesser (see, for example, Figures 4.3, 4.6). Especially in the

context of massive-multithreading, such a behavior reduces the parallel work-efficiency.

Reduced execution mitigates such an effect, and improves average work efficiency.

4.3.2 Technique 2: Processing Part of the Graph

In case of partial processing, the algorithm operates on only a subset of the graph. Pro-

cessing fewer edges translates to lesser synchronization in each iteration. For instance,

in SSSP computation of Algorithm 2, which uses an atomic operation at Line 11, re-

ducing the number of processed edges implies that the number of incoming edges to a

node reduces, thereby reducing the number of atomic operations.

Partial processing also helps partially address the problem of unbalanced work dis-

tribution among threads in a vertex-centric GPU implementation. Load imbalance hap-

pens due to a few vertices having large outdegrees (as in social networks). Due to the

approximation of partial processing, however, the number of edges processed by each

thread is lesser, mitigating the effect of load imbalance.

4.3.3 Technique 3: Approximate Representation

One of the primary bottlenecks in CPU–GPU systems is the inter-device data transfer

over a relatively slow PCIe interconnect, especially for large graphs. Thus, it is desirable

that the number of CPU–GPU transfers be reduced and the amount of data being sent be

44

also small. With approximate graph representation, the device-to-device data transfer

reduces, leading to performance benefits.

4.3.4 Technique 4: Approximate Attributes

Approximating attribute values helps in achieving the fixed-point in fewer iterations,

leading to reduced synchronization in terms of implicit barriers. In case of algorithms

such as SSSP, we approximate the vertex attributes to get rid of the atomic operations.

We initialize vertex distances using a BFS-based approximation, which enables us to

transform the SSSP computation to an easily parallelizable level-by-level BFS process-

ing. Since level-synchronous BFS can be implemented without explicit atomic instruc-

tions (Nasre et al. (2013b)), avoiding the synchronization improves performance.

In case of MST computation, which often requires several iterations to converge,

we devise a policy for it to converge faster. MST’s parallelism profile suggests that it

has a good amount of parallelism initially, which reduces as the algorithm progresses.

Online approximation of attributes, across iterations, helps us terminate the algorithm

early. By rounding the edge attributes to powers of two and setting a suitable threshold

(Section 4.2.5), the algorithm makes rapid strides and converges faster.

4.4 Experimental Evaluation

In this section we evaluate the performance of the various approximation techniques,

and compare it with the exact versions of the respective algorithms.

Machine Configuration. All our experiments are carried out on an Intel Xeon 32-

core E5-2650 v2 CPU @ 2.6GHz having 96 GB RAM running CentOS 6.5. We use

Nvidia Kepler (Tesla K40C) GPU having 2880 cores spread across 15 SMXs with 12

GB memory. We use CUDA 8.0 to compile and execute our methods on the GPU.

Input Graphs. We select graphs with varying characteristics to test the efficacy of our

proposed techniques. The graphs include R-MAT graphs, Erdős-Rényi graphs, gen-

erated by GTgraph (Madduri and Bader (2006)); small-diameter social networks; and

45

Graph |V | |E| Graph type
×106 ×106

rmat26 67.1 1073.7 R-MAT graph using GTgraph (Madduri and Bader (2006))
random26 67.1 1073.7 Random graph using GTgraph

LiveJournal 4.8 68.9 Social network, small diameter
USA-road 23.9 57.7 Road network, large diameter

twitter 41.6 1468.3 Twitter graph 2010 snapshot

Table 4.2: Input graphs

Graph Exact Time (sec)
SSSP MST SCC Color PR BC

rmat26 37 8996 21 14 12 15223
random26 29 10087 23 18 16 13127

LiveJournal 2 3424 7 5 1 1711
USA-road 152 82 12 10 1 2043

twitter 231 10943 37 29 18 21462

Table 4.3: Execution time for exact versions of graph algorithms

large-diameter real-world road networks, from SNAP (Leskovec and Sosič (2014)) and

KONECT (Kunegis (2017)). Table 4.2 lists the input graphs for Graprox.

Graph Algorithms. We study six graph algorithms: single-source shortest paths com-

putation (SSSP), minimum spanning tree computation (MST), finding strongly con-

nected components (SCC), vertex coloring (Color), page rank (PR) and node between-

ness centrality computation (BC). We compare our approximate SSSP and approximate

MST with the respective exact versions from LonestarGPU (Burtscher et al. (2012)),

approximate SCC with the exact SCC by Devshatwar et al. (Devshatwar et al. (2016)),

Color with our parallel implementation of exact largest-degree-first (LDF) coloring al-

gorithm, and approximate PR with our parallel implementation of PR, and BC with

our parallel implementation of Brandes’ algorithm. We run the PR algorithm for 10

outerloop iterations, while for BC we run the algorithm for 10000 outerloop iterations

(i.e., from 10000 sources). The chosen baseline implementations follow a vertex centric

model of parallelization and use the compressed sparse row representation (CSR) of the

graph in memory, which are commonly encountered.

Table 4.3 reports the execution times of the exact parallel versions of these graph al-

gorithms. While other techniques do not require any preprocessing, approximate graph

representation needs to compute neighborhood similarities to calculate Jaccard’s coef-

ficient. Since this is a one-time cost, we do not account for this preprocessing in the

execution time.

An important aspect of measuring the effectiveness of approximations is to compare

46

the accuracy of the computed values. This can be achieved by computing an absolute

difference between the attribute values of the vertices for the exact and the approximate

versions, and taking an average across vertices for a run. For multiple runs (say, across

graphs), we compute the geomean difference over the averages for each run. For SSSP,

the attribute is the distance value; for PR, it is the page rank value; and for BC, it is the

betweenness centrality value. For SCC, we calculate the difference in the number of

SCCs computed by the exact and the approximate methods. For MST, we calculate the

difference in the weight of the minimum spanning tree computed by the two methods.

Such a mechanism does not work for discrete values such as colors in vertex coloring.

A straightforward solution is to use number of colors as a measure to compare. How-

ever, due to the non-determinism in thread-scheduling, multiple runs of our coloring

algorithm may result in different colorings; leading to a difference in the number of

colors used for the same graph. In our implementation of LDF algorithm, this happens

when one or more neighbors of a vertex have the same degree. Therefore, the baseline

accuracy of such an exact version cannot be faithfully captured in the parallel setting.

To address this, we measure the accuracy as the percentage of pairs of adjacent nodes

having different colors. Such a quantity indicates the degree of closeness with the exact

coloring (which would have this value as 100%), and importantly, it will be independent

of the thread-scheduling.

4.4.1 Overall Results

Table 4.4 summarizes the effects of the four approximation techniques for the six graph

algorithms. We list the geomean speedup and the inaccuracy values across all the graphs

in our setup. The approximation of the attribute values is inapplicable for PR, SCC

and Color; hence the entries are marked as –. Overall, we observe that the approx-

imations have the capability to achieve high speedups by trading off more and more

accuracy. However, some algorithms seem to be more amenable to effective approxi-

mation than others. For instance, approximate SSSP and PR achieve relatively higher

speedups for lower inaccuracy compared to MST, SCC, Color and BC. This indicates

that continuous-value-based algorithms (such as SSSP and PR) provide better approx-

imation opportunities than discrete-value-based (such as Color). Second, algorithms

47

Algo. Technique Mean Mean
Speedup Inaccuracy

Outer-loop iterations 1.49 6.34%
SSSP Partial processing of graph 1.47 17.82%

Approx. graph representation 1.27 14.37%
Approx. attributes 1.92 17.64%

Outer-loop iterations 1.22 14.08%
MST Partial processing of graph 1.74 17.23%

Approx. graph representation 1.56 15.5%
Approx. attributes 1.48 19.07%

Outer-loop iterations 1.26 16.48%
SCC Partial processing of graph 1.32 19.50%

Approx. graph representation 1.45 21.5%
Approx. attributes – –

Outer-loop iterations 1.45 29.18%
Color Partial processing of graph 1.28 16.43%

Approx. graph representation 1.36 18.39%
Approx. attributes – –

Outer-loop iterations 2.03 2.45%
PR Partial processing of graph 1.82 12.76%

Approx. graph representation 1.54 13.63%
Approx. attributes – –

Outer-loop iterations 1.74 18.07%
BC Partial processing of graph 1.42 16.73%

Approx. graph representation 1.33 14.35%
Approx. attributes 1.41 23.16%

Table 4.4: Overall results

that depend heavily on the graph structure (such as SCC and Color) have a relatively

higher inaccuracy. This is an artifact of values getting refined in each iteration, but

structures are often binary (either an SCC or not, either a neighbor or not), which af-

fects approximation opportunities. High inaccuracy for outerloop iterations in Color is

because reduced execution for Color translates to using fewer colors.

We now look at the overall effect of individual approximations; detailed discussion

follows in the subsequent sections. First, the effect of reduced execution follows value-

based approximations – more effective for SSSP and PR (with lower inaccuracy and

higher speedup) and less so for MST, SCC and Color. BC gets benefitted in execution

time (1.74×), but at the cost of high inaccuracy (18.07%), due to BFS from fewer source

vertices. However, PR appears to be exceptionally benefitted by this approximation, as

the page rank values converge rapidly to their final values in a few iterations. Thus, for

algorithms where fixed-points are approached quickly and then refined slowly, reduc-

ing execution turns out to be very useful. Therefore, it is a useful approximation for

gradient-descent kind of algorithms.

Second, partial graph processing is uniformly useful across algorithms, with high

speedups, but the usefulness is offset by a higher inaccuracy. This is an indication of

algorithms working on graph properties that are global, and get affected by most of the

48

graph elements. For instance, removing some edges of the graph would affect shortest

path or page rank value propagations. Partial graph processing is more beneficial for

algorithms that compute local properties, such as computing the maximum clique or

minimum spanning tree. In such problems, removal of a few edges or nodes would have

a reduced probability of affecting the max-clique or MST, leading to the approximation

being more effective. We observe such behavior for MST wherein the performance of

the approximate version with partial graph processing is particularly higher (speedup

of 1.74×) compared to other techniques (speedup ≤ 1.5×). For BC, partial processing

achieves moderate benefits.

Third, approximate graph representation (using Jaccard’s similarity) is consistently

beneficial for performance, with relatively better accuracy (compared to other tech-

niques). This is understandable for structure-based algorithms such as SCC. Even for

Color, since two vertices with almost common neighborhood can be given the same

color, merging them is likely to maintain accuracy. A similar propagation effect hap-

pens in case of PR – common neighbors propagate common values across vertices –

hence merging the nodes does not adversely affect accuracy. However, such a merging

approximation is unlikely to be useful for SSSP where edge-weights play a major role

despite the common neighborhood. Therefore, we observe reduced benefits due to this

approximation for SSSP (speedup of 1.27×), compared to other techniques (speedup >

1.3×). For BC, setting the Jaccard’s similarity threshold for merger moderately affects

the speedup. A lower threshold aggressively merges the vertices but, in turn, increases

the number of neighbors of the meta-vertex. On the other hand, setting a high Jaccard’s

similarity threshold merges fewer vertices.

Finally, approximating values is applicable for weighted algorithms such as SSSP

and MST. We have also applied it to unweighted BC, approximating the vertex at-

tribute, that is, the BC value. While this approximation achieves good performance for

both the weighted algorithms, the inaccuracy is higher for MST (19.07%) compared

to SSSP (17.64%). This happens because of the algorithm’s behavior – MST is im-

plemented using Boruvka’s algorithm which merges components based on the lightest

inter-component edge. Thus, the number of choices for inter-component edge increases

after the power-of-2 approximation – which can lead to a different edge getting selected.

49

An accumulation of errors across multiple iterations leads to increased inaccuracy for

MST. A similar effect happens in SSSP too, but since the effect is restricted to choosing

the minimum distance across neighbors (rather than across a collection of vertices), the

effect is small, leading to better accuracy. For BC, we observe that the decent speedup

of 1.41× is accompanied by a high inaccuracy of 23.16%. This is primarily due to the

per-iteration approximation of BC values. To be specific, we discretize the BC values

after each iteration to the nearest tenth. The algorithm halts when the difference in the

BC values across iterations is less than a threshold.

We discuss the effect of each technique in more detail.

4.4.2 Effect of Reduced Execution

Figure 4.1 presents the effect of the reduced execution technique (Section 4.2.2) on the

six algorithms. To avoid clutter, we show results for three largest graphs. We observe

that by trading off some accuracy, one may enjoy considerable performance benefits.

From the shape of the plots, we see that algorithms which compute global properties

such as MST and SCC, the inaccuracy almost linearly follows the added approxima-

tion. However, SSSP and BC depend upon a source vertex and perform the computation

based on it. Such algorithms are more sensitive to reduced execution – they can achieve

high speed-up with high inaccuracy. USA-road is a notable exception – the perfor-

mance benefits due to reduced execution approximation is relatively low. This is an

artifact of structural properties of the road networks. In particular, road networks have

large diameters and uniform degree distribution. This is in contrast to other networks

that follow small-world property and have power-law degree distribution. PR benefits

substantially by the approximation on outer loop iterations with little drop in accuracy.

This happens due to fast convergence of PR. On the other hand, Color has the high-

est overall inaccuracy with low-performance improvement. This happens in power-law

graphs as there is a long tail of small degree nodes, only some of which get processed.

Note that other algorithms do not process these scale-free graphs in degree order.

50

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
SSSP

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
MST

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
SCC

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Coloring

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
PageRank

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
BC

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

Figure 4.1: Algorithm-wise effect of varying the percentage of outer loop iterations

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
rmat26

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Random

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
LiveJournal

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
USA roadnet

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Twitter

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

iteration (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

Figure 4.2: Graph-wise effect of varying the percentage of outer loop iterations

51

(a) rmat26
(b) USA-road

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

iteration (%)

w
o

rk
d

o
n

e
(in

m
ill

io
n

s)

(c) LiveJournal

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

iteration (%)

w
o

rk
d

o
n

e
(in

m
ill

io
n

s)

(d) random26

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

iteration (%)

w
o

rk
d

o
n

e
(in

m
ill

io
n

s)

(e) twitter

Figure 4.3: Work done per iteration in SSSP for rmat26, USA-road, LiveJournal, ran-
dom26 and twitter

Takeaway 1 Reduced execution approximation is beneficial for algorithms that con-

verge quickly to the final solution.

Takeaway 2 Reduced execution approximation provides reduced benefits for algo-

rithms whose precision gets affected by the long tail of vertices processed in scale-free

graphs.

Figure 4.2 shows the effect of varying the percentage of outer loop iterations for

various graphs (20%, 50% and 90% iterations). We observe a good similarity in the

plots across the graphs: not only the trend, but also the values are similar – which

hints at the robustness of this technique (as we will see, not all techniques exhibit this

robustness).

Figure 4.3 shows the work done (number of vertex distances settled) per iteration

in exact SSSP for various graphs. We can choose to reduce the execution based on

how much work is sufficient for the algorithm. The amount of work done is directly

proportional to the accuracy and inversely proportional to its execution time.

52

Graph Preprocessing
Time (sec)

rmat26 26
random26 18

LiveJournal 1
USA-road 43

twitter 87

Table 4.5: Preprocessing overhead for partial graph processing

4.4.3 Effect of Partial Graph Processing

Figure 4.4 presents the effect of processing part of the graph (Section 4.2.3). A striking

difference with the reduced execution (Figure 4.1) is that the accuracy of the results

is largely uniform across graphs as well as across algorithms. It is interesting to ob-

serve that the speedup effect differs considerably across algorithms (MST being more

amenable to this approximation over SSSP), but the inaccuracy values do not. For BC,

we observe that the effect of partial graph processing on the scale-free graphs is rela-

tively small in terms of the impact on inaccuracy than that on the road network. This

is due to the difference in diameters. For low-diameter graphs, vertices can be reached

from one another by traversing only a few edges. Therefore, processing only a frac-

tion of the edges still has a high probability of traversing from one vertex to another,

reducing the overall BC error. This is an indication that the inaccuracy of partial graph

processing depends primarily on the amount of graph processed (more detailed results

follow). This is expected, but not always true with other approximations.

Figure 4.5 shows the effect of varying the percentage of the graph processed for

each graph in our testbed. We observe a considerable similarity in the shapes of the

plots indicating a near-uniform effect of this approximation across graphs. There is

some variation in the behavior for the road network USA-road in MST computation,

but otherwise, the speedups and the inaccuracy values follow the trend.

The preprocessing overhead for partial graph processing is presented in Table 4.5.

This includes the time for selecting the edges that we process in every iteration of the

graph algorithm.

Takeaway 3 Partial graph processing affects computation in a uniform manner across

various graphs in our testbed.

53

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
SSSP

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
MST

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
SCC

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)
graph size (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Coloring

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
PageRank

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
BC

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

Figure 4.4: Algorithm-wise effect of varying the percentage of graph processed

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
rmat26

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Random

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
LiveJournal

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
USA roadnet

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Twitter

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

graph size (%)

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

Figure 4.5: Graph-wise effect of varying the percentage of graph processed

54

(a) rmat26 (b) USA-road (c) LiveJournal

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

50

100

150

200

250

300

350

400

450

500

exact ½ edges ¼ edges

iteration

w
or

k
do

n
e

(in
m

ill
io

ns
)

(d) random26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

50

100

150

200

250

exact ½ edges ¼ edges

iteration

w
o

rk
d

o
n

e
(in

m
ill

io
n

s)

(e) twitter

Figure 4.6: Work done across iterations in SSSP for rmat26, USA-road, LiveJournal,
random26 and twitter due to partial graph processing

(a) rmat26 (b) USA-road (c) LiveJournal

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

40

exact ½ edges ¼ edges

iteration

w
or

k
do

ne
(in

m
ill

io
ns

)

(d) random26

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

exact ½ edges ¼ edges

iteration

w
or

k
do

ne
(in

m
ill

io
ns

)

(e) twitter

Figure 4.7: Work done across iterations in Color for rmat26, USA-road, LiveJournal,
random26 and twitter due to partial graph processing

55

Figure 4.6 shows the effect of processing part of the graph in SSSP for rmat26,

USA-road and LiveJournal. It plots the amount of work done in each iteration for

the number of edges processed as 100% (exact), 50% and 25%. The three plots show

different shapes of these curves: for low-diameter graphs such as rmat26 and Live-

Journal, the amount of work done is initially high and reduces gradually; whereas for

road networks, the work done is high in the middle (due to uniform degree distribution).

In all the cases, we observe that the approximate versions clearly perform much lesser

work, leading to better performance.

Figure 4.7 shows the variation in work done per iteration for partial graph process-

ing in case of Color. In this algorithm, we consider work done to be the number of

nodes colored. An interesting observation is that, unlike in SSSP, the shapes of the

plots remain the same and are not guided by the diameter. This occurs because color-

ing follows the largest-degree-first processing, and thus performs more work initially.

Based on this observation, one may wish to reduce the fraction of the edges processed

with increasing number of iterations.

4.4.4 Approximate Graph Representation

Approximate graph representation offers relatively higher benefits compared to the

other approximation techniques.

Figure 4.8 shows the algorithm-wise effect of approximate graph representation us-

ing Jaccard’s coefficient. We observe a uniformity in behavior both in terms of trend

and magnitude. An interesting aspect is that the speedups and the inaccuracy values get

clustered for this approximation for each graph. This occurs because similarity measure

makes sure that the nodes being merged are indeed similar.

Figure 4.9 shows the graph-wise effect of the approximation. We observe a similar

trend across various algorithms, and there is also a high uniformity in the magnitudes.

We observe that the speedup for MST is consistently higher than SSSP and BC. This is

because in parallel Boruvka’s algorithm for MST, initially, there is a lot of parallelism

as several nodes can perform independent edge contractions. However, after each edge

contraction, the graph becomes denser with fewer nodes, lowering the available paral-

56

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
SSSP

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
MST

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
SCC

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Coloring

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
PageRank

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

BC

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

rmat26 speedup
USAroadnet speedup

twitter speedup
rmat26 inaccuracy

USAroadnet inaccuracy
twitter inaccuracy

Figure 4.8: Algorithm-wise effect of varying the Jaccard’s coefficient

Graph Preprocessing Time (sec)
J-coeff = 0.6 J-coeff = 0.8

rmat26 81 77
random26 103 94

LiveJournal 27 18
USA-road 273 203

twitter 340 321

Table 4.6: Preprocessing overhead for approximate graph representation

lelism. In contrast, in SSSP and BC the available parallelism does not change across

iterations. With a compressed graph, having fewer edges and nodes, the effect of re-

duced parallelism is less pronounced. Hence, the speedup for MST is higher compared

that of SSSP and BC.

The preprocessing overhead for the lossy compression of the graph is presented in

Table 4.6 for different thresholds for Jaccard’s coefficient.

Takeaway 4 Partial graph processing with Jaccard’s similarity affect speedup and

inaccuracy uniformly in our testbed.

Figure 4.10 plots the work done per iteration for different thresholds of Jaccard’s

index for SCC, SSSP, PageRank, BC and MST computations. For all the algorithms,

the overall work done per iteration reduces as we lower the Jaccard’s index threshold

57

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
rmat26

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Random

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
LiveJournal

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
USA roadnet

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)

J-index threshold

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Twitter

sp
e
e
d
u
p

in
a
cc

u
ra

cy
(%

)
J-index threshold

SSSP speedup
MST speedup

BC speedup
SSSP inaccuracy
MST inaccuracy

BC inaccuracy

Figure 4.9: Graph-wise effect of varying the Jaccard’s coefficient

(a) SCC (b) SSSP

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

exact J Index = 0.8 J Index = 0.6

iteration

w
o

rk
d

o
n

e
(i

n
m

ill
io

n
s)

(c) PageRank

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

exact J Index = 0.8 J Index = 0.6

iteration (%)

w
or

k
d

on
e

(i
n

m
ill

io
n

s)

(d) BC

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

exact J Index = 0.8 J Index = 0.6

iteration (%)

w
o

rk
d

o
n

e
(i

n
m

ill
io

n
s)

(e) MST

Figure 4.10: Work done per iteration for LiveJournal in SCC, SSSP, PageRank, BC
and MST for varying Jaccard’s coefficient

58

Graph Preprocessing
Time (sec)

rmat26 28
random26 19

LiveJournal 2
USA-road 43

twitter 89

Table 4.7: Preprocessing overhead for approximate attribute values

for merging of vertices. This is due to power-law degree distribution for LiveJournal.

When the threshold for merging is high (J-index = 0.8), the merger causes the higher

degree vertices to merge while the smaller degree nodes are largely left unmerged. So

the number of nodes reduces but the degree of the merged nodes increases. As we

reduce the threshold for merging (J-Index = 0.6), the merger causes even the smaller

degree nodes to merge.

4.4.5 Approximate Attribute Values

Table 4.8 presents the effect of approximating the attribute values in SSSP, MST and

BC (see Section 4.2.5). We observe relatively higher benefits with moderate inaccura-

cies for SSSP and MST, but consistently high inaccuracies for BC. On an average, we

observe a 17% inaccuracy with a harmonic mean speedup of 1.9× in SSSP. For MST,

an average inaccuracy of 19% fetched a speedup of around 1.4×. For BC, we observe a

speedup of 1.4× and a high inaccuracy (∼23%). While the speedup is encouraging, the

high inaccuracy is due to discretization of the BC values obtained after every iteration.

The preprocessing overheads for the approximate attribute value technique is pre-

sented in Table 4.7. This includes the time for traversing the graph and modifying the

edge attributes.

Takeaway 5 Approximating attribute values achieves better speedup at the cost of

accuracy in our testbed.

Figure 4.11 plots the work done per iteration in MST for rmat26, USA-road, Live-

Journal, random26 and twitter. Work done per iteration is measured as the number

of edges contracted. We observe that the work done per iteration with approximate

attribute values closely follows the exact version for USA-road. Note that it does not

59

SS
SP

Graphs Speedup Inaccuracy
rmat26 2.65 14%
random 1.42 19%
LiveJournal 2.18 21%
USA-road 2.06 17%
twitter 1.58 18%

M
ST

rmat26 1.58 16%
random 1.43 22%
LiveJournal 1.64 19%
USA-road 1.29 21%
twitter 1.53 18%

B
C

rmat26 1.40 21%
random 1.53 23%
LiveJournal 1.34 22%
USA-road 1.41 27%
twitter 1.42 25%

Table 4.8: Effect of approximating attribute values.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

exact approximate attribute

iteration (%)

w
or

k
d

on
e

(i
n

m
ill

io
ns

)

(a) rmat26

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

exact approximate attribute

iteration (%)

w
o

rk
d

o
n

e
(i

n
m

ill
io

n
s)

(b) USA-road

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

exact approximate attribute

iteration (%)

w
o

rk
d

o
n

e
(i

n
m

ill
io

n
s)

(c) LiveJournal

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

exact approximate attribute

iteration (%)

w
o

rk
d

o
n

e
(i

n
m

ill
io

n
s)

(d) random26

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

exact approximate attribute

iteration (%)

w
o

rk
d

o
n

e
(i

n
m

ill
io

n
s)

(e) twitter

Figure 4.11: Work done per iteration in MST due to approximating attribute values

60

mean that the two versions contract the same edges; it simply indicates that they con-

tract almost the same number of edges, but the approximate version converges faster.

This reduces the overall work done and, correspondingly, the execution time. In case

of rmat26, rmat26, LiveJournal, random26 and twitter, the work done per iteration

reduces considerably due to approximating attribute values.

4.4.6 Effect on Graph Type

Our testbed consists of scale-free low-diameter graphs (rmat26, LiveJournal and Twit-

ter), Erdös-Renyí style random graph (random), and large diameter road network

(USA-road). Work-done per iteration for scale-free graphs is initially high and quickly

reduces, and remains low for several iterations (long tail). In contrast, for large diam-

eter graphs, it increases in the initial iterations, remains high for some iterations, and

then gradually reduces. For random graphs, it remains almost uniform throughout. This

behavior dictates how an approximation affects processing on these graphs. Reduced

execution is more useful for large diameter graphs. Partial graph processing changes

only the magnitude of work done per iteration. Hence, it affects graphs uniformly.

A similar behavior is observed with approximate graph representation. However, we

see that the performance and the inaccuracy values are more sensitive to partial graph

processing compared to the approximate graph representation. Finally, the effect of

approximating attribute values is not conclusively dependent upon the graph type, as

graph type is a structural property whereas attribute value is a numeric property of the

graph elements.

4.4.7 Graprox techniques are platform-independent

We believe that the Graprox techniques are platform-independent. The techniques fo-

cus on the the flow of information in iterative parallel graph algorithms and target vari-

ous parts of computation and the input graph to arrive at an approximate solution early.

These do not depend on or exploit any GPU-specific details such the GPU architecture.

Hence, while we have evaluated the techniques only on GPU, we believe that Graprox

would work on multicore CPUs too.

61

4.5 Practicality of Graprox techniques

The Graprox techniques show that applying approximations is consistently helpful in

achieving better performance in graph processing. However, the proposed techniques

are difficult to employ in practice in their current form. We discuss a few issues in using

the techniques in practice and ways to make them more practical.

While each of the techniques provides tunable knobs to control the performance-

accuracy tradeoff, arriving at the right values of these tunable parameters for the desired

accuracy or speedup, for a new algorithm-graph pair, requires extensive experimenta-

tion. This is because the performance and accuracy of approximate techniques are

contingent on the nature of the graph algorithm and the input graph. Currently, there

are no mechanisms in place to estimate the performance-accuracy tradeoff during the

online processing in order to aid in stopping when the specified accuracy threshold is

reached. Augmenting the techniques with such a model would aid in using the tech-

niques in scenarios where an approximation budget is specified. The model should take

into consideration the flow of information in the graph algorithm, the characteristics of

the input graph and the termination condition for the algorithm based on the specified

accuracy metric.

Further, none of the techniques provides a worst-case theoretical bound on the

amount of inaccuracy injected. As a result, in principle, for a new algorithm-graph

pair, it is difficult to estimate the inaccuracy before hand. For making the Graprox

techniques more practical, proving theoretical bounds on the inaccuracy would be help-

ful.

4.6 Summary

We studied the effect of various approximate computing techniques on parallel graph

algorithms. It is believed that for irregular computations such as graph algorithms, the

effectiveness of a technique depends primarily upon the input. For instance, there ex-

ist algorithms that target specially power-law graphs and which do not work well with

large diameter graphs. On the contrary, our study reveals that while, in general, al-

62

Algo. Technique Mean
Time (sec)

Outer-loop iterations 60.54
SSSP Partial processing of graph 61.36

Approx. graph representation 71.02
Approx. attributes 46.98

Outer-loop iterations 5497.05
MST Partial processing of graph 3854.25

Approx. graph representation 4298.97
Approx. attributes 4531.35

Outer-loop iterations 15.87
SCC Partial processing of graph 15.15

Approx. graph representation 13.79
Approx. attributes –

Outer-loop iterations 10.48
Color Partial processing of graph 11.87

Approx. graph representation 11.18
Approx. attributes –

Outer-loop iterations 4.73
PR Partial processing of graph 5.27

Approx. graph representation 6.23
Approx. attributes –

Outer-loop iterations 6157.01
BC Partial processing of graph 7544.51

Approx. graph representation 8055.04
Approx. attributes 7598.01

Table 4.9: Average execution time of the approximate versions of graph algorithms

gorithmic processing and input graphs affect the magnitude of benefit, approximations

consistently offer considerable improvement. In other words, approximate computa-

tion of graph algorithms is a robust way of dealing with irregularities. Table 4.9 lists

the mean execution times for the different approximate techniques, across graphs, for

each of the graph algorithms. Our techniques are general and applicable to other graph

algorithms as well.

63

CHAPTER 5

GPU-specific Optimizations for Graph Processing in the

presence of Approximations

According to the TAO model (Pingali et al. (2011)), the primary technical challenges in

parallel graph processing arise due to inherent irregularity in the data-access, control-

flow, and communication patterns. This forces compilers to make pessimistic assump-

tions about them as the graphs are available only at runtime, leading to reduced paral-

lelization benefits. GPU is designed to work well on structured data. Thus, the issues

with parallel graph processing get exacerbated on GPU. There are broadly three funda-

mental aspects that affect performance on GPU, namely, memory coalescing, memory

latency, and thread-divergence. Parallel graph processing poses challenges for coa-

lesced memory accesses due to unpredictable connectivity between graph vertices. Fur-

ther, graph algorithms, are often memory-bound, and thus more sensitive to memory la-

tency. Thread-divergence is also rampant in graph algorithms due to the load-imbalance

among warp threads resulting from arbitrary degree-distribution in the graph. Hence,

parallel graph processing imposes heavy performance penalties on GPU.

The prior works have successfully parallelized several popular graph algorithms

on GPU. In order to make the graph processing "more" amenable to GPU, we propose

Graffix, a framework of three novel graph transformation techniques, each targeting one

GPU-specific aspect. The proposed graph transformations inject controlled approxima-

tions by altering the graph structure to enable faster processing in exchange for small

inaccuracies in the final results. We devise a new graph reordering strategy to enable

coalesced accesses, a new method exploiting clustering coefficient to improve usage of

shared memory, and an edge-insertion based method to reduce thread-divergence while

improving convergence. Our techniques offer knobs that can be tuned to control the

amount of approximation injected. Further, our techniques do not compete with the

existing GPU-specific optimizations, but complement those. They can be combined for

improved benefits.

This chapter is organized as follows. Sections 5.1.1,5.2 and 5.3 describe in detail

our proposed techniques for improving memory coalescing, reducing memory latency

and reducing thread divergence, respectively. Section 5.4 quantitatively evaluates the

performance of Graffix techniques and compares those with the state-of-the-art exact

versions of the respective algorithms.

5.1 Improving Memory Coalescing

A GPU-parallel algorithm exemplar: betweenness centrality computation. Con-

sider the parallel Brandes’ algorithm (Prountzos and Pingali (2013)) for computing the

vertex betweenness centrality in an unweighted graph, as shown in Algorithm 7. It as

an exemplar of a general class of parallel algorithms on GPU.

We pursue the inner parallel strategy of parallelizing Brandes’ algorithm, i.e., each

of the computation steps (lines 3, 7 in Algorithm 7) is executed in parallel for a sin-

gle source, and different sources are processed in sequence. In the forward pass, each

thread enumerates a vertex’s neighbors and updates σsv. On GPU, due to multiple

threads writing to the same vertex’s σ, threads need to synchronize using an atomic in-

struction (such as atomicAdd from CUDA). On the memory access front, the memory

access for σ in Algorithm 7 is generally uncoalesced due to unpredictable connectivity

of nodes. Reading (and writing) a node’s neighbors’ σ also suffers from low local-

ity which causes significant memory latency and limits overall performance. In addi-

tion, since warp-threads assigned to different vertices may process different numbers of

neighbors, the forward pass incurs thread divergence. Similarly, in the backward pass,

processing δ attribute of a node’s predecessors leads to reduced coalescing, low locality,

and high thread-divergence.

5.1.1 Coalescing in Graffix

Graffix makes the graph more structured to improve coalescing. To this end, we devise

a modified graph layout by rearranging graph nodes, edges, and their associated infor-

mation to make warp-threads access nearby memory locations with higher probability.

66

Algorithm 8 Graffix technique for improving memory coalescing
Input: Graph G(V,E)
Output: Graph G′(V ′, E′)
1: function TRANSFORMGRAPH(G)
. Step 1: Vertex renumbering

2: v.level =∞ ∀v ∈ G.V
3: for Node s : G.V orderedby (decreasing node degree) do
4: if s.level ==∞ then
5: s.level = 0
6: BFS(G, s) . Assigns levels to nodes
7: RENUMBERVERTEX(G, k) . k is the chunk size
. Step 2: Node replication

8: REPLICATEVERTEX(G, k)
. The transformed graph is G’(V’,E’)

9: end function

10: function RENUMBERVERTEX(G, k)
11: gId = 0;
12: for Node n : L0 do . L0 is list of nodes at the 0th level in G′s BFS forest
13: n.id = gId++;
14: for i = 0 .. numLevels-2 do . numLevels is number of BFS levels
15: gId =

⌈gId
k

⌉
× k

16: for j = 0 .. (max node degree in Li) do . Li is the list of nodes at level i
17: for Node n : Li do
18: if (n.degree > j) && (n.neighbors[j] ∈ Li+1) then
19: n.neighbors[j].id = gId++
20: end function

21: function REPLICATEVERTEX(G, k)
. Nodes array divided into chunks of size k, such that, chunkId[u] = u/k

22: for Node n : G.V do . n is a non-hole node
23: countn = [] . hash table to count the number of edges from n to a chunk
24: for Node v : n.neighbors do
25: if v ∈ Li && ∃u ∈ Li−1, such that, u is a hole then
26: countn[v.chunkId]++
27: for curChkId : countn.ChunkIds do . ids of chunks having edges from n

28: connectednessncurChkId = countn[curChkId]
non-hole nodes with curChkId

29: if connectednessncurChkId ≥ threshold then
30: Duplicate n to get n′

31: n′.id = u.id, such that, curChkId in Li && u ∈ Li−1 . Fill holes
32: for Node p : n.neighbors, such that, p.chunkId == curChkId do
33: Remove edge n→ p
34: Add edge n′ → p

35: Add edges n′ → q ∀q, such that, q.chunkId == curChkId;
q is a 2-hop neighbor of n

36: end function

67

15

4

1

18

7

12

10

0

17

8

6

5

14

13

19

3

9

16

2

11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 7

4 5 6 7 8 13 14 0

13 16 17 18 19 19 19 20 21 22 23 24 24 25 25 26 26 26 26

12 15 17 18 11 15 19 19 15 6 17 19 12 19 18 6 19

node attributes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

edge attributes

17 18 19 20 21 22 23 24 25

10

Figure 5.1: Original graph G and its CSR representation

Note that it is not sufficient to rely on hardware prefetchers or software prefetch

instructions to get the data on demand. Hardware prefetches are not very effective when

the accesses are irregular. Further, software prefetch instructions need to be placed

meticulously in the code to ensure that the data brought into the cache is used before

being evicted, which is again challenging due to irregular accesses. Graph restructuring

helps make the graph more structured and also aids the prefetcher.

We use the Compressed Sparse Row (CSR) format to represent the graph, having

an offset array, an edges array, and auxiliary arrays to store edge attributes and node

attributes. Figure 5.1 shows an example directed graph and its CSR representation. In a

vertex-based processing, a thread is assigned to a vertex . Hence, accesses to the offset

array and the source vertex attribute array are coalesced. However, due to the irregular

memory access pattern of the node attributes array resulting from the neighbor traversal

of the nodes, the accesses to node attributes array are largely uncoalesced.

A key primitive in graph operations is neighbor enumeration wherein a warp, as-

signed to a set of vertices, iterates through their neighbors to propagate information.

Such a neighbor enumeration is done in all the algorithms in our experimental setup.

Graffix improves coalescing for this primitive. At a high level, our technique uses a

careful combination of renumbering and replication to bring together in memory the

data of those nodes that are likely to be accessed in tandem. Vertex re-numbering helps

bring connected nodes and their data together. However, it has a limitation that a node

occurs exactly once, and therefore it cannot be nearby all its neighbors (as their node ids

could be far apart). This limitation is overcome with replicating the node, and thereby,

allowing such a node to be nearby its neighbors. Graffix creates copies of a node,

subject to a certain condition, and inserts the copies of these nodes, along with their

edge-lists, in the vicinity of their neighbors in the CSR representation. Algorithm 8

68

presents the pseudocode of our technique. TRANSFORMGRAPH() is the driver routine.

We explain the scheme in detail below.

5.1.2 Renumbering Scheme

Graffix renumbers vertices such that warp-threads are assigned nearby id’s. While

node re-numbering is well-explored in literature to improve thread-divergence and lo-

cality (Hong et al. (2011); Balaji and Lucia (2019)), it is ineffective when applied di-

rectly to improve coalescing. This is because the numbering assigns consecutive id’s

to a node’s neighbors. This improves locality in serial processing, as all the neighbors

would be processed by the same thread. However, due to this, threads belonging to the

same warp end-up processing vertices numbered far apart – reducing coalescing. For

instance, in Figure 5.1, assume the warp-size to be 4. The nodes 0–3 are assigned to

threads having the same id as the node. With vertex centric processing, the warp-threads

would access the attributes of the first neighbor of the respective nodes concurrently,

and so on. The first neighbors are indicated by the offset array: 0, 7, 13, 16, to be

indexed into the edges array. Hence, the warp threads would access the locations 4, 0,

11, and 19 in the node attributes array together. Further, assuming that the accesses to a

chunk of 4 words can be coalesced, clearly, the accesses to the destination nodes’ (4, 0,

11, 19) data in the node attributes array are not coalesced since each of these lies in a

separate 4-word chunk. Therefore, we propose a new numbering scheme for improving

coalescing.

The numbering starts with a vertex having the highest outdegree and performs

breadth-first traversal (BFS) on the graph, till all the nodes in the graph are visited,

to obtain a BFS tree or a BFS forest if the graph is disconnected. In the graph is

disconnected, the source nodes for the subsequent BFS traversals are picked in the de-

creasing order of outdegree among the unvisited nodes. The levels of the visited nodes

are updated to a lower value, if possible, in the case of multiple BFS traversals. This is

accomplished by the loop at line 3 in Algorithm 8. For example, in the graph G from

Figure 5.1, vertex 0 has the highest outdegree. Performing BFS from vertex 0 on G

visits vertices {0, 4, 5, 6, 7, 8, 13, 14, 15, 17}. The source for the next BFS is vertex

1 since it has the highest outdegree among the unvisited nodes. BFS from 1 covers

69

19

16

1

13

21

9

15

0

17

20

12

8

14

18

11

3

4

5

2

10

(a)

0 1 2 3 4 5

8 12
9 10 11

14 16 18 20 21
13 15 17 19

(b)

Figure 5.2: (a) Graph G from Figure 5.1 with renumbered nodes (b) The same graph
reoriented for clarity

vertices {1, 10, 12, 18} among the unvisited nodes. Further, among the already visited

nodes, the levels of nodes 15 and 17 are reduced to 1. Next, applying BFS from node

2 covers vertices {2, 11, 19}, while BFS from 3, 9 and 16 cover vertices 3, 9 and 16,

respectively. Thus, vertices 0, 1, 2, 3, 9 and 16 are at level zero, while all others are at

level one.

An important observation is that the nodes at the same level in the BFS forest are go-

ing to be accessed by consecutive threads. Hence, those are assigned id’s incrementally

in a round-robin fashion. Thus, the first neighbor of each of the parents from the previ-

ous level is assigned a new id followed by the renumbering of all the second-neighbors,

and so on. For instance, in Figure 5.2b, which shows the renumbered graph, node 8 is

the first unnumbered neighbor of node 0, while node 9 is the first unnumbered neighbor

of node 1. A crucial aspect of Graffix’s numbering scheme is that the new node id’s at

each level of the BFS forest start from a multiple of k (1 ≤ k ≤ warp-size) as shown in

RENUMBERVERTEX() routine at line 10 of Algorithm 8. This is different from the prior

numbering schemes, and provides an opportunity for accesses to be coalesced at every

level. For instance, Figure 5.2a is the renumbered graph with k = 8, and Figure 5.2b

is its isomorph. With the new renumbering, vertices 0 through 5 are at BFS level zero.

The next level starts with a multiple of k (= 8) greater than the last vertex id 5 (that is,

there are no vertices with id’s 6 and 7). Hence, the next level is occupied by vertices 8

through 21.

Creation of Holes. An important aftereffect of Graffix numbering is that since not

all levels have the number of nodes in multiples of k, the renumbering scheme may

create holes in the CSR representation arrays. For instance, the renumbering gives rise

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 21 22 2317 18 19

Figure 5.3: Holes in nodes after renumbering G

to holes in the nodes array at locations 6, 7, 22 and 23 as shown in Figure 5.3. The

choice of k controls the number of holes at each level of the BFS forest. The number

of holes at a level is ≤ (k − 1). Graffix exploits these holes to enhance the degree of

coalescing. It uses replication to copy specific nodes to these holes. The controllable

node replication modifies the underlying graph and can introduce some approximation.

Carefully identifying the nodes to replicate aid the underlying graph computation to

reach its fixed-point faster.

5.1.3 Node Replication

The node replication to fill the holes needs to ensure that (i) it improves coalescing,

leading to improved execution time, and (ii) the error is small. This is done as follows:

Following the renumbering, the nodes array (which now also includes holes) is divided

into chunks of size k, the same as that used for vertex renumbering. The nodes of a

chunk are processed by a warp. If a node is well-connected to a chunk, our goal is to

replicate the node in the chunk containing the parents of the chunk’s nodes (as obtained

from the BFS forest). This makes sure that we take advantage of the renumbering after

replication of the nodes. Graffix achieves it as follows. From each of the non-hole

nodes, we maintain a count of the outgoing edges to the chunks whose parent chunks

have holes. Further, we define connectednessnode
chunk

∆
=
(# edges to chunk from a node

non-hole nodes in chunk

)
for each such node–chunk pair. If the connectedness of a node to a chunk is higher than

a threshold, the node is deemed to be well-connected to the chunk and thus we replicate

the node. The threshold is a tunable parameter and controls the amount of inaccuracy.

When there are more candidate nodes eligible for replication to a chunk, than holes in

that chunk, the nodes with higher edge-count are given priority.

Since holes in the CSR representation arrays do not contribute to any ‘useful’ work

done, it is instructive to reduce the unoccupied holes in the modified graph. A judicious

choice of k and threshold is instrumental in increasing the occupancy of the holes. In

our experiments, we use k = 16 and set the threshold to 0.6 and 0.4 for the scale-free

71

graphs and the road networks respectively. We determined these values of the threshold

empirically. These were found to produce the best results. From a node replica, we

introduce new edges to the non-hole nodes of a chunk. If the node being replicated has

an edge to a node in the chunk, we add edges from the replica to its 2-hop neighbors

inside the chunk to which there is not already an edge.

Controlling the approximation. Adding edges in this manner expedites the propaga-

tion of information among nodes, while ensuring that the node attributes read or written

to in a coalesced fashion also contribute to some meaningful computation. The amount

of inexactness is proportional to the number of new edges added in the graph. Thus,

by controlling the number of newly added edges, Graffix can keep the inaccuracy in

check. The addition of edges as above results in only a few additional edges per replica

since we restrict the view to a contiguous chunk of size k in the nodes array, at a time,

while looking for the 2-hop neighbors of the node being replicated. Graffix ensures that

the node to be replicated has a high degree. So, adding few extra edges adds only small

inaccuracy.

For our example, we divide the nodes array (Figure 5.3) in the renumbered graph

into chunks of size k (= 8). Assume that the threshold on connectedness for replication

of a node is set to 0.6. In the renumbered graph in Figure 5.2, node 0 has 4 edges

to the chunk 16..23 and the chunk has two holes. Hence, the connectedness0
16..23 =

4
6
= 0.667. Since the connectedness of 0 to the chunk is greater than the threshold, we

replicate 0 in chunk 0..7. We assign the id 6 to the replica of 0 and distribute the existing

edges of 0 between 0 and 6. We also add new edges from 6 to nodes 17 and 19, as these

are the 2-hop neighbors of 0 in the chunk 16..23. This leads to the modified graph G′

shown in Figure 5.4.

5.1.4 Confluence due to Replication

Due to controlled node replication, the underlying graph structure undergoes some

changes. As an aftermath, different node-copies in the modified graph may exhibit

different attribute values at the end of a GPU kernel iteration. Since logically these

copies represent the same node, these attribute values need to be merged. The merging

72

0 1 2 3 4 5

8 12
9 10 11

14 16 18 20 21
13 15 17 19

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

node attributes

0 3 9 12 13 14 15 21 21 22 23 24 24 24 24 25 26 27 27 27 27 28 28 28 28

8 12 14 0 9 13 15 17 19 10 11 19 11 11 11 16 17 18 19 20 21 12 13 11 12 9 19 17

Figure 5.4: Modified graph G′ with its CSR representation.

or the confluence may be done after certain number of iterations or at the end of the

overall computation. To reduce inaccuracies, Graffix merges attribute values from the

copies of the same node after every iteration. The merge operator itself could be defined

in two-ways: (i) algorithm-aware, and (ii) algorithm-agnostic. The former is likely to

result in better accuracy, but needs additional knowledge. Graffix uses the latter ap-

proach and applies a generic confluence operator which computes arithmetic mean of

different values. One can easily redefine the merging. For instance, in Figure 5.4, at the

beginning of the algorithm, the node attributes of nodes 0 and 6 will be the same. After

each iteration, we merge the attribute values of nodes 0 and 6 using arithmetic mean

to ensure that both are the same at the beginning of each iteration. At the end of the

algorithm, all the node copies will have identical attribute values.

5.2 Reducing Memory Latency

Since graph algorithms are memory bound, we seek to exploit the GPU memory hierar-

chy to reduce the time spent in fetching/updating data from/to global memory to curtail

the execution time. Shared memory available per thread-block has been exploited in

various ways in literature, and demands reuse of data items. For instance, in an un-

rolled kernel, the updated attribute values can be kept temporarily in shared memory.

Alternatively, when a connected subgraph is processed by a thread, the stack or the

queue can be stored in shared memory depending upon whether the subgraph traversal

is depth-first or breadth-first (Nasre et al. (2013b)).

Graffix proposes a new way of exploiting shared memory to process more-

73

frequently-accessed nodes. Identifying such nodes at runtime adds inefficiency. On

the other hand, identifying such nodes based on crude approximations such as degree

is not very fruitful. Graffix exploits the graph property of clustering coefficient (CC)

to identify such nodes. For the purpose of computing CC, we consider the graph to be

undirected. The nodes having CC higher than a threshold are moved to shared memory,

along with their neighbors. For instance, in Figure 5.5a, node N1 has a high CC, so it

can be moved to shared memory along with its neighbors. As nodes with a high CC

are part of well-connected clusters, such clusters will be accessed frequently in iterative

processing of the graph. Such high-CC nodes can be moved to shared memory. Due to

the power-law distribution, very few nodes have very high CC leading to underutiliza-

tion of shared memory. Adding approximation improves applicability of the technique.

Graffix selectively adds edges between nodes to effect the following:

(1) Increase the CC of the nodes having CC lower than, but close to, the threshold.
This allows moving such nodes, along with the neighbors, from global memory to
shared memory.

(2) Further boosting the CC of the nodes whose CC are already higher than the thresh-
old.

In the first case, we add new edges preferentially between those neighbors of a

high-CC node that have common neighbors. The purpose is to increase the CC of the

node, and its neighbors, to make them candidates for being processed inside shared

memory. In the second scenario, we add edges between those neighbors of a high-

CC node that have the fewest edges with the other neighbors of that high-CC node.

The rationale is to increase the connectivity among the neighbors of the high-CC node.

Graffix looks at the connectivity only among the siblings of the high-CC nodes since

these nodes will be in shared memory. We move the high-CC nodes to shared memory,

along with their immediate neighbors alone. For instance, in Figure 5.5a, we add edges

between the neighbors of N1 having the fewest edges incident on them, that is, nodes

A, B, C, D. For faster convergence, in both the scenarios above, the edges are added

between the 2-hop neighbors. Only a few edges are added in this manner. Additionally,

we maintain a global limit for the number of edges added to the graph to contain the

approximation. To enable reuse, the sub-graphs in shared memory are processed for a

few iterations (say, t). We found that setting t ∼ (2 × diameter of the subgraph) gave

74

N1

A B

C D

E

(a)

N1

A B

C D

E

(b)

Figure 5.5: Reducing memory latency using shared memory

good performance benefits because of sufficient reuse. Thereafter, the attribute values

of the nodes are pushed back to global memory.

Discussion. An alternative scheme for increasing the number and the size of the

subgraph processed inside shared memory is to set a lower threshold on the clustering

coefficient. However, this results in diminished benefits due to low reuse and impaired

accuracy. Therefore, it is recommended to keep the CC cut-off relatively high.

5.3 Reducing Thread Divergence

While degree-sorting (Balaji and Lucia (2019)) is an effective way to address thread-

divergence, it is often an overkill, since having nearly-uniform degrees only within each

warp often suffices. Graffix combines bucket-sort and approximate computing to re-

duce thread-divergence, as we explain below. As a preprocessing step, Graffix performs

bucket sort on the nodes array using the node-degree as the key. This groups the

nodes having similar degrees together. In each bucket we assign nodes to warps in the

order of their bucket positions. When node degrees are different, we carefully add a

few edges to reduce thread-divergence. Judicious addition of edges reduces the effect

of approximations.

Adding edges. Additional edges are the source of approximation. Hence, among the

warp-nodes, we add extra edges to only those nodes that are deficient in their connec-

tivity. If the difference of a node’s degree to the warp’s max-degree is lower than a

threshold, we add edges to it to get its degree close to the warp nodes’ max-degree.

This causes the warp node degrees to become more uniform. The threshold dictates the

75

A

B C

D

G

H

I

J

K

L

T2 T1

M

EF

N

P

(a)

A

B C

D

G

H

I

J

K

L

T2 T1

M

EF

N

P

(b)

Figure 5.6: Handling thread divergence by graph transformation.

number of edges added. As an extreme, it is possible to remove thread-divergence fully

with this technique.

By noting that most graph algorithms are propagation-based, we choose the destina-

tion nodes to be the 2-hop neighbors, leading to faster convergence. While the structural

changes take care of node degrees, the choice of the edge-weights for the new edges (for

weighted algorithms such as SSSP) is often fuzzy. In the case of weighted graphs, we

set the weight of a new edge as the sum of the weights of the edge between the node

and the 1-hop neighbor, and the edge between the 1-hop and the 2-hop neighbors. One

can choose an alternative method to setup the edge-weights.

By adding edges in this manner, the warp threads which would otherwise be waiting

for the longest running warp thread to complete are also able to perform some useful

work in the meantime. The information propagated to their 2-hop neighbors is useful

for the next iterations of the algorithm. Thus, the extra work done by the few warp

threads per iteration contributes to the overall improvement in performance.

Example. Consider the graph in Figure 5.6a. Suppose threads T1 and T2 belong to

the same warp and are operating on nodes A and I respectively. Since the outdegree of

node A (7) is more than that of I (4), T1 has to process more edges than T2. Assume

that the threshold on the difference in node degrees for the purpose of adding edges is
max−degree

2
. Also, assume that vertex A is the max-degree node in the warp. As the

difference in the degrees of I and A is 3, which is less than 7
2

(= 3.5), our method adds

new edges IG and IK to make the outdegree of node I close to the max-degree. The

new outdegree of I is 6 (∼85% of max-degree). Nodes G and K are 2-hop neighbors of

I. Figure 5.6b shows the modified graph.

Effect of Graffix techniques on parallel BC. In Algorithm 7, Graffix’s technique for

76

memory coalescing brings closer nodes that are accessed in tandem by the warp-threads

during the graph traversal on lines 3 and 7. The technique for memory latency ensures

that the well-connected subgraphs are processed iteratively in shared memory. Further,

the degrees of the warp-nodes during the traversal are normalized to curtail workload-

imbalance.

5.4 Experimental Evaluation

We evaluate the performance of our approximate techniques and compare it with the

exact versions of the respective algorithms.

Machine Configuration. We use the same machine as described in Section 4.4.

Input Graphs. We select graphs with varying characteristics to demonstrate the ro-

bustness of our approach. The graphs we use for evaluation are listed in Table 4.2.

These graphs exhibit different behaviors for different techniques.

Graph Algorithms. We study five graph problems: single-source shortest paths com-

putation (SSSP), minimum spanning tree computation (MST), finding strongly con-

nected components (SCC), page rank (PR), and node betweenness centrality compu-

tation (BC). Parallel algorithms for these problems have been described in detail in

Section 2.4. All these problems are popular in the community and, along with various

graphs, their parallel algorithms stress-test our techniques.

Baselines. We use three baselines to evaluate our techniques. First, we compare our

approximate techniques with the exact implementation of SSSP, PR and BC available in

Gunrock (Wang et al. (2017)). Second, we compare our approximate techniques with

the exact implementation of SSSP, PR and BC available in Tigr (Nodehi Sabet et al.

(2018)). Third, we compare our approximate SSSP and approximate MST with the re-

spective exact versions from LonestarGPU (Burtscher et al. (2012)), approximate SCC

with the exact SCC by Devshatwar et al. (Devshatwar et al. (2016)), and approximate

PR and BC with our own parallel implementations of PR computation (10 iterations)

and Brandes’ algorithm (10000 iterations) respectively.

77

Graph Exact Time (sec)
SSSP MST SCC PR BC

rmat26 37 8996 21 12 15223
random26 29 10087 23 16 13127

LiveJournal 2 3424 7 1 1711
USA-road 152 82 12 1 2043

twitter 231 10943 37 18 21462

Table 5.1: Baseline-I: Execution time for the exact versions

Graph Exact Time (sec)
SSSP PR BC

rmat26 6 0.914 587
random26 4 1.180 498

LiveJournal 0.046 0.452 66
USA-road 12 0.130 38

twitter 17 3.000 827

Table 5.2: Baseline-II: Execution time for Tigr

The execution times of the exact methods on the five graphs for the algorithms

from the three baseline implementations are presented in Tables 5.1, 5.2 and 5.3. We

report on the effect of approximations on the actual execution times of the algorithm

implementation, which preclude file I/O and preprocessing steps, but include graph at-

tribute initialization (such as vertex distances), initial CPU-GPU data transfer, and the

main fixed-point loop repeatedly calling the primary kernel. We measure the inaccu-

racy incurred for each of the techniques by averaging the absolute difference between

the attribute values of the vertices for the exact and the approximate versions. For

SSSP, the attribute is the distance; for PR, it is the page rank; and for BC, it is the be-

tweenness centrality. For SCC, we calculate the difference in the number of connected

components, while for MST, we calculate the difference in the minimum spanning tree

weights computed by exact and approximate methods.

5.4.1 Effect of Coalescing

Table 5.4 shows the effect of Graffix’s technique for coalescing for five graphs on the

five algorithms from Baseline-I. We report the results with threshold on connectedness

Graph Exact Time (sec)
SSSP PR BC

rmat26 19 1.070 872
random26 8 1.500 740

LiveJournal 0.142 0.530 98
USA-road 25.139 0.181 56

twitter 53 4.000 1227

Table 5.3: Baseline-III: Execution time for Gunrock

78

SS
SP

Graphs Speedup Inaccuracy
rmat26 1.22 × 12%
random26 1.13 × 10%
LiveJournal 1.18 × 11%
USA-road 1.15 × 9%
twitter 1.17 × 12%

M
ST

rmat26 1.18 × 13%
random26 1.13 × 15%
LiveJournal 1.14 × 12%
USA-road 1.23 × 11%
twitter 1.17 × 13%

SC
C

rmat26 1.14 × 8%
random26 1.08 × 14%
LiveJournal 1.13 × 7%
USA-road 1.16 × 11%
twitter 1.15 × 12%

PR

rmat26 1.20 × 5%
random26 1.15 × 7%
LiveJournal 1.21 × 7%
USA-road 1.19 × 6%
twitter 1.22 × 7%

B
C

rmat26 1.17 × 9%
random26 1.12 × 13%
livejournal 1.15 × 10%
USA-road 1.19 × 12%
twitter 1.14 × 11%

Geomean 1.16 × 10%

Table 5.4: Effect of memory
coalescing

Graphs Speedup Inaccuracy
rmat26 1.26 × 12%
random26 1.08 × 17%
LiveJournal 1.22 × 13%
USA-road 1.30 × 13%
twitter 1.18 × 12%

rmat26 1.22 × 16%
random26 1.10 × 18%
LiveJournal 1.18 × 16%
USA-road 1.20 × 19%
twitter 1.16 × 15%

rmat26 1.20 × 12%
random26 1.10 × 16%
LiveJournal 1.22 × 13%
USA-road 1.20 × 12%
twitter 1.18 × 13%

rmat26 1.32 × 7%
random26 1.16 × 11%
LiveJournal 1.26 × 7%
USA-road 1.30 × 5%
twitter 1.22 × 9%

rmat26 1.24 × 14%
random26 1.13 × 18%
LiveJournal 1.21 × 16%
USA-road 1.26 × 15%
twitter 1.17 × 13%

Geomean 1.20 × 13%

Table 5.5: Effect of shared
memory

Graphs Speedup Inaccuracy
rmat26 1.06 × 8%
random26 1.03 × 9%
LiveJournal 1.07 × 8%
USA-road 1.12 × 7%
twitter 1.09 × 6%

rmat26 1.05 × 10%
random26 1.02 × 11%
LiveJournal 1.07 × 8%
USA-road 1.09 × 10%
twitter 1.05 × 9%

rmat26 1.04 × 9%
random26 1.00 × 7%
LiveJournal 1.04 × 6%
USA-road 1.05 × 9%
twitter 1.06 × 8%

rmat26 1.10 × 4%
random26 1.04 × 9%
LiveJournal 1.08 × 5%
USA-road 1.06 × 8%
twitter 1.09 × 8%

rmat26 1.11 × 11%
random26 1.05 × 14%
livejournal 1.09 × 9%
USA-road 1.12 × 7%
twitter 1.06 × 12%

Geomean 1.07 × 8%

Table 5.6: Effect of thread
divergence

Approximate Graffix versus exact Baseline-I

SS
SP

Graphs Speedup Inaccuracy
rmat26 1.16 × 12%
random26 1.06 × 10%
LiveJournal 1.13 × 11%
USA-road 1.08 × 9%
twitter 1.12 × 12%

PR

rmat26 1.14 × 5%
random26 1.08 × 7%
LiveJournal 1.15 × 7%
USA-road 1.12 × 6%
twitter 1.15 × 7%

B
C

rmat26 1.09 × 9%
random26 1.05 × 13%
livejournal 1.07 × 10%
USA-road 1.11 × 12%
twitter 1.06 × 11%

Geomean 1.10 × 9%

Table 5.7: Effect of memory
coalescing

Graphs Speedup Inaccuracy
rmat26 1.24 × 12%
random26 1.07 × 17%
LiveJournal 1.20 × 13%
USA-road 1.26 × 13%
twitter 1.15 × 12%

rmat26 1.30 × 7%
random26 1.14 × 11%
LiveJournal 1.26 × 7%
USA-road 1.28 × 5%
twitter 1.22 × 9%

rmat26 1.19 × 14%
random26 1.11 × 18%
LiveJournal 1.17 × 16%
USA-road 1.23 × 15%
twitter 1.16 × 13%

Geomean 1.19 × 12%

Table 5.8: Effect of shared
memory

Graphs Speedup Inaccuracy
rmat26 1.02 × 8%
random26 1.01 × 9%
LiveJournal 1.02 × 8%
USA-road 1.04 × 7%
twitter 1.03 × 6%

rmat26 1.06 × 4%
random26 1.02 × 9%
LiveJournal 1.04 × 5%
USA-road 1.03 × 8%
twitter 1.05 × 8%

rmat26 1.04 × 11%
random26 1.01 × 14%
livejournal 1.02 × 9%
USA-road 1.05 × 7%
twitter 1.03 × 12%

Geomean 1.03 × 8%

Table 5.9: Effect of thread
divergence

Approximate Graffix versus exact Baseline-II

79

SS
SP

Graphs Speedup Inaccuracy
rmat26 1.20 × 12%
random26 1.1 × 10%
LiveJournal 1.17 × 11%
USA-road 1.12 × 9%
twitter 1.16 × 12%

PR

rmat26 1.17 × 5%
random26 1.13 × 7%
LiveJournal 1.19 × 7%
USA-road 1.18 × 6%
twitter 1.20 × 7%

B
C

rmat26 1.11 × 9%
random26 1.07 × 13%
livejournal 1.09 × 10%
USA-road 1.16 × 12%
twitter 1.09 × 11%

Geomean 1.14 × 9%

Table 5.10: Effect of memory
coalescing

Graphs Speedup Inaccuracy
rmat26 1.22 × 12%
random26 1.06 × 17%
LiveJournal 1.23 × 13%
USA-road 1.28 × 13%
twitter 1.16 × 12%

rmat26 1.27 × 7%
random26 1.12 × 11%
LiveJournal 1.19 × 7%
USA-road 1.25 × 5%
twitter 1.17 × 9%

rmat26 1.21 × 14%
random26 1.13 × 18%
LiveJournal 1.19 × 16%
USA-road 1.24 × 15%
twitter 1.14 × 13%

Geomean 1.19 × 12%

Table 5.11: Effect of shared
memory

Graphs Speedup Inaccuracy
rmat26 1.07 × 7%

random26 1.03 × 8%
LiveJournal 1.06 × 7%
USA-road 1.08 × 7%

twitter 1.05 × 6%

rmat26 1.09 × 5%
random26 1.03 × 6%

LiveJournal 1.10 × 5%
USA-road 1.07 × 8%

twitter 1.08 × 8%

rmat26 1.06 × 11%
random26 1.04 × 13%
livejournal 1.08 × 10%
USA-road 1.10 × 6%

twitter 1.07 × 12%
Geomean 1.07 × 8%

Table 5.12: Effect of thread
divergence

Approximate Graffix versus exact Baseline-III

set to the value which provides best results (which is different for different graphs).

In particular, threshold of 0.6 performs well for power-law graphs and of 0.4 for the

road-network. We observe significant performance gains (mean 1.16×) for several

algorithm-technique pairs, with some accuracy loss (mean 10%). For SSSP, SCC and

PR, the reduction in execution time (in absolute terms) is small in exchange for 10%

inaccuracy. Approximations are, in general, more useful for higher-complexity algo-

rithms, such as betweenness centrality. However, approximate computations in algo-

rithms with lower computational complexity are useful when used repeatedly in ap-

plications that are error tolerant. For instance, in machine learning, while training a

model, the distance measure used could be approximate shortest distance and it may

not matter much. Now across multiple iterations during the training process, we would

observe a significant reduction in total training time. So, the approximate results for

SSSP, SCC, PR could be useful as well. Tables 5.7 and 5.10 show the effect of our

approximate techniques for coalescing for five graphs on the algorithms in Tigr and

Gunrock, respectively. We observe that the speedups achieved over Gunrock are sim-

ilar to Baseline-I. The speedups achieved over Tigr are lower since Tigr implements

a memory access optimization, edge-array coalescing, to alleviate the irregularity in

memory accesses. The inaccuracies for graph–algorithm pairs are similar across all

baselines, because inaccuracy is tied to the modifications in the graph’s structure.

Effect of Connectedness. Connectedness forms the tunable knob between speedup

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold on connectedness of node to chunk

SSSP, twitter speedup
inaccuracy

Figure 5.7: Effect of varying the threshold for node replication.

and inaccuracy. Figure 5.7 compares against Baseline-I for a fixed chunk-size of 16.

For a small threshold, the speedup is low and the inaccuracy is high due to more

replications.

We observe a steady increase in the speedup with increase in the threshold up to a

point (0.6 in the plot), followed by a gradual decline in the performance gains. This is

because the number of nodes getting replicated is enough for the combined benefits of

coalesced accesses to show effect. Also, the occupancy of the holes is high. However,

upon further increasing the threshold, only a few nodes get replicated and the number of

unoccupied holes is large. Thus the reduced performance benefits for larger thresholds.

The inaccuracy, on the other hand, gets benefited by increasing the threshold. This is

due to fewer edges getting added.

Guidelines for the Threshold. The threshold on connectedness, for a fixed chunk size,

is based on the degree distribution. The power-law graphs have some high degree nodes.

Majority of such nodes may be replicated if the threshold is low. To ensure that only the

nodes with a high connectedness are replicated, in the interest of accuracy and the graph

size, the threshold is set to a fairly large value. Setting a high threshold (above 0.6)

would prohibit enough replication which would hurt performance. In contrast, the node

degrees in a road-network are small and largely uniform. For good hole occupancy, the

threshold is chosen to be small (below 0.5).

Comparison with Existing Graph Reordering Techniques

We do not compare our graph reordering technique with the the other existing tech-

niques. While several graph reordering techniques have been proposed in the literature,

their source codes are not readily available. Thus, comparing our graph reordering

81

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold for local clustering coefficient

SSSP, twitter speedup
inaccuracy

Figure 5.8: Effect of varying the threshold for clustering-coefficient

technique with the previously proposed ones would require implementing those from

scratch. Further, we are not aware of any works that compare and contrast the different

graph reordering techniques. So, for a fair comparison, we would need to compare our

technique with all the existing graph reordering techniques. Thus, such a comparison is

substantial work and a project in itself.

5.4.2 Effect of Memory Latency

Table 5.5 shows the effect of using shared memory on the five algorithms for five

graphs from Baseline-I. We observe performance gains for various algorithm-technique

pairs. The threshold for clustering coefficient (CC) is set to a different value for each

of the graphs for obtaining decent accuracy and speedup. Tables 5.8 and 5.11 show the

effect of our approximate techniques for reducing memory latency for five graphs on

the algorithms in Tigr and Gunrock, respectively. The speedups achieved over Gunrock

and Tigr are similar (1.19×) to those achieved over Baseline-I. The inaccuracies for

graph–algorithm pairs are similar (11%) across all baselines.

Effect of CC Threshold. Figure 5.8 plots the speedup and inaccuracy, w.r.t. Baseline-

I, with varying thresholds for clustering coefficient. There is a consistent increase

in speedup with increase in the threshold, since an increased threshold implies well-

connected subgraphs occupying the shared memory, thereby benefiting from its low

memory latency. However, for threshold∼ 1, fewer nodes are moved to shared memory,

resulting in diminished gains.

As the threshold is increased, the inaccuracy first rises and later reduces. The rise in

inaccuracy is because it exposes more nodes whose CC can be increased by addition

82

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold for degree normalization

SSSP, twitter speedup
inaccuracy

Figure 5.9: Effect of varying the threshold for degree normalization.

of edges using the scheme presented in Section 5.2. However, after a point (threshold

= 0.8), the inaccuracy reduces as the candidate nodes for processing inside shared

memory have better connectivity; so we add fewer edges.

Guidelines for the Threshold. The choice of the threshold for CC is based on the

graph’s average CC and degree distribution. Since the focus is on finding nodes that are

part of a well-connected cluster, the threshold must be set to a high value for all graphs.

5.4.3 Effect of Thread Divergence

Table 5.6 shows the effect of reducing thread divergence for five graphs on the five

algorithms from Baseline-I. We obtain minor performance improvements for various

algorithm-technique pairs, with reasonably high accuracy in most cases. Tables 5.9 and

5.12 show the effect of our approximate techniques for reducing thread divergence for

five graphs on the algorithms in Tigr and Gunrock, respectively. We observe that the

speedups achieved over Gunrock are similar to Baseline-I. Tigr already implements

node splitting transformations for reducing thread-divergence. Therefore, speedups

achieved over Tigr are lower. The inaccuracies for graph–algorithm pairs are similar

across all baselines.

Effect of Degree Similarity. To measure the variation in node degrees, we define:

degreeSimnode
∆
=
(
1− node degree

maximum degree of warp nodes

)
degreeSim identifies the deficit in the degree of a node compared to other nodes as-

signed to the same warp. Figure 5.9 plots the speedup and inaccuracy, w.r.t. Baseline-I,

83

with varying thresholds for degreeSimnode. The node degree is made 85% of the warp’s

max-degree. As we increase the threshold, we allow more edges. We observe that the

speedup increases with increase in threshold up to a point (0.3 in Figure 5.9) after which

it begins to drop. This is because when limited edges are added, the performance im-

proves due to the combined effect of reduced thread divergence and faster propagation.

Performance gains drop with further increase in threshold. This is because the size of

the graph increases due to addition of considerable number of edges, which begins to

dominate. Inaccuracy increases monotonically with increase in threshold since a higher

threshold allows for addition of more edges.

Guidelines for the Threshold. For obtaining reasonable accuracy and speedup, the

threshold on degreeSim is set based on the degree distribution. If on an average, the

mean node degree in a bucket is quite low, or if it is closer to the maximum node degree

than to the minimum node degree in the bucket, then the threshold should be set to a

low value (below 0.4). Picking the threshold this way ensures addition of limited extra

edges as we normalize the degree of only relatively-large-degree nodes in a warp.

5.4.4 Preprocessing Overhead

The preprocessing overheads for the approximate techniques targeting memory coalesc-

ing, memory latency, and thread divergence are presented in Table 5.13. We observe

that the mean times for transforming the graphs in our test-suite for improving coalesc-

ing, reducing memory latency and reducing thread divergence are 182s, 233s, and 58s

respectively. This is a one-time offline cost. The execution of complex algorithms such

as those for BC and MST consume more time than preprocessing. For the simpler al-

gorithms such as those for SSSP, SCC, and PR, the preprocessing time is significantly

higher. This extra preprocessing cost may be amortized over several runs of multiple

algorithms. The corresponding mean extra space consumed by the transformed graphs

(w.r.t. the original graph) is 8%, 5.6%, and 2.3% respectively for the three techniques,

which is practically not high.

Tables 5.14 – 5.16 present the total reduction in the end-to-end execution time for

MST and BC using Graffix techniques w.r.t. Baseline-I. We observe that for MST and

84

Technique Graph Preprocessing overhead
Time (sec) Additional space

improving coalescing

rmat26 18 9%
random26 21 11%

LiveJournal 8 6%
USA-road 11 8%

twitter 30 6%

reducing latency

rmat26 23 5%
random26 27 8%

LiveJournal 9 5%
USA-road 13 4%

twitter 46 7%

reducing thread-divergence

rmat26 6 2%
random26 7 3%

LiveJournal 4 2%
USA-road 2 1.5%

twitter 9 4%

Table 5.13: Preprocessing overhead

M
ST

Graphs Reduction in
end-to-end time

rmat26 15.05%
random26 11.29%
LiveJournal 12.04%
USA-road 5.28%
twitter 14.25%

B
C

rmat26 14.41%
random26 10.55%
LiveJournal 12.57%
USA-road 15.42%
twitter 12.14%

Table 5.14: Effect of memory
coalescing

Graphs Reduction in
end-to-end time

rmat26 17.77%
random26 8.82%
LiveJournal 14.99%
USA-road 0.81%
twitter 13.37%

rmat26 19.20%
random26 11.30%
LiveJournal 16.83%
USA-road 19.99%
twitter 14.31%

Table 5.15: Effect of
shared memory

Graphs Reduction in
end-to-end time

rmat26 0.046%
random26 0.019%
LiveJournal 0.064%
USA-road 0.058%
twitter 0.047%

rmat26 0.098%
random26 0.047%
LiveJournal 0.080%
USA-road 0.106%
twitter 0.056%

Table 5.16: Effect of thread
divergence

Reduction in total end-to-end time of Graffix w.r.t. exact Baseline-I

85

 0

 5

 10

 15

rmat26 random26 LiveJournal USA-road twitter

re
d

u
ct

io
n
 i
n
 e

n
e
rg

y
 w

.r
.t

 e
x
a
ct

 (
%

)

Graphs

threshold=0.5
threshold=0.6
threshold=0.8

Figure 5.10: Effect of coalescing on energy consumption for BC (higher is better).

BC, even if we perform the graph transformations once for every input graph, there is a

reduction in the total time w.r.t. the exact version.

5.4.5 Impact of Approximations on Energy

For measuring the energy consumption accurately, the algorithm needs to run for long.

Thus, we choose to study the effect of energy consumption on BC. Figure 5.10 shows

the reduction in the energy drawn during the execution of BC using Graffix’s tech-

nique for improving memory coalescing. We show the decrease in energy for different

thresholds of connectedness for node-replication. We observe that the amount of en-

ergy drawn during execution with approximations is lower than that for the exact ver-

sion. The reduction in energy with approximations can be attributed to (i) reduction

in power (ii) reduction in total execution time. Reduction in power primarily results

from the coalescing of multiple accesses into fewer memory transactions. We mea-

sure the power consumption of the GPU and its associated circuitry (e.g. memory), in

milliwatts, while the GPU kernel is running. We measure the power using the nvmlDe-

viceGetPowerUsage() API provided by the NVML library. Reduction in total execu-

tion time results from improved coalescing and the approximation technique discussed

in Section 5.1.1. Hence, the mean energy consumption during execution, computed as(
mean power × mean execution time

)
is lower for the approximate version.

86

5.5 Summary

We proposed graph transformation techniques for efficient graph processing on GPUs

using approximate computing. Our techniques improve memory coalescing, memory

latency, and thread-divergence by graph reordering and graph transformation. Using

a suite of five popular graph algorithms and five large graphs, we illustrated that our

proposed techniques reduce execution times of parallel implementations of graph algo-

rithms appreciably by incurring a small loss in the quality of the solution.

87

CHAPTER 6

Faster Estimation of Top-k Betweenness Centrality

Vertices on Heterogeneous Architectures

Betweenness centrality (BC) is a crucial centrality metric in graphs and networks that

measures the significance of a vertex. BC(v) is calculated using the number of shortest

paths in the graph passing through vertex v in the graph. It is used in a multitude of ap-

plications such as detecting communities in social and biological networks (Girvan and

Newman (2002)), targeted advertising (Kim et al. (2012)), analysis of disease spread-

ing (Liljeros et al. (2001)), and identifying criminal networks (Coffman et al. (2004)),

among others. The state-of-the-art Brandes’ algorithm (Brandes (2001)) computes the

exact BC values for all nodes in a graph G = (V,E) in time O(|V ||E|) for unweighted

graphs, and time O(|V ||E|+ |V |2 log |V |) for graphs having positive weights. As sug-

gested by its complexity, computation of BC is quite time-consuming even on graphs

of moderate sizes, having hundreds of thousands of nodes and edges.

To make BC computations scalable, Brandes’ algorithm has been successfully par-

allelized on multi-core CPUs, many-core GPUs, and distributed systems (Madduri et al.

(2009); McLaughlin and Bader (2014); Prountzos and Pingali (2013); Solomonik et al.

(2017); Hoang et al. (2019)). Yet, the cost of BC computation is excessive on modern

real-world graphs with millions of nodes and tens of millions of edges. For example,

the exact vertex-BC computation on the undirected graph liveJournal (having ∼4.8M

nodes and ∼69M edges) using a parallel implementation of Brandes’ algorithm on a

GPU takes several days to complete. Moreover, often applications are interested in the

relative ranking of the vertices according to their BC scores, rather than their actual BC

values. In addition, several applications demand identifying nodes with the highest BC

values. Hence, an estimate of the top-k BC vertices is sufficiently informative in such

cases.

We present ParTBC, a bouquet of novel techniques for speeding up the estimation

of top-k vertices with highest BC in a graph, using approximate computing in conjunc-

tion with parallelization. We propose to compute approximate BC values of vertices,

such that the relative ordering of the vertices is maintained. Further, we present a novel

graph reordering scheme to make the graph layout more regular to enable efficient co-

alesced access of data in parallel Brandes’ algorithm on GPU, improving performance.

The graph-layout is also beneficial to other vertex-centric parallel graph algorithms.

ParTBC is the first system that combines parallelization and approximate computing to

estimate the top-k BC vertices in a graph.

The chapter is organized as follows. Section 6.1 presents a formal description of

the problem of top-k BC-vertex computation, and also discusses Brandes’ algorithm,

which forms the basis for the parallelization and the approximate techniques. Sec-

tion 6.2 presents our proposed scheme at a high-level. Section 6.3 presents the paral-

lelization strategy and our proposal for a modified graph layout. Section 6.4 presents

our techniques for estimating top-k BC vertices. Section 6.5 quantitatively evaluates

the proposals and analyzes results.

6.1 Problem Statement and Preliminaries

Problem Statement. Given an undirected, unweighted graph G(V,E) and a positive

integer k ≤ |V |, find a set of k vertices, Sk, where Sk ⊆ V and Sk contains vertices

having the highest BC values in G. In this work, we determine the set Sk faster with a

small error in set membership.

Betweenness Centrality. The state-of-the-art Brandes’ algorithm for computing

vertex betweeness centrality is described in detail in Section 2.4.

Property 1: In Brandes’ algorithm, BC of a vertex does not change in the iteration in

which it is the source.

Proof : For each source, s, we compute the BFS DAG rooted at s. Now, s will always

lie at one end of the shortest paths to all other nodes, from s. So, s cannot lie on the

shortest path between any two other nodes, as all the edges have unit weight. Thus, in

the iteration in which the node is a source, its BC does not change. The same is captured

90

in equation 2.3.

Observation-1: Our experiments show that high BC nodes are usually either (i) the high

degree nodes, or (ii) those low degree nodes that lie on the paths connecting two or more

large well-connected clusters.

Justification: High degree nodes are connected to a large number of nodes and thus lie

on a large number of point-to-point paths. Consequently, these lie on a large number of

point-to-point shortest paths. Further, those low degree nodes that connect large clusters

in a graph, lie on the shortest paths between the nodes lying in separate clusters. Thus

such nodes too have high BC.

6.2 ParTBC’s Approach

Algorithm 9 Approximate top-k computation
Input: An undirected, unweighted graph G(V,E)
Input: k
Input: desired accuracy (≤ 100%)
Output: top-k betweenness centrality vertices
1: bc[v] = 0 ∀v ∈ V . initialization
. Phase-I

2: G′(V,E) = graphReordering(G) . vertex renumbering; G′ ∼= G
. Phase-II

3: nextIter = true
4: while nextIter do
5: nextIter = false
6: s = getSource() . pick source vertex
. Forward Pass: form BFS DAG D

7: for all v : Node ∈ G′ do
8: compute σsv
9: compute pred(s, v)

Let D be the DAG formed by the forward pass
. Backward Pass: backward traverse DAG D

10: for all v : Node ∈ D do
11: compute δs(v)
12: bc(v) += δs(v)
13: if stopping criteria not met then
14: nextIter = true;

. Reset graph attributes
15: for all (u→ v) ∈ E do
16: reset(u→ v)

Algorithm 9 outlines the approach adopted in ParTBC. The computation proceeds

in two phases. Phase-I performs graph reordering by renumbering the vertices of the

graph to bring together in memory the data of those nodes that are likely to be accessed

91

in tandem in parallel Brandes’ algorithm on GPU (Section 6.3). The reordered graph is

the input to Phase-II. In Phase-II, BC computation happens in parallel and the source

vertices are picked (Line 6) using the techniques described in Section 6.4. The algo-

rithm terminates when the stopping condition is satisfied, which is calculated online

based on the desired accuracy in the set of top-k vertices.

6.3 Parallelization and Graph Layout

6.3.1 Parallelization Strategy

Brandes’ algorithm has been shown to be parallelized mainly in two ways: outer parallel

and inner parallel (Prountzos and Pingali (2013); Jin et al. (2010); Bader and Madduri

(2006)) In outer parallel, multiple source vertices are processed in parallel (line 2 of

Algorithm 7), but the forward and the backward passes are executed sequentially by

each thread. Thus, the contribution of each source to BC values of other vertices can be

computed by the thread assigned to that source. The final computation of bc(v) involves

a reduction of the contribution of each of the sources. In this scheme, every outer loop

iteration requires its own storage, leading to a substantial space overhead, of the order

of O(n2) (Prountzos and Pingali (2013)).

In inner parallel scheme, on the other hand, each source is processed sequentially,

but each of the computation steps (lines 3, 7 in Algorithm 7) for a single source are

executed in parallel. A crucial advantage of this approach is its space-efficiency, as

DAG (and other transient data) corresponding to only one source need to be maintained

at a time. Therefore, such an approach can be used for large graphs (Prountzos and

Pingali (2013)).

6.3.2 Graph Layout

We use the popular Compressed Sparse Row (CSR) storage format to represent the

graph (Figure 6.1). Further, we use the vertex-centric model of parallelization, wherein

threads are assigned to vertices. Our parallel implementation of BC uses three ker-

92

nels – one for the forward pass and two as part the backward pass (one to compute

δ values and another to accumulate BC values). We employ both topology-driven and

data-driven implementations of the forward pass kernel (Pingali et al. (2011)). Our im-

plementation automatically chooses one of the two implementations based on the skew-

ness (third-central moment) of the vertex degree distribution. For graphs with skewed

degree distribution (|coeff. of skewness| > 0.05), such as social networks, topology-

driven implementation is chosen, while data-driven implementation is used for graphs

with uniform degree (|coeff. of skewness| ≤ 0.02), such as road networks.

8

5

3 7 6

4

10

13

12

11 14

1

9

0

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 3

3 4 14 6 0

5

0

node attributes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

26 27 28 29 30 31 32 33 34 35 36 37

6 15 21 2910 12 19 34 36 40

13 11 10 1114 8 11 14 2 9 131212

38 39

23 24 26

10 612 5 12 3 7 3 6 1 36 51 4 5 7 148 0 12

Figure 6.1: Original graph G and its CSR representation

0

1

4 6 7

8

9 12

10 13

2

3 5

11

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2

1 2 0 3 5 0 4 5

5 21 36

7 1 8 2 5 9 11

node attributes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

26 27 28 29 30 31 32 33 34 35 36 37

13 1710 29 34 38 39 40

6 11 1 4212 2

38 39

23 27 32

12 10 13 14 3 9 4 8 102 9 3 457 6 7 7

Figure 6.2: Graph G with renumbered vertices

93

6.3.3 Improved Graph Layout

A natural way to compute top-k BC vertices faster is to improve the performance of the

exact parallel implementation of Brandes’ algorithm. With this motivation, we propose

a scheme to modify the graph layout to make it more structured to make it amenable to

GPU-based processing. We intend to improve the memory coalescing and better utilize

GPU’s high memory bandwidth.

The forward-pass of Brandes’ algorithm involves breadth-first-search (BFS) traver-

sal on the graph from a designated source node in every iteration. In our parallelization

strategy of the forward-pass, we process the vertices in a level-synchronous fashion, and

the thread assigned to a node updates the attributes of its neighbors. Reordering of ver-

tices is shown to be effective in improving the spatial locality of vertices by assigning

consecutive id’s to those that are likely to be accessed in tandem (Nodehi Sabet et al.

(2018); Balaji and Lucia (2019); Liu and Sherman (1976)). To improve vertex-centric

processing, ParTBC proposes a novel vertex-renumbering scheme to modify the graph

layout such that the connected nodes and their data are together for GPU-based pro-

cessing. For instance, in Figure 6.1, assume the warp-size to be 4. The vertices 4 – 7

are assigned to threads having the same id as the node. With vertex-centric processing,

the warp-threads will access the attributes of the first neighbor of the respective vertices

concurrently, and so on. Hence, the warp threads will access the locations 0, 8, 2 and

10 in the node attributes array together. Further assume that the accesses to a chunk

of 4 words can be coalesced. Clearly, the accesses to the destination vertices’ {0, 8, 2,

10} data in the node attributes array are not coalesced since these lie in three separate

4-word chunk. We renumber the vertices such that the vertices to be accessed by the

warp-threads are assigned nearby id’s; this results in improved coalescing. The vertex-

renumbering is performed once at the time of loading the graph. The following is the

renumbering scheme (for Line 2 in Algorithm 9):

We pick a lowest degree neighbor of a vertex having the highest degree and perform

a BFS traversal on the graph, to obtain a BFS tree. The vertices at the same level in

the BFS tree are assigned id’s in a round-robin fashion: the first neighbor of each of

the parents from the previous level is assigned a new id followed by the renumbering

of all the second-neighbors, and so on. The foregoing renumbering scheme ensures

94

that the threads of a warp access nearby locations while accessing the attributes of the

destination vertices in the node attribute array. Since the graph is undirected, the renum-

bering helps improve the coalescing in every outer iteration of Brandes’ algorithm. The

choice of the source of this BFS traversal helps on two accounts: (i) as we will see, we

are likely to pick a node with a low degree as a source vertex in Brandes’ algorithm

(Section 6.4). So, picking a low-degree neighbor of the high-degree node as a source

ensures near-perfect coalesced accesses in an iteration of the Brandes’ algorithm. (ii)

a high-degree node is likely to be visited a higher number of times overall iterations in

BC computation (Sections 6.4). So picking a neighbor of a high degree node is a better

choice than starting at an arbitrary node.

For example, in the graph G from Figure 6.1, vertex 12 has the highest degree. We

perform BFS from vertex 8, which is a lowest degree neighbor of 12. Vertex 8 is at level

zero, vertices 5 and 12 are at level 1, vertices 3, 6, 7, 11, 14 are at level 2, while other

vertices are at level 3. Figure 6.2 shows the graph with vertices renumbered, along with

its memory layout. The attributes array for the destination vertices has more coalesced

accesses in the renumbered graph.

The renumbering-scheme is applicable, in general, to all graph algorithms that are

implemented using the vertex-centric approach and node values are propagated by up-

dating neighbors’ values through outgoing edges.

6.4 Techniques for Fast BC estimation

We present a systematic study of the use of approximate computing in the computation

of top-k betweenness centrality vertices. Our key observation is that not all sources

in Brandes’ algorithm (line 2, Algorithm 7) contribute equally to the BC values. We

present a host of techniques to identify vertices to be picked as sources that enable

enough contribution to the BC of the vertices early to facilitate quicker identification

of top-k BC vertices. Our strategy is to identify those vertices which would eventually

have high BC values, in the early iterations of the Brandes’ algorithm.

Based on Property-1 and Observation-1 from Section 6.1 we hypothesize that in

95

order to impart a high share of their BC values early to the eventual high BC nodes, we

should preferentially pick the low and moderate degree nodes as sources. The intuition

is that such a choice of sources would increase the BC score of a high degree node

and not of the low and the moderate degree neighbors of it. This would widen the gap

between the eventual low and high BC vertices, thus allowing us to decide the top-k

nodes in the early iterations. For our purpose, we categorize the nodes into low-order,

moderate-order and high-order vertices. In the list of vertices sorted in ascending order

by node degree, the first 25% are the low-order vertices, the next 50% are moderate-

order vertices and the remaining 25% are the high-order vertices. Our experiments and

analysis revealed that the number of iterations required for termination are indeed fewer

when preferentially picking low- and moderate-order neighbors of high order nodes as

sources. So, the high-level idea is to devise schemes that enable us to pick such nodes as

sources in the early iterations. By filtering out the source vertices carefully, performance

gains are substantial due to a sizeable reduction in the total work done.

Termination of execution. For each of the techniques, there are two ways to specify the

termination of execution. One, we may specify the number of iterations as a percentage

(α%) of the total number of iterations. Two, we may specify an online stopping criterion

to get the desired accuracy. The second approach is preferable since it allows us to

control the performance–accuracy tradeoff.

For the latter approach, we need to define a metric that captures the quality of the

top-k nodes reported. A desired metric for computing the output quality of top-k be-

tweenness centrality nodes in a graph is the set difference between the set of exact top-k

nodes and those computed using an approximate technique. This quality metric requires

knowing the ground-truth (i.e., the exact top-k nodes), which would be available only

upon running Brandes’ algorithm to completion. Hence, we require a metric that can

be computed at each iteration of Brandes’ algorithm rather than at the end of the com-

putation, to help us decide if we have reached the desired accuracy and thus terminate

the execution.

A plausible proxy for the above metric is: tracking the node having the k-th highest

BC value in every iteration and checking if the node having the k-th highest BC value

has stabilized (i.e., it is unchanged for all remaining iterations).

96

Lemma 1: If the k-th highest BC node does not change across iterations, then the set of

top-k BC nodes also remains unchanged.

Proof: Consider two consecutive iterations of the outermost loop in Brandes’ algorithm:

i and i+1, such that i < i+1 ≤ |V |. Note that BC of a vertex monotonically increases

in every iteration. Let, the set of vertices, V be partitioned into two sets, S and S ′.

S contains the top-k (k ≤ |V |) BC nodes and S ′ = V \ S. At each iteration, we

maintain the invariant that the cardinality of S is k and that it holds the top-k BC nodes.

Further, let’s define a sequence on the elements of set S: πs = (v1, v2, v3, . . . , vk) such

that BC(v1) ≥ BC(v2) ≥ BC(v3) . . .≥ BC(vk). Let, vk ∈ S be the last element in the

sequence πs, at the end of iteration i. Now, suppose at the end of iteration i + 1, a

node from S ′ moves to S (due to increase in its BC value), then a node from S must

move to S ′ to maintain the invariant. Further, the node that moves from S ′ to S must

have BC greater than or equal to BC(vk). So, the element to be displaced from S must

have BC equal to BC(vk). Let us assume the last element in sequence πs, i.e. vk, will

be displaced in the event of multiple nodes having the same BC value as vk. Thus, if

the element vk is the same after iterations i and i + 1, it implies that the rest of the

elements in the set S are also unaltered. The result holds for any two iterations i and j

s.t. i < j ≤ |V |.

There are two issues with using the aforementioned proxy metric: (1) it requires

determining the k-th highest BC node after every iteration (which has a time complex-

ity of O(|V |)), thus introducing significant time overhead. (2) the node with the k-th

highest BC needs to be tracked for all iterations in order to establish that the position of

k-th highest BC node is unchanged — this makes this metric unsuitable for online error

estimation.

To design a pragmatic scheme for accurate estimation of online error, we draw on

the observation that by the iteration when the ranks of highest few BC nodes are settled,

the other high BC nodes also get a sufficiently large share of their respective BC values.

Thus tracking only a fixed number of highest BC nodes may suffice.

Therefore, in each iteration of Brandes’ algorithm, we maintain the set, St, of top-

t (t ≤ k) vertices. We track the number of successive iterations for which the set

St remains unchanged. We terminate the execution when this count reaches Ct. The

97

choices of t and Ct depend on the techniques used for picking the source nodes (Sec-

tions 6.4.1 through 6.4.5) and the type of the input graph. This scheme enables us to

accurately estimate on-the-fly when the error in the top-k becomes substantially small.

Our experiments showed that for the techniques in Sections 6.4.1–6.4.3, 40 ≤ t ≤

50 and 5 ≤ Ct ≤ 10 results in desirable speedups and accuracy. On the other hand,

for the techniques presented in Sections 6.4.4–6.4.5, 5 ≤ t ≤ 10 and 3 ≤ Ct ≤ 5

are sufficient to achieve similar accuracy as with the previous techniques. This can be

attributed to the fact that the choice of sources using the latter techniques imparts a

larger share of the respective BC values to the vertices quicker. Hence stabilization of

the ranks of a few high BC nodes for a few iterations indicates that the ranks of the

other nodes are also stabilized, with a good chance.

We discuss the techniques proposed by ParTBC below.

6.4.1 Random Selection of Source Vertices (Random)

From a uniformly random permutation of the vertices, we select a subset, guided by the

stopping criterion. With this technique, we pick source vertices with varied connectivity

and characteristics. In real-world scale-free graphs (that have many low degree nodes

and a few high degree nodes), the probability of picking the high degree nodes as source

early is less due to their number. Hence, random selection of nodes naturally leads to

the selection of low and moderate degree sources. The nodes so picked include a fair

number of non-high degree neighbors of high degree nodes. Hence, the BC scores

of the nodes acquired in the early iterations cause the relative BC scores of the graph

vertices to be indicative of their relative exact BC values, leading to high accuracy in

top-k computation with a small number of iterations. However, we need a large value

of t for getting high accuracy in fewer outerloop iterations. High value of t requires the

computation of the tth-largest BC node (Lemma 1) in each iteration, adding up to high

overhead.

98

6.4.2 Node Selection in Ascending Degree Order (Ascending)

A natural order is based on vertex degree: ascending and descending. We pick the ver-

tices as sources in Brandes’ algorithm in that order. The overhead of sorting of vertices

(O(|V | log |V |)), which is a one-time operation, is a tiny fraction of the overall com-

putation time of exact BC scores. We observe that in several real-world graphs, the

low degree vertices are connected to other low degree vertices. So, the DAG formed

by selecting a low degree vertex as the source has more levels as compared to the one

resulting from picking a high degree vertex as the source; the DAG formed also has, on

average, a small number of nodes at each level. However, when the sources are selected

in ascending order of degrees, the vertices with high BC may not get enough contribu-

tion in the early iterations. This happens because the high degree vertices appear to-

wards the bottom of the DAG, and thus, not many vertices are reachable through them;

this results in reducing the dependency contribution. Further, in real-world graphs, low

degree nodes are connected to other low degree nodes, so few low-order nodes are

neighbors of high-order nodes. Hence, a larger number of iterations are required to de-

termine the top-k accurately. Similar to the Random technique, we need a large value

of t, adding a significant execution overhead.

6.4.3 Node Selection in Descending Degree Order (Descending)

In this technique, we arrange the source vertices in decreasing order by degree. Gen-

erally, the high degree vertices are found to be connected to other high degree vertices.

Hence, the DAG formed from such a vertex will have fewer levels and a high average

number of nodes at each level. Since the sources selected are in descending order, all

the vertices with high BC receive large BC contributions in the early iterations because

the high degree vertices tend to appear at the top of the DAG which results in more

number of vertices being reachable via them. The moderate- and low-order neighbors

of high-order nodes are picked sooner than when following ascending order for select-

ing sources. So, fewer iterations are required to estimate the top-k with high accuracy.

However, similar to Ascending, computing the stopping criteria has a high overhead.

99

6.4.4 Selecting Low-Degree Neighbors of High Degree Vertices

u v w

Figure 6.3: Neighbors of high-degree vertices

V 1

V 2

V 3

V t

High Degree

Average Degree

Low Degree

Low Degree Avg Degree

V 1a V 1b V 1p V 1q V 1r V 1s

V 2a V 2b V 2p V 2q V 2r V 2s

V 3a V 3b V 3p V 3q V 3r V 3s

V ta V tb V tp V tq V tr V ts

V 1y V 1z
High Degree

V 2y V 2z

V 3y V 3z

V ty V tz

Figure 6.4: Layout for techniques

From Observation-1, high degree vertices and the cut-vertices connecting large clusters

are more likely to have large BC values. We also note that in Brandes’ algorithm, when

we pick a node as a source, the BC values increase more for those vertices that are

at the initial levels of the DAG and have more vertices reachable from them. Thus,

based on Property-1, to reduce the polluting of the vertices (increase in BC value of an

unimportant node by as much as an important node, in an iteration), it is beneficial to

pick the immediate neighbors of high degree vertices as sources (Figure 6.3). Further,

among the immediate neighbors, we pick the low degree neighbors as sources first, with

the assumption that the low degree vertices are likely to have lower BC than the high

degree vertices, in general. Consider the scenario in Figure 6.3. Suppose v and w are

low degree 1-hop and 2-hop neighbors, respectively, of a high degree node, u. In this

case, we prefer to pick the node v over w as the source. Picking v (1-hop neighbor of

u) as the source would increase the BC value of u more than that of w in that iteration

and widen the gap in their BC values, enabling computation of top-k in fewer iterations.

With this technique, the vertices connecting large clusters also get a high BC value, as

desired. When a source is selected, the DAG formed has such connecting vertices as

the dominator of many other vertices, and thus, they receive enough BC contribution.

The technique can be combined with Ascending and Descending. We consider only

the high-order vertices and sort them in descending order by degree. Further, the neigh-

bors of each of these are sorted in ascending order by degree. Additionally, nodes

100

having equal degrees are arranged in ascending order by node id. We then select the

neighbors in a round-robin fashion. Round-robin means that we select the unpicked

lowest-degree neighbor of the highest degree vertex, followed by the lowest-degree

neighbor of the second-highest vertex, that is not already selected, and so on. For ex-

ample, in Figure 6.4, the vertices selected as sources are v1a, v2a, . . ., v3a, v1b, v2b,

and so on, in that sequence.

A caveat in the round-robin selection of source vertices is that in real-world graphs,

high-degree vertices are often neighbors of other high-degree vertices, and this scheme

may end up selecting the high-degree neighbors (instead of the low-degree neighbors)

of high-degree vertices. To address this issue, we select only the low-order neighbors.

Interestingly, setting the threshold on the neighbors’ degrees prohibits selecting

those high-order vertices as sources that are the neighbors of other high-order vertices.

Since a node is chosen as source only once, this prevents the selection of a vertex with

high degree over a vertex with low degree.

The threshold for high-order, moderate-order and low-order vertices can be tuned to

control the accuracy in the top-k vertices, and the resulting speedup. We call this tech-

nique Restricted-Round-Robin (RRR). Additionally, the number of low- and moderate-

order neighbors of high-order nodes picked as source using this technique are substan-

tially high by design. So, this method provides improved accuracy compared to earlier

techniques, but Random, for similar speedups. Further, unlike in the prior techniques,

the stopping condition can be faithfully computed by tracking only upto 5 highest BC

nodes across iterations, which is computable in O(1).

6.4.5 Dynamic Selection of Source

In this technique, we also take into account the BC scores of the vertices up to that

iteration to determine the source vertex for the next iteration. We observe that once the

vertices get a healthy share of their respective final BC scores, the vertices with low BC

are likely to continue having a low relative BC score in the subsequent iterations. We

exploit this observation to select that so far unpicked vertex as the source for the next

iteration, which has the least BC value up to that iteration. Again, based on Property-1,

101

we further try to minimize the BC value of that particular vertex by selecting it as a

source. By minimizing the BC value of the lowest BC node, we increase all the other

remaining vertices’ BC values and not just of a select few. So by selecting different

sources dynamically, all the vertices having moderately high or high BC values get

contributions relative to the vertices’ eventual BC values by selecting the low BC ver-

tices as sources, and this also widens the gap between the eventual high BC and low BC

vertices.

Now, to provide the vertices sufficient representative share of their BC values before

going for the dynamic scheme, we execute the initial few iterations of the Brandes’

algorithm. The choice of the source vertices for these initial iterations is crucial since

we want the vertices to have a sufficient share of the BC values as quickly as possible.

In the entire execution, no node is picked more than once. We discuss the heuristics for

selecting these initial sources. We empirically found that selecting 5% source vertices is

reasonable for contributing a good share of BC values to each vertex (and also improves

execution time).

Descending (Dyn)

We sort the vertices in descending order of their degrees. We then pick the top 5%

vertices from this sorted list as the initial set of source vertices. After the 5% outer loop

iterations, in the subsequent iterations, the vertex picked as the source is a node with

the least BC score up to that iteration that has not been picked already.

Dynamic Round Robin (DynRR)

We observed that with the selection of fewer source vertices, RRR achieves better results

than Dyn. However, if a large number of sources are selected, Dyn works better and

has smaller error compared to RRR for the same number of sources. This suggests that

picking the initial set of source vertices using RRR is beneficial.

For the first 5% iterations, we select the vertices as sources in a round-robin fashion,

selecting only those that have a degree less than a threshold (which is set to average node

degree). Further, for the selection of sources in the iterations following the first 5%, we

102

consider neighbors of vertices having degree greater than the average degree. From this

subset of vertices, the one having the least BC value up to that iteration is selected as

the source for the next iteration. This helps limit the search space further to only those

vertices which, when picked as source, contribute significantly to boosting the values of

the important vertices. Selecting the sources based on BC values computed until then

increases the BC values of their neighbors (the high degree vertices), which improves

accuracy.

DynRR is found to perform the best among all the techniques, that is, it either has

the lowest error for the same number of source vertices compared to other techniques,

or it achieves better speedup than the other techniques for similar accuracy. It works

well for all types of graphs and produces uniform results for all values of k.

Additionally, the number of low- and moderate-order neighbors of high-order nodes

picked as the source using Dyn and DynRR technique is substantially high by design.

So, these methods provide improved accuracy and speedups compared to earlier tech-

niques. Further, the stopping condition requires us to keep track of only up to 5 highest

BC nodes across iterations, which is computable inO(1). Hence, the overhead of com-

puting the stopping criteria is negligible at each iteration.

6.5 Experimental Evaluation

We evaluate the performance and effectiveness of ParTBC’s techniques for estimating

top-k BC vertices.

Machine Configuration. We use the same machine as described in Section 4.4.

Input Graphs. We use input graphs (Table 6.1) from SNAP (Leskovec and Sosič

(2014)) and KONECT (Kunegis (2017)), with different characteristics, to study the

efficacy of our approach. These include social networks (such as Pokec) having small-

world property, road networks (such as San Francisco) having large diameters, RMAT

graphs which are synthetically generated scale-free graphs (Madduri and Bader (2006)),

and random graphs which do not exhibit any specific structure.

Note: Determining the exact top-k BC-vertices (for establishing the ground-truth) re-

103

Graph |V | |E| Graph type
fb-Friendships (FB) 63,731 817,035 Facebook friendship graph

soc-Pokec (SP) 1,632,803 30,622,564 Online social network
loc-Gowalla (LG) 196,591 950,327 Location-based social network

roadnetSF (RNSF) 174,424 221,802 San Francisco road network
usroad48 (RNUS) 102,615 147,656 Continental US road network

rmat17 (RMT) 130,977 2,091,451 R-MAT using GTgraph
random17 (RNM) 131,072 2,096,902 Random graph using GTgraph

Table 6.1: Input graphs

Graph
Time (sec) Speedup

(NVR/VR)
Graph reordering

NVR VR Time(sec)
fb-Friendships 1020 836 1.22× 5

soc-Pokec 214578 174453 1.23× 32
loc-Gowalla 26760 22677 1.18× 9
roadnetSF 2900 2566 1.13× 5
usroad48 3810 3371 1.13× 4
rmat17 1550 1302 1.19× 6

random17 616 592 1.04× 7

Table 6.2: Effect of vertex numbering on exact version
(NVR: no vertex renumbering, VR: with vertex renumbering)

quires computing the exact BC values of the vertices. Given the high time complexity

of betweenness centrality computation, the exact computation takes very long (multiple

days) on large graphs. Thus, we chose relatively small-sized graphs for our evaluation.

Baselines. We use two baselines to evaluate our techniques. First, we compare the per-

formance of ParTBC against the exact parallel Brandes’ algorithm on GPU for comput-

ing top-k vertices. Second, we compare the performance of ParTBC with the approxi-

mation algorithm in ABRA (Riondato and Upfal (2018)), which is the state-of-the-art in

approximate BC top-k computation.

Effect of graph reordering. The execution times for the exact BC computation (which

dominates top-k computation) on the graphs for Baseline-I are presented in Table 6.2.

In Table 6.2 we report the time taken in the exact BC computation with and without the

graph reordering (Phase-I of Algorithm 9). Note that the graph reordering technique is

independent of Phase-II of Algorithm 9 and depends only on the input graph. We also

Graph Global Memory Load Efficiency (%)
Without Vertex Renumbering With Vertex Renumbering

fb-Friendships 19.5 59.4
soc-Pokec 23.3 70.7

loc-Gowalla 24.2 64.6
roadnetSF 25.2 66.3
usroad48 26.3 57.8

rmat17 22.1 63.5
random17 13.8 39.2

Table 6.3: Effect of vertex renumbering on global memory coalescing

104

Graph Speedup w.r.t. Speedup breakdown
(w.r.t. exact parallel)

Exact Parallel ABRA VR DynRR
fb-Friendships 2.80× 4.28× 1.22× 2.29×

soc-Pokec 2.76× 4.31× 1.20× 2.30×
loc-Gowalla 2.48× 4.16× 1.18× 2.10×
roadnetSF 2.71× 4.72× 1.13× 2.40×
usroad48 2.68× 4.63× 1.13× 2.37×
rmat17 2.65× 4.18× 1.19× 2.22×

random17 1.67× 1.92× 1.04× 1.61×
geomean 2.5× 3.88× 1.15× 2.17×

Table 6.4: Performance of ParTBC w.r.t. exact parallel Brandes’ algorithm and ABRA
(VR: vertex renumbering) Error ∼ 6%.

Graph
Error ∼10% Error ∼20% Error ∼50%
Speedup w.r.t. Speedup w.r.t. Speedup w.r.t.

Exact Parallel ABRA Exact Parallel ABRA Exact Parallel ABRA
fb-Friendships 4.01× 4.49× 8.68× 8.13× 19.94× 8.98×

soc-Pokec 3.94× 4.52× 8.55× 8.18× 19.65× 9.05×
loc-Gowalla 3.54× 4.36× 7.68× 7.90× 17.65× 8.74×
roadnetSF 3.88× 4.95× 8.40× 8.96× 19.28× 9.91×
usroad48 3.83× 4.86× 8.31× 8.79× 19.08× 9.72×
rmat17 3.79× 4.38× 8.21× 7.94× 18.68× 8.77×

random17 2.38× 2.01× 5.17× 3.64× 11.89× 4.32×
geomean 3.58× 4.08× 7.76× 7.38× 17.82× 8.16×

Table 6.5: Performance of ParTBC w.r.t. exact parallel Brandes’ algorithm and ABRA
Error ∼ 10%, 20%, 50%.

report the time taken for graph reordering, which is observed to be negligible (less than

1%) compared to the total execution time of the BC computation. In order to measure

the effect of vertex renumbering on global memory coalescing, we measure the global

memory load efficiency (gld_efficiency) collected using NVIDIA’s visual profiler. Ta-

ble 6.3 presents the gld_efficiency (expressed as a percentage) in parallel Brandes’ al-

gorithm on the graph before and after vertex renumbering. Higher the gld_efficiency,

better is the memory coalescing. We observe that the gld_efficiency increases as a result

of vertex renumbering. This reaffirms our time-investment in vertex renumbering.

We observe that the performance of the exact parallel version on the modified graph

layout (resulting from vertex-renumbering) is consistently better than that on the orig-

inal layout, for all types of graphs, resulting in an average speedup of 1.15×. The

improvement is primarily due to better global memory coalescing. We also observe that

power-law graphs (such as FB), get benefited more due to coalescing. This happens due

to a high number of active nodes in an iteration (due to small diameter), in the level-

synchronous BFS traversal in the forward-pass. This leads to more coalesced memory

accesses once the graph is made more structured. For road networks (e.g., RNSF), the

gains are limited as only a few nodes are active in each iteration, and the number of

105

accesses to nearby nodes (after renumbering) is limited. Due to a lack of structure,

random graphs are not sensitive to vertex renumbering.

6.5.1 Overall Results

We evaluate the inaccuracy of ParTBC techniques as follows: Let bcG be the exact

set of top-k vertices, and b̃cG be the set of top-k reported by ParTBC. Then the error

incurred for each of the techniques is measured as |bcG − b̃cG|.

Comparison with Baseline-I and Baseline-II.

Table 6.4 compares the performance of DynRR from ParTBC with the two

baselines at 6% inaccuracy. We report the speedups averaged across k ∈

{100, 500, 1000, 2000, 3000, 5000} for error ∼ 6% for both ABRA and ParTBC.

We observe that for 6% inaccuracy the geomean speedup of ParTBC w.r.t.

Baseline-I is 2.5× while that w.r.t. ABRA is 3.88×. We also present a breakup of

the contribution of each of the two phases of Algorithm 9 in the speedup achieved w.r.t.

Baseline-I. Table 6.5 presents the performance of DynRR from ParTBC w.r.t. the two

baselines at 10%, 20% and 50% inaccuracy. The results show that for the size and type

of graphs in our test suite, the ParTBC outperforms ABRA consistently without failing

the accuracy constraint. This is because ABRA uses an iterative progressive-sampling

based approximation algorithm. Its execution time is contingent on the sample size, the

number of samples, and the number of iterations, all of which grow with the size of the

graph for a specified value of accuracy. Additionally, the sample size is updated in each

iteration. In contrast, ParTBC scales well with the size of the graph. There is a very

gradual increase in the overhead (which primarily includes time for graph reordering in

Phase-I, time for online selection of sources, and time for computing the termination

condition) with an increase in the graph size. In addition, ParTBC reduces the amount

of work done by the same factor irrespective of the size of the graph, for obtaining the

specified accuracy. Hence, even for moderate-sized graphs, as in our test-suite, ABRA

takes longer than ParTBC across graphs and different values of k. All techniques in

ParTBC consistently outperform ABRA on moderate- and large-sized graphs. ABRA

performs better than ParTBC with better accuracy on small graphs such as Enron-email

106

(|V | = 36,682 |E| = 183,831).

As observed, ParTBC outperforms the Baseline-I in exchange of lower accuracy.

This is expected due to the lower overall work done by the techniques in ParTBC.

With ParTBC, we obtain appreciable speedups for error ≥ 6%. For achieving er-

ror below 6% using the proposed techniques, we need to select a very large fraction

(> 80%) of the vertices as sources, thus tending towards the exact version of Brandes’

algorithm. As a result, the performance gains for error below 6% are diminished. In our

experiments we do not show results for error below 6% because we do not observe any

noticeable performance improvement. Using ParTBC would be helpful in applications

where an error of ∼ 6% or higher is acceptable in top-k betweenness centrality vertex

computation.

Evaluation of Source Selection Techniques in ParTBC. Next, we evaluate the effect

of the approximate techniques for the selection of sources (Section 6.4). We do so

by using the parallel implementation of Brandes’ algorithm (from Baseline-I) executed

on the modified graph layout, post vertex-renumbering as the new baseline. We call

this Baseline-III. In Table 6.6, we report the comparison of the ParTBC techniques

with Baseline-III. This is the geomean speedup and error of the different techniques in

ParTBC computed across k ∈ {100, 500, 1000, 2000, 3000, 5000} for all graphs in our

testbed. α denotes the fraction of vertices chosen as sources.

We observe that the techniques achieve high speedups for smaller α. This is due to

fewer outerloop iterations. On the other hand, as one would expect, the approximation

error is also high. As α increases, both the speedup and the error reduce. Out of the

six variants, Random and DynRR achieve the least error. The effect-difference across

techniques, however, reduces with increasing α; for instance, beyond α = 0.8, all the

techniques achieve similar accuracy.

We observe that for α ≥ 0.5, the overall mean error is less than 6% for techniques

Random, RRR, Dyn, DynRR, with decent speedups. Thus, these techniques bear the

potential to estimate the set of top-k vertices faster with a small accuracy loss for a

variety of graphs.

To study the robustness of the proposed techniques, we study the effect of varying

107

R
an

do
m

α
Mean Mean

D
yn

α
Mean Mean

speedup error speedup error
0.1 7.6× 9.7% 0.1 8.3× 16.4%
0.2 3.3× 7.3% 0.2 3.9× 11.9%
0.3 2.6× 5.4% 0.3 2.7× 8.6%
0.4 1.8× 4.9% 0.4 2.2× 7.1%
0.5 1.3× 3.7% 0.5 1.8× 5.5%
0.6 1.2× 3.0% 0.6 1.2× 4.2%
0.7 1.1× 2.4% 0.7 1.1× 3.0%
0.8 1.1× 2.0% 0.8 1.1× 2.0%

A
sc

en
di

ng

0.1 7.4× 27.7%

D
es

ce
nd

in
g

0.1 7.3× 17.3%
0.2 3.2× 20.1% 0.2 3.2× 13.0%
0.3 2.4× 14.6% 0.3 2.4× 9.6%
0.4 1.6× 12.0% 0.4 1.7× 8.7%
0.5 1.3× 9.3% 0.5 1.4× 6.6%
0.6 1.1× 4.9% 0.6 1.2× 5.0%
0.7 1.1× 3.6% 0.7 1.1× 4.7%
0.8 1.1× 2.2% 0.8 1.1× 3.5%

R
R

R

0.1 8.1× 11.9%
D

yn
R

R
0.1 8.7× 15.8%

0.2 3.6× 10.0% 0.2 3.8× 10.5%
0.3 2.4× 7.9% 0.3 2.8× 8.1%
0.4 2.1× 7.1% 0.4 2.1× 6.9%
0.5 1.6× 5.8% 0.5 1.7× 5.3%
0.6 1.2× 4.2% 0.6 1.3× 4.1%
0.7 1.1× 3.0% 0.7 1.2× 2.8%
0.8 1.1× 2.5% 0.8 1.1× 1.6%

Table 6.6: Overall results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1
0

0

 5
0

0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 5
0

0
0

E
rr

o
r

(%
)

Top-K

soc-Pokec, alpha = 0.5 Random

Ascending

Descending

Dyn

RRR

DynRR

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1
0

0

 5
0

0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 5
0

0
0

E
rr

o
r

(%
)

Top-K

loc-Gowalla, alpha = 0.5

Random

Ascending

Descending

Dyn

RRR

DynRR

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 1
0

0

 5
0

0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 5
0

0
0

E
rr

o
r

(%
)

Top-K

random17, alpha = 0.5 Random

Ascending

Descending

Dyn

RRR

DynRR

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1
0

0

 5
0

0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 5
0

0
0

E
rr

o
r

(%
)

Top-K

rmat17, alpha = 0.5 Random

Ascending

Descending

Dyn

RRR

DynRR

 0

 1

 2

 3

 4

 5

 6

 1
0

0

 5
0

0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 5
0

0
0

E
rr

o
r

(%
)

Top-K

usroad48, alpha = 0.5 Random

Ascending

Descending

Dyn

RRR

DynRR

Figure 6.5: Graph-wise effect of varying k on the error for α = 0.5

108

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1
0

0

 5
0

0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 5
0

0
0

E
rr

o
r

(%
)

Top-K

DynRR, alpha = 0.2 SP

LG

RNM

RMT

RNUS

 0

 5

 10

 15

 20

 25

 1
0

0

 5
0

0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 5
0

0
0

E
rr

o
r

(%
)

Top-K

DynRR, alpha = 0.5 SP

LG

RNM

RMT

RNUS

 0

 2

 4

 6

 8

 10

 12

 1
0

0

 5
0

0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 5
0

0
0

E
rr

o
r

(%
)

Top-K

DynRR, alpha = 0.8 SP

LG

RNM

RMT

RNUS

Figure 6.6: Effect of varying k on the error for DynRR

k on error. Figure 6.5 shows the variation in error with k on different graphs for various

proposed techniques for α = 0.5. As a general trend across all graphs, the absolute

error in top-k increases with k.

For α = 0.5, the error is least for the road-network graph (RNUS) – below 6%

across all techniques, while the error is highest for the random graph (RNM). In the

case of RNUS graph, RRR maintains the least error (below 2%) for all k. Random,

Dyn, and DynRR follow closely with error less than 3%. The increase in error with k is

slow for these four techniques. RRR leads to the least error for road-networks because

a road-network has low, uniform vertex degrees. Thus selecting the nodes in a round-

robin fashion selects favorable source nodes. The Random technique performs well on

road-networks since nodes have similar characteristics.

We note that for power-law graphs (e.g. SP, RMT), the error is small (below 6%) for

the Random, Dyn and DynRR techniques. The error for these three techniques decreases

rapidly with an increase in k, and the errors are also very similar for large k. Uptil

k = 2000, Random has the least error (below 4%), but for higher k, the Dyn and DynRR

have the least errors (below 4%). In general, DynRR performs well for larger k for all

graphs because the initial set of seed nodes selected using the round-robin technique

provides a fair share of the BC values to the various important nodes.

Among all graphs, random graph (e.g. RNM) exhibits high error. It is because

of a lack of well-defined structure. It is noteworthy that for DynRR (Figure 6.6), the

109

error does not exceed 7% for any of the graphs for α = 0.5 for reasonably large k

in our setup. The deviation in error is also small. Overall, DynRR emerges as a very

stable technique that works consistently well across all but random graphs, for all k.

We observed similar patterns in variation of k for α = 0.8.

6.5.2 Effects of the fraction of source nodes

Figure 6.7 shows the variation in error with α for various proposed techniques for k =

500. For each graph, for each technique, the error decreases with increase in α since

a higher value of α translates to performing more work and moving closer to the exact

version (α = 1).

For k = 500, we observe that for road-network graphs (e.g. RNUS), beyond α =

0.3 the change in error is small and very gradual for Dyn and DynRR. The error is also

low. The slight slope of the curve suggests little change in the relative ordering of the

BC scores of the nodes on choosing more source nodes. It also hints at the scalability of

these techniques for road-networks. We may terminate Brandes’ algorithm after 30%

iterations, without incurring high error, and gain immensely in execution time.

The error tends to decrease slowly in case of SP and RMT graphs with DynRR,

RRR, Dyn and Random for α ≥ 0.5. For RNM graph, it is seen that there is a steep

decrease in error values with increase in α. This shows that the relative ordering of

nodes continues to change even for high α. Thus, for random graphs, exact BC needs

to be computed for top-k. Overall, we observe that the technique DynRR has quite a

good accuracy for most of the graphs (Figure 6.8) for α ≥ 0.5. At α = 0.5, the error is

less than 5% for most of the graphs, and as α increases, the percentage error decreases,

which indicates the robustness and the scalability of the technique. We observed similar

trends for higher values of k.

While the results suggest that the techniques DynRR and Random are comparable,

DynRR trumps Random in practice on two accounts: 1) DynRR has lower overhead in

computing the stopping condition compared to Random. 2) DynRR is deterministic,

while in case of Random, an execution may result in higher inaccuracy than usual due

to the selection of unfavorable source nodes.

110

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

(%
)

alpha

soc-Pokec, K = 500 Random

Ascending

Descending

Dyn

RRR

DynRR

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

(%
)

alpha

loc-Gowalla, K = 500 Random

Ascending

Descending

Dyn

RRR

DynRR

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

(%
)

alpha

random17, K = 500 Random

Ascending

Descending

Dyn

RRR

DynRR

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

(%
)

alpha

rmat17, K = 500 Random

Ascending

Descending

Dyn

RRR

DynRR

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

(%
)

alpha

usroad48, K = 500 Random

Ascending

Descending

Dyn

RRR

DynRR

Figure 6.7: Graph-wise effect of varying α on the error for k = 500

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

(%
)

alpha

DynRR, K = 500 SP

LG

RNM

RMT

RNUS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

(%
)

alpha

DynRR, K = 1000 SP

LG

RNM

RMT

RNUS

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

(%
)

alpha

DynRR, K = 5000 SP

LG

RNM

RMT

RNUS

Figure 6.8: Effect of varying α on the error for DynRR

111

6.5.3 Controlling the number of outerloop iterations

For all the techniques in ParTBC, the number of outerloop iterations can be tuned by

setting an appropriate stopping criterion. For every technique, the speedup and error

are tied to the number of outerloop iterations. As discussed in Section 6.4, the stopping

criterion is a function of Ct and t. In general, t dominates Ct in governing the number

of iterations as the top-t vertices typically stabilize in P (� Ct) iterations.

The trends in Figure 6.7 can be used as a guideline for setting Ct and t for different

types of graphs. In general, to get good speedups and accuracy across all the proposed

techniques, Ct and t should both be set to a small value for road-networks. For power-

law graphs, Ct and t should be higher.

In our experiments, for DynRR, we assign Ct = 5 and t = 5 for power-law graphs,

and Ct = 4 and t = 3 for road-networks. This resulted in the execution of 55% outer-

loop iterations for LG graph and 28% iterations for the RNUS graph using DynRR. On

the other hand, for Random, we assign Ct = 10 and t = 50 for power-law graphs, and

Ct = 5 and t = 40 for road-networks. This resulted in the execution of 60% outerloop

iterations for LG graph and 35% iterations for the RNUS graph using Random.

6.5.4 Discussion on quality of the reported top-k

To assess the quality of the top-k nodes reported by the proposed techniques, we con-

sider two measures: (i) the mean exact rank of the nodes in top-k that are not reported

using the approximate techniques. (ii) the mean exact rank of the nodes that are not in

the exact top-k but are erroneously included.

We argue, on empirical evidence, that the nodes we report as top-k are indeed im-

portant. We observe that the top-k nodes we fail to include in the set of top-k vertices

are the ones that have their true ranks close to k, based on their exact BC scores. So,

our techniques miss out on less important nodes among the exact top-k. Figure 6.9

shows the average true rank of the nodes we missed for DynRR. The average rank is

expressed as a fraction of k. The nodes having lower ranks are more important. In the

plot, values close to 100% depict that the nodes we missed have an actual rank closer to

112

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FB SP LG RMT RNUS RNM

A
v
g
.
V

e
rt

e
x
 R

a
n
k

M
is

se
d
 (

%
)

Graphs

Top-100 Top-500 Top-1000 Top-2000

(a) α = 0.2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FB SP LG RMT RNUS RNM

A
v
g
.
V

e
rt

e
x
 R

a
n
k

M
is

se
d
 (

%
)

Graphs

Top-100 Top-500 Top-1000 Top-2000

(b) α = 0.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FB SP LG RMT RNUS RNM

A
v
g
.
V

e
rt

e
x
 R

a
n
k

M
is

se
d
 (

%
)

Graphs

Top-100 Top-500 Top-1000 Top-2000

(c) α = 0.8

Figure 6.9: Average rank of top-k vertices missed (expressed as a percentage of k)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FB SP LG RMT RNUS RNMK
/(

A
v
g
.
E
rr

o
n
e
o
u
s

V
e
rt

e
x
 R

a
n
k

In
cl

u
d
e
d
)

Graphs

Top-100 Top-500 Top-1000 Top-2000

(a) α = 0.2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FB SP LG RMT RNUS RNMK
/(

A
v
g
.
E
rr

o
n
e
o
u
s

V
e
rt

e
x
 R

a
n
k

In
cl

u
d
e
d
)

Graphs

Top-100 Top-500 Top-1000 Top-2000

(b) α = 0.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FB SP LG RMT RNUS RNMK
/(

A
v
g
.
E
rr

o
n
e
o
u
s

V
e
rt

e
x
 R

a
n
k

In
cl

u
d
e
d
)

Graphs

Top-100 Top-500 Top-1000 Top-2000

(c) α = 0.8

Figure 6.10: Average rank of vertices erroneously included in top-k (expressed as k /
Avg. rank)

113

k. We observe that for low α (Figure 6.9a), we miss more number of important nodes

for all types of graphs. This is due to a high error in the reported top-k. For α = 0.5

(Figure 6.9b), the values lie between 90% and 100% for all graphs except for random

graphs, for which the error in top-k is high. Following a similar trend, the accuracy

approaches 100% for α = 0.8 (Figure 6.9c) for all the graphs. Among the graphs, the

road network is the most stable for all k for all α, while the random graph is the most

unstable. In general, we observe that average rank of the nodes missed (as a percentage

of k) is proportional to the accuracy of the technique. This shows that we miss the nodes

having true ranks in the range (accuracy% of k, k).

We further observe that the nodes we erroneously include in the top-k vertices are

also among the important nodes although they are not in the exact top-k vertices. In

order to verify this, we observed the ratio R = k

true avg. rank of erroneous nodes. Fig-

ure 6.10 shows this ratio, expressed as a percentage, for DynRR. Higher this value,

closer is the average rank of the erroneous nodes to k. From the plot, we can compute

the range of the true ranks of the erroneously included nodes within ((1 − 1/R) × k)

away from k on an average. For α = 0.5 (Figure 6.10b), the values are in the range

90% – 100% for all the graphs except the random graph. The true rank of the nodes

erroneously included in the top-k are in the range [k+1, 1
0.9
×k), that is, [k+1, 1.1×k).

For higher α, the range shrinks. For α = 0.8 (Figure 6.10c), the range reduces to [k+1,

1.02× k) on an average for all graphs except the random graph. Since the true rank of

the erroneous nodes is close to k, the nodes we include in the top-k are important.

6.5.5 ParTBC techniques are platform-independent

We believe that the ParTBC techniques are platform-independent. The source selection

techniques in ParTBC exploit the fact that in Brandes’ algorithm, the subset of the ver-

tices picked as sources, and their order is instrumental in distributing a sizeable fraction

of their respective BC scores in the early iterations of the algorithm, facilitating quicker

estimation of the top-k vertices. These do not depend on or exploit any GPU-specific

details such the GPU architecture. Hence, while we have evaluated the techniques only

on GPU, we believe that ParTBC would work on CPUs too.

114

6.6 Summary

In this chapter, we presented a systematic study of heuristics for selecting source ver-

tices in Brandes’ algorithm that enable us to establish the relative ordering among the

nodes quicker. Further, we proposed a novel graph-reordering scheme to make the

graph layout more regular to allow efficient coalesced access of data to/from global

memory in parallel Brandes’ algorithm on GPU. The renumbering scheme is beneficial

to other parallel graph algorithms on GPUs that employ vertex-centric push-based im-

plementation. We demonstrated empirically that our proposed techniques compute the

top-k BC vertices with a speedup of 2.5× compared to the exact parallel Brandes’ algo-

rithm in exchange for a mean error of less than 6% on graphs of varying characteristics.

Our techniques are robust and work well for larger values of k.

115

CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we proposed several i) algorithm- and architecture-independent;

ii) algorithm-independent but architecture-specific, and iii) algorithm-specific but

architecture-independent techniques for enhancing the efficiency of parallel graph pro-

cessing using approximate computing. As evidenced by the experimental evaluation,

our proposals are effective in improving the performance of popular graph algorithms

for various classes of graphs encountered in practice, at the expense of accuracy.

With Graprox, we studied the effect of various algorithmic approximations on

graph algorithms on GPUs. It is believed that for irregular computations such as graph

algorithms, the effectiveness of a technique depends primarily upon the input. For in-

stance, there exist algorithms that target specially power-law graphs and which do not

work well with large diameter graphs. On the contrary, our study showed that while the

amounts of performance improvement and inaccuracy vary, approximations are consis-

tently helpful in achieving the trade-off well. Our techniques are general and applicable

to other graph algorithms as well.

We next proposed Graffix— a set of graph transformation techniques for making

graph processing on GPUs performant using approximate computing. Our techniques

are targeted at improving memory coalescing, memory latency, and thread divergence.

In order to improve memory coalescing, we reorder the graph vertices and replicate a

select set of vertices to make the graph more structured. We reduce memory latency

by processing the well-connected sub-graphs, iteratively, inside shared memory. We

alleviate thread divergence, resulting from skewed degree distribution, by normalizing

degrees across nodes assigned to a warp. We illustrated that our proposed techniques

reduce execution times of parallel implementations of graph algorithms appreciably in

exchange for small inaccuracies in the final output.

ParTBC proposed techniques for faster estimation of top-k betweenness centrality

vertices in a graph. Our techniques are aimed at picking a subset of the vertices as

sources in a specific order such that all graph vertices receive a sizeable fraction of their

respective BC scores in the early iterations of Brandes’ algorithm, facilitating quicker

estimation of the top-k vertices. We demonstrated, empirically, the effectiveness of our

techniques on graphs of varying characteristics and sizes.

A key feature of all the techniques presented in the thesis is that they provide tun-

able knobs to change the degree of approximation injected and control the performance-

accuracy trade-off in graph applications. Our approximate computing techniques com-

plement (and do not compete with) the existing optimization techniques and could be

applied on top of these optimizations to enhance the execution performance further.

Overall, we showed that approximate computation of graph algorithms is a robust

way of dealing with irregularities. Approximate computing combined with paralleliza-

tion promises to make heavy-weight graph computation practical, as well as scalable.

We envision that with rapidly growing data sizes, our techniques would be a build-

ing block for (i) versatile devices performing a range of precision-efficiency trade-offs,

and (ii) software models that predict the right amount of approximation to be added to

computation, to achieve a required service.

7.2 Limitations

The results presented in this thesis are empirical. For all the works – Graprox, Graffix

and ParTBC, we do not prove theoretical bounds on the quality of the results, i.e., the

magnitude of the error incurred upon applying our approximate methods.

We do not provide a cost model that outputs the appropriate values of the tunable

parameters for achieving the desired performance-accuracy tradeoff. While we provide

guidelines to assist in getting to the desired values of the tunable parameters faster,

determining the correct values would require running extensive experimentation for

a new algorithm-graph pair. The results we present in the thesis could be helpful in

designing such a cost model.

118

7.3 Future Work

We discuss a few interesting directions that could be explored building on the ideas

presented in the thesis.

Parallel approximate processing on dynamic graphs. The ideas presented in the

thesis have been shown to be applicable and effective in improving the efficiency of

graph analytics on static graphs. However, many real-world graphs, such as social net-

works and communication networks, are observed to be dynamic, evolving over time.

A major challenge in the processing of dynamic graphs is to minimize re-computation,

after each update and to apply updates incrementally. It would be interesting to explore

techniques for incremental updates and approximate computing for further improving

the scalability of dynamic graph processing on GPU. In cases where the changes are

frequent, approximate computing may be used to consider only a subset of the changes

to improve the performance while incurring small errors. Further, updates may be con-

sidered to arrive in batches or as a stream (with a limited buffer). This may be exploited

to effect fewer re-computations by taking into account the cumulative effect or overlap-

ping computations of the batched updates.

Framework for high performance approximate graph processing. As we have

shown, combining parallelization with approximate graph processing promises signifi-

cantly higher performance in graph analytics. However, applying and devising approx-

imate techniques for getting the desired accuracy and efficiency is non-trivial and often

requires considerable effort, both in terms of programming and in arguing about the

error bounds on the solution. This is primarily because the performance and accuracy

of approximate techniques for graph analytics are contingent on the nature of the graph

algorithm, the input graph and the underlying hardware. There are several frameworks

that target exact graph analytics on parallel platforms. More recently there have been

efforts to design frameworks for specific graph approximations, such as lossy graph

compression. However, there are no generalized frameworks that facilitate design and

analysis of techniques for approximate graph processing. It would be useful to develop

a generalized framework for parallel approximate graph analytics. A key feature of the

framework would be a performance cost model that would enable the comparison of

119

different applicable approximate computing techniques using an accuracy metric. The

accuracy metric may either be graph-specific, or algorithm-specific or both. The frame-

work would include a set of graph-specific and algorithm-specific accuracy measures.

The user may also specify a custom accuracy measure. For example, in case of algo-

rithms that output a vector of vertex attributes (e.g. betweenness centrality, pagerank),

the accuracy may be measured as a count of the number of vertices for which the de-

viation is more than the acceptable threshold. Further, given an approximation budget

(in terms of acceptable accuracy and desired speedup) and the accuracy metric, the sys-

tem would report the most suitable approximate computing technique. For example, a

technique with the highest speedup to error ratio may be deemed suitable if it respects

the specified budget. Designing mechanisms to evaluate the performance tradeoff of a

specific approximate technique is another challenge. Another important feature of the

framework would be to facilitate applying multiple approximate techniques, if feasible.

This would enable the user to develop techniques as a composition of existing ones.

Further, different techniques may perform well for different metrics and it may be un-

clear how they may perform together. The efficacy of the resulting technique may be

studied using the performance model of the framework. Introducing these functionali-

ties into existing high performance graph frameworks for exact graph processing would

require making major changes to the design and the existing code base.

Locality Sensitive Hashing based approximate parallel graph processing.

Locality Sensitive Hashing (LSH) (Indyk and Motwani (1998); Gionis et al. (1999))

allows us to hash objects into values such that objects that are similar will be hashed

to the same value with high probability. The notion of similarity needs to be defined

appropriately for different applications. A formal definition of LSH is the following:

A family of hash functions, H is called (r1, r2, P1, P2)–locality sensitive if for any

two items p and q

• if dist(p, q) ≤ r1, then PH[h(p) = h(q)] ≥ P1

• if dist(p, q) ≥ r2, then PH[h(p) = h(q)] ≤ P2; where r1 < r2, P1 > P2.

LSH-based methods provide asymptotic theoretical properties which could be lever-

aged for approximate parallel graph processing. A possible formulation could be the

120

following:

For an algorithm (and for a class of graphs), define a notion of distance. This dis-

tance measure will let us decide the extent of similarity between the entities of interest.

More the distance, lesser the similarity between objects. Further, we would want this

distance to be a metric distance to make use of the theoretical guarantees provided by

LSH. The formulation of a locality sensitive hash function, for the decided notion of

distance, will be such that similar entities will be hashed in to the same bucket and

dissimilar entities hash in to different buckets.

The entities/objects of interest would be either edges or vertices, which will be

governed by the quantity being computed by the algorithm. For instance, for finding

strongly connected components, the LSH formulation would hash the nodes belonging

to the same strongly connected component in one bucket and so on. In the case of top-k

BC-vertex computation, the nodes whose BC scores are nearby would be hashed in to

the same bucket.

The approximations in such techniques would lie in the formulation and quality of

the locality sensitive hash function. We can then parallelize these LSH techniques for

parallel execution on GPUs. Since these techniques would be far more generic and

would apply to a large subset of graph algorithms and input graphs, their paralleliza-

tion would enable faster graph processing with theoretical bounds on the quality of the

result.

121

REFERENCES

1. Ahn, K. J., S. Guha, and A. McGregor, Analyzing graph structure via linear measure-
ments. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12. Society for Industrial and Applied Mathematics, USA, 2012.

2. Ashari, A., N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sadayappan, Fast
sparse matrix-vector multiplication on gpus for graph applications. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’14. IEEE Press, Piscataway, NJ, USA, 2014. ISBN 978-1-4799-
5500-8. URL https://doi.org/10.1109/SC.2014.69.

3. Bader, D. A., S. Kintali, K. Madduri, and M. Mihail, Approximating betweenness
centrality. In Proceedings of the 5th International Conference on Algorithms and Mod-
els for the Web-graph, WAW’07. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN 3-
540-77003-8, 978-3-540-77003-9. URL http://dl.acm.org/citation.cfm?
id=1777879.1777889.

4. Bader, D. A. and K. Madduri, Parallel algorithms for evaluating centrality indices in
real-world networks. ICPP ’06. IEEE Computer Society, Washington, DC, USA, 2006.
ISBN 0-7695-2636-5. URL http://dx.doi.org/10.1109/ICPP.2006.57.

5. Balaji, V. and B. Lucia, Combining data duplication and graph reordering to acceler-
ate parallel graph processing. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’19. Association for
Computing Machinery, New York, NY, USA, 2019. ISBN 9781450366700. URL
https://doi.org/10.1145/3307681.3326609.

6. Bandyopadhyay, B., D. Fuhry, A. Chakrabarti, and S. Parthasarathy, Topolog-
ical graph sketching for incremental and scalable analytics. In Proceedings of the
25th ACM International on Conference on Information and Knowledge Management,
CIKM ’16. Association for Computing Machinery, New York, NY, USA, 2016. ISBN
9781450340731. URL https://doi.org/10.1145/2983323.2983735.

7. Benczúr, A. A. and D. R. Karger, Approximating s-t minimum cuts in Õ(n2) time. In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96. ACM, New York, NY, USA, 1996. ISBN 0-89791-785-5.

8. Besta, M., M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler, To push or
to pull: On reducing communication and synchronization in graph computations. In
Proceedings of the 26th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’17. Association for Computing Machinery, New York,
NY, USA, 2017. ISBN 9781450346993. URL https://doi.org/10.1145/
3078597.3078616.

9. Besta, M., S. Weber, L. Gianinazzi, R. Gerstenberger, A. Ivanov, Y. Oltchik, and
T. Hoefler, Slim Graph: Practical Lossy Graph Compression for Approximate Graph

123

https://doi.org/10.1109/SC.2014.69
http://dl.acm.org/citation.cfm?id=1777879.1777889
http://dl.acm.org/citation.cfm?id=1777879.1777889
http://dx.doi.org/10.1109/ICPP.2006.57
https://doi.org/10.1145/3307681.3326609
https://doi.org/10.1145/2983323.2983735
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1145/3078597.3078616

Processing, Storage, and Analytics. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’19. ACM, New
York, NY, USA, 2019. ISBN 978-1-4503-6229-0. URL http://doi.acm.org/
10.1145/3295500.3356182.

10. Boldi, P., M. Rosa, M. Santini, and S. Vigna, Layered label propagation: A multires-
olution coordinate-free ordering for compressing social networks. In Proceedings of
the 20th International Conference on World Wide Web, WWW ’11. Association for
Computing Machinery, New York, NY, USA, 2011. ISBN 9781450306324. URL
https://doi.org/10.1145/1963405.1963488.

11. Borassi, M. and E. Natale (2019). Kadabra is an adaptive algorithm for between-
ness via random approximation. J. Exp. Algorithmics, 24(1). ISSN 1084-6654. URL
https://doi.org/10.1145/3284359.

12. Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of
Mathematical Sociology, 25(2), 163–177.

13. Burtscher, M., R. Nasre, and K. Pingali, A Quantitative Study of Irregular Pro-
grams on GPUs. In Proceedings of the 2012 IEEE International Symposium on Work-
load Characterization (IISWC), IISWC ’12. IEEE Computer Society, Washington, DC,
USA, 2012. ISBN 978-1-4673-4531-6. URL http://dx.doi.org/10.1109/
IISWC.2012.6402918.

14. Carrillo, S., J. Siegel, and X. Li, A control-structure splitting optimization for gpgpu.
In Proceedings of the 6th ACM Conference on Computing Frontiers, CF ’09. ACM,
New York, NY, USA, 2009. ISBN 978-1-60558-413-3. URL http://doi.acm.
org/10.1145/1531743.1531766.

15. Chakrabarti, D., Y. Zhan, and C. Faloutsos, R-MAT: A recursive model for graph
mining. In Proceedings of the Fourth SIAM International Conference on Data Mining,
Lake Buena Vista, Florida, USA, April 22-24, 2004. SIAM, 2004. URL https://
doi.org/10.1137/1.9781611972740.43.

16. Chen, R., J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen (2019a). Powerlyra: Dif-
ferentiated graph computation and partitioning on skewed graphs. ACM Trans. Parallel
Comput., 5(3), 13:1–13:39. ISSN 2329-4949. URL http://doi.acm.org/10.
1145/3298989.

17. Chen, R., J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen (2019b). Powerlyra: Dif-
ferentiated graph computation and partitioning on skewed graphs. ACM Trans. Parallel
Comput., 5(3). ISSN 2329-4949. URL https://doi.org/10.1145/3298989.

18. Coffman, T., S. Greenblatt, and S. Marcus (2004). Graph-based technologies for
intelligence analysis. Commun. ACM, 47(3), 45–47. ISSN 0001-0782. URL http:
//doi.acm.org/10.1145/971617.971643.

19. Dathathri, R., G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden, M. Snir,
and K. Pingali, Gluon: A communication-optimizing substrate for distributed het-
erogeneous graph analytics. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018. Association for

124

http://doi.acm.org/10.1145/3295500.3356182
http://doi.acm.org/10.1145/3295500.3356182
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/3284359
http://dx.doi.org/10.1109/IISWC.2012.6402918
http://dx.doi.org/10.1109/IISWC.2012.6402918
http://doi.acm.org/10.1145/1531743.1531766
http://doi.acm.org/10.1145/1531743.1531766
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
http://doi.acm.org/10.1145/3298989
http://doi.acm.org/10.1145/3298989
https://doi.org/10.1145/3298989
http://doi.acm.org/10.1145/971617.971643
http://doi.acm.org/10.1145/971617.971643

Computing Machinery, New York, NY, USA, 2018. ISBN 9781450356985. URL
https://doi.org/10.1145/3192366.3192404.

20. Devshatwar, S., M. Amilkanthwar, and R. Nasre, GPU Centric Extensions for Par-
allel Strongly Connected Components Computation. In Proceedings of the 9th Annual
Workshop on General Purpose Processing Using Graphics Processing Unit, GPGPU
’16. ACM, New York, NY, USA, 2016. ISBN 978-1-4503-4195-0.

21. Dhulipala, L., G. E. Blelloch, and J. Shun, Theoretically efficient parallel graph
algorithms can be fast and scalable. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures, SPAA ’18. Association for Computing
Machinery, New York, NY, USA, 2018. ISBN 9781450357999. URL https:
//doi.org/10.1145/3210377.3210414.

22. Gharaibeh, A., L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu, A Yoke of Oxen
and a Thousand Chickens for Heavy Lifting Graph Processing. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation Techniques,
PACT ’12. ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1182-3. URL http:
//doi.acm.org/10.1145/2370816.2370866.

23. Gill, G., R. Dathathri, L. Hoang, R. Peri, and K. Pingali (2020). Single machine
graph analytics on massive datasets using intel optane dc persistent memory. Proc.
VLDB Endow., 13(8), 1304–1318. ISSN 2150-8097. URL https://doi.org/10.
14778/3389133.3389145.

24. Gionis, A., P. Indyk, and R. Motwani, Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Conference on Very Large Data
Bases, VLDB ’99. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1999. ISBN 1-55860-615-7. URL http://dl.acm.org/citation.cfm?id=
645925.671516.

25. Girvan, M. and M. Newman (2002). Community structure in social and biological
networks. PNAS, 99(12), 7821 – 7826. ISSN 0027-8424.

26. Goldberg, A. V. and C. Harrelson, Computing the shortest path: A search meets graph
theory. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’05. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2005. ISBN 0-89871-585-7.

27. Gonzalez, J. E., Y. Low, H. Gu, D. Bickson, and C. Guestrin, Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, OSDI’12.
USENIX Association, USA, 2012. ISBN 9781931971966.

28. Grossman, S., H. Litz, and C. Kozyrakis, Making pull-based graph processing per-
formant. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’18. Association for Computing Machinery,
New York, NY, USA, 2018. ISBN 9781450349826. URL https://doi.org/10.
1145/3178487.3178506.

125

https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3210377.3210414
https://doi.org/10.1145/3210377.3210414
http://doi.acm.org/10.1145/2370816.2370866
http://doi.acm.org/10.1145/2370816.2370866
https://doi.org/10.14778/3389133.3389145
https://doi.org/10.14778/3389133.3389145
http://dl.acm.org/citation.cfm?id=645925.671516
http://dl.acm.org/citation.cfm?id=645925.671516
https://doi.org/10.1145/3178487.3178506
https://doi.org/10.1145/3178487.3178506

29. Gubichev, A., S. Bedathur, S. Seufert, and G. Weikum, Fast and accurate estimation
of shortest paths in large graphs. In Proceedings of the 19th ACM International Confer-
ence on Information and Knowledge Management, CIKM ’10. ACM, New York, NY,
USA, 2010. ISBN 978-1-4503-0099-5.

30. Guha, S. and A. McGregor (2012). Graph synopses, sketches, and streams: A survey.
Proc. VLDB Endow., 5(12), 2030–2031. ISSN 2150-8097. URL https://doi.
org/10.14778/2367502.2367570.

31. Haghir Chehreghani, M., An efficient algorithm for approximate betweenness cen-
trality computation. CIKM ’13. ACM, New York, NY, USA, 2013. ISBN 978-1-4503-
2263-8. URL http://doi.acm.org/10.1145/2505515.2507826.

32. Han, W., D. Mawhirter, B. Wu, and M. Buland, Graphie: Large-scale asynchronous
graph traversals on just a gpu. In 2017 26th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT). 2017.

33. Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger, Kla: A new algorith-
mic paradigm for parallel graph computations. In Proceedings of the 23rd Interna-
tional Conference on Parallel Architectures and Compilation, PACT ’14. Association
for Computing Machinery, New York, NY, USA, 2014. ISBN 9781450328098. URL
https://doi.org/10.1145/2628071.2628091.

34. Harshvardhan, B. West, A. Fidel, N. M. Amato, and L. Rauchwerger, A hybrid
approach to processing big data graphs on memory-restricted systems. In 2015 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 2015. ISSN
1530-2075.

35. Hoang, L., M. Pontecorvi, R. Dathathri, G. Gill, B. You, K. Pingali, and V. Ra-
machandran, A round-efficient distributed betweenness centrality algorithm. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming,
PPoPP ’19. Association for Computing Machinery, New York, NY, USA, 2019. ISBN
9781450362252. URL https://doi.org/10.1145/3293883.3295729.

36. Hong, C., A. Sukumaran-Rajam, J. Kim, and P. Sadayappan, Multigraph: Efficient
graph processing on gpus. In 2017 26th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT). 2017.

37. Hong, S., S. Depner, T. Manhardt, J. Van Der Lugt, M. Verstraaten, and H. Chafi,
Pgx.d: A fast distributed graph processing engine. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
âĂŹ15. Association for Computing Machinery, New York, NY, USA, 2015. ISBN
9781450337236. URL https://doi.org/10.1145/2807591.2807620.

38. Hong, S., S. K. Kim, T. Oguntebi, and K. Olukotun, Accelerating CUDA graph al-
gorithms at maximum warp. In PPoPP’11. ACM, 2011. ISBN 978-1-4503-0119-0.

39. Indyk, P. and R. Motwani, Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98. ACM, New York, NY, USA, 1998. ISBN 0-89791-
962-9. URL http://doi.acm.org/10.1145/276698.276876.

126

https://doi.org/10.14778/2367502.2367570
https://doi.org/10.14778/2367502.2367570
http://doi.acm.org/10.1145/2505515.2507826
https://doi.org/10.1145/2628071.2628091
https://doi.org/10.1145/3293883.3295729
https://doi.org/10.1145/2807591.2807620
http://doi.acm.org/10.1145/276698.276876

40. Jin, S., Z. Huang, Y. Chen, D. Chavarría-Miranda, J. Feo, and P. C. Wong, A
novel application of parallel betweenness centrality to power grid contingency analysis.
In 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS).
2010.

41. Jun, S.-W., A. Wright, S. Zhang, S. Xu, and Arvind (2017). Bigsparse: High-
performance external graph analytics.

42. Karantasis, K. I., A. Lenharth, D. Nguyen, M. J. Garzarán, and K. Pingali, Par-
allelization of reordering algorithms for bandwidth and wavefront reduction. In SC
’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 2014. ISSN 2167-4329.

43. Khorasani, F., K. Vora, R. Gupta, and L. N. Bhuyan, Cusha: Vertex-centric graph
processing on gpus. In Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing, HPDC ’14. ACM, New York, NY,
USA, 2014. ISBN 978-1-4503-2749-7. URL http://doi.acm.org/10.1145/
2600212.2600227.

44. Kim, H., J. Tang, R. Anderson, and C. Mascolo (2012). Centrality prediction in
dynamic human contact networks. Computer Networks, 56(3), 983 – 996. ISSN 1389-
1286. URL http://www.sciencedirect.com/science/article/pii/
S1389128611003975. (1) Complex Dynamic Networks (2) P2P Network Measure-
ment.

45. Kim, K.-H. and Q.-H. Park (2012). Overlapping computation and communication
of three-dimensional FDTD on a GPU cluster. Computer Physics Communications,
183(11), 2364 – 2369. ISSN 0010-4655. URL http://www.sciencedirect.
com/science/article/pii/S0010465512002044.

46. Koutis, I. and S. C. Xu (2016). Simple parallel and distributed algorithms for spectral
graph sparsification. ACM Trans. Parallel Comput., 3(2). ISSN 2329-4949. URL
https://doi.org/10.1145/2948062.

47. Kunegis, J. (2017). KONECT: The koblenz network collection. http://konect.
uni-koblenz.de.

48. Kyrola, A., G. Blelloch, and C. Guestrin, Graphchi: Large-scale graph computa-
tion on just a pc. In Proceedings of the 10th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’12. USENIX Association, USA, 2012. ISBN
9781931971966.

49. Lakhotia, K., S. Singapura, R. Kannan, and V. Prasanna, Recall: Reordered cache
aware locality based graph processing. In 2017 IEEE 24th International Conference on
High Performance Computing (HiPC). 2017. ISSN null.

50. Lasalle, D. and G. Karypis, Multi-threaded graph partitioning. In Proceedings of
the 2013 IEEE 27th International Symposium on Parallel and Distributed Process-
ing, IPDPS ’13. IEEE Computer Society, USA, 2013. ISBN 9780769549712. URL
https://doi.org/10.1109/IPDPS.2013.50.

127

http://doi.acm.org/10.1145/2600212.2600227
http://doi.acm.org/10.1145/2600212.2600227
http://www.sciencedirect.com/science/article/pii/S1389128611003975
http://www.sciencedirect.com/science/article/pii/S1389128611003975
http://www.sciencedirect.com/science/article/pii/S0010465512002044
http://www.sciencedirect.com/science/article/pii/S0010465512002044
https://doi.org/10.1145/2948062
http://konect.uni-koblenz.de
http://konect.uni-koblenz.de
https://doi.org/10.1109/IPDPS.2013.50

51. LeBeane, M., S. Song, R. Panda, J. H. Ryoo, and L. K. John, Data partitioning
strategies for graph workloads on heterogeneous clusters. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Anal-
ysis, SC’15. Association for Computing Machinery, New York, NY, USA, 2015. ISBN
9781450337236. URL https://doi.org/10.1145/2807591.2807632.

52. Leskovec, J. and C. Faloutsos, Sampling from large graphs. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’06. Association for Computing Machinery, New York, NY, USA, 2006. ISBN
1595933395. URL https://doi.org/10.1145/1150402.1150479.

53. Leskovec, J. and R. Sosič (2014). SNAP: A general purpose network analysis and
graph mining library in C++. http://snap.stanford.edu/snap.

54. Liljeros, F., C. Edling, L. Amaral, H. Stanley, and Y. Aberg (2001). The web of
human sexual contacts. Nature, 411, 907 – 908.

55. Lim, Y., U. Kang, and C. Faloutsos (2014). Slashburn: Graph compression and mining
beyond caveman communities. IEEE Transactions on Knowledge and Data Engineer-
ing, 26(12), 3077–3089. ISSN 2326-3865.

56. Liu, W.-H. and A. H. Sherman (1976). Comparative analysis of the cuthill–mckee
and the reverse cuthillâĂŞmckee ordering algorithms for sparse matrices. SIAM Jour-
nal on Numerical Analysis, 13(2), 198–213. URL https://doi.org/10.1137/
0713020.

57. Low, Y., D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein
(2012). Distributed graphlab: A framework for machine learning and data mining in
the cloud. Proc. VLDB Endow., 5(8), 716–727. ISSN 2150-8097. URL https:
//doi.org/10.14778/2212351.2212354.

58. Luo, L., M. Wong, and W.-m. Hwu, An effective GPU implementation of breadth-first
search. In Proceedings of the 47th Design Automation Conference, DAC ’10. ACM,
New York, NY, USA, 2010. ISBN 978-1-4503-0002-5.

59. Maass, S., C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim, Mosaic: Pro-
cessing a trillion-edge graph on a single machine. In Proceedings of the Twelfth Eu-
ropean Conference on Computer Systems, EuroSys âĂŹ17. Association for Comput-
ing Machinery, New York, NY, USA, 2017. ISBN 9781450349383. URL https:
//doi.org/10.1145/3064176.3064191.

60. Madduri, K. and D. A. Bader (2006). GTgraph: A suite of synthetic random graph
generators. http://www.cse.psu.edu/~madduri/software/GTgraph/.
[Online; accessed May 28, 2013].

61. Madduri, K., D. Ediger, K. Jiang, D. A. Bader, and D. Chavarria-Miranda, A
faster parallel algorithm and efficient multithreaded implementations for evaluating be-
tweenness centrality on massive datasets. In Proceedings of the 2009 IEEE Interna-
tional Symposium on Parallel&Distributed Processing, IPDPS ’09. IEEE Computer
Society, Washington, DC, USA, 2009. ISBN 978-1-4244-3751-1. URL https:
//doi.org/10.1109/IPDPS.2009.5161100.

128

https://doi.org/10.1145/2807591.2807632
https://doi.org/10.1145/1150402.1150479
http://snap.stanford.edu/snap
https://doi.org/10.1137/0713020
https://doi.org/10.1137/0713020
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/3064176.3064191
https://doi.org/10.1145/3064176.3064191
http://www.cse.psu.edu/~madduri/software/GTgraph/
https://doi.org/10.1109/IPDPS.2009.5161100
https://doi.org/10.1109/IPDPS.2009.5161100

62. Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, Pregel: A system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’10. Association for Computing Machinery, New York, NY, USA, 2010. ISBN
9781450300322. URL https://doi.org/10.1145/1807167.1807184.

63. McLaughlin, A. and D. A. Bader, Scalable and high performance betweenness central-
ity on the gpu. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14. IEEE Press, Piscataway, NJ,
USA, 2014. ISBN 978-1-4799-5500-8. URL https://doi.org/10.1109/SC.
2014.52.

64. Merrill, D., M. Garland, and A. Grimshaw, Scalable GPU Graph Traversal. In Pro-
ceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12. ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1160-
1.

65. Mittal, S. (2016). A Survey of Techniques for Approximate Computing. ACM Comput.
Surv., 48(4), 62:1–62:33. ISSN 0360-0300.

66. Mumtaz, S. and X. Wang, Identifying top-k influential nodes in networks. In Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment, CIKM ’17. ACM, New York, NY, USA, 2017. ISBN 978-1-4503-4918-5. URL
http://doi.acm.org/10.1145/3132847.3133126.

67. Nasre, R., M. Burtscher, and K. Pingali, Atomic-free irregular computations on
GPUs. In Proceedings of the 6th Workshop on General Purpose Processor Using
Graphics Processing Units, GPGPU-6. ACM, 2013a. ISBN 978-1-4503-2017-7.

68. Nasre, R., M. Burtscher, and K. Pingali, Data-Driven Versus Topology-driven Ir-
regular Computations on GPUs. In Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, IPDPS ’13. IEEE Computer So-
ciety, Washington, DC, USA, 2013b. ISBN 978-0-7695-4971-2. URL https:
//doi.org/10.1109/IPDPS.2013.28.

69. Nasre, R., M. Burtscher, and K. Pingali, Morph Algorithms on GPUs. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’13. ACM, New York, NY, USA, 2013c. ISBN 978-1-4503-1922-5. URL
http://doi.acm.org/10.1145/2442516.2442531.

70. Nodehi Sabet, A. H., J. Qiu, and Z. Zhao, Tigr: Transforming irregular graphs for
gpu-friendly graph processing. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18. ACM, New York, NY, USA, 2018. ISBN 978-1-4503-4911-6. URL
http://doi.acm.org/10.1145/3173162.3173180.

71. Pai, S. and K. Pingali, A compiler for throughput optimization of graph algorithms on
gpus. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016. ACM,
New York, NY, USA, 2016. ISBN 978-1-4503-4444-9. URL http://doi.acm.
org/10.1145/2983990.2984015.

129

https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/SC.2014.52
https://doi.org/10.1109/SC.2014.52
http://doi.acm.org/10.1145/3132847.3133126
https://doi.org/10.1109/IPDPS.2013.28
https://doi.org/10.1109/IPDPS.2013.28
http://doi.acm.org/10.1145/2442516.2442531
http://doi.acm.org/10.1145/3173162.3173180
http://doi.acm.org/10.1145/2983990.2984015
http://doi.acm.org/10.1145/2983990.2984015

72. Pingali, K., D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-
H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui, The
tao of parallelism in algorithms. In PLDI’11. ACM, 2011. ISBN 978-1-4503-0663-8.

73. Prountzos, D. and K. Pingali, Betweenness centrality: Algorithms and implementa-
tions. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13. ACM, New York, NY, USA, 2013. ISBN 978-1-
4503-1922-5. URL http://doi.acm.org/10.1145/2442516.2442521.

74. Riondato, M. and E. Upfal (2018). Abra: Approximating betweenness centrality in
static and dynamic graphs with rademacher averages. ACM Trans. Knowl. Discov. Data,
12(5). ISSN 1556-4681. URL https://doi.org/10.1145/3208351.

75. Roy, A., I. Mihailovic, and W. Zwaenepoel, X-stream: Edge-centric graph process-
ing using streaming partitions. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13. Association for Computing Machinery,
New York, NY, USA, 2013. ISBN 9781450323888. URL https://doi.org/10.
1145/2517349.2522740.

76. Sengupta, D., S. L. Song, K. Agarwal, and K. Schwan, GraphReduce: Processing
Large-Scale Graphs on Accelerator-Based Systems. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analy-
sis, SC ’15. Association for Computing Machinery, New York, NY, USA, 2015. ISBN
9781450337236. URL https://doi.org/10.1145/2807591.2807655.

77. Seo, H., J. Kim, and M.-S. Kim, Gstream: A graph streaming processing method for
large-scale graphs on gpus. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2015. ACM, New York, NY,
USA, 2015. ISBN 978-1-4503-3205-7.

78. Sha, M., Y. Li, and K.-L. Tan, Gpu-based graph traversal on compressed graphs. In
Proceedings of the 2019 International Conference on Management of Data, SIGMOD
’19. ACM, New York, NY, USA, 2019. ISBN 978-1-4503-5643-5. URL http://
doi.acm.org/10.1145/3299869.3319871.

79. Shang, Z. and J. X. Yu (2014). Auto-approximation of graph computing. Proc.
VLDB Endow., 7(14), 1833–1844. ISSN 2150-8097. URL https://doi.org/
10.14778/2733085.2733090.

80. Shin, K., A. Ghoting, M. Kim, and H. Raghavan, SWeG: Lossless and Lossy Summa-
rization of Web-Scale Graphs. In The World Wide Web Conference, WWW ’19. Asso-
ciation for Computing Machinery, New York, NY, USA, 2019. ISBN 9781450366748.
URL https://doi.org/10.1145/3308558.3313402.

81. Shun, J. and G. E. Blelloch, Ligra: A Lightweight Graph Processing Framework for
Shared Memory. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13. ACM, 2013. ISBN 978-1-4503-
1922-5.

82. Shun, J., L. Dhulipala, and G. E. Blelloch, Smaller and Faster: Parallel Processing
of Compressed Graphs with Ligra+. In 2015 Data Compression Conference, DCC

130

http://doi.acm.org/10.1145/2442516.2442521
https://doi.org/10.1145/3208351
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2807591.2807655
http://doi.acm.org/10.1145/3299869.3319871
http://doi.acm.org/10.1145/3299869.3319871
https://doi.org/10.14778/2733085.2733090
https://doi.org/10.14778/2733085.2733090
https://doi.org/10.1145/3308558.3313402

2015, Snowbird, UT, USA, April 7-9, 2015. IEEE, Washington, DC, USA, 2015. URL
http://dx.doi.org/10.1109/DCC.2015.8.

83. Slota, G. M., S. Rajamanickam, and K. Madduri, A case study of complex graph
analysis in distributed memory: Implementation and optimization. In 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). 2016.

84. Solomonik, E., M. Besta, F. Vella, and T. Hoefler, Scaling betweenness centrality
using communication-efficient sparse matrix multiplication. SC ’17. ACM, New York,
NY, USA, 2017. ISBN 978-1-4503-5114-0. URL http://doi.acm.org/10.
1145/3126908.3126971.

85. Spielman, D. A. and S.-H. Teng, Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the Thirty-sixth
Annual ACM Symposium on Theory of Computing, STOC ’04. ACM, New York, NY,
USA, 2004. ISBN 1-58113-852-0.

86. Spielman, D. A. and S.-H. Teng (2011). Spectral sparsification of graphs. SIAM
J. Comput., 40(4), 981–1025. ISSN 0097–5397. URL https://doi.org/10.
1137/08074489X.

87. Turk, A. and D. Turkoglu, Revisiting wedge sampling for triangle counting. In The
World Wide Web Conference, WWW ’19. Association for Computing Machinery, New
York, NY, USA, 2019. ISBN 9781450366748. URL https://doi.org/10.
1145/3308558.3313534.

88. van der Grinten, A. and H. Meyerhenke (2019). Scaling betweenness approximation
to billions of edges by mpi-based adaptive sampling. ArXiv, abs/1910.11039.

89. Wang, T., Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng, and X. Li, Understand-
ing graph sampling algorithms for social network analysis. In 2011 31st International
Conference on Distributed Computing Systems Workshops. 2011.

90. Wang, Y., Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama, C. Yuan,
W. Liu, A. T. Riffel, and J. D. Owens (2017). Gunrock: Gpu graph analytics. ACM
Trans. Parallel Comput., 4(1), 3:1–3:49. ISSN 2329-4949. URL http://doi.acm.
org/10.1145/3108140.

91. Wei, H., J. X. Yu, C. Lu, and X. Lin, Speedup graph processing by graph ordering. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD
âĂŹ16. Association for Computing Machinery, New York, NY, USA, 2016. ISBN
9781450335317. URL https://doi.org/10.1145/2882903.2915220.

92. Wu, B., Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, Complexity analysis and al-
gorithm design for reorganizing data to minimize non-coalesced memory accesses on
gpu. In PPoPP ’13. ACM, 2013. ISBN 978-1-4503-1922-5.

93. Yazdanbakhsh, A., D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran (2017).
Axbench: A multiplatform benchmark suite for approximate computing. IEEE Design
Test, 34(2), 60–68.

131

http://dx.doi.org/10.1109/DCC.2015.8
http://doi.acm.org/10.1145/3126908.3126971
http://doi.acm.org/10.1145/3126908.3126971
https://doi.org/10.1137/08074489X
https://doi.org/10.1137/08074489X
https://doi.org/10.1145/3308558.3313534
https://doi.org/10.1145/3308558.3313534
http://doi.acm.org/10.1145/3108140
http://doi.acm.org/10.1145/3108140
https://doi.org/10.1145/2882903.2915220

94. Zhang, E. Z., Y. Jiang, Z. Guo, and X. Shen, Streamlining gpu applications on the fly:
Thread divergence elimination through runtime thread-data remapping. In Proceedings
of the 24th ACM International Conference on Supercomputing, ICS ’10. ACM, New
York, NY, USA, 2010. ISBN 978-1-4503-0018-6. URL http://doi.acm.org/
10.1145/1810085.1810104.

95. Zhang, E. Z., Y. Jiang, Z. Guo, K. Tian, and X. Shen, On-the-fly elimination of
dynamic irregularities for GPU computing. In Proceedings of the sixteenth interna-
tional conference on Architectural support for programming languages and operating
systems. ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0266-1.

96. Zhong, J. and B. He (2014). Medusa: Simplified Graph Processing on GPUs.
IEEE Trans. Parallel Distrib. Syst., 25(6), 1543–1552. URL http://doi.
ieeecomputersociety.org/10.1109/TPDS.2013.111.

97. Zhu, X., W. Chen, W. Zheng, and X. Ma, Gemini: A computation-centric distributed
graph processing system. In Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’16. USENIX Association, USA, 2016.
ISBN 9781931971331.

132

http://doi.acm.org/10.1145/1810085.1810104
http://doi.acm.org/10.1145/1810085.1810104
http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.111
http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.111

LIST OF PAPERS BASED ON THESIS

1. Somesh Singh and Rupesh Nasre. Scalable and Performant Graph Processing
on GPUs using Approximate Computing. In IEEE Transactions on Multi-Scale
Computing Systems (TMSCS), Volume 4, Number 2, 190 – 203, (2018). DOI:
https://doi.org/10.1109/TMSCS.2018.2795543.

2. Somesh Singh and Rupesh Nasre. Optimizing Graph Processing on GPUs us-
ing Approximate Computing: Poster. In Proceedings of the 24th ACM SIG-
PLAN Annual Symposium on Principles and Practice of Parallel Programming
(PPoPP 2019), 395 – 396. DOI: https://doi.org/10.1145/3293883.
3295736.

3. Somesh Singh and Rupesh Nasre. Graffix: Efficient Graph Processing with a
Tinge of GPU-Specific Approximations. In Proceedings of the 49th International
Conference on Parallel Processing (ICPP 2020), 23:1 – 23:11.
DOI: https://doi.org/10.1145/3404397.3404406.

133

https://doi.org/10.1109/TMSCS.2018.2795543
https://doi.org/10.1145/3293883.3295736
https://doi.org/10.1145/3293883.3295736
https://doi.org/10.1145/3404397.3404406

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Contributions
	Architecture-agnostic Techniques for Parallel Approximate Graph Processing
	GPU-specific Optimizations for Graph Processing in the Presence of Approximations
	Estimation of Top-k Betweenness Centrality Vertices on Heterogeneous Architectures

	Organization of the Thesis

	Background
	Basic Definitions
	Graph Storage Formats
	Classification of Graphs
	Scale-free Real World graphs
	Recursive Matrix (R-MAT) graphs
	Road networks
	Random graphs

	Parallel Graph Algorithms
	Breadth First Search (BFS)
	Single Source Shortest Path (SSSP)
	PageRank
	Minimum Spanning Tree (MST)
	Strongly Connected Components
	Vertex Coloring
	Betweenness Centrality

	Summary

	Related Work
	Exact Parallel Graph Processing
	Parallel graph processing on multicore
	Parallel graph processing on GPU
	Parallel graph processing on distributed systems

	Approximate Graph Processing
	Graph sampling based techniques
	Graph compression based techniques

	Parallel Approximate Graph Processing
	Approximation Model
	Function Application Order
	Idempotent Approximation
	Approximation Structure

	Approximating Graph Algorithms
	Graph Algorithms
	Technique 1: Reduced Execution
	Technique 2: Partial Graph Processing
	Technique 3: Approximate Graph Representation
	Technique 4: Approximate Attribute Values

	Benefits to GPU-based Processing
	Technique 1: Reduced Execution
	Technique 2: Processing Part of the Graph
	Technique 3: Approximate Representation
	Technique 4: Approximate Attributes

	Experimental Evaluation
	Overall Results
	Effect of Reduced Execution
	Effect of Partial Graph Processing
	Approximate Graph Representation
	Approximate Attribute Values
	Effect on Graph Type
	Graprox techniques are platform-independent

	Practicality of Graprox techniques
	Summary

	GPU-specific Optimizations for Graph Processing in the presence of Approximations
	Improving Memory Coalescing
	Coalescing in Graffix
	Renumbering Scheme
	Node Replication
	Confluence due to Replication

	Reducing Memory Latency
	Reducing Thread Divergence
	Experimental Evaluation
	Effect of Coalescing
	Effect of Memory Latency
	Effect of Thread Divergence
	Preprocessing Overhead
	Impact of Approximations on Energy

	Summary

	Faster Estimation of Top-k Betweenness Centrality Vertices on Heterogeneous Architectures
	Problem Statement and Preliminaries
	ParTBC's Approach
	Parallelization and Graph Layout
	Parallelization Strategy
	Graph Layout
	Improved Graph Layout

	Techniques for Fast BC estimation
	Random Selection of Source Vertices (Random)
	Node Selection in Ascending Degree Order (Ascending)
	Node Selection in Descending Degree Order (Descending)
	Selecting Low-Degree Neighbors of High Degree Vertices
	Dynamic Selection of Source

	Experimental Evaluation
	Overall Results
	Effects of the fraction of source nodes
	Controlling the number of outerloop iterations
	Discussion on quality of the reported top-k
	ParTBC techniques are platform-independent

	Summary

	Conclusion and Future Work
	Conclusion
	Limitations
	Future Work

