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Preface

The goal of this text is to calculate the trace of a Hecke correspondence
composed with a (big enough) power of the Frobenius automorphism at a
good place on the intersection cohomology of the Baily-Borel compactifi-
cation of certain Shimura varieties, and then to stabilize the result for the
Shimura varieties associated to unitary groups over Q.

The main result is theorem 8.4.3. It expresses the above trace in terms
of the twisted trace formula on products of general linear groups, for well-
chosen test functions.

Here are two applications of this result. The first (corollary 8.4.5) is about
the calculation of the L-function of the intersection complex of the Baily-
Borel compactification :

Theorem A Let E be a quadratic imaginary extension of Q, G = GU(p, q)
one of the unitary groups defined by using E (cf 2.1), K a neat open compact
subgroup of G(Ay), MX(G, X) the associated Shimura variety (cf 2.1 and
1.1) and V an irreducible algebraic representation of G. Denote by ICXV
the intersection complex of the Baily-Borel compactification of M (G, X)
with coefficients in V. Let Eg be the set of elliptic endoscopic groups
G(U*(n1) x U*(n2)) of G, where ny,ne € N are such that ny +ns = p+gq
and that no is even. For every H € &g, let Il be the set of equivalence
classes of automorphic representations of H(Ag).

Assume that K is small enough. Then there exist, for every H € Eg, an
explicit finite set Ry of algebraic representations of “Hg and a family of
complex numbers (cy (T, TH))ryelly ruchy, almost all zero, such that, for
every finite place o of E above a prime number where K is hyperspecial,

d
log Ly, (s, IC*V) = Z Z Z cH(ﬂ'H,rH)logL(s—5,771{7@,7‘11),

Hecég mp€llg ru€RH
where d = pq is the dimension of M®¥(G, X).

See the statement of corollary 8.4.5 for more details. The second applica-
tion is corollary 8.4.9. We give a simplified statement of this corollary and
refer to 8.4 for the definitions :

Theoreme B Let n be a positive integer that is not dividible by 4 and
F an imaginary quadratic extension of Q. Denote by 6 the automorphism
g+— gt of Rp,oGL, k. Let m be a f-stable cuspidal automorphic rep-
resentation of GL,(Ag) that is regular algebraic. Let S be the union of
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the set of prime numbers that ramify in E and of the set of prime numbers
under finite places of E where 7 is ramified. Then there exists a number
field K, a positive integer N and, for every finite place A of K, a continuous
finite-dimensional representation oy of Gal(Q/E) with coefficients in Ky,
such that :

(i) The representation oy is unramified outside of S U {{}, where ¢ is the
prime number under A, and pure of weight 1 — n.

(ii) For every place p of E above a prime number p ¢ S, for every finite
place X\ Jp of K,

-1
log L,(s,0x) = Nlog L(s + nT,ﬂ'p).

In particular, 7 satisfies the Ramanujan-Petersson conjecture at every
finite unramified place.

There is also a result for n dividible by 4, but it is weaker and its statement
is longer. See also chapter 7 for applications of the stabilized fixed point
formula (corollary 6.3.2) that do not use base change to GL,,.

The method used in this text is the one developed by Ihara, Langlands and
Kottwitz : comparison of the fixed point formula of Grothendieck-Lefschetz
and of the trace formula of Arthur-Selberg. In the case where the Shimura
variety is compact and where the group has no endoscopy, this method is
explained in the article [K10] of Kottwitz. Using base change from unitary
groups to GL,,, Clozel deduced from this a version of corollary B with sup-
plementary conditions on the automorphic representation at a finite place
(cf [C15] and the article [CL] of Clozel and Labesse). The case of a compact
Shimura variety (more generally, of the cohomology with compact support)
and of a group that might have non-trivial endoscopy is treated by Kottwitz
in the articles [K11] and [K9], modulo the fundamental lemma. For unitary
groups, the fundamental lemma (and the twisted version that is used in the
stabilization of the fixed point formula) is now known thanks to the work of
Laumon-Ngo ([LN]), Hales ([H2]) and Waldspurger ([Wal], [Wa2], [Wa3]);
note that the fundamental lemma is even known in general thanks to the
recent article of Ngo ([Ng]).

The case of GLy over Q (ie of modular curves) has been treated in the
book [DK], and the case of GL2 over a totally real number field in the article
[BL] of Brylinski and Labesse. In these two cases, the Shimura variety is
non-compact (but its Baily-Borel compactification is not too complicated)
and the group has no endoscopy.

One of the simplest cases where the Shimura variety is non-compact and
the group has non-trivial endoscopy is that of the unitary group GU(2,1).
This case has been studied in the book [LR]. For groups of semi-simple
rank 1, Rapoport proved in [Ra] the (unstabilized) fixed point formula in
the case where the Hecke correspondance is trivial. The stabilized fixed
point formula for the symplectic groups GSp,,, is proved in [M3] (and some
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applications to GSp, and GSpg, similar to corollary A, are given). In
[Laul] and [Lau2], Laumon obtained results similar to corollary B for the
groups GSp,, by using the cohomology with compact support (instead of
the intersection cohomology).

Finally, note that Shin obtained recently results analogous to corollary
B, and also results about ramified places, by using the cohomology of Igusa
varieties attached to compact unitary Shimura varieties (cf [Shil], [Shi2],
[Shi3]). This builds on previous work of Harris and Taylor ([HT]).

We give a quick description of the different chapters.

Chapter 1 contains “known facts” about the fixed point formula. When
the Shimura variety is associated to a unitary group over Q and the Hecke
correspondence is trivial, the fixed point formula has been proved in [M1]
(theorem 5.3.3.1). The article [M2] contains the theoretical tools needed
to treat the case of non-trivial Hecke correspondences for Siegel modular
varieties (proposition 5.1.5 and theorem 5.2.2), but does not finish the cal-
culation. We generalize here the results of [M2] under certain conditions
on the group (that are satisfied by unitary groups over Q and by symplectic
groups), then use them to calculate the trace on the intersection cohomology
of a Hecke correspondence twisted by a high enough power of Frobenius in
the case when the Shimura variety and the boundary strata of its Baily-Borel
compactification are of the type considered by Kottwitz in his article [K11]
(ie PEL of type A or C). The result is given in theorem 1.7.1.

Chapters 2 to 6 treat the stabilization of the fixed point formula for unitary
groups over Q. We prove conjecture (10.1) of the article [K9] (corollary
6.3.2). Kottwitz stabilized the elliptic part of the fixed point formula in
[K9], and the method of this book to stabilize the terms coming from the
boundary is inspired by his method. The most complicated calculations are
at the infinite place, where we need to show a formula for the values at certain
elements of the stable characters of discrete series (proposition 3.4.1). This
formula looks a little like the formulas established by Goresky, Kottwitz et
MacPherson ([GKM] theorems 5.1 et 5.2), though it has less terms. This is
special to unitary groups : the analogous formula for symplectic groups (cf
section 4 of [M3]) is much more complicated, and more different from the
formulas of [GKM].

In chapter 2, we define the unitary groups over Q that we will study, as
well as their Shimura data, and we recall some facts about their endoscopy.

Chapter 3 contains the calculations at the infinite place.

Chapter 4 contains explicit calculations, at an unramified place of the
group, of the Satake transform, the base change map, the transfer map and
the twisted transfer map, and a compatibility result for the twisted transfer
and constant term maps.

In chapter 5, we recall the stabilization by Kottwitz of the geometric side
of the invariant trace formula when the test function is stable cuspidal at
infinity (cf [K13]). This stabilization relies on the calculation by Arthur of
the geometric side of the invariant trace formula for a function that is sta-
ble cuspidal at infinity (cf [A6] formula (3.5) and theorem 6.1), and uses
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only the fundamental lemma (and not the weighted fundamental lemma).
Unfortunately, this result is unpublished. Chapter 5 also contains the nor-
malization of the Haar measures and of the transfer factors, the statement
of the fundamental lemmas that we use and a summary of the results that
are known about these fundamental lemmas.

In chapter 6, we put the results of chapters 2, 3 and 4 together and stabilize
the fixed point formula.

Chapter 7 gives applications of the stabilized fixed point formula that do
not use base change to GL,,. First, in section 7.1, we show how to make
the results of this chapter formally independent from Kottwitz’s unpublished
article [K13] (this is merely a formal game, because of course a large part
of this book was inspired by [K13] in the first place). In 7.2, we express the
logarithm of the L-function of the intersection complex at a finite place above
a big enough prime number as a sum (a priori with complex coefficients) of
logarithms of local L-functions of automorphic representations of unitary
groups. We also give, in section 7.3, an application to the Ramanujan-
Petersson conjecture (at unramified places) for certain discrete automorphic
representations of unitary groups.

Chapter 8 gives applications of the stabilized fixed point formula that
use base change to GL,. In section 8.1, we recall some facts about non-
connected groups. In sections 8.2 and 8.3, we study the twisted trace formula
for certain test functions. We give applications of this in 8.4; in particular,
we obtain another formula for the L-function of the intersection complex,
this time in terms of local L-functions of automorphic representations of
general linear groups. The simple twisted trace formula proved in this chap-
ter implies some weak base change results; these have been worked out in
section 8.5.

In chapter 9, we prove the particular case of the twisted fundamental
lemma that is used in the stabilization of the fixed point formula in the
article [K9] of Kottwitz, the article [Laul] of Laumon and chapter 6. The
methods of this chapter are not new, and no attempt was made to obtain the
most general result possible. Waldspurger showed in [Wa3] that the twisted
fundamental lemma for the unit of the Hecke algebra is a consequence of the
ordinary fundamental lemma (and, in the general case, of the non-standard
fundamental lemma). We show that, in the particular case that we need,
the twisted fundamental lemma for the unit of the Hecke algebra implies
the twisted fundamental lemma for all the functions of the Hecke algebra.
The method is the same as in the article [H2] of Hales (ie it is the method
inspired by the article [C13] of Clozel, and by the remark of the referee of
this article).

The appendix by Robert Kottwitz contains a comparison theorem between
the twisted transfer factors of [KS] and of [K9]. This result is needed to
use the twisted fundamental lemma in the stabilization of the fixed point
formula.

It is a great pleasure for me to thank Robert Kottwitz and Gérard Laumon.
Robert Kottwitz very kindly allowed me to read his unpublished manuscript
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[K13], that has been extremely helpful to me in writing this text. He also
helped me fix a problem in the proof of proposition 8.2.3, pointed out several
mistakes in chapter 9 and accepted to write his proof of the comparison
of twisted transfer factors as an appendix of this book. Gérard Laumon
suggested that I study the intersection cohomology of non-compact Shimura
varieties and has spent countless hours patiently explainig the subject to me.
I also thank Jean-Loup Waldspurger for sending me a complete version of
his manuscript [Wa3] on twisted endoscopy before it was published.

I am grateful to the other mathematicians who have answered my ques-
tions or pointed out simpler arguments to me, in particular Pierre-Henri
Chaudouard, Laurent Fargues, Giinter Harder, Colette Moeglin, Bao Chau
Ngo, Sug Woo Shin and Marie-France Vignéras (I am especially grateful
to Sug Woo Shin for repeatedly correcting my misconceptions about the
spectral side of the twisted trace formula).

Finally, T would like to express my gratitude to the anonymous referee for
finding several mistakes and inaccuracies in the first version of this text.

This text was written entirely while I was a Clay Research Fellow of the
Clay Mathematics Institute, and worked as a member at the Institute for
Advanced Study in Princeton. Moreover, I have been partially supported by
the National Science Foundation under agreements number DMS-0111298
and DMS-0635607.
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Chapter One

The fixed point formula

1.1 SHIMURA VARIETIES

The reference for this section is [P2] §3.

Let S = Re/rGp r. Identify S(C) = (C ®r C)* and C* x C* using the
morphism a ® 1 + b ® i — (a + b, a — ib), and write g : G, c — Sc for
the morphism z — (z,1).

The definition of (pure) Shimura data that will be used here is that of [P2]
(3.1), up to condition (3.1.4). So a pure Shimura datum is a triple (G, X, h)
(that will often be written simply (G, X)), where G is a connected reductive
linear algebraic group over Q, X is a set with a transitive action of G(R),
and h : X — Hom(S, Gg) is a G(R)-equivariant morphism, satisfying
conditions (3.1.1), (3.1.2), (3.1.3) and (3.1.5) of [P2], but not necessarily
condition (3.1.4) (ie the group G may have a simple factor of compact
type defined over Q).

Let (G, X, h) be a Shimura datum. The field of definition F' of the conju-
gacy class of cocharacters hy o g : Gy, — Ge, € X, is called the reflex
field of the datum. If K is an open compact subgroup of G(Ay), there is an
associated Shimura variety M¥ (G, X), that is a quasi-projective algebraic
variety over F satisfying

M"™(G, X)(C) = G(Q) \ (¥ x G(Ay)/K).

If moreover K is neat (cf [P1] 0.6), then M¥(G, X) is smooth over F. Let
M(G, X) be the inverse limit of the M¥(G, X), taken over the set of open
compact subgroups K of G(Ay).

Let g, € G(Ay), and let K, K’ be open compact subgroups of G(Ay)
such that K’ € gKg~!. Then there is a finite morphism

T, : M¥ (G, x) — MX(G, X),
that is given on complex points by

{ G@Q@\ (¥ x G(Af)/K)  — G(Q) \ (¥ x G(Af)/K)
G(Q)(z, hK')  —  G(Q)(x, hgK)

If K is neat, then the morphism T is étale.

Fix K. The Shimura variety M¥ (G, X) is not projective over F in gen-
eral, but it has a compactification j : M¥(G,&x) — MX(G,X)*, the
Satake-Baily-Borel (or Baily-Borel, or minimal Satake, or minimal) com-
pactification, such that M¥(G,X)* is a normal projective variety over F
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and M¥(G, X) is open dense in M¥(G, X)*. Note that M¥(G, X)* is not
smooth in general (even when K is neat). The set of complex points of
MX(G,X)* is

M™(G,X)*(C) = G(Q) \ (X" x G(A)/K),

where X* is a topological space having X as an open dense subset and
such that the G(Q)-action on X extends to a continuous G(Q)-action on
X*. As a set, X'* is the disjoint union of X and of boundary components
Xp indexed by the set of admissible parabolic subgroups of G (a parabolic
subgroup of G is called admissible if it is not equal to G and if its image
in every simple factor G’ of G%? is equal to G’ or to a maximal parabolic
subgroup of G/, cf [P1] 4.5). If P is an admissible parabolic subgroup of G,
then P(Q) = Stabgq)(Xp); the P(Q)-action on X'p extends to a transitive
P(R)-action, and the unipotent radical of P acts trivially on Xp.

For every g, K, K’ as above, there is a finite morphism 7' : MK (G, X)) —
MX(G, X)* extending the morphism 7.

From now on, we will assume that G satisfies the following condition :
Let P be an admissible parabolic subgroup of G, let Np be its unipotent
radical, Up the center of Np and Mp = P/Np the Levi quotient. Then
there exists two connected reductive subgroups Lp and Gp of M p such that

® Mp is the direct product of Lp and G p;

® Gp contains Gi, where G is the normal subgroup of Mp defined by
Pink in [P2] (3.6) (on page 220), and the quotient Gp/G1Z(Gp) is
R-anisotropic;

o Lp C Centm,(Up) C Z(Mp)Lp;

® Gp(R) acts transitively on Xp, and Lp(R) acts trivially on Xp;

e for every neat open compact subgroup Ky of Mp(Af), Kpy NLp(Q) =
KM N CentMP(Q)(Xp).

Denote by Qp the inverse image of Gp in P.

Remark 1.1.1 If G satisfies this condition, then, for every admissible parabolic
subgroup P of G, the group Gp satisfies the same condition.

Example 1.1.2 Any interior form of the general symplectic group GSp,,,
or of the quasi-split unitary group GU”(n) defined in 2.1 satisfies the con-
dition.

The boundary of M¥(G, X)* has a natural stratification (this stratifica-
tion exists in general, but its description is a little simpler when G satisfies
the above condition). Let P be an admissible parabolic subgroup of G.
Pink has defined a morphism Xp — Hom(S, Gpr) ([P2] (3.6.1)) such that
(Gp,Xp) is a Shimura datum, and the reflex field of (Gp, Xp) is F. Let
g€ G(Ay). Let Hp = gKg'NP(Q)Qp(Ay), Hy = gKg~'NLp(Q)Np(Ay),
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Ko =9gKg'NnQp(As), Ky = gKg ' NNp(Af). Then (cf [P2] (3.7)) there
is a morphism, finite over its image,

MX/¥N(Gp, Xp) — M¥(G, x)* — M¥(G, x).

The group Hp acts on the right on M¥e/X~(Gp, X'p), and this action fac-
tors through the finite group Hp/H;K¢q. Denote by ip, the locally closed
immersion

M®e/®N(Gp, Xp)/Hp — M®(G, X)".
This immersion extends to a finite morphism
ipg: MXQ/KN(Gp, Xp)* /Hp — MX(G,X)*

(this morphism is not a closed immersion in general). The boundary of
M¥(G, X)* is the union of the images of the morphisms ip g, for P an ad-
missible parabolic subgroup of G and g € G(Ay). If P’ is another admissible
parabolic subgroup of G and ¢’ € G(Ay), then the images of the immer-
sions ipg and ips o are equal if and only if there exists v € G(Q) such
that P’ = 4Py~ ! and P(Q)Qp(Af)gK = P(Q)Qp(As)y1¢'K; if there
is no such v, then these images are disjoint. If K is neat, then Kg/Kn
is also neat and the action of Hp/Hy Ky on MXe/K~(Gp, Xp) is free (so
MXe/Ex(Gp, Xp)/Hp is smooth).

The images of the morphisms ip 4, g € G(Ay), are the boundary strata of
MY (G, X)* associated to P.

To simplify notations, assume from now on that G%? is simple. Fix
a minimal parabolic subgroup Py of G. A parabolic subgroup of G is
called standard if it contains Pg. Let Pq,..., P, be the maximal standard
parabolic subgroups of G, with the numbering satisfying : r» < s if and only
if Up C Up, (cf [GHM] (22.3)). Write N, = Np , G, = Gp_, L, = Lp_,
lr.g = 1p,. g, €tcC.

Let P be a standard parabolic subgroup of G. Write P =P,, N---NP,_,
with ny < -+- < n,. The Levi quotient Mp = P/Np is the direct product
of Gy, and of a Levi subgroup Lp of L,,. Let Cp be the set of n-uples
(X1,...,X,), where :

® X is a boundary stratum of M¥(G, X)* associated to P,,,;
e foreveryi € {1,...,7r—1}, X, 41 is a boundary stratum of X; associated
to the maximal parabolic subgroup (P, ., N Qy,)/N,, of G,,.

Let C}, be the quotient of G(Af)xQy, (Af)x---x Q. (Af) by the following
equivalence relation : (g1,...,g.) is equivalent to (gi,...,g.) if and only if]
for every i € {1,...,r},

(Pnlm' : mPnz)(Q)in (Af)gi e 'glK = (Pnlm' : mPnl)(Q)an (Af)g: s gllK

Proposition 1.1.3 (i) The map G(Af) — Cp that sends g to the class
of (g,1,...,1) induces a bijection P(Q)Q., (As)\ G(A;)/K — Ch.
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(ii) Define a map ¢' : C — Cp in the following way : Let (g1,...,9,) €
G(Af) X Qpn, (Af) x -+ x Q. ,(Ay). For every i € {1,...,r}, write

H; = (gi...91)K(gi - -91)71 N (Pn, N--NPR)(Q)Qn, (Af)
and let K; be the image of H; N Q,,(As) by the obvious morphism
Q. (Ay) — Gy, (Ay). Then ¢’ sends the class of (g1, ..., g,) to the n-
uple (X1,...,X,), where X1 = Im(in, 4,) = M¥1(G,,, X,,)/H; and,
for every i € {1,...,r — 1}, X;41 is the boundary stratum of X; =
MXYi(G,,, X,,)/H; image of the morphism ipg, with P = (P N

i Mi+1

Q..)/N,,, (amaximal parabolic subgroup of G,,;) and g = ¢;+1 N, (Af) €

Gy, (Af)~

Then this map Cy — Cp is well-defined and bijective.

The proposition gives a bijection ¢p : P(Q)Qn, (Ay) \ G(Af)/K — Cp.
On the other hands, there is a map from Cp to the set of boundary strata of
MX (G, X)* associated to P, , defined by sending (X1, ..., X,.) to the image
of X, in MX(G, X)*. After identifying Cp to P(Q)Q., (A;)\G(A)/K using
¢ p and the second set to Py, (Q)Qn, (Af)\ G(Ay)/K using g — Im(in, g),
this map becomes the obvious projection P(Q)Q,,.(Ar) \ G(Ay)/K —

P, (Q)Qn, (Ap) \ G(Af)/K.
Proof.

(i) As Qn,. C Qn,._, C -+ C Qp,, it is easy to see that, in the definition
of Ch, (g1,-..,9,) is equivalent to (g4, ...,g.) if and only if

(P, N NP, ) (Q)Qu, (Af)gr ... 1K = (P, N+ -NPy, ) (Q)Qu, (A g,
The results now follows from the fact that P =P,, Nn---NP,, .

(ii) We first check that ¢’ is well-defined. Let i € {1,...,r —1}. If X; =
M¥%i(G,,,X,,)/H; and X;;1 is the boundary stratum I'm(ip,) of X;,
with P and g as in the proposition, then X; 1 = MX’ (G Xnin)/H,
where H' = gi+1H¢gi_+11 NP, (Q)Qn,.,,(Ay) and K’ is the image of

H'N an‘+1 (Af) in G”H—l (Af) As gi+1 € Qm (Af)v

..g1K.

H = (gi+1 cee gl)K(gi+1 s gl)_lﬂ(Pnlﬂ- : mPﬂz)(Q)an (Af)mPni+1 (Q)Qn1+1 (Af)

On the other hand, it is easy to see that

(Pm n-- 'ﬂP"i)(Q)Qni (Af)mPTL11+1 (Q)Qnul (Af) = (Pnl n-- 'mPTLi+1 )(Q)QTLH»I (Af)

Hence H = H; 41, and X4 = MKHI(GMH,XMH)/HHL It is also
clear that the n-uple (Xi,...,X,) defined in the proposition doesn’t

change if (g1,...,gr) is replaced by an equivalent r-uple.

It is clear that ¢’ is surjective. We want to show that it is injective.
Let ¢, € Ch; write (X1,...,X,) = ¢/(c) and (X7],..., X)) = ¢'(),
and suppose that (Xi,...,X,) = (X{,...,X,). Fix representatives
(915---59n) and (¢1,...,9g,) of c and ¢/. As before, write, for every
ie{l,...,n},

Hi=(gi...90)K(gi-..91) " N (Pr, N NP )(Q)Qu, (Af)
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H = (i g0K(gi - 90) 7 N (Pry 0= NP )(Q)Qn, (Ag).
Then the equality X; = X| implies that P,,, (Q)Qn, (Af)g1K = P,, (Q)Q, (Af)g1K
and, for every i € {1,...,r—1}, the equality X;4; = X, implies that

Pni+1 (Q)Qm+1 (Af)giJrlHi(gi s gl) = Pnz‘+1 (Q)Qm+1 (Af)gnglH; (g: s gll)
So (g1,---,9-) and (g1,...,g.) are equivalent, and ¢ = ¢'.

O

1.2 LOCAL SYSTEMS AND PINK’S THEOREM

Fix a number field K. If G is a linear algebraic group over Q, let Repg be
the category of algebraic representations of G defined over K. Fix a prime
number ¢ and a place A of K over £.

Let M be a connected reductive group over Q, L and G connected re-
ductive subgroups of M such that M is the direct product of L and G,
and (G, &) a Shimura datum. Extend the G(Ay)-action on M(G, X) to
a M(Ay)-action by the obvious map M(Ay) — G(Ays) (so L(Ay) acts
trivially). Let Kjs be a neat open compact subgroup of M(Ay). Write
H=KyNL(Q)G(Ay), H, = Ky; NL(Q) (an arithmetic subgroup of L(Q))
and K = K)yNG(Ay). The group H acts on the Shimura variety M¥(G, X),
and the quotient M¥(G, X)/H is equal to M"/He (G, X) (H/Hy is a neat
open compact subgroup of G(Ay)).

Remark 1.2.1 It is possible to generalize the morphisms Ty of 1.1 : If
m € L(Q)G(Ay) and K/, is an open compact subgroup of M(Ay) such that
Kiy NL(Q)G(Af) C mHm ™', then there is a morphism

Ty : M(G,X)/H — M(G, X)/H,
where H = K, NL(Q)G(Ay) and H = Ky N L(Q)G(Ay). This morphism
is simply the one induced by the injection H' — H, h — mhm ="' (equiv-
alently, it is induced by the endomorphism z — am of M (G, X)).

There is an additive triangulated functor V +—— FW/HL RT(Hy, V) from
the category D®(Repn) to the category of A-adic complexes on M¥(G, X)/H,*
constructed using the functors up , of Pink (cf [P1] (1.10)) for the profi-
nite étale (and Galois of group H/Hy) covering M (G, X) — M¥(G,Xx)/H
and the properties of the arithmetic subgroups of L(Q). This construc-
tion is explained in [M1] 2.1.4. For every V € Ob D’(Repym) and k € Z,
H" FA/MLRD(HL, V) is a lisse A-adic sheaf on M¥(G, X)/H, whose fiber is
(noncanonically) isomorphic to

P v (HLH V).

it+j=k

1Here, and in the rest of the book, the notation RI' will be used to denote the right
derived functor of the functor HP.
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Remark 1.2.2 If T is a neat arithmetic subgroup of L(Q) (eg I' = Hy,),
then it is possible to compute RT(T, V') in the category D®(Repg), because
T is of type FL (cf [BuW], theorem 3.14).

We will now state a theorem of Pink about the direct image of the com-
plexes FH/He RT'(Hy,, V) by the open immersion j : M¥(G, X)/H — MX(G, X)*/H
Let P be an admissible parabolique subgroup of G and g € G(Ay). Write

Hp = gHg ' NLQP(Q)Qpr(Ay),
Hpp =gHg ' NL(Q)Lp(Q)Np(Ay),
Ky =gHg ' NNp(Ay),

Ko = (gHg ' N Qp(Af))/(gHg " NNp(Af)),

and i = ip, : MK (Gp, Xp)/Hp — ME(G, X)*/H.
Then theorem 4.2.1 of [P2] implies the following results (cf [M1] 2.2) :

Theorem 1.2.3 For every V € Ob D?(Repn), there are canonical isomor-
phisms

i*Rj, F/ML RT(H,, V) FUr/HeL RD(Hp L, V)

FHp/Hp L RF(HP,L/KNa RT'(Lie(Np),V)).

R

The last isomorphism uses van Est’s theorem, as stated (and proved) in
[GKM] §24.

We will also use local systems on locally symmetric spaces that are not
necessarily Hermitian. We will need the following notation. Let G be a
connected reductive group over Q. Fix a maximal compact subgroup K,
of G(R). Let Ag be the maximal (Q-)split torus of te center of G, X =
G(R)/KooAg(R)? and ¢(G) = dim(X)/2 € 1Z. Write

M¥(G,X)(C) = G(Q)\ (¥ x G(Af)/K)

(even though (G, &) is not a Shimura datum in general, and M¥(G, X)(C)
is not always the set of complex points of an algebraic variety). If K is
small enough (eg neat), this quotient is a real analytic variety. There are
morphisms T, (g € G(Ay)) defined exactly as in 1.1.

Let V € Ob Repg. Let FXV be the sheaf of local sections of the morphism

GQ\ (V x X xG(Af)/K) — G(Q) \ (X x G(Af)/K)

(where G(Q) acts on Vx X xG(Af) /Kby (v, (v, z,gK)) — (7., 7.2, 79K)).
As suggested by the notation, there is a connection between this sheaf
and the local systems defined above : if (G, X) is a Shimura datum, then
FRV @ K is the inverse image on M¥ (G, X)(C) of the M-adic sheaf FXV
on M¥(G,X) (cf [L1] p 38 or [M1] 2.1.4.1)
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Let T’ be a neat arithmetic subgroup of G(Q). Then the quotient I' \ X
is a real analytic variety. For every V € Ob Repg, let F'V be the sheaf of
local sections of the morphism

T\ (Vx&X)—T\X

(where T acts on V' x X by (v, (v,z)) — (v.v,7.2) ).

Let K be a neat open compact subgroup of G(Ay), and let (g;)icr be a
system of representatives of the double quotient G(Q)\ G(As)/K. For every
1el,let Iy = giKgfl N G(Q). Then the I'; are neat arithmetic subgroups
of G(Q),

MS(G,X)(C) = [[Ti\ ¥
icl
and, for every V € Ob Repg,
FXv =P rhv.

i€l
1.3 INTEGRAL MODELS

Notations are as in 1.1. Let (G, &) be a Shimura datum such that G is
simple and that the maximal parabolic subgroups of G satisfy the condition
of 1.1. The goal here is to show that there exist integral models (ie models
over a suitable localization of Or) of the varieties and sheaves of 1.1 and 1.2
such that Pink’s theorem is still true. The exact conditions that we want
these models to satisfy are given more precisely below (conditions (1)-(7)).

Fix a minimal parabolic subgroup Py of G, and let (G1, X1),...,(Gn, X,)
be the Shimura data associated to the standard maximal parabolic subgroups
of G. We will also write (Gg, Xy) = (G,X). Note that, for every i €
{0,...,n}, Py determines a minimal parabolic subgroup of G;. It is clear
that, for every i € {0,...,n}, the Shimura data associated to the maximal
parabolic subgroups of G; are the (G;, X;), with i +1 < j <n.

Remember that F is the reflex field of (G, X). It is also the reflex field
of all the (G, X;) ([P1] 12.1 and 11.2(c)). Let Q be the algebraic closure of
Q in C; as F is by definition a subfield of C, it is included in Q. For every
prime number p, fix an algebraic closure @p of @, and an injection F' C @p.

Fix a point zg of X', and let hg : S — Gg be the morphism corresponding
to xg. Let w be the composition of hy and of the injection G,, g C S. Then
w is independant of the choice of hy and it is defined over Q (cf [P2] 5.4). An
algebraic representation p : G — GL(V) of G is said to be pure of weight
m if p ow is the multiplication by the character A — A™ of G, (note that
the sign convention here is not the same as in [P2] 5.4).

Consider the following data :

o for every i € {0,...,n}, a set K; of neat open compact subgroups of
G;(Ay), stable by G(Af)-conjugacy;
o for every i € {0,...,n}, a subset A; of G;(Ay) such that 1 € A;;
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e for every i € {0,...,n}, a full abelian subcategory R; of Repg,, stable
by taking direct factors

satisfying the following conditions : Let ¢,5 € {0,...,n} be such that j > 4,
and K € K;. Let P be the standard maximal parabolic subgroup of G;
associated to (G, X;). Then :

(a) For every g € G;(Ay),
(9Kg™ ' NQp(Af))/(gKg NNp(Ay)) € K,

and, for every g € G;(Ay) and every standard parabolic subgroup P’
of G; such that Qp Cc P/ C P,

(9Kg~ ' NP (QNp (Af)Qp(Af))/(gKg™ ' NLp (Q)Npi(Ay)) € K;
(9Kg~ ' NP'(Af))/(gKg~ " NLp (Af)Npi(Af)) € K;.

(b) Let g € A; and K’ € K; be such that K’ € gKg™!. Let h € P(Q)Qp(Af)\
G(Ay)/Kand h' € P(Q)Qp(Af)\G(Ay)/K' besuch that P(Q)Qp Af)hK =
P(Q)Qp(Af)h'gK. Then there exists p € Lp(Q) and ¢ € Qp(Ay) such
that pghKK = h/gK and that the image of ¢ in G;(Ay¢) = Qp(As)/Np(Ay)
is in Aj.

P

(c) For every g € G;(Ay) and V € ObR;,
RI(T'z, RT(Lie(Np),V)) € Ob D*(R;),
where

I = (gKg™' nP(QQr(Af))/(9Kg™" N Qr(Ay)).

Let ¥ be a finite set of prime numbers such that the groups Go,..., G,
are unramified outside X. For every p ¢ 3, fix Zy-models of these groups.

Note
As =[] Q.

peEX

Fix ¢ € ¥ and a place X of K above ¢, and consider the following conditions
on X :

(1) For every ¢ € {0,...,n}, A; C G;(Ay) and every G(Af)-conjugacy
class in K; has a representative of the form KyK*, with Ky C G;(Ayx)
and K* = [ Gi(Z,).

pEE

(2) For every i« € {0,...,n} and K € K,, there exists a smooth quasi-
projective scheme M¥(G;, X;) on Spec(Og[1/%]) whose generic fiber
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(3) For every i € {0,...,n} and K € K;, there exists a normal scheme
ME(Gy, X;)*, projective over Spec(Or[1/Y]), containing M¥X(G;, X;)
as a dense open subscheme and with generic fiber M¥(G;, X;)*. More-
over, the morphisms ip , (resp. ip,) of 1.1 extend to locally closed im-
mersions (resp. finite morphisms) between the models over Spec(Op[1/X]),
and the boundary of MX(G, X;)* — M¥(G;, X;) is still the disjoint

union of the images of the immersions ip,.

(4) For every i € {0,...,n}, g € A; and K, K’ € K; such that K’ C gKg~!,
the morphism 7', : MK,(Gi, X;)* — MX(Gy, X;)* extends to a finite
morphism MX' (G;, X;)* — MX(G;, X;)*, that will still be denoted
by Ty, whose restriction to the strata of MK (G4, X;)* (including the
open stratum MX' (G, &;)) is étale.

(5) For every i € {0,...,n} and K € K;, there exists a functor FX from
R; to the category of lisse A-adic sheaves on M¥(G;, X;) that, after
passing to the special fiber, is isomorphic to the functor FX of 1.2.

(6) For every i € {0,...,n}, K € K, and V € ObR;, the isomorphisms of
Pink’s theorem (1.2.3) extend to isomorphisms between A-adic com-
plexes on the Spec(Op[1/%])-models.

(7) For every i € {0,...,n}, K € K; and V € ObR;, the sheaf FXV on
ME(Gy, X;) is mixed ([D2] 1.2.2). If moreover V is pure of weight m,
then FXV is pure of weight —m.

The fact that suitable integral models exist for PEL Shimura varieties has
been proved by Kai-Wen Lan, who constructed the toroidal and minimal
compactifications of the integral models.

Proposition 1.3.1 Suppose that the Shimura datum (G, X) is of the type
considered in [K11] §5; more precisely, we suppose fixed data as in [Lan]
1.2. Let ¥ be a finite set of prime numbers that contains all bad primes (in
the sense of [Lan] 1.4.1.1). For every i € {0,...,n}, let A; = G;(Ax) and
let IC; be the union of the G;(Ay)-conjugacy classes of neat open compact
subgroups of the form Ky K* with Ky C [[ G;(Z,) and K* = [ G4(Z,).
peEY j L))

Then the set ¥ satisfies conditions (1)-(7), and moreover the schemes
MK (G, X;) of (2) are the schemes representing the moduli problem of [Lan]
1.4.

Proof. This is just putting together Lan’s and Pink’s results. Condi-
tion (1) is automatic. Condition (2) (in the more precise form given in the
proposition) is a consequence of theorem 1.4.1.12 of [Lan]|. Conditions (3)
and (4) are implied by theorem 7.2.4.1 and proposition 7.2.5.1 of [Lan]. The
construction of the sheaves in condition (5) is the same as in [P2] 5.1, once
the integral models of condition (2) are known to exist. In [P2] 4.9, Pink
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observed that the proof of his theorem extends to integral models if toroidal
compactifications and a minimal compactification of the integral model sat-
isfying the properties of section 3 of [P2] have been constructed. This has
been done by Lan (see, in addition to the results cited above, theorem 6.4.1.1
and propositions 6.4.2.3, 6.4.2.9 and 6.4.3.4 of [Lan]), so condition (6) is also
satisfied. In the PEL case, G%? is automatically if abelian type in the sense
of [P2] 5.6.2 (cf [K11] §5). So G¢¢ is of abelian type for all i, and condition
(7) is implied by proposition 5.6.2 in [P2].

O

Remark 1.3.2 Let (G, X') be one of the Shimura data defined in 2.1, and let
K be a neat open compact subgroup of G(Ay). Then there exist a finite set
S of primes such that K = Ks [[,45 G(Z,), with Kg C J[,c5 G(Qu) (and
with the Z-structure on G defined in remark 2.1.1). Let ¥ be the union of
S and of all prime numbers that are ramified in £. Then ¥ contains all bad
primes, so proposition 1.3.1 above applies to X.

Remark 1.3.3 The convention we use here for the action of the Galois
group on the canonical model is that of Pink ([P2] 5.5), that is different
from the convention of Deligne (in [D1]) and hence also from the convention
of Kottwitz (in [K11]); so what Kottwitz calls canonical model of the Shimura
variety associated to the Shimura datum (G, X,h~!) is here the canonical
model of the Shimura variety associated to the Shimura datum (G, X, h).

Let us indicate another way to find integral models when the Shimura
datum is not necessarily PEL. The problem with this approach is that the
set ¥ of “bad” primes is unknown.

Proposition 1.3.4 Let K; and A; be as above (and satisfying conditions
(a) and (b)). Suppose that, for every i € {0,...,n}, K; is finite modulo
G.(Ay)-conjugacy and A; is finite. If G is of abelian type (in the sense
of [P2] 5.6.2), then here exists a finite set ¥ of prime numbers satisfying
conditions (1)-(7), with R; = Repg, for every i € {0,...,n}.

In general, there exists a finite set 3 of prime numbers satisfying conditions
(1)-(6), with R; = Repg, for every i € {0,...,n}. Let R}, 0 < i < n,
be full subcategories of the Repg,, stable by taking direct factors and by
isomorphism, containing the trivial representation, satisfying condition (c)
and minimal for all these properties (this determines the R}). Then there
exists ¥/ D X finite such that X', the K; and the R} satisfy condition (7).

This proposition will typically be applied to the following situation : g €
G(Ay) and K,K’ are neat open compact subgroups of G(Ay) such that
K’ c KNgKg™!, and we want to study the Hecke correspondence (Ty,T1) :
M¥X' (G, X)* — (M¥(G, X)*)2. In order to reduce this situation modulo p,
choose sets K; such that K, K’ € Ky and that condition (a) is satisfied, and
minimal for these properties, sets A; such that 1,9 € Ay and that condition



main April 10, 2009

THE FIXED POINT FORMULA 11

(b) is satisfied, and minimal for these properties; take R; = Repg, if G
is of abelian type and R; equal to the R} defined in the proposition in
the other cases; fix ¥ such that conditions (1)-(7) are satisfied, and reduce
modulo p & X.

Proof. First we show that, in the general case, there is a finite set X
of prime numbers satisfying conditions (1)-(6), with R; = Repg,. It is
obviously possible to find ¥ satisfying conditions (1)-(4). Proposition 3.6
of [W] implies that we can find ¥ satisfying conditions (1)-(5). To show
that there exists 3 satisfying conditions (1)-(6), reason as in the proof of
proposition 3.7 of [W], using the generic base change theorem of Deligne
(cf SGA 4 1/2 [Th. finitude] théoreme 1.9). As in the proof of proposition
1.3.1, if G is of abelian type, then condition (7) is true by proposition
5.6.2 of [P2]. In the general case, let R. be defined as in the statement of
the proposition. Condition (7) for these subcategories is a consequence of
proposition 5.6.1 of [P2] (reason as in the second proof of [P2] 5.6.6).

O

Remark 1.3.5 Note that it is clear from the proof that, after replacing ¥
by a bigger finite set, we can choose the integral models M¥(G;, &;) to be
any integral models specified before (as long as they satisfy the conditions

of (2)).

When we later talk about reducing Shimura varieties modulo p, we will
always implicitely fix 3 as in proposition 1.3.1 (or proposition 1.3.4) and
take p ¢ ¥. The prime number ¢ will be chosen among elements of 3 (or
added to ).

1.4 WEIGHTED COHOMOLOGY COMPLEXES AND INTER-
SECTION COMPLEX

Let (G, X) be a Shimura datum and K be a neat open compact subgroup of
G(Ay). Assume that G satisfies the conditions of 1 and that G*? is simple.
Fix a minimal parabolic subgroup Py of G and maximal standard parabolic
subgroups Py, ..., P, as before proposition 1.1.3. Fix prime numbers p and
£ as in the end of 1.3, and a place A of K above ¢. In this section, we will
write MK (G, X), etc, for the reduction modulo p of the varieties of 1.1.
Write My = M¥(G,X) and d = dim My, and, for every r € {1,...,n},
denote by M, the union of the boundary strata of M¥(G, X)* associated to
P, by d, the dimension of M, and by i, the inclusion of M, in M¥(G, X)*.
Then (M, ..., M,) is a stratification of M¥(G,X)* in the sense of [M2]
3.3.1. Hence, for every a = (ao,...,a,) € (ZU{£oo})" !, the functors w<,
and ws, of [M2] 3.3.2 are defined (on the category D%, (M¥(G, X)*, K)) of
mixed A-adic complexes on M¥ (G, X)*). We will recall the definition of the
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intersection complex and of the weighted cohomology complexes. Remember
that j is the open immersion MX(G, X) — M¥(G, x)*.

Remark 1.4.1 We will need to use the fact that the sheaves FXV are mixed
with known weights. So we fix categories Ro,..., R, as in 1.3, satisfying
conditions (c) and (7) of 1.3. If G is of abelian type, we can simply take
Ro = Rep(;.

Definition 1.4.2 (i) Let V € Ob Repe. The intersection complex on
MX(G, X)* with coefficients in V is the complex

ICRV = (ju(FRV[d]))[~d].

(i) (cf [M2] 4.1.3) Let ty,...,t, € ZU {£oo}. For every r € {1,...,n},
write a, = —t, + d,.. Define an additive triangulated functor

WzteZin . DY(Ry) — DY (M®(G, X)*, K))

in the following way : for every m € Z, if V € Ob D(Ry) is such that
all H*V, i € Z, are pure of weight m, then

St St t, . K
w=n V= wg(—m+d,—m+a1,..4,—m+an)R]*f V.

Proposition 4.1.5 of [M2] admits the following obvious generalization :

Proposition 1.4.3 Lett,...,t, € Z be such that, for every r € {1,...,n},
dr —d <t. <1+d,.—d. Then, for every V € ObRy, there is a canonical
isomorphism

ICKV ~ W2to2iny,

We now want to calculate the restriction to boundary strata of the weighted
cohomology complexes. The following theorem is a consequence of proposi-
tions 3.3.4 and 3.4.2 of [M2].

Theorem 1.4.4 Let a = (ag,...,an) € (Z U {xoo})"* 1. Then, for every
L € Ob Db (MX(G, Xx), K)) such that all perverse cohomology sheaves of
L are pure of weight ag, there is an equality of classes in the Grothendieck
group of D (M¥X(G,X)*,K))) :

[weoRj. L] = Z (= 1) [in,1W<a,, ip, - - iny 1 W<a, i, J1L)-
1<n1 < <n,p<n

Therefore it is enough to calculate the restriction to boundary strata of the
complexes in,|W<a,, z'm .. inllwganlilmjy}"KV, 1<ny <---<n, <n. The

following proposition generalizes proposition 4.2.3 of [M2] and proposition
5.2.3 of [M1] :

Proposition 1.4.5 Let nqy,...,n,. € {1,...,n} be such that ny < --- < n,,
aiy...,ar € ZU{£oo}, V € ObD*(Ry) and g € G(Ay). Write P =P, N
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--- NPy, ; remember that, in 1.1, before proposition 1.1.3, we constructed
aset Cp ~P(Q)Q,,. (Ar)\ G(Ay)/K and a map from this set to the set of
boundary strata of M¥(G, X)* associated to P,,, . For everyi € {1,...,r},
let w; : G, — Gy, be the cocharacter associated to the Shimura datum
(Gp,, Xn,;) as in 1.3; the image of w; is contained in the center of G, and
w; can be seen as a cocharacter of Mp. For every i € {1,...,r}, write
t; = —a; + dn, Let

-k . -k . -k . K
L =i,  RinWsa,ip - RinsWsa, iy, RjF V.

Then there is a canonical isomorphism

L~ @TC*Lc,
C

where the direct sum is over the set of C' = (X1,...,X,) € Cp that are sent
to the stratum Im(in, 4), Tc is the obvious morphism X, — Im(iy,,g)
(a finite étale morphism) and L¢ is an A-adic complex on X, such that, if
h € G(Ay) is a representative of C, there is an isomorphism

Lo ~ FYHL RD(HL /Ky, RT(Lie(Np), V) ety ... <t,),

where H = KKh~'(P(Q)Qn, (A7), Hy, = HKh~'NP(Q)N,,, (A7) Ly, (Q)N,,, (Af),
Ky = hRKh ' N Np(Q)N,,.(Ay) and, for every i € {1,...,r}, the subscript

> t; means that the complex RI'(Lie(Np),V) of representations of Mp is
truncated by the weights of w;(G,,) (cf [M2] 4.1.1).

Remember that the Levi quotient M p is the direct product of G,,, and of a
Levi subgroup Lp of L,,,. Write ', = H, /Ky and X1, = Lp(R) /KL AL, (R)?,
where Ky, o is a maximal compact subgroup of Lp(R) and Ay, is, as in
1.2, the maximal split subtorus of the center of Lp; also remember that
q(Lp) = dim(Xy)/2. Then I'y, is a neat arithmetic subgroup of Lp(Q), and,
for every W € Ob D®(Repy,),

RT(Ty,W) = RT(T \ X1, FreW).
Write
RT.(', W) = R, (' \ Xz, FFeW).

If W € ObD"(Repm,), then this complex can be seen as an object of
DP(Repg,, ), because it is the dual of RI(I'y, W*)[dim(X )] (where W* is
the contragredient of W). Define in the same way a complex RT'.(Kp, W)
for K, a neat open compact subgroup of Lp(A;) and W € Ob Db(Repr,,,).

Corollary 1.4.6 Write

M =1 I, | W<q,.

. A4 K
g el W<y by, IV

ny

Then there is a canonical isomorphism

M ~ @TC*MC,
C
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where the sum is as in the proposition above and, for every C' = (X1,...,X,) €
Cp that is sent to the stratum Im(i,, 4), Mc is an A-adic complex on X,
such that, if h is a representative of C, then there is an isomorphism (with
the notations of the proposition)

M ~ FY/He RT(Hp /Ky, RT(Lie(Np), V) sy, ¢, ) [~ dim(An,. /Ag)].

Proof. Let V* be the contragredient of V. The complex dual to M is :
D(M) = i Rinws_q,i% ... Ripws_q,i5 Rj.D(FEV)

= i Rin s i o Ring s o, i, Rjc(FKV*[2d](d))
= (i, gRin«w>24—a, i}, .. Rin,w>24_a,in, RjFEV*)[2d)(d).

For every i € {1,...,r},let s, = —(2d —a; — 1) +dp, =1 —t; — 2(d — dy,).
By proposition 1.4.5,

D(M) ~ @ Te. M,
C

with
M{ ~ FU/HeRU(H, /Ky, RU(Lie(Np), V*) <, ... <s,) [2d)(d).
Take M¢c = D(M{). It remains to prove the formula for Mc.
Let m = dim(INp). By lemma (10.9) of [GHM],

RI(Lie(Np), V)t >, ~ RHom(RT (Lie(Np), V") <s, . <s,, H" (Lie(Np), Q) [-m],

and H™(Lie(Np),Q) is the character v — det(Ad(v), Lie(Np))~! of Mp

(only the case of groups G with anisotropic center is treated in [GHM],

but the general case is similar). In particular, Hy /Ky acts trivially on

H™(Lie(Np),Q), and the group w,(G,,) acts by the character A —— \2(4=dn)

(w, is defined as in proposition 1.4.5). Hence

Mg ~ F/HLRT (Hp /Ky, RT(Lie(Np), V)s1,....5¢,)a],

with

a = 2d,LT—|—m—|—2q(Lp)—2d = 2q(GnT)+2q(LP)+dim(Np)—2q(G) = — dim(AMP /Ag)
([

Proof of proposition 1.4.5. Let C = (Xy,...,X,) € Cp. Let I; be the
locally closed immersion X; — M¥(G, X) and, for every m € {1,...,r—1},
denote by j,, the open immersion X,,, — X, and by I,,11 the locally closed
immersion X,,+1 — X, (where X, is the Baily-Borel compactification of
X.)- Define a complex Lo on X, by :

Lec = w>a7‘I:RjT—1*w>am—1I:—1 s w>a1IikRj*]:KV

Let us show by induction on r that L is isomorphic to the direct sum of
the TcwLc, for C' € Cp that is sent to the stratum Y := Im(iy, ). The
statement is obvious if » = 1. Suppose that » > 2 and that the statement
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is true for 7 — 1. Let Yi,...,Y,, be the boundary strata of MX(G,x)*
associated to P, _, whose adherence contains Y. For every i € {1,...,m},
let u; : Y; — M¥X(G, X)* be the inclusion and let

ks - . o . K
Li =i Rin, _ xWsa,_y iy, - RingxWsa, 1y, RIF V.

It is obvious that

m

L=@pi;, ,Ruiwsa, Li.

i=1
Write P = P,, Nn---NP, ,. Let i € {1,...,m}. By the induction
hypothesis, L; is isomorphic to the direct sum of the T¢/ Lo over the
set of C' € Cps that are sent to Y;, where Lo is defined in the same
way as Lo. Fix ¢ = (Xy,...,X,_1) that is sent to Y;; let us calculate
in,. g BUisWsq, Ter Lo There is a commutative diagram, with squares carte-
sien up to nilpotent elements :

I’ Jr—1
y — X! <— X, 4

Y Y, Yi

where Y’ is a disjoint union of boundary strata of X*_; associated to the
parabolic subgroup (P, NQ,,_,)/N,. _,. Moreover, the vertical arrows are
finite maps, and the maps T and T are étales. By the proper base change
isomorphism and the fact the functors w~, commute with taking the direct
image by a finite étale morphism, there is an isomorphism :

*

. 1% .
znngui*w>arT0/*Lc/ = T*w>arf R]r—l*LC’-

The right hand side is the direct sum of the complexes
(T o I7')*w>aTI:Rj7'—1*LC’ = TC*L07

for I, : X, — X_, in the set of boundary strata of X*_; included in Y’
and for C = (Xy,...,X,). This calculations clearly imply the statement
that we were trying to prove.

It remains to prove the formula for Lo given in the proposition. Again,
use induction on 7. If r = 1, the formula for L is a direct consequence of
Pink’s theorem (1.2.3) and of lemma 4.1.2 of [M2]. Supppose that r > 2
and that the result is known for » — 1. Let C = (X3,...,X,) € Cp, and
let h € G(Ay) be a representative of C. Write P’ = P,, n---NP
C'=(X1,...,Xr—1),

H=hKh ' NnPQ)Q,, (Af),

Tn—17

Hy = hKh™' 0 P(Q)Ny,, (Af) N Ly, (Q)Ny, (Af) = HN Ly, (Q)Ny, (Af),

Ky =hKh 1IN NP(@)NTLT(AJC)’
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H/ == hKh_l N P/(@)Qm-fl (Af)’

31 = hKhilmP/(Q)Nnrfl (Af)anr—l (@)Nnr—l (Af) = H/anr—l (Q)Nnr—l (Af)’

v =BKh ' N Np/(QN,, ,(Ay).
By the induction hypothesis, there is a canonical isomorphism
Lo ~ FU/MLRU(HY, /Ky, RU(Lie(Np/ ), V) <ty et y)-

Applying Pink’s theorem, we get a canonical isomorphism

Lo = wsq, FV/1RT(Hy /HY, RT(H], /Kly, RU(Lie(Ny, ), V)<t <t 21)))-

There are canonical isomorphisms
RI'(Hp/H7, RT(H7, /Ky, —)) RI(HL /Ky, RU(Ky /Ky, —))
RI'(HL /Ky, RT'(Lie(N,,,. /N, _,),—))

R

(the last isomorphism comes from van Est’s theorem, cf [GKM] §24). On
the other hand, for every ¢ € {1,...,7 — 1}, the image of the cocharacter
w; : G, — Gy, is contained in the center of G,,,, hence it commutes with
G, _,. This implies that

RI'(Lie(N,, /N,,_,), RT(Lie(Ny,_,),V)<ty,..t,_,) = RT(Lie(Ny,), V)<, .
so that
Lo ~ wsa, FARLRU(HL /Ky, RT(Lie(Np, ), V) <ty ety )

To finish the proof, it suffices to apply lemma 4.1.2 of [M2] and to notice
that the image of w, : G,, — G, commutes with L, (Q), hence also with
its subgroup Hy, /Ky

(I

1.5 COHOMOLOGICAL CORRESPONDENCES

Notation 1.5.1 Let (77,7%) : X’ — X; x Xs be a correspondence of
separated schemes of finite type over a finite field, and let ¢ : Ty Ly — T4Lo
be a cohomological correspondence with support in (77,7%). Denote by ®
the absolute Frobenius morphism of X;. For every j € N, we will write ®J¢
for the cohomological correspondence with support in (®7 o Ty, Tz) defined
as the following composition of maps :

(® o Ty)* Ly = T ®* Ly ~ TF Ly — T5Lo.

First we will define Hecke correspondences on the complexes of 1.2. Fix M,
Land (G, X) asin 1.2. Let my,my € L(Q)G(Af) and K, KV, K be neat
open compact subgroups of M(A f) such that H' C mlH(l)mflﬁmgH(mmgl7
where H = K/, N L(Q)G(As) and H® = K{) N L(Q)G(A;). This gives

oy <tr—1>
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two finite étale morphisms T}, : M (G, X)/H — M(G,X)/H® i=1,2.
Write H = H® N L(Q) and H}, = H' N L(Q). Let V € Ob Repy. For
1 =1,2, write

L, = AN R v).
By [P2] 1.11.5, there are canonical isomorphisms

T L ~ FV/Megr RT(HY V)

where 67 RF(H(Li), V) is the inverse image by the morphism H'/H;, —
H(i)/H(LZ), h +—— m; 'hm;, of the complex of H(i)/H(LZ)—modules RI‘(H(LZ), V).
Using the injections H; — H(LI), h — mi_lhmi, we get an adjonction mor-
phism 6’1‘]%1"(H(L1)7 V) o4, RT'(H/,,V) and a trace morphism RT'(H,V) AN

GSRF(H(LQ), V') (this last morphism exists because the index of H} in H(Lz) is

finite); these morphisms are H'/H/ -equivariant. The Hecke correspondence

Cmq,my - T;;LlLl — T:nzLQ = T;LQLQ
is the map
T Ly ~ F /Mg ROEY, V) 28 AL Rea,, V) L FH/HLgs RTHP, V) ~ T Lo

Note that, if L = {1}, then this correspondence is an isomorphism.

Remarks 1.5.2 (1) Assume that K}, C legvlj)mfl N mgKg\Q/[)mgl, and
write K7 = K4, NL(A;) and K(LZ) = KS\Z) NL(Ay). Using the methods
of [M1] 2.1.4 (and the fact that, for every open compact subgroup K,
of L(Ay), RT(K.,V) = @,c; R (9:Krg; ' NL(Q), V), where (g;)ie; is
a system of representatives of L(Q) \ L(A¢)/Ky), it is possible to con-
struct complexes M; = FKN /K RI‘(K(Li), V) and FXu/KL RD(K), , V).
There is a correspondence
(Tony s Tona) + MES S5 (G ) — MWL (G, ) M5 (G, ),
and a cohomological correspondence, constructed as above,

Lk !
Cmyymy @ Ly My — T, Mo,

(2) There are analogous correspondences, constructed by replacing RF(HSf), V)
and RT(H}, V) (resp. RT'(K'”, V) and RI'(K/,,V)) with RC.(H\”, V)
and RT(H,,V) (resp. RT,(K\” V) and RT,(K},V)). We will still
use the notation ¢, m, for these correspondences.

Use the notations of 1.4, and fix ¢ € G(Ay) and a second open compact
subgroup K’ of G(Ay), such that K" ¢ KNgKg~!. Fix prime numbers p and
£ as in the end of 1.3. In particular, it is assumed that g € G(AI;) and that
K (resp. K') is of the form KPG(Z,) (resp. K""G(Z,)), with K C G(A%})
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(resp. K'” € G(A%)) and G(Z,) a hyperspecial maximal compact subgroup
of G(Qp). As in 1.4, we will use the notations M¥(G,X), etc, for the
reductions modulo p of the varieties of 1.1.

Let ® be the absolute Frobenius morphism of M¥X(G,Xx)*. For every
V € ObD’(Repg) and j € Z, let uj : (®IT,)*FKV — T{FKV be the
cohomological correspondence ®/c, 1 on FXV (with support in ($1Ty, T1)).

Let V € Ob D*(Ry). By [M2] 5.1.2 et 5.1.3 :

e for every ti,...,t, € Z U {£oo}, the correspondence u; extends in a
unique way to a correspondence

- —
U ((I)JTQ)*WZthm,Zth SN lezthm,ztnv;

e for every ny,...,n, € {1,...,n} such that ny < --- < n, and every
ai,...,a, € ZU{£oo}, the correspondence u; gives in a natural way a
cohomological correspondence on i,, 1W<, %5, ... inlgwgali!mjg}"KV with
support in (@ij, T,); write inT,gw§a7,i!m
respondence.

ze

. .0 . .
ol W<q, By, 1y for this cor-

Moreover, there is an analog of theorem 1.4.4 for cohomological correspon-
dences (cf [M2] 5.1.5). The goal of this section is to calculate the correspon-
dences in,,lwga,,i!n,,, e W<y Ty J1UG -

Fix ny,...,n, € {1,...,n} such that n; < --- < n, and a,...,a, €
Z U {£o0}, and write

. .1 . a0 . K
L =ip W<, by, - ingW<ay i, NFV

. .1 . .l .
U=l W<a, by, - - Uy 1W<y Ty J1UG -

Use the notations of corollary 1.4.6. By this corollary, there is an isomor-
phism

L~ @ (iCTc)!LC7
CeCp

where, for every C = (X1, ..., X,) € Cp, ic is the inclusion in M¥(G, X)* of
the boundary stratum image of X, (ie of the stratum Im(i,, »), if h € G(Ay)
is a representative of C'). Hence the correspondence u can be seen as a matrix
(uey,05)Cn,Coecp, and we want to calculate the entries of this matrix.

Let C% be the analog of the set Cp obtained when K is replaced with
K’. The morphisms T, T define maps T,,T} : Cp — Cp, and these
maps correspond via the bijections Cp ~ P(Q)Q,, (Af) \ G(Af)/K and
Chr ~P(Q)Q,, (Af) \ G(Ay)/K’ of proposition 1.1.3 to the maps induced
by h — hg and h —— h.

Let C7 = (X{l), e 7Xﬁl))7C’2 = (Xf), e ,XﬁQ)) € Cp, and choose repre-
sentatives hi, ho € G(Ay) of C7 and Cs. Let €' = (X1, ..., X]) € C}p be such
that T,(C") = C4 and T1(C") = Cs. Fix a representative b’ € G(Ay) of C’.
There exist ¢1,q2 € P(Q)Q,,. (As) such that ¢1h’ € h1gK and g2h’ € hoK.
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Let @y, g, be the images of ¢1, g2 in L, (Q)G,, (Ay). The following diagrams
are commutative :

X; icr Tor MK/(G7 X)* X; icrTer MK/(G’ X)*
Tq1i T_ql qui Tll
1y feTem K * gy _e2To@ K *
XM M¥(G, ) X ————= M¥(G, X)

By corollary 1.4.6, there are isomorphisms

1 (1) .
Lo, ~ FUY/M RE (HY /K RU(Lie(N,, ), V) si,.5e)d]

and
H® /@ (2) /10(2) ;
Lo, ~ F7 /0 RU(HL /KN, R (Lie(Ny, ), V)>t,,.... >, )[al,
where t1,...,t, are defined as in proposition 1.4.5, ¢ = —dim(A, /Ag),

HO = hKh ' NP(Q)Qn, (Af), HY = HO N L, (Q)N,, (As) and K =
HO NN, (Ay). We get a cohomological correspondence

‘I)jcﬁlﬁz : (q)jT§1)*Lcl - T§!2L02'
Define a cohomological correspondace
= =
ucr : (Y1) (i, Tey 1 Loy, — T (i, Te, )1 Ly,

by taking the direct image with compact support of the previous correspon-
dence by (ic,Tc,,ic,Tc,) (the direct image of a correspondence by a proper
morphism is defined in SGA 5 III 3.3; the direct image by a locally closed
immersion is defined in [M2] 5.1.1 (following [F] 1.3.1), and the direct image
with compact support is defined by duality). Finally, write

Nev = K@ : hoK'hy' NN, (Af)).

Proposition 1.5.3 The coefficient uc, ¢, in the above matrix is equal to
> Newuer,
Cl

where the sum is taken over the set of C' € C}, such that T,(C') = C; and
T1(C") = Cs.

This proposition generalizes (the dual version of) theorem 5.2.2 of [M2]
and can be proved exactly in the same way (by induction on r, as in the proof
of proposition 1.4.5). The proof of theorem 5.2.2 of [M2]| uses proposition
2.2.3 of [M2] (via the proof of corollary 5.2.4), but this proposition is simply
a reformulation of proposition 4.8.5 de [P2], and it is true as well for the
Shimura varieties considered here.
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1.6 THE FIXED POINT FORMULAS OF KOTTWITZ AND GORESKY-
KOTTWITZ-MACPHERSON

In this section, we recall two results about the fixed points of Hecke corre-
spondences, that will be used in 1.7.

Theorem 1.6.1 ([K11] 19.6) Notations are as in 1.5. Assume that the
Shimura datum (G, X) is of the type considered in [K11] §5, and that we
are not in case (D) of that article (ie that G is not an orthogonal group).
Fix an algebraic closure F of F,. Let V &€ ObRepg. For every j > 1,
denote by T(j,g) the sum over the set of fixed points in M¥ (G, X)(F) of
the correspondence ($7 o T, T1) of the naive local terms (cf [P3] 1.5) of the
cohomological correspondence u; on F KV defined in 1.5. Then

TG.g)= >,  c(10:70)05(f*)TO0s(¢F) Tr(v0, V).
(y037:0)€Cq,;
Let us explain briefly the notations (see [K9] §2 and 3 for more detailed

explanations).
The function f? € C°(G(A})) is defined by the formula

o g
vol(K'?)’
For every v € G(A}), write

0, (f7) = / P,
G(AR),\G(AD)

where G(A%), is the centralizer of v in G(A%).
Remember that we fixed an injection F' C @p; this determines a place p
of F' over p. Let Q)" be the maximal unramified extension of Q, in @p, L

be the unramified extension of degree j of F|, in @p, r=[L:Q,], wr be a
uniformizer of L and ¢ € Gal(Qp"/Q,) be the element lifting the arithmetic
Frobenius morphism of Gal(F/F,). Let ¢ € G(L). Define the norm N§ of §
by

N6 =d0(5)...0" 1) € G(L).
The o-centralizer of § in G(L) is by definition
G(L)§ ={z € G(L)|xd = do(z)}.

We say that ¢’ € G(L) is o-conjugate to § in G(L) if there exists z € G(L)
such that &' = 27150 (z).

By definition of the reflex field F, the conjugacy class of cocharacters
hzopo : Gpc — Gg, z € &, of 1.1 is defined over F. Choose an element p
in this conjugacy class that factors through a maximal split torus of G over
Oy, (cf [K9] §3 p173), and write
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(H(G(L),G(Oyr)) is the Hecke algebra of functions with compact support
on G(L) that are bi-invariant by G(Op).) For every é € G(L) and ¢ €
C*(G(L)), write

TO5(6) = / oy 60 (y))dg.

G(L)Z\G(L)

Let T be a maximal torus of G. The conjugacy class of cocharacters h; o g,
z € X, corresponds to a Weyl group orbit of characters of T; denote by p;
the restriction to Z(G) of any of these characters (this does not depend on
the choices).

It remains to define the set Cg ; indexing the sum of the theorem and
the coefficients ¢(79;7,d). Consider the set of triples (y9;7,9) € G(Q) x
G(A%) x G(L) satisfying the following conditions (we will later write (C) for
the list of these conditions) :

® 1y is semi-simple and elliptic in G(R) (in there exists an elliptic maximal
torus T of Gg such that vy € T(R)).

® For every place v # p,00 of Q, ~, (the local component of v at v) is
G(Q,)-conjugate to vo.

® N¢ and g are G(@p)—conjugate.

® The image of the o-conjugacy class of § by the map B(Ggq,) —

X*(Z(G)CQ/ ) of [K9] 6.1 is the restriction of — iy to Z(G)G(Q@ /),

Two triples (yo;7,9) and (y4;7',9") are called equivalent if vy and ~( are
G(Q)-conjugate, v and v' are G(A’})—conjugate, and § and 0’ are o-conjugate
in G(L).

Let (v0;7, 6) be a triple satisfying conditions (C). Let Iy be the centralizer
of 79 in G. There is a canonical morphism Z(é) — Z(:fo), and the exact
sequence

1— 2(G) — Z(Io) — 2(10)/2(G) — 1
induces a morphism
m0((Z(10)/2(G)) VD) — HY(Q Z(G)).
Denote by £(Ip/Q) the inverse image by this morphism of the subgroup
Ker'(Q, 2(G)) = Ker(H'(Q,2(G)) —  [] H"Q.,2(G))).

v place of Q

In [K9] §2, Kottwitz defines an element a(yo;7,8) € &(Io/Q)P (where,
for every group A, AP = Hom(A,C*)); this element depends only on the
equivalence class of (y0;7,0d). For every place v # p,o00 of Q, denote by
I(v) the centralizer of 7, in Gg,; as v and 7, are G(Q,)-conjugate, the
group I(v) is an inner form of Iy over Q,. On the other hand, there exists
a Qp-group I(p) such that I(p)(Q,) = G(L)§, and this group is an inner
form of Iy over Qp. There is a similar object for the infinite place : in the
beginning of [K9] §3, Kottwitz defines an inner form I(oo) of Ip; I(c0) is
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an algebraic group over R, anisotropic modulo Ag. Kottwitz shows that,
if a(y0;7,0) = 1, then there exists an inner form I of Iy over Q such that,
for every place v of Q, I, and I(v) are isomorphic (Kottwitz’s statement is
more precise, cf [K9] p 171-172).

The set Cg,; indexing the sum of the theorem is the set of equivalence
classes of triples (vo; v, ) satisfying conditions (C) and such that a(yg;7,0) =
1. For every (vo,7,0) in Cq j, let

(7037, 0) = vol(I(Q) \ I(Af))| Ker(Ker' (Q, Iy) — Ker'(Q, G))|.

Finally, the Haar measures are normalized as in [K9] §3 : Take on G(A?)
(resp. G(Qp), resp. G(L)) the Haar measure such that the volume of K?
(resp. G(Zp), resp. G(Or)) is equal to 1. Take on I(A%) (resp. I(Qp))
a Haar measure such that the volume of every open compact subgroup is
a rational number, and use inner twistings to transport these measures to

G(A%)y and G(L)F.

Remark 1.6.2 If K’ = KN gKg~', we may replace fP with the function

Ikrgke » oy e ruep ) ,
V(I)(I(I?P) € H(G(A}),KP) := C (K" \ G(A})/K")

(cf [K11] §16 p 432).

Remark 1.6.3 There are two differences between the formula given here
and formula (19.6) of [K11] :

(1) Kottwitz considers the correspondence (T, ®7 o Ty) (and not (®7 o
T,,T1)) and does not define the naive local term in the same way as
Pink (cf [K11] §16 p 433). But is is easy to see (by comparing the defini-
tions of the naive local terms and composing Kottwitz’s correspondence
by T,-1) that the number T'(j, f) of [K11] (19.6) is equal to T'(j,¢g~').
This explains that the function of C°(G(A%)) appearing in theorem
1.6.1 is vol(K'”) " "yk», instead of the function f7 = vol(K'") Mgy, 1
of [K11] §16 p 432. (Kottwitz also takes systematically K/ = KNgKg1,
but his result generalizes immediately to the case where K’ is of finite
index in KN gKg™1).

(2) Below formula (19.6) of [K11], Kottwitz notes that this formula is true
for the canonical model of a Shimura variety associated to the datum
(G,X,h™1) (and not (G, X, h)). The normalization of the global class
field isomorphism used in [K9], [K11] and here are the same (it is also
the normalization of [D1] 0.8 and [P2] 5.5). However, the convention for
the action of the Galois group on the special points of the canonical
model that is used here is the convention of [P2] 5.5, and it differs
(by a sign) from the convention of [D1] 2.2.4 (because the reciprocity
morphism of [P2] 5.5 is the inverse of the reciprocity morphism of [D1]
2.2.3). As Kottwitz uses Deligne’s conventions, what he calls canonical
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model of a Shimura variety associated to the datum (G, X', h~1) is what
is called here canonical model of a Shimura variety associated to the
datum (G, X, h).

Remark 1.6.4 Actually, Kottwitz proves a stronger result in [K11] §19
For every v € G(A?), let N(7) be the number of fixed points 2’ in

M¥X'(G, X)(F) that can be represented by an element Z of M(G,X)(F)
such that there exists £ € K and g € G(Ay) with ®(Z)g = 7k and gk~!
G(A'})-conjugate to v (this condition depends only on ', and not on the
choice of ). Then

N() =" cl0:7,8)0,(f1)TOs(65),
5

where the sum is taken over the set of o-conjugacy classes of 6 € G(L)
such that there exists 79 € G(Q) such that the triple (y0;7,9) is in Cgq ; (if
such a g exists, it is unique up to G(Q)-conjugacy, because, for every place
v # p,00 of Q, it is conjugate under G(Q,) to the component at v of 7).
Moreover, if 2’ is a fixed point contributing to N(), then the naive local
term at ' is Tr(7ye, V) (where 7, is the f-adic component of 7).

Remark 1.6.5 Some of the Shimura varieties that will be used later are not
of the type considered in [K11] §5, so we will need another generalization of
Kottwitz’s result, in a very particular (and easy) case. Let (G, X,h) be a
Shimura datum (in the sense of 1.1) such that G is a torus. Let ) be the
image of X by the morphism h : X — Hom(S, G) () is a point because G
is commutative, but the cardinality of A can be greater than 1 in general;
remember that the morphism h is assumed to have finite fibers, but that
it is not assumed to be injective). Let G(R)T be the subgroup of G(R)
stabilizing a connected component of X (this group does not depend on the
choice of the connected component) and G(Q)T = G(Q) N G(R)". The
results of theorem 1.6.1 and of remark 1.6.4 are true for the Shimura datum
(G,Y) (in this case, they are a consequence of the description of the action
of the Galois group on the special points of the canonical model, cf [P2] 5.5).
For the Shimura datum (G, &), these results are also true if the following
changes are made :

- multiply the formula giving the trace in theorem 1.6.1 and the formula
giving the number of fixed points in remark 1.6.4 by |X|;

- replace Cq ; with the subset of triples (v9;7,0) € Cg,; such that
Y € G(Q)T.

This fact is also an easy consequence of [P2] 5.5.

The fixed point formula of Goresky, Kottwitz and MacPherson applies to
a different situation, that of the end of 1.2. Use the notations introduced
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there. Let V' € Ob Repg, g € G(Ay), and let K, K’ be neat open compact
subgroups of G(Ay) such that K" ¢ KN gKg~!. This gives two finite étale
morphisms Ty, 71 : M¥' (G, X)(C) — M¥(G, X)(C). Define a cohomolog-
ical correspondence

ug : Ty FRV =5 T{FRV

as in the beginning of 1.5. The following theorem is a particular case of
theorem 7.14.B of [GKM] (cf [GKM] (7.17)).

Theorem 1.6.6 The trace of the correspondence ugy on the cohomology
with compact support RT.(M®(G, X)(C), FXV) is equal to

D (~nAmEAMAS (nf) TN M (9) T (ML) 05 (fRDIDS ()2 Tr (7, V),
M Y

where the first sum is taken over the set of G(Q)-conjugacy classes of cuspidal
Levi subgroups M of G and, for every M, the second sum is taken over the
set 7 of semi-simple M(Q)-conjugacy classes that are elliptic in M(R).

Let us explain the notations.

1
o f— volé(?(’) € CX(G(Ay)), and fgy is the constant term of f*° at M

(cf [GKM] (7.13.2)).
® Let M be a Levi subgroup of G. Let Aj,; be the maximal (Q-)split
subtorus of the center of M and

n§; = | Norg(M)(Q)/M(Q)|.

M is called cuspidal if the group Mg has a maximal (R-)torus T such
that T/Ar is anisotropic.

® Let M be a Levi subgroup of G and v € M(Q). Let M” be the cen-
tralizer of v in M, M, = (M?)°,

M(y) = IM7(Q)/M,(Q)|
and

DS () = det(1 — Ad(y), Lie(G)/Lie(M)).

® x(M,) is the Euler characteristic of M., cf [GKM] (7.10).

Remark 1.6.7 According to [GKM] 7.14.B, the formula of the theorem
should give Tr(y,V*) (or Tr(y=1,V)) and not Tr(y,V). The difference
between the formula given here and that of [GKM] comes from the fact that
[GKM] uses a different convention to define the trace of u, (cf [GKM] (7.7));
the convention used here is that of SGA 5 III and of [P1].
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1.7 THE FIXED POINT FORMULA

Use the notations introduced before proposition 1.5.3 and the notations of
1.6. Assume that the Shimura data (G, X) and (G;, &;), 1 < i <n—1,
are of the type considered [K11] §5, with case (D) excluded. (In particular,
G2 is of abelian type, so we can take Ry = Repg, ie choose any V €
Ob D*(Repg).) Assume moreover that (G, &, ) is of the type considered
in [K11] §5 (case (D) excluded) or that G, is a torus.
We want to calculate the trace of the cohomological correspondence
Ty (BT, W22ty L T W 2ho o2ty

Assume that w(G,,) acts on the H'V, i € Z, by t — t™, for a certain
m € Z (where w : G,,, — G is the cocharacter of 1.3).
Let

P =vol(K”) .
Let P be a standard parabolic subgroup of G. Write P =P, Nn---NP, ,
with nqy < -+ < n,. Let

Tp =mp Y (—1)ImAL Ae) (0} )=t N "L () Ty (L, ) DE ()2
L YL

Y. 07,0054 )05, (Iu,)

(0;71,9)€Cq,,

2 Gy o1/2 .
5119/(@“ (70)TOs(¢; )5119/(R) (vz70) Tr(vz70, R (Lie(Np), V) >t, +m,..>t,, +m);

where the first sum is taken over the set of Lp(Q)-conjugacy classes of cus-
pidal Levi subgroups L of Lp, the second sum is taken over the set of semi-
simple conjugacy classes vz € L(Q) that are elliptic in L(R), and :

- L(Z,) is a hyperspecial maximal compact subgroup of L(Q,);

- mp=1ifn, <norif (G,,X,) is of the type considered in [K11] §5,
and mp = |&,, | if n, =n and G,,, is a torus;

- Cq, j=Ca,,,jifn, <norif (G, Xp) is of the type considered in
[K11] §5, and, if Gy, is a torus, Cg  ; is the subset of Cg,,,; defined in
remark 1.6.5.

Write also
— . o0,p G
To= Y ;7 60)0,(fP)T0s(¢$) Tr(r0, V).
(1057,9)€Cq,;
Theorem 1.7.1 If j is positive and big enough, then
Tr(t;, RU(MS(G, X)j, (W2t 20V )e)) = To + > Tp,
P

where the sum is taken over the set of standard parabolic subgroups of G.
Moreover, if ¢ =1 and K = K’, then this formula is true for every j € N*.
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Proof. For every i € {1,...,n}, let a; = —t; — m + dim(M;). For every
standard parabolic subgroup P =P,,, N---NP,,, with ny <--- <n,, let
Tp = (—=1)" Tr(in, W<, b, - inyW<a,, i, T;).
Let
T = Te(j, RU(M™(G, X)g, (W F“V)r)).
Then, by the dual of proposition 5.1.5 of [M2] and by the definition of
W2t17~--72tnv

Tr(wj, RU(M™(G, X)5, (W12 V)g)) = T+ Th,
P

where the sum is taken over the set of standard parabolic subgroups of G. So
we want to show that TS, = Tg and Tp = Tp. Fix P # G (and nq,...,n,).
It is easy to see that

dim(AA{P/AG) =T
Let h € G(A%). Write
Knn =hKh ' N N(Ay)

Kpn =hKh ' NP(Ay)
Kayn =Kpn/Knn
Kpn = (hKh™ ' NLp(Af)Np(Af))/Knn
Hj, = BKh™ ' NP(Q)Qn, (Af)

HL,h =hKh™'N LP(Q)NP(AJC)

Define in the same way groups Kl ,, etc, by replacing K with K'. If
there exists ¢ € P(Q)Q,.(Af) such that ¢ghK = hgK, let g be the im-
age of ¢ in Mp(Ay), and let u;, be the cohomological correspondence on
FHn/HenRT (Hy, 1, RT(Lie(N,, ), V)>t,,.....>t,, )[a] with support in (D' T5,T1)
equal to ®/cz 1 (we may assume that g € P(A%), hence that g € Mp(A})).
This correspondence is called uc- in 1.5, where C” is the image of h in Cp. If
there is no such ¢ € P(Q)Q,, (Ay), take u, = 0. Similarly, if there exists ¢ €
P(Ay) such that ¢hK = hgK, let g be the image of g in Mp(Af), and let v, be
the cohomological correspondence on FXan/Ke.n RT (K, 5, RT(Lie(Np), Vst >t,,)]al
with support in (777, T1) equal to ®7cg1 (we may assume that ¢ € P(AF)).
If there is no such ¢ € P(Ay), take v, = 0. Finally, let N}, = Ky p, : KQV,L]
Let h € G(A’}) be such that there exists ¢ € P(Ay) with ¢hK = hgK. By
proposition 1.7.2 below,

Tr(vp) = Z Tr(up ),
Y
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where the sum is taken over a system of representatives h’ € G(A%) of the
double classes in P(Q)Q,,,. (Ay) \ G(A;)/K’ that are sent to the class of h
in P(Af)\ G(A;)/K' (apply proposition 1.7.2 with M = Mp, Kyr = Kz p,
m equal to the image of ¢ in Mp(Ay)). On the other hand, by proposition
1.5.3,

Tp = (=1)" > Ny Tr(u),
n

where the sum is taken over a system of representatives h € G(A’}) of the
double classes in P(Q)Q,, (Af) \ G(Ay)/K'. Hence

T} = (71)’“21\7,,, Tr(vy,),
h

where the sum is taken over a system of representatives h € G(A}) of the
double classes in P(Af) \ G(Af)/K'.

Let h € G(A%}). Assume that there exists ¢ € P(A%}) such that ghK =
hgK. Let g be the image of ¢ in M p(A%). Write § = qrqm, with gz, € Lp(A})
and gi € Gy, (A}). Let

fg?;lp = VOl(Kh,h/KlL,h)_lIqu(KM,h/KL,h)'
Notice that KlL,h C Krpnn qLKL,hqzl. Let u,, be the endomorphism of
RU(Kp,pn, RU(Lie(Np),V)>t,,,....>t,,) induced by the cohomological cor-
respondence cg; 1.

To calulate the trace of v;,, we will use Deligne’s conjecture, that has been
proved by Pink (cf [P3]) assuming some hypotheses (that are satisfied here),
and in general by Fujiwara ([F]) and Varshavsky ([V]). This conjecture (that
should now be called theorem) says that, if j is big enough, then the fixed
points of the correspondence between schemes underlying vy, are all isolated,
and that the trace of v, is the sum over these fixed points of the naive local
terms. By theorem 1.6.1 and remarks 1.6.4 et 1.6.5, if j is big enough, then

Te(vn) = (~1)'mp Y. (07 0)0,(FEF)TOs(65")

(v0;71.9)€Cq,,
Tr(ug, 0, RUe(Kp,n, RU(Lie(Np), V)>t, .. >t..))-

Let

—1
fﬁ:,h = VOl(K/L,h) ]quKL,}L.

Then

OO,
fﬁ;h = ]lLP(Zp)fLP,ph’

with f77F, € C2°(Lp(A%)). By theorem 1.6.6, for every vo € Gy, (Q),

Tr(ug, Yo, RTe(Kp iy RT(Lie(Np), Vs, e, ) = D (=1) AL/ ALE) (pr) =t
L
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> F ) T X )DL (V)05 (F25 1) £) Tr(7230, RE(Lie(Np), V) oty o4, )s
YL

where the first sum is taken over the set of conjugacy classes of cuspidal
Levi subgroups L of Lp and the second sum is taken over the set of semi-
simple conjugacy classes vy, of L(Q) that are elliptic in L(R). To show that
Ty = Tp, it is enough to show that, for every Levi subgroup L of Lp, for
every vz € L(Q) and every (v0;7,0) € Ca,,, j,

> N0, (75 1)) O (FEF) = Onun (&0 )08 8, (11790) O (2, )3 2y (20,
h

) of the
if there

where the sum is taken over a system of representatives h € G(A
double classes in P(Ay) \ G(Ay)/K' (with f72 , = 0and f5; =
is no ¢ € P(Ay) such that ¢ghK = hgK).

Fix a parabolic subgroup R of Lp with Levi subgroup L, and let P’ =
RG,, Np (a parabolic subgroup of G with Levi subgroup LG, ). Fix a
system of representatives (h;)ier in G(A}) of P(Ay)\ G(Ay)/K'. For ev-
ery i € I, fix a system of representatives (m;);es, in Lp(A%) of R(Ay) \
Lp(Ay)/K7 ;- Then (mgjh;);; is a system of representatives of P'(Ay) \
G(Ay)/K'. By lemma 1.7.4 below,

Oy (fEé,,) = 5,13//fAr})(7L7) Y r(mighi)Os o (frmish):

2¥)

O

where
r(mijhi) = [(mihi)K(mi;hi) " NNpr(Ag) = (mighi) K (mijhi) "' ONpr(Ay)]
and fps m,;n,; 18 equal to the product of
vol(((mijhi)K' (mijhy) = NP (Ap))/((mijhi)K' (mijhi) = N Npr(Ag))) ™
and of the characteristic function of the image in (LG, )(A%) = Mp/(A})
of (mijhi)gK(mizh;)~" NP'(A%). Note that
r(m;jh;) = Np, ' (mg;),
where
1’ (miz) = [miKppmi;' ONg(Ag) :miKy o, met N Ng(Af)],
that
Sprany (VL) = Oran)(VL)dpan) (VLY),
and that

P mihi = fRima; é‘f,’fj,

where fg m,; is the product of

vol((mi; K7, p, mi_jl N R(Af))/(min/L,himi_jl NNg(Af))) ™



main April 10, 2009

THE FIXED POINT FORMULA 29

and of the characteristic function of the image in L(A}) = Mg(A}) of

(mijhi)gK(mijhi) "' NR(Af)Np(Af). By applying lemma 1.7.4 again, we
find, for every i € I,

> (mij)0y, (Fram,,) = 55&3 (VL) O, ((FL 0L

J€Ji
Finally,

ZNhiO’YL((fE?:,h) ) (fG hz) 'yL((]le(Z,,) ZNh O')’L fL ) )

i€l icl
= Oy, ((ILp(z,))L ZN}L O,( 511%/(1;7 (vr) Z 7' (mij) O~ (fRm,;)

i€l VSRS
OWL((]ILP(Z) AP (7z) ZZ ml] VLW(fP’,mz‘jhi)

i€l jed;

= 050 (A2, W0 ) (1) p iy (127) 034 (FEGE)

P

= O’YL ((HLP(ZP))L)‘S};(II@) (PYL,Y)O'YL'Y( EOGM)'

To finish the proof it suffices to notice that (Ip,(z,)). = lrz,), that

5;&%(’%7) 5P(Ap (vL70), that, as v,y € Mp(Q), the product formula

gives
-1/2 1/2 1/2
5p(,<ﬂ;)(%70) = 5p/(Qp)(7L70)5p/(R) (v270)
and that

dp,)(727) = dp@,)(7L)dP@,)(70) = dp@,)(70)

if O,, (Ip(z,)) # 0 (because this implies that 7, is conjugate in L(Q,) to an
element of L(Z,)).

If j is big enough, we can calculate T, using theorem 1.6.1 and Deligne’s
conjecture. It is obvious T, = Tg.

If g =1 and K = K’, then %; is simply the cohomological correspondence
induced by ®’. In this case, we can calculate the trace of w;, for every
j € N*, using Grothendieck’s trace formula (cf SGA 4 1/2 [Rapport] 3.2).

O

Proposition 1.7.2 Let M, L and (G, X) be as in 1.2. Let m € M(Ay)
and let K, Ky be neat open compact subgroups of M(Ay) such that
KG\/[ C Ky ﬂmKMmfl. Let K, = Ky N L(Aj) and K = KM/KL
Consider a system of representatives (m;);c; of the set of double classes
c € L(Q)G(Af) \ M(Ay)/K), such that cmKyr = cKyr. For every i € I, fix
l; € L(Q) and g; € G(Ay) such that l;g;m; € m;mKy;. Assume that the
Shimura varieties and the morphisms that we get from the above data have
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good reduction modulo p (in particular, Ky; and K, are hyperspecial at p,
and m,m; € M(AI;), gi € G(A?)). Let I, be the field of definition of these
varieties and IF be an algebraic closure of F.

For every i € I, let H; = mKym; ' NL(Q)G(Ay), H, ;, = H,NL(Q) and
K; =H;/H; . Fixe V € Ob Repg. Let

L= FXRT(K,,V)
Li=F%RI(H;,V)
M = FXRD (K., V)

M; = FXRT . (H; 1, V).
Then, for every o € Gal(F/F,),

(1) > Tr(ocrg, 1, RE(MS(G, X)z, Lix)) = Tr(ocm 1, RT(MS (G, X)r, Lr)).
el

(2) > Tr(ocig,1, RL(MX (G, X)z, M;5)) = Tr(0¢m,1, RU(M"(G, X)s, M)).
el

Proof. Write m = lg, with [ € L(Ay) and g € G(Ay). We may assume
that m; € L(Ay), hence g; = g, for every i € I. Let K® = H; N G(Ay) =
mKym™' N G(Ay).

Point (1) implies point (2) by duality.

Let us prove (1). Let ¢,, be the endomorphism of RT'(K,s, V) equal to

RT(Kar, V) — RU(K);, V) 5 RT(Ka, V),

where the first map is induced by the injection K; — Kps, k — m~1km,
and the second map is the trace morphism associated to the injection K, C
Kar. Define in the same way, for every i € I, an endomorphism c¢;,4, of
RT'(H;, V). Then
RT(Kar, V) ~ @ RT(H;, V)
il
and ¢, = @ ¢, s0 it is enough to show that this decomposition is
il

Gal(F/F4)-equivariant. Let ¢ € Gal(F/F,;). Then ¢ induces an endomor-
phism of R[(K?, V) = R[(MX’ (G, X)r, FX' Vi), that will still be denoted
by o, and, by the lemma below, the endomorphism of RI'(Kus, V) (resp.
RT'(H;,V)) induced by o is

RF(KM/(KM n L(Af)),O’)

(resp.  RI'(H;/(H; NL(Q)),0)).
This finishes the proof.
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Lemma 1.7.3 Let M, L and (G, X) be as in the proposition above. Let
Kas be a neat open compact subgroup of M(Ay). Let Ky, = Ky N M(Ay),
Kg = KMQG(Af), H= KMﬂL(Q)G(Af), H; = KMQL(Q), K= KM/KL
and K’ = H/H;. Let V € ObRepm and o € Gal(F/Fy). The element
o induces an endomorphism of RI'(Kg,V) = RI(M¥X<(G, X))y, FX6 V)
(resp. RT'(Ky,V) = RO(MX(G, X)r, FERT(Ky, V)p), resp. RT(H,V) =
RT(M¥ (G, X)p, FX RU(H, V)r)), that will be denoted by o (resp. o,
resp. ¢'). Then

¢ = RT'(Kx /Ka, ¢o)

and

¢" = RI'(H/Kg, o).

Proof. The two equalities are proved in the same way. Let us prove the first
one. Let Y = M¥¢(G,X), X = MX(G,X), let f : Y — X be the (finite
étale) morphism Ty and L = FXRT(Kp,V). Then, f*L = FR¢RI(K,V)
by [P1] (1.11.5), and L is canonically a direct factor of f.f*L because f is
finite étale, so it is enough to show that the endomorphism of

RP(YF; f*L) = RP(KG, RF(KLa V)) = RF(KLv RF(KGa V))

induced by o is equal to RI'(Kr, o). The complex M = FX¢V on Y is a
complex of Kp-sheaves in the sense of [P2] (1.2), and RT'(Ky, M) = f*L by
[P2] (1.9.3). To conclude, apply [P2] (1.6.4).

0

The following lemma of [GKM] is used in the proof of theorem 1.7.1. Let
G be a connected reductive group over Q, M a Levi subgroup of G and P
a parabolic subgroup of G with Levi subgroup M. Let N be the unipotent
radical of P. If f € C°(G(Ay)), the constant term fy; € C°(M(Ay)) of
f at M is defined in [GKM] (7.13) (the fonction fp; depends on the choice
of P, but its orbital integrals do not depend on that choice). For every
g€ M(Af), let

p(as(9) = |det(Ad(g), Lie(N) @ Af)la,-

Let g € G(Ay) and let K, K be open compact subgroups of G(Ay) such
that K" € gKg~!. For every h € G(Ay), let Kps(h) be the image in M(A )
of hgKh™* NP(Ay),

fen = vol(RK'h™" NP(Ay))/(RK'h™H N N(Ay))) ™ Ik, (n) € C(M(Ay)),
and
r(h) = [hKh ' " N(Ay) : RK'h™ ' N N(Af)].

(Note that, if there is no element ¢ € P(Ay) such that ghK = hgK, then
K (h) is empty, hence fpj =0.) Let

£ =vol(K') "1,k
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and

fo =Y _r(h)fen,
h
where the sum is taken over a system of representatives of the double quotient
P(Af)\ G(Ay)/K".

Lemma 1.7.4 ([GKM] 7.13.A) The functions fy; and 5113/(2Af)fp have the
same orbital integrals.

In [GKM], the “g” is on the right of the “K” (and not on the left), and

6;&(% appears in the formula instead of 5113/(1 ) but is is easy to see that

their proof adapts to the case considered here. There are obvious variants
of this lemma obtained by replacing Ay with AI} or Qp, where p is a prime
number.

Remark 1.7.5 The above lemma implies in particular that the function
v +— O,(fm) on M(Ay) has a support contained in a set of the form
U mXm™!, where X is a compact subset of M(Af)), because the sup-
meM(Ay)
port of v — O, (fm) is contained in the union of the conjugates of Kas(h),
for h in a system of representatives of the finite set P(Ay) \ G(Ay)/K'.
Moreover, if g = 1, then we may assume that X is a finite union of compact
subgroups of M(Ay), that are neat of K is neat (because the Ky (h) are
subgroups of M(Ay) in that case).
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Chapter Two

The groups

In the next chapters, we will apply the fixed point formula to certain unitary
groups over Q. The goal of this chapter is to define these unitary groups and
their Shimura data, and to recall the description of their parabolic subgroups
and of their endoscopic groups.

2.1 DEFINITION OF THE GROUPS AND OF THE SHIMURA
DATA

For n € N*, write
I=1,= € GL,(Z)

and
0 1
A, = € GL,(7Z).
1 0

Let E = Q[v/—b] (b € N* square-free) be an imaginary quadratic extension
of Q. The nontrivial automorphism of F will be denoted by ~. Fix once and
for all an injection £ C Q C C, and an injection Q C @p for every prime
number p.

Let n € N* and let J € GL,(Q) be a symmetric matrix. Define an
algebraic group GU(J) over Q by :

GU(J)(A) ={g € GL,(E ®q A)|g"Jg = c(9)J,c(g) € A"},
for every Q-algebra A (for g € GL,(E ®q A), we write g* = 'g). The group
GU(J) comes with two morphisms of algebraic groups over Q :
c: GU(J) — Gy, et det : GU(J) — Rp/qGn.
Let U(J) = Ker(c) and SU(J) = Ker(c) N Ker(det).

The group SU(J) is the derived group of GU(J) and U(J). The groups
GU(J) and U(J) are connected reductive, and the group SU(J) is semi-
simple and simply connected.

Let p,q € N be such that n:==p+q¢g > 1. Let

I 0
J:JMZ:( 6) -1, )7
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and set GU(p,q) = GU(J), U(p,q) = U(J) and SU(p,q) = SU(J). If
g = 0, we also write GU(p) = GU(p, q), etc. These groups are quasi-split
over Q if and only if |[p—¢| < 1. The semi-simple Q-rank and the semi-simple
R-rank of GU(p, q) are both equal to min(p, q).
Let n € N*. Let
« | GU(n/2,n/2) if n is even
GU'(n) = { GU((n+1)/2,(n—1)/2) ifnis odd

The group GU"(n) is the quasi-split inner form of GU(J), for every sym-
metric J € GL,(Q). Write U*(n) = Ker(c : GU*(n) — G,,) and
SU"(n) = Ker(det : U*(n) — Rg/qGmn).
Finally, let GU*(0) = GU(0,0) = G,,, and (c: GU*(0) — G,,,) = id.
Let ny,...,n, € Nand let J; € GL,,(Q),...,J, € GL, . (Q) be symmet-
ric matrices. Write

G(U(J1)x---xU(Jr) = {(g1,---,9r) € GU(J1)x---xGU(Jp)|c(g1) = -+ = c(gr)}-

Similarly, write

G(U*(n1)x-- XU (1)) = {(g1,- - - 92) € GU* (m) x---xGU* (n,)[elg1) = - -

Remark 2.1.1 If the matrix J is in GL,(Z), then there is an obvious way
to extend GU(J) to a group scheme G over Z : for every Z-algebra A, set

G(A) = {9 € GL,(A®z Op)|g*Jg = c(g)J, c(g) € A*}.

If ¢ is a prime number unramified in E, then Gy, is a connected reductive
algebraic group over Fy.

In particular, this construction applies to the groups GU(p, ¢) and GU*(n).

We now define the Shimura data. Let as before S = R¢/rGyp,.

Let p,q € N be such that n:=p+¢ > 1, and let G = GU(p,q). If p # ¢
(resp. p = q), let X be the set of g-dimensional subspaces of C™ on which
the Hermitian form (v, w) — '0J, qw is negative definite (resp. positive or
negative definite). Let 2y € X be the subspace of C" generated by the ¢
Vectors €,41—q, - - -, €n, Where (e1,...,e,) is the canonical basis of C™.

The group G(R) acts on X via the injection G(R) C GL,(R ®q E) ~
GL,(C), and this action is transitive. Define a G(R)-equivariant morphism
h: X — Hom(S, Gg) by

S — GR
I, 0
ho = h(]}o) = 5 - z p
0z,

Then (G, X, h) is a Shimura datum in the sense of [P1] 2.1.

= c(gr)}-
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The group S(C) = (C®g C)* is isomorphic to C* x C* by the morphism
a®l+b®iv+— (a+iba—ib). Let r: G,,c — Sc be the morphism
z+— (z,1),and let g = hgor: G c — Ge.

Identify Gg with a subgroup of GL, g x GL, g by the isomorphism
(Rp/oGLyg)E ~ GLy, g x GL,, g that sends X ® 1+Y ® v=b to (X +

V—=bY, X —/=bY). Then, for every z € (Rg;gGm,q),

pu(z) = ( (Z’(l))Ip (172)_7(1 )

Notation 2.1.2 Let p’ € {1,...,n}. Define a cocharacter p, : G, g —
Gpg by :

2.2 PARABOLIC SUBGROUPS

Let G be a connected reductive algebraic group over Q. Fix a minimal
parabolic subgroup Py of G. Remember that a parabolic subgroup of G is
called standard if it contains Py. Fix a Levi subgroup My of Py. Then a
Levi subgroup M of G will be called standard if M is a Levi subgroup of a
standard parabolic subgroup and M D M. Any parabolic subgroup of G
is G(Q)-conjugate to a unique standard parabolic subgroup, so it is enough
to describe the standard parabolic subgroups.

Let p,q € N be such that n := p+ ¢ > 1. We are interested in the
parabolic subgroups of GU(p, q). As GU(p,q) = GU(q,p), we may assume
that p > ¢. Then the matrix J, , is GL,,(Q)-conjugate to

0 0 A,
Apqi= 0 I,4 O ,
A, 0 0

so GU(p, q) is isomorphic to the unitary group G := GU(4, ,), and it is
enough to describe the parabolic subgroups of G. A maximal torus of G is
the diagonal torus

A1 0

T = AL A € RpjgGr, MAn = - = Aghpi1 = Agpidgr = -

0 An
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The maximal split subtorus of T is

A1 0
Ag
S=<¢A I, AL LA €EG
)\71
q
0 At
if p> ¢, and
A\ 0
S = My A1 AL LA €EG
q
0 At
if p=gq.
A minimal parabolic subgroup of G containing S is
A *
Py = B 7/1, Ce RE/QBQ,B S RE/QGLp_q NG,
0 C

where B, C GL, is the subgroup of upper triangular matrices.

The standard parabolic subgroups of G are indexed by the subsets of
{1,...,q} in the following way.

Let S C {1,...,q}. Write S = {r1,r1 +7r2,...,71 + -+ + rmp} with
r1,...,7Tm € N*, and let r = r{ +--- + r,,,. The standard parabolic sub-
group Pg corresponding to S is the intersection of G and of the group

RE/QGLrl *
Rg/oGL;,,
GU(Ayrymr)
Rg,oGL;,,
0 Rg/oGL,,
In particular, the standard maximal parabolic subgroups of G are the
RE/QGLT *
P,- = P{T} = GU(Ap,r,q,T) NG
0 RpoGL,

forr € {1,...,q}, and Ps = (] P,. Note that Po =Py 4.
res
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Let Ng (or Np,) be the unipotent radical of Pg, Mg (or Mp,) the
obvious Levi subgroup (of block diagonal matrices) and A, the maximal
split subtorus of the center of Mg. Write as before S = {ry,...,r1 +---+
Tm} and 7 =71 + -+ + 7. Then there is an isomorphism

Mg — Rg/qGLy, X -+ X Rp;qGL,, x GU(p—7r,q—7)
diag(gla'“agmagvhm7"'ah1) — (C(g)ilgla'-'76(9)71977179) .

The inverse image by this isomorphism of Rg,oGL;, X -+ X Rg,oGL;,, is
called linear part of Mg and denoted by Lg (or Lp,). The inverse image
of GU(p — r,q — r) is called Hermitian part of Mg and denoted by G, (or
G p, ). Note that the maximal parabolic subgroups of G satisfy the condition
of 1.1.

2.3 ENDOSCOPIC GROUPS

In this section, we want to study the elliptic endoscopic triples for the groups
G defined in 2.1. It is enough to consider the quasi-split forms. We will use
the definition of elliptic endoscopic triples and of isomorphisms of endoscopic
triples given in [K4] 7.4 et 7.5.

Let ny,...,n, € N and G = G(U*(nq) x --- x U*(n,)); here we use the
Hermitian forms A, , of 2.2 to define G. We first calculate the dual group
G of G. As G splits over E, the action of Gal(Q/Q) on G factors through
Gal(E/Q). Let 7 be the nontrivial element of Gal(E/Q).

Let ¢ be the isomorphism from Gg C GL,, ggr X --- x GL,, ggE to
Gm,g X GL,, g X+ x GL,, g that sends g = (X1 91+Y10V-b,.... X, ®
1+Y, ®V=b) € Gg to (c(g9), X1 + V=bY1,..., X, + V=0bY;). Let T be
the diagonal torus of G (a maximal torus of G) and B be the subgroup of
upper triangular matrices in G (this is a Borel subgroup of G because of the
choice of the Hermitian form). There is a canonical isomorphism

T = {(()\1’1, RN )\Lnl), ey ()\r,la ey )\r,nT)) e RE/QG:Ln}+"'+n7'

e G, Vi € {1, c ,T},Vj S {1, . ,ni}, /\i,jxi,mﬂ_j = )\}

The restriction of ¢ to Tg induces an isomorphism
~ ni Ny
Tg — G, X Gm,E X oo X Gm’E.

For every i € {1,...,r} and j € {1,...,n;}, let e; ; be the character of T
defined by

ei,j(‘p_l((A; (A1,17 ey )\l,nl)a ceey ()\T,17 LR )\T,nr)))) = )\’L,]
Then the group of characters of T is

T ng

X*(T) = ZC@@@ZE@j,

i=1 j=1



main April 10, 2009

38 CHAPTER 2
and Gal(E/Q) acts on X*(T) by

T(c)=c

T(€i5) = C— €imiti—j-
Hence the dual torus of T is
T =C* x (C)™ x - x (C*),
with the action of Gal(E/Q) given by

The set of roots of T in Lie(G) is
=9(T,G)={eij—eij,1<i<r,1<j,5 <ni,j#35'}
The subset of simple roots determined by B is
A={oj=¢€ij41—€ij,1<i<r1<j<n;—1}
The group Gal(E/Q) acts on A by :
(@i j) = Qini—j-
For every n € N*, let ®,, € GL,,(Z) be the matrix with entries
(@n)ij = (=110 ng1j.
The dual group of G is
G =C* x GL,,(C) x --- x GL,, (C),

with T immersed diagonally. The action of Gal(E/Q) that respects the
obvious splitting is :

T(()‘7 gis--- 7gr)) = (/\ det(gl) s det(gr)v cDr_Lll(tgl)_lq)m IR (I);rl (th)_l(I>7h~)'

Proposition 2.3.1 For every i € {1,...,7}, let n;",n; € N be such that
n; = n;“ +n; . Suppose that ny + --- +n, is even. Set

nt ny nf n,
. /—/IH/—/; L N —— ~
s=(1,diag(1,...,1,=1,...,—-1),...,diag(1,...,1,—-1,...,—-1)) € G

H = G(U*(n}) x U*(n}) x - x U*(nf) x U*(n})
and define

ot H=C" x GL,+(C) x GL,(C) x -+ x GL,+ (C) x GL,_(C)

— G =C* x GL,,(C) x - -+ x GL,, (C)
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by

+ +
+ - oo — g9 0 g 0
nO((Aaglagla"'vgragr ))_ <>\)< O g; >a7( 0 gr— )>

Then (H, s, n0) is an elliptic endoscopic triple for G. The group A(H, s, 1)
of [K4] 7.5 is isomorphic to (Z/2Z)!, where I = {i € {1,...,r}|n] =n; }.

Moreover, the elliptic endoscopic triples for G determined by ((nf,ny),...,(n}\,n))
and ((mf,m7),...,(m},m7")) are isomorphic of and only if, for every i €
{1,....r} (nj_,n:) = (mj_,ml_) or (nj‘,n:) = (m;,mj)

Finally, every elliptic endoscopic triple for G is isomorphic to one of the
triples defined above.

Note that an elliptic endoscopic triple (H, s, 79) is uniquely determined by
s and that, for every elliptic endoscopic triple (H, s,79), the group Hg has
an elliptic maximal torus.

Proof. Let (H, s,m0) be determined by ((nf,ny),...,(n},n;)) as above.
To show that (H,s,n0) is an endoscopic triple of G, we have to check
conditions (7.4.1)-(7.4.3) of [K4]. Conditions (7.4.1) and (7.4.2) are ob-
viously satisfied, and condition (7.4.3) is a consequence of the fact that
s € Z(ﬁ)Gal(E/Q). (Note that the condition “ny 4 -+ 4 n, even” is neces-

sary for s € Z(H) to be fixed by Gal(E/Q).)
We next show that (H, s, 7o) is elliptic. The center of H is

Z(H) = {OAM Ly, N T, N o AT )AL AT, A AT e CFY,

PR A AR S (= ) Np oy N

with the action of Gal(E/Q) given by
(WA L A T ML) =

ny’ YA tngs N s

T

AT D)™ )™ )™, ) ™ e ) s ) T e (A7),

~ 0 ~
Hence (Z(H)Gal(E/Q)) =C* x {1} € Z(GQ), and (H, s,70) is elliptic.
We want to calculate the group of outer automorphisms of (H, s, 7). It

is the same to calculate the group of outer automorphisms of the endoscopic
data (s, p) associated to (H, s,no) (cf [K4] 7.2 and 7.6). Let

I={ie{l,...;r}nf =n;}.

Let g € G be such that Int(g)(no(H)) = no(H).
Let a,b € N be such that a +b=n > 0, and

, [ GL, 0
G< ) GLb>CGLn.

If a # b, then the normalizer of G’ in GL,, is G'. If a = b, then the
normalizer of G’ in GL,, is generated by G’ and by

(0 I
e (01,
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By applying this remark to no(ﬁ) C é, we find that g is in the subgroup of
G generated by 19(H) and by the elements (1,...,1, Lot s lsen 1),iel.

It is easy to see that all the elements of this group define automorphisms of
(s,p). Hence

A(H, s,1m0) = A(s, p) = Aut(s, p)/ Int(H) ~ (Z/2Z)" .

The statement about isomorphisms between the endoscopic triples defined
in the proposition is obvious.

Let (H, s,10) be an elliptic endoscopic triple for G. We want to show that
(H, s,1)9) is isomorphic to one of the triples defined above. We may assume
(without changing the isomorphism class of (H, s,7)) that s € T. We know
that Ker'(Q,G) = {1} by lemma 2.3.3 below, so condition (7.4.3) of [K4]

implies that the image of s in g (( (A)/Z(A))Gal(@/@)> comes from an
element of Z(H )Gal(Q/Q) As (H, s,m0) is elliptic,

o ((Z(H)/Z(G))Ga“@/@)) = (Z(H)/Z(G))S* @),

so the image of s in Z( )/Z( ) comes from an element of Z(H )Gal((@/@)
We may assume that is s is fixed by Gal(Q/Q) (because replacing s by a
Z(G)-translate does not change the isomorphism class of (H, s,7y0)).
Let us first suppose that » = 1. Write n = n;. We may assume that
MIn, O 0

§= (17 0 0 )a
0 0 Al

with A,..., A € C, Ay # Aj if 4 # j and mq,...,my € N* such that
mi +...my = n. Then H = Centg(s) ~ C* x GLy,, (C) x -+ x GLy,, (C)
and Z(H) ~ C* x (C*)’.
~ — 0 ~ —
As (H, s, 1) is elliptic, we must have (Z(H)Gal((@/@)) C Z(G)GQ/Q) ¢
C* x {£I,}. The only way Z(H)C@Q /7(G)GaUQ/Q can be finite is if
Z(H)G @ ¢ X x {+1},

But s = (1, A1,..., M) € Z( )G al@Q) and the \; are pairwise distinct, so
t <2 Ift =1, then s € Z(G) and (H, s,7) is isomorphic to the trivial
endoscopic triple (G, 1, id).

Suppose that t = 2. We may assume that Ay = 1 and Ay = —1. By
condition (7.1.1) of [K4],

T((A A1, A2)) = (AN AS™ /\_ AL,

P Cw(1) Tw(2) )0
for a permutation w € &5. In particular, (—1)™2 = 1, so my is even.
It remains to determine the morphism p : Gal(Q/Q) — Out(H) associ-
ated to (H, s,n0) in [K4] 7.6. As the derived group of G is simply connected
and G splits over E, H also splits over E (cf definition 1.8.1 in [Ng]). So
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the action of Gal(Q/Q) on H factors through Gal(E/Q), and in particular p
factors through Gal(E/Q). By condition (7.4.2) of [K4], there exists g, € G
such that (g,,7) normalizes Hin G x Gal(Q/Q) and that p(7) = Int((g,, 7))
mi
L., O
Suppose first that m; # mo. Then Norg (ﬁ) =H, so p(7) = Int((wo, 7)).
It is now clear that (H,s,ng) is isomorphic to one of the triples defined
above.
Suppose that m; = msy. Then Noré(ﬁ) is the subgroup of G generated
by H and wo. Hence p(r) = Int((1,7)) or Int((wo, 7). If p(7) = Int((1, 7)),
then

Z(H)GE/D ~ (X A1, Aa) € (C)3|(AtAe)™ =T and Ay = Ay '} = {(A, A1, ATY), A Ay € CFY,

and s is not in the image of Z(ﬁ)Gal(E/Q). Hence p(7) = Int((wp, 7)), and

(H, s,m0) is isomorphic to one of the triples defined above.
If r > 1, the reasoning is the same (but with more complicated notations).
O

in Out(ﬁ). Hence g, = gwy, with g € Noré(ﬁ) and wy =

Fixnf,ny,...,n} n. € Nsuchthat nj +n; =n; foreveryi e {1,...,r}
and that ny +---+n. is even. Let (H, s,79) be the elliptic endoscopic triple
for G associated to this data as in proposition 2.3.1. The derived group of G
is simply connected, so, by proposition 1 of [L2], there exists a L-morphism
n:tH = H x Wo — LG := G x Wo extending 7o : H — G. We want
to give an explicit formula for such a 7.

For every place v of Q, we fixed an injection Q C Q,; this gives a morphism
Gal(Q,/Q,) — Gal(Q/Q), and we fix a morphism Wg, — Wq above this
morphism of Galois groups.

Let wg/q : A*/Q* — {£1} be the quadratic character of E£/Q. (Note
that, for every prime number p unramified in F, the character wg/q is un-
ramified at p.)

The following proposition is the adaptation to unitary similitude groups
of [Ro2] 1.2 and is easy to prove.

Proposition 2.3.2 Let pn : Wy — C* be the character corresponding
by the class field isomorphism W ~ AX/E* to a character extending
wg/g. We may, and will, assume that p is unitary. ' Let ¢ € Wg be
an element lifting the nontrivial element of Gal(E/Q). Define a morphism
¢ : Wg — LG in the following way :

® »(c) = (A,c), where

(o 0 [z 0
= 1 " ~1 “e nr -1 .
A ( ) << 0 (_1),”1*-@”1_ > q)nl ) 9 ( O (_1)n:r¢)”: > ¢nr>)7

n fact, in this case, we may even assume that u is of finite order, but we will not
need this fact.
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® on Wg, ¢ is given by

p"fln+ 0 w1 0 ,
-, i n Jid).
orwe = ( (( 0 /fn”n; 0 lu’in-:‘[n: id)

Then ¢ is well-defined, and n : *H — G, (h,w) — (no(h), )p(w), is a
L-morphism extending 1.

For every place v of Q, let ¢, be the composition of ¢ and of the morphism
Wqo, — Wgp. We have the following consequences of the properties of ¢ in
the proposition :

Let p be a prime number unramified in F, and fix o € Wy, lifting the
arithmetic Frobenius. Set r = 1 if p splits totally in FE, and r = 2 if p is
inert in E. Then

ep(c™) = (1, Iny,-- -5 In,), 0").

On the other hand, there exists an odd integer C' € Z such that, for every
zeC* = We,

Poo(2) = (L, (B1(2), -+, Br(2))), 2),

ZC'ni_/2276’77,1.7/21"”+ 0
BZ(Z) = 0 ’ Z—an/QEan'/QI _ ’

i

with

We finish this section by a calculation of Tamagawa numbers.

Lemma 2.3.3 (i) Letny,...,n, € N*and G = G(U*(ny)x---xU*(n,)).
Then Ker'(Q,G) = {1}, and Z(G)GE/Q ~ C* x {(e1,...,€.) €
{£1}"|eT* ... €l = 1}. Hence the Tamagawa number of G is

27 if all the n; are even
7(G) = { 2=l otherwise

ii) Let F be a finite extension of Q and L = Rp,oGL,, p, with n € N*.
/Q )
Then 7(L) = 1.

Proof. Remember that, by [K4] 4.2.2 and 5.1.1, [K8] and [C], for every
connected reductive algebraic group G on Q,
7(G) = mo(Z(G) YD) | Ker' (@ G)[ .

(i) Tt is enough to prove the first two statements. By [K11] §7, the canon-
ical morphism

Ker'(Q, Z(G)) — Ker'(Q, G)
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is an isomorphism. The center of G is {(A1,...,Ar) € (Rp/gGm)"[A1A1 =
-+ = A}, so it is isomorphic to Rg G x U(1)"~! (by the map
AL An) — AL XA ATY). As

Hl(Qa RE/QGM) = Hl(Ea Gm) = {1}v

it remains to show that Ker'(Q,U(1)) = {1}. Let ¢ : Gal(Q/Q) —
U(1)(Q) be a 1-cocyle representing an element of Ker' (Q, U(1)). Note

that U(1)(Q) ~ Q" that Gal(Q/Q) acts on U(1)(Q) via its quotient
Gal(E/Q), and that 7 € Gal(E/Q) acts by t — ¢!, In particular,
the restriction of ¢ to Gal(Q/E) is a group morphism Gal(Q/E) —
@X. As this restriction is locally trivial, the Cebotarev density the-
orem implies that c¢(Gal(Q/E)) = 1. So we can see c as a 1-cocycle

Gal(E/Q) — U(1)(Q). As Gal(E/Q) ~ Gal(C/R) and c is locally a
coboundary, this implies that ¢ is a coboundary.

By the description of G given above,
Z(G) = {0 MILnys - AL )y A Ar, -, A € CF
with the action of Gal(E/Q) given by
T(M ATy A L)) = NP A AT L, AT ).

y e s \p

The second statement is now clear.

(ii) Tt suffices to show that Ker'(Q,L) = {1} and that Z(L)G(F/Q ig
connected. The first equality comes from the fact that

H'(Q,L) = H'(F,GL,) = {1}.

On the other hand, L = GL,(C)"*¥ with the obvious action of
Gal(F/Q), so Z(L)G*(F/Q ~ C* is connected.

2.4 LEVI SUBGROUPS AND ENDOSCOPIC GROUPS

In this section, we recall some notions defined in section 7 of [K13]. Notations
and definitions are as in section 7 of [K4].

Let G be a connected reductive group on a local or global field F. Let
E(G) be the set of isomorphism classes of elliptic endoscopic triples for G
(in the sense of [K4] 7.4) and L(G) be the set of G(F')-conjugacy classes of
Levi subgroups of G. Let M be a Levi subgroulz\of G. There is a canonical

~

Gal(F/F)-equivariant embedding Z(G) — Z(M).

Definition 2.4.1 ([K13] 7.1) An endoscopic G-triple for M is an endoscopic
triple (M, sar, mar,0) for M such that :
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(i) the image of sps in Z(M\')/Z(é) is fixed by Gal(F/F);

(i) the image of s, in H'(F, Z(G)) (via the morphism 7o ((Z(M/)/Z(G))CalF/F)y

Hl(F,Z((A})) of [K4] 7.1) is trivial if F' is local, and in Ker (F,Z((A}))
if F'is global.

The G-triple (M, sp,mar,0) is called elliptic if it is elliptic as an endoscopic
triple for M.

Let (MY, s1,m1,0) and (M5, s2,12,0) be endoscopic G-triples for M. An
isomorphism of endoscopic G-triples from (M, s1,71,0) to (M5, s2,72,0) is
an isomorphism « : M} — M, of endoscopic triples for M (in the sense of
[K4] 7.5) such that the images of s; and &(sz) in Z(I\//I\’l)/Z(a) are equal.

Let (M, sar,ma1,0) be an endoscopic G-triple for M. Then there is an
isomorphism class of endoscopic triples for G associated to (M, sar,Mar,0)
in the following way (cf [K13] 3.7 et 7.4) : There is a canonical G-conjugacy
class of embeddings “M — ©'G; fix an element in this class, and use it
to see M as a subgroup of “G. Define a subgroup M of “M as follows :
an element € “M is in M if and only if there exists y € “M’ such that
the images of « and y by the projections “M — Wy and ‘M’/ — Wg
are the same and that Int(z) o g = 7o o Int(y). Then the restriction to
M of the projection “M — Wy is surjective, and M N M = 770(1\//I’).
Moreover, M is a closed subgroup of “M. 2 Set H = Centg a(sm)?, and

H = MH. Then H is a closed subgroup of 'G, _the restriction to ‘H of the
projection LG — Wy is surjective, and H N G = H. Hence M induces
a morphism p : Wr — Out(H). Moreover, there exists a finite extension
K of F and a closed subgroup Hx of G x Gal(K/F) such that H is the
inverse image of Hy. 3 Hence p factors through Wp — Gal(K/F), and
p can be seen as a morphism Gal(F/F) — Out(H). It is easy to see that
(spr mod Z(G),p) is an endoscopic datum for G (in the sense of [K4]),
and that its isomorphism class depends only on the isomorphism class of
(M, sar,mar0).  We associate to (M, sar, mar,0) the isomorphism class of
endoscopic triples for G corresponding to (sy; mod Z(G), p) (cf [K4] 7.6).

Let Eg(M) be the set of isomorphism classes of endoscopic G-triples
(M, sar,ma,0) for M such that the isomorphism class of endoscopic triples
for G associated to (M, sar,mar0) is elliptic. There are obvious maps
EcM) — EM) and Eg(M) — £(G). For every endoscopic G-triple

2[K13] 3.4 : Let K be a finite extension of I over which M’ and M split. Define a
subgroup Mg of M x Gal(K/F) in the same way as M. This subgroup is obviously
closed, and M is the inverse image of M.

3[K13] 3.5 : Let K’ be a finite extension of F over which G splits. The group H is of
finite index in its normalizer in G so the group H is of finite index in its normalizer N in
LG. Hence the intersection of H Wlth the subgroup H x Wy of N is a closed subgroup
of finite index of H x Wi so it is also an open subgroup Hence H contains an open
subgroup of H x Wy, ie it contains a subgroup H x Wik, with K a finite extension of
K'’. The sought-for group Hy is H x Wk.



main April 10, 2009

THE GROUPS 45

(M, spr,maa,0) for M, let Autg (M, sar, mar,0) be the group of G-automorphisms
of (M, sar,mar,0) and Ag(M, sar, mar0) = Autg(M, sar, mar0) /M. 4 (F) be
the group of outer G-automorphisms; if M = G, we will omit the subscript
G.

Remember that we write n§; = | Norg (M)(F)/M(F)| (cf 1.6).

Lemma 2.4.2 below is a particular case of lemma 7.2 of [K13]. As [K13]
is (as yet) unpublished, we prove lemma 2.4.2 by a direct calculation. As-
sume that G is one of the unitary groups of 2.1 (and that FF = Q). If
(M, sar,ma0) € Eg(M) and if (H,s,n9) is its image in £(G), then it is
easy to see that M’ determines a H(Q)-conjugacy class of Levi subgroups
of H. 4

Lemma 2.4.2 Assume that G is quasi-split. Let ¢ : 11 LH) —
(H,5,m0)€E(G)
C. Then
Z |A(H7S,770)|_1 Z (n]I\_I/[H)_ISD(HvMH)
(H,s,m0)€E(G) My eL(H)
= ) i) > A (M, 501, mar0) |~ o (H, M),
MeL(G) (M,snr,m0,0)€Eq (M)

where, in the second sum, (H, s, o) is the image of (M, spr,mar,0) in E(G)
and My is the element of L(H) associated to (M, sy, ma,0)-

(As M’ and My are isomorphic, we will sometimes write M’ instead of

We will use this lemma only for functions g that vanish when their
second argument is not a cuspidal Levi subgroup (see theorem 1.6.6 for
the definition of a cuspidal Levi subgroup). In that case, the lemma is an
easy consequence of lemma 2.4.3 below, that is proved in the same way as
proposition 2.3.1.

In the next lemma, we consider only the case of the group GU*(n) in
order to simplify the notations. The case of G(U*(n1) x --- x U*(n,)) is
similar.

Lemma 2.4.3 Let n € N* and G = GU"(n). Let T be the diagonal torus
of G, and identify T with C* x (C*)" as in 2.3. Let M be a cuspidal
Levi subgroup of G. Then M is isomorphic to (RggGm)" x GU™(m), with
r,m € N such that n = m + 2r. Let Tj; be the diagonal torus of M. The

4In the case of unitary groups, this can be seen simply by writing explicit formulas
for H, M and M’. Actually, this fact is true in greater generality and proved in [K13]
7.4 (but we will not need this here) : with notations as above, the group M is a Levi
subgroup of H (for a suitable definition of “Levi subgroup” in that context), and gives a
conjugacy class of Levi subgroups of H because H is quasi-split.
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dual group M is isomorphic to the Levi subgroup
* 0

C* x GL,,(C)

0 *
(with blocks of size r,m,r) of G. Fix an isomorphism Ty ~ T compatible
with this identification.

Then an element (M, spr,ma0) of Eg(M) is uniquely determined by spy.
If we assume (as we may) that sy € Tpr ~ T, then sy € Z(G)({1} x
{£1}")Cl@/Q | For every A € {1,...,r} and m1,my € N such that m =
m1 + meo and that my is even, set

my mo
SAmyme = (81, 8e, Lo, 1, =1, 00 =1 80,00, 81),
with s; = —1ifi € Aands; = 1ifi ¢ A. If r < n/2, then the set of
(1,54,m,,m,) is a system of representatives of the set of equivalence classes
of possible sy;. If r = n/2 (so m = 0), then every sp; is equivalent
to a (1,54.00), and (1,54,00) and (1,84/0,0) are equivalent if and only if
{1,...,r}=AUA".

Let spr = (1,(s1,. .+, 8n)) € ({1} x {£1})GalQ/Q) | Let (M, s0r,m01.0) be
the element of Eg (M) associated to sy, and (H, s,19) be its image in £(G).
Letny =|{ie{l,...,n}si=1}, neo=n—n;,my={ie{r+1,....,r+
m}|s; = 1}, me = m—my, r1 = (n1—mq)/2, 72 = (na—mz2)/2 (r1 and r9 are
integers by the condition on sp;). Then H = G(U*(ny) x U*(ng)), M’ =
(RE/oGm)" x G(U*(my) x U*(my)), and ni}, = 27(r1)!(r2)!. Moreover,
[Ac(M, sar,mar,0)] Is equal to 1 if M # G.

We end this section by recalling a result of [K13] 7.3. Assume again that
G is any connected reductive group on a local or global field F'. Let M be
a Levi subgroup of G.

Definition 2.4.4 Lety € M(F) be semi-simple. An endoscopic G-quadruple
for (M, ) is a quadruple (M, sar, Mas,0,7), where (M, sar, mar,0) is an en-
doscopic G-triple for M and 7' € M/(F) is a semi-simple (M, M’)-regular
element such that + is an image of ' (the unexplained expressions in this sen-
tence are defined in [K7] 3). An isomorphism of endoscopic G-quadruples
a (MY, spm1,mm,01,7) — (M5, Sa2,M0,0,2,75) 1s an isomorphism of
endoscopic G-triples a : M] — MY}, such that «(y]) and ~4 are stably
conjugate.

Let I be a connected reductive subgroup of G that contains a maximal
torus of G. There is a canonical Gal(F'/F)-equivariant inclusion Z(G) C
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~ ~

Z(I). Let Ra(I/F) be the set of elements in (Z(1)/Z(G))T/F) whose
image by the morphism (Z(f)/Z(a))Gal(F/F) — Hl(F,Z(é)) (coming
from the exact sequence 1 — Z(G) — Z(I) — Z(1)/Z(G) — 1) is
trivial if F is local and locally trivial if F is global. ® If I is included in M,
there is an obvious morphism &g (I/F) — &m(I/F).

Fix v € M(F) semi-simple, and let I = Centar(7)". Let (M, sar,701,0,7")
be an endoscopic G-quadruple for (M, ~). Let I’ = Centyy (7/)°. As 7/ is
(M, M')-regular, I’ is an inner form of I (cf [K7] 3), so there is a canonical
isomorphism Z(I) ~ Z(I'). Let K(M/, spr,m01,0,7') be the image of sy by
the morphism Z(M\’) C Z(f’) ~ Z(f)

Lemma 2.4.5 The map (M, sar,nam0,7) — &(M, sar, 0,0, 7') induces
a bijection from the set of isomorphism classes of endoscopic G-quadruples
for (M, ) to Ra(I/F). Moreover, the automorphisms of endoscopic G-
quadruples for (M, ) are all inner.

This lemma is lemma 7.1 of [K13]. It is a generalization of lemma 9.7 of
[K7] and can be proved in the same way.

5This definition is coherent with the definition of £(Ip/Q) in 1.6 : in 1.6, Io is the
centralizer of a semi-simple elliptic element, so (Z(Io)/Z(G))%2/@/Q) is finite.
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Chapter Three

Discrete series

3.1 NOTATIONS

Let G be a connected reductive algebraic group over R. In this chapter,
we form the L-groups with the Weil group Wr. Remember that Wi =
WelWer, with We = C*, 72 = =1 € C* and, for every z € C*, 72771 = Z,
and that Wy acts on G via its quotient Gal(C/R) ~ Wr/W¢. Let II(G(R))
(resp. iemp(G(R))) be the set of equivalence classes of irreductible (resp.
irreducible and tempered) admissible representations of G(R). For every
7w € II(G(R)), let ©, be the Harish-Chandra character of 7 (seen as a real
analytic function on the set G;.4(R) of regular elements of G(R)).

Assume that G(R) has a discrete series. Let A be the maximal (R-)split
torus in the center of G and G be an inner form of G such that G/A¢ is
R-anisotropic. Write ¢(G) = dim(X)/2, where X is the symmetric space
of G(R). Let Igs.(G(R)) C II(G(R)) be the set of equivalence classes of
representations in the discrete series.

The set I14;5.(G(R)) is the disjoint union of finite subsets called L-packets;
L-packets all have the same number of elements and are parametrized by
equivalence classes of elliptic Langlands parameters ¢ : Wg — G, or,
equivalently, by isomorphism classes of irreducible representations E of G(R).
Let II(p) (resp. II(E)) be the L-packet associated to the parameter ¢ (resp.
to the representation E), and let d(G) be the cardinality of a L-packet of
Hdisc(G)~

If 7 € yisc (G(R)), we will write f, for a pseudo-coefficient of 7 (cf [CD]).

For every elliptic Langlands parameter ¢ : Wg — “G, write

SO, = Y O

m€l(p)

We are going to calculate the integer d(G) for the unitary groups of 2.1.
The following definition will be useful (this notion already appeared in the-
orem 1.6.6 and in section 2.4).

Definition 3.1.1 Let G be a connected reductive group over Q. Denote by
A the maximal QQ-split torus in the center of G. G is called cuspidal if the
group (G/A¢g)r has a maximal R-torus that is R-anisotropic.
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Let p,q € N be such that p > ¢ and p+ ¢ > 1. Let G = GU(p, q), and
use the Hermitian form A, , of 2.2 to define G. Then Ag = G, Ip44. Let
T be the diagonal maximal torus of G. Let

aq 0 0 b1
. 0 °
0 g bg 0
c1 0
Tey = 0 - 0 ;
0 Cp—q
0 by ag 0
. 0 .
bl 0 0 ap

where a;,b;, ¢; € RpjoGm are such that :
aigi—i—ﬁibi =0for1<i<gq
{ a1@ + biby = - = a a4, + byby =181 =+ = Cp_ygCp_yq
Then T, is a maximal torus of G, and T, /Ag is R-anisotropic. So G is
cuspidal. Write

. I, Jﬁo —(i®i)J,
ug = — 0 (V2 1)I,—4 0 € SU(p, ¢)(C).
‘e (i @), 0 I,

Conjugacy by ual is an isomorphism a : Ty c — Tc. Use a to identify
T.y and T = C* x (C*)P*2. Then the action of Gal(C/R) = {1,7} on T
is given by :
T ALy Ap4a))) = (A Apgs AT A1)

Let QG = W(Tell(C),G(C)) and QG(]R) = W(Te”(R),G(R)) be the Weyl
groups of Ty over C and R. The group Q¢ ~ W(T(C), G(C)) ~ &,4, acts
on T(C) by permuting the diagonal entries. The subgroup Qg ) of Qg is
the group &, x &, if p # ¢, and the union of &, x &, and of the set of
permutations that send {1,...,¢} to {¢+1,...,n} if p = ¢q. Hence

p+q)! .
(,,) ifp#gq

(29)! o
2(q")? fp=q

d(G) =

Remark 3.1.2 The torus T,y is isomorphic to G(U(1)P*4) by the mor-
phism

diag(a1,...,aq) 0 diag(bi,...,bq)Jq
Oa : 0 diag(cy, ..., cp—q) 0
Jqdiag(by,. .., by) 0 diag(ag, ... ,a1)
— (a1 —b1,...,ag —bg,C1, ..., Cp—g, g+ g, ..., a1+ b1).

These constructions have obvious generalizations to the groups G(U(p1, ¢1) X
-+ X U(pr, qr)). (In particular, these groups are also cuspidal.)
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3.2 THE FONCTIONS &, (y,©)

In this section, we recall a construction of Arthur and Shelstad.

Let G be a connected reductive group on R. A wirtual character © on
G(R) is a linear combination with coefficients in Z of functions ©,, © €
II(G(R)). The virual character © is called stable if ©(y) = ©(y') for every
7,7 € Greg(R) that are stably conjugate.

Let T be a maximal torus of G. Let A be the maximal split subtorus of
T and M = Centg(A) (a Levi subgroup of G). For every v € M(R), set

DS () = det(1 — Ad(y), Lie(G)/Lie(M)).

Lemma 3.2.1 ([A6] 4.1, [GKM] 4.1) Let © be a stable virtual character on
G(R). Then the function

vy — DG *0(7)

on T,.4(R) extends to a continuous function on T(R), that will be denoted
by ®u(.,0) or ®F,(.,0).

We will often see ®j;(.,0) as a function on M(R), defined as follows : if
v € M(R) is M(R)-conjugate to a v € T(R), set ®ps(v,0) = Dps(7/,0); if
there is no element of T(R) conjugate to v € M(R), set ®,(y,0) = 0.

Remark 3.2.2 The function ®,,(.,0) on M(R) is invariant by conjugacy
by Norg(M)(R) (because © and D, are).

3.3 TRANSFER

We first recall some definitions from [K9] §7.

Let G be a connected reductive algebraic group over Q. For every maximal
torus T of G, let Bg(T) be the set of Borel subgroups of G¢ containing T.
Assume that G has a maximal torus T such that (T /Ag)r is anisotropic,
and let G be an inner form of G over R such that G/A¢g g is anisotropic.
Write Qg = W(Tg(C),G(C)). Let ¢ : Wg — G be an elliptic Langlands
parameter.

Let (H, s,10) be an elliptic endoscopic triple for G. Choose a L-morphism
n:H — G extending 7 : H— G (we assume that such a 7 exists),
and let @ () be the set of equivalence classes of Langlands parameters ¢ :
Wr — “H such that nopy and ¢ are equivalent. Assume that the torus T
comes from a maximal torus Ty of H, and fix an admissible isomorphism
7 Tqg AN Tg. Write Qg = W(TH((C),H(C)) Then ]*(CD(TH,H)) -
®(Tg, G), so j induces a map j* : Bo(Tg) — Br(Tgy) and an injective
morphism Qg — g; we use this morphism to see Qg as a subgroup of
Q.
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Let B € Bg(T¢q), and let By = j*(B). Set

Qe = {weQg|j"(w(B)) =By}
= {weQglw ' (j«(®(TH,Bg))) C ®(Tq,B)}.

Then, for every w € Qg, there exists a unique pair (wg,w.) € Qg x Q.
such that w = wyw,. Moreover, there is a bijection ®(p) — Q. defined
as follows : if g € Py (), send it to the unique wi(ppg) € . such that
(wi(pm) ™04, B,By) is aligned with ¢y (in the sense of [K9] §7 p 184).

The Borel subgroup B also defines a L-morphism np : Irg — LG,
unique up to G-conjugacy (cf [K9] p 183).

We will use the normalization of the transfer factors of [K9] §7, that we
recall in the next definition.

Definition 3.3.1 For every vy € Ty (R), set (notations are as above) :

Ay 5(va, ) = (1) A@ )y g () 11 (1—a(y™)),

a€®(Tg,B)—j.(®(Ty,Bgy))

where v = j(yy) and xp is the quasi-character of T (R) associated to the
1-cocyle a : Wg — Tg such that nong, oj and np.a are conjugate under
G.

Remark 3.3.2 (1) Let oy € ®y(p) be such that w.(py) = 1. After
replacing ¢ (resp. ¢p) by a G-conjugate (resp. a H-conjugate), we
can write ¢ = np o vp (resp. Yy = N, © YBy), where pp (resp.
By ) is a Langlands parameter for Tg (resp. Tg). Let x, 5 (resp.
Xeu,Br) e the quasi-character of T¢(R) (resp. TH(R)) associated to

¢p (resp. g, ). Then xp = Xo,8(Xpu,By 05717

(2) Let w € Qg. Write w = wyws, with wy € Qy and w, € Q.. Then
A () = det(ws)Aj B, where det(w.) = det(w,, X*(Tg)).

Let p,q € N be such that p > ¢ and that n:=p+ ¢ > 1. Fix ny,ne € N*
such that ng is even and ny + ne = n. Let G be the group GU(p, ¢) and
(H,s,mn9) be the elliptic endoscopic triple for G associated to (ni,ns) as
in proposition 2.3.1. In section 3.1, we defined elliptic maximal tori Tg =
Tgen and Ty = They of G and H, and isomorphisms B¢ : Tg =
G(U(1)") and By : Ty — G(U(1)"). Take j = 85" o By : Ty — Te.
(It is easy to see that this is an admissible isomorphism.) We also defined
uc € G(C) such that Int(ug') sends Tg ¢ to the diagonal torus T of Gc.
ThlS deﬁnes an isomorphism (not compatible with Galois actions in general)
TG ~ T. The composition of this isomorphism and of the embedding TcG
defined in 2.3 gives an embedding TG c G. Conjugacy by ug also gives an
isomorphism ¢ ~ &,,. Via this isomorphism, Qg = &,,, X &,,,, embedded
in G,, in the obvious way.
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Remark 3.3.3 It is easy to give simple descriptions of the subset 2, of Qg
and of the bijection ®5(p) — Q. for a particular choice of B € Bg(Tg).
Let

* *
B = Int(ug)
0 *
Then
Q. ={ce€ Gn\alf{i)_“7n1} and Uirln+1,-u7n} are non-decreasing}.

As W¢ is commutative, we may assume after replacing n by a é—conjugate
that 1 sends {1} x We € 'H to Tg x We € 'G. As moreover W¢ acts
trivially on H,

a1 =b
i ash 2Nz, 0
o) =2 (LD N e
with a,b,a1,a9,b1,b0 € C such that a — b,a1 — by,a9 — by € Z. Let ¢ :
Wr — LG be an elliptic Langlands parameter. We may assume that O|We
is

2z 0
20— (27", ),2),
0 ZAnghn
with A\, g, A1, .oy A, 41y - - -y ftn € C such that A — p € Z, \; — pu; € Z for

every ¢ € {1,...,n} and that the \; are pairwise distinct. Then there is a
commutative diagram

" \ N / )

(Ic{l,....n} 1l =m)}

where :
* the horizontal arrow is ¢ — w.(vm);
* the arrow on the right is w, — w;1({1,...,n1});

« if I C {1,...,n} hasny elements, write I = {iy,...,i,, and {1,...,n}—
I={j1,- ,Jn,} With iy < -+ <y, and j; < -+ < jn,, and associate
to I the unique vy € @y () such that, for z € W,

SAip —a1Z iy —b1 0

pr(z) = (27 ,

0 2)\7:,1,1—0,1 Fhing —b1
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2Ny —a2gh; b2 0

); 2)-

0 2 Ning —az ZHing —ba

Remember that a Levi subgroup of G or H is called standard if it is a
Levi subgroup of a standard parabolic subgroup and contains the diagonal
torus. Let M be a cuspidal standard Levi subgroup of G, and let r €
{1,...,q} be such that M = My, 3 =~ (Rg/qGm)" x GU(p — 1,9 — ).
Let (M, sar,ma1,0) be an element of Eg(M) (cf 2.4) whose image in £(G)
is (H, s,m0). There is a conjugacy class of Levi subgroups of H associated
to (M, sy, mar0); let My be the standard Levi subgroup in this class. If
mi,Ma, 71,7 are defined as in lemma 2.4.3, then

T,, 0 0 T,, 0 0
My = HN 0 GU'(mi) 0 |, 0 GU*(m) o0 :
0 0 T,, 0 0 T,,
with
* 0 * 0
Trl = . C RE/QGLM and Tr2 = T C RE/QGLT2 .
0 * 0 *

Hence My ~ G(U*(m1) x U*(m2)) x (Rg/gGm)™ 7. Set
Tty = TG U (m1)x U (ma)),ett X (RE/@Gm) ™
Ty = TGU(p—T,q—v"),ell X (RE/QGm)T

Then Ty, (resp. Tas) is an elliptic maximal torus of My (resp. M). We
have isomorphisms

BGU*(m1)xU*(m2)) X 1d : Tary = Tau«(my)xU*(m2)),etl X (RE/@Gm)"
~ G(U(l)'rm-i-mg) « (RE/QGm)T

Béb(l)—w—r) xid G(U(l)pﬂ_w) x (Re/qGm)"

— TGU(P—T,Q—T),ell X (RE/QGm)T =Tyuy.

Let
v Ty — Ty

be the composition of these isomorphisms (note that p+ ¢ —2r = my +ms).

As before, the isomorphism jj; is admissible and induces maps jps« :
®(Try,H) — ®(Twn, G) and ji; : Ba(Tayr) — Bu(Tay,) (and similar
maps if we replace G by M and H by Mpy). It is easy to see that all the
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real roots of ®(Tys, G) (resp. @(Tar,M)) are in jare(®(Tary, H)) (resp.
Im«(@(Tary, Mp))).

Define an element u € GU(p —r, ¢ — r)(C) in the same way as the elemnt
ug of 3.1, such that Int(u~') sends TGu(p—r,g—r)eu,c to the diagonal torus
of GU(p —r,q — 7)c. Let upn = diag(I,u, I,)ug' € G(C). Then Int(u;f[l)
sends Tz c onto T c. Similarly, we get ups,, € H(C) such that Int(uy, )
sends Ty, to Ty c. The following diagram is commutative :

Use conjugacy by ups (resp. upg, ) to identify Q¢ (resp. Q) and W (T (C), G(C))
(resp. W (T, (C),H(C))). If B € Bo(Tar), we use Int(uy;)(B) € Bo(Tq)
to define (as before) a subset Q, of Qg and a bijection ®(¢) — €.

By [K13] p 23, the morphism 7 determines a L-morphism 7y : “Mpy =
LM’ — M, unique up to 1/\\/I-conjugacy and extending 77,7,0. We use this
morphism 77y, to define transfer factors A;,, g,,, for every By € By (T )
2 if yg € Ty, (R), set

9GO+ g, (7) 11 (1—a(y™)
a€®(Ta,Bar)—jm«(P(Trpy .Bury))

Ajk47BJ\/I ('YHa 7) = (_1)

(note the sign), where v = jap(vw), Bay = ji;(Ba) and xp,, is the quasi-
character of T (R) associated to the 1-cocyle ap : Wg — T‘M such that
MM © NBs,, O}‘\M and np,,.apr are ﬁ—conjugate.

The next proposition is a generalization of the calculations of [K9] p 186.

Proposition 3.3.4 Fix B € Bg(Ty;) (that determines Q, and ®p(p) —
2), et and let Byy = BN M. Let vy € Ty, (R) and v = jar(vm). Then

Ajr,Bu (’YHv’Y)(I)M(’Y_laS@Lp) = Z det(w*(‘pH))(I)MH(’Y}_IlaS@soH)'
PHEPH(p)

Proof. Both sides of the equality that we want to prove depend on the
choice of the L-morphism 71 : “H — £G extending o : H — G. Let 7’ be
another such L-morphism. Then the difference between 7’ and 7 is given by
an element of H'(Wg, Z(H)); let x be the corresponding quasi-character of
H(R). Then, if we replace n by 7/, the transfer factor A;,, ,, is multiplied
by x and the stable characters SO.,,, og € ®g(p), are multiplied by x~';
hence both sides of the equality are multiplied by x(yg). It is therefore
enough to prove the proposition for a particular choice of 7.

We choose 71 such that

TR R CH (R
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and that, for every z € C* = W,

ansfz o, 0
ooy = (Tl

We first recall the formulas for ®,(.,50,) and @, (., SO, ). The ref-
erence for this is [A6] p 272-274. !

Let V,, be the irreducible representation of G(R) corresponding to ¢
and &, be the quasi-character by which Ag(R)? acts on V,,. Let By =
Int(u},;)(B), Z be the maximal compact subgroup of the center of G(R)
and tg = Lie(T¢). Define functions pg and Ag on tg(R) by :

PG:% Z a

a€®(Tg,Bo)

Ag = H (ea/2 o e—a/2)

ac®(Te,Bo)

(we use the same notations for characters on Tg and the linear forms
on tg that are defined by differentiating these characters). Notice that
Te(R) = Zexp(tg(R)) (this is a general fact; here, T¢(R) is even equal
to exp(tg(R))). The representation V,, corresponds to a pair ((,, A,), where
(, is a quasi-character of Z and A, is a linear form on tg(C), such that :

® ), is regular dominant;

e the morphism Z x tg(R) — C*, (2, X) > (p(2)ePe =) (X factors
through the surjective morphism Z X tg(R) — Tg(R), (2, X) —
zexp(X), and defines a quasi-character on T (R), whose restriction to
Ac(R)Y is &,.

Note that the quasi-character zexp(X) — (,(2)e»=76)(X) on T (R) is
equal to the quasi-character x, g, defined in remark 3.3.2 (1). Remember

the Weyl character formula : if v € T req(R) is such that v = zexp(X),
with z € Z and X € tg(R), then

Tr(y,V,) = (—1)q(G)S®¢(7) = Ag(X)_lgp(z) Z det(w)e(“”\v’)(x).
weqg

Let R be a root system whose Weyl group W (R) contains —1. Then,
to every pair (QT, RT) such that Rt C R and QT C RY are positive root
systems, we can associate an integer ¢(Q", RT). The definition of ¢(Q™, RT)
is recalled in [A6] p 273.

1Note that there is a mistake in this reference. Namely, with the notations used below,
the formula of [A6] is correct for elements in the image of the map Z X tp(R) —
T (R), (z,X) — zexp(X), but it is not true in general, as claimed in [A6], that the
stable discrete series characters vanish outside of the image of this map. This is not a
problem here because the exponential map tps(R) — Ty (R) is surjective unless M is a
torus, and, if M is a torus, elements in M(R) that are not in the image of the exponential
map are also not in Z(G)(R)Gger(R), so all discrete series characters vanish on these
elements. A formula that is correct in the general case can be found in section 4 of
[GKM].
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Let R be the set of real roots in ®(Ty;,G), RT = RN ®(Ty,B) and
tayr = Lie(Tyy). If X is a regular element of ty (R), let

R} = {a € Rla(X) > 0},

er(X) = (~)IFENERDL
If v is a linear form on ty;(C) such that v(a") # 0 for every o € RY, let
Qf ={a¥ € RY|v(a") > 0}.
Define a function Ajs on tp(R) by

AM — H (ea/Q _ efa/Q).

a€®(Trr,Bu)

As Int(ups) sends Tg(C) onto Tp(C), Ad(upr) defines an isomorphism
tar(C)* = tg(C)*.

Let v € Tarreg(R). If there exist z € Z and X € tj(R) such that
v = zexp(X), then (formula (4.8) of [A6])

Our(7,50,) = (=D DAN(X)  er(X)Cp(2) Y det(W)AQL g1 yons B AN,
weNg

There are similar objects, defined by replacing G by H, etc, and similar
formulas for the functions ®ar, (., SOy, )-

Let vy € Ta, (R) and v = jar(ve); we want to prove the equality of the
proposition. We may assume that v is regular in G (because the set of vy
such that jas(vg) is G-regular is dense in Tz, (R)). Note that, as Tps are
T, are both isomorphic to RgqGj, x G(U(1)™+™2), the exponential
maps ty(R) — Ty (R) and tar, (R) — Taysy, (R) are surjective unless M
is a torus (ie my +mg = 0). If M is a torus (so My is also a torus) and
v is not in the image of the exponential map, then ¢(yy) = ¢(v) < 0, so
v € Z(G)(R)Gger(R) and vy ¢ Z(H)(R)Hger(R), and all discrete series
characters vanish on v and yg; so the equality of the proposition is obvious.

These remarks show that we may assume that there exists Xy € tpr,, (R)
such that v;;' = exp(Xg). Then 77! = exp(X), with X = jyu(Xpg) €
tar(R). As all the real roots of ®(Ty, G) are in jare(P(Tasy, H)), R is
equal to ja«(Rp). Hence Ry = ju«(Rf x,,) and er(X) = ep, (Xa). On
the other hand, using the description of the bijection ®(¢) —— Q, given
above and the choice of 7, it is easy to see that, for every oy € ®g(p),
Con = Cp and Ay, = wal(0n)(Ap) 0 jmr + p — PG © ju- As pr — pa © ju is
Q pg-invariant and vanishes on the elements of RY;, this implies that, for every
o € Pu(p) and wy € Qp, QXd( = jM*(QXd(u—l ) )-

M

H
So we get :

(=11 N det(wa(em)@ary (V' SOp )
PuEPH(p)

= Apy (Xu) 'er(X) Y det(w.) Y det(@m)e(Q} 411y n, BX)

Wy €EQ wHEQY

u;{l)wHW*(SOH))‘Ap WH)W’H
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eAd(u;II)(wHw*A¢+pHOjX41—PG)(X)
- (_1)q(G)AMH (XH)flAM(X)epH(XH)fpa(X)q)M(Vfl’ 50,).
To finish the proof, it is enough to show that

(,1)q(G)+q(H)AjM7BM (ver, ) = Ay, (XH)flAM(X)epH(XH)*pG(X)_

Let @ = &(Ty, B), ®f; = jar(®(Tasy, 5% (B))), @1, = (T, By,
®F,, = jars(®(Tasy, i3, (Bar))). Then

AMH(XH)_lAM(X)epH(XH)_pG(X) — H (eoc(X)/Q _e—a(X)/Q) H e—a(X)/Q
agdf —oy, a€dt -2}
- I a-aty I eeor
acdy —eF a€dt— (25 ,Ud},
So it is enough to show that
X8 (V) = em (X2,

a€dt— (LU

Remember that xp,, is the quasi-character of Tjs(R) corresponding to the
l-cocyle ap : Wg — T such that ny o np,,, © ju and np,,.am are
ﬁ-conjugate7 where By, = ji;(Bar). So the equality above is an easy
consequence of the definitions of 1p,, and 7p,, and of the choice of n.

O

Remark 3.3.5 As A;,, B, (va,7) = 0 if yg is not (M, My )-regular, the
right hand side of the equality of the proposition is non-zero only if vy is
(M, My )-regular.

3.4 CALCULATION OF CERTAIN ®,,(v,0)

As before, let G = GU(p,q), with p,q € N such that p > ¢ and n :=
p+qg>1 Fixse{l,...,q}, and set S ={1,...,s} and M = Mg (with
notations as in 2.2). The goal of this section is to calculate ®y/(7y, ©), for ©
the character of a L-packet of the discrete series of G(R) associated to an
algebraic representation of G¢ and certain «y in M(R).

The linear part of M (resp. M) is Lg = (Rp/gGpm)® (resp. Ly =
REg/gGL;), and its Hermitian part is G, = GU(p — s,q¢ — s). The group
Lg is a minimal Levi subgroup of Ls;. The Weyl group W (Lgs(Q), L,(Q))
is obviously isomorphic to &4, and we identify these groups; we extend the
action of G, on Lg to an action on M = Lg x Gy, by declaring that the
action is trivial on Gyg.

For every r € {1,...,q}, let t, = r(r — n).
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Proposition 3.4.1 Let E be an irreducible algebraic representation of G¢.
Let m € Z be such that the central torus G, cl, of G¢ acts on E by
multiplication by the character z — z™. For every r € {1,...,q}, let
t' = t, +m. Choose an elliptic Langlands parameter ¢ : Wg — LG
corresponding to E (seen as an irreducible representation of GU(n)(R) C
GU(n)(C) ~ G(C)), and let © = (1)1 5O,,. Let v € M(R) be semi-
simple elliptic. Write v = vyyp, with v = (A1,...,As) € (C*)® = Lg(R)
and v, € G4(R). Then c¢(v) = ¢(yx) > 0 unless M is a torus (ie s = q). If
c(y) <0, then ®pr(7y,0) =0. If e(y) > 0, then :

(i) If c(y)|\|* > 1 for every r € {1,...,s}, then ® (v, ©) is equal to

98 Z (_1)dim(AM/AMS/ ) |W(LS(@)7 LS’ (Q))|_1

s’cs
S'3s

> Dy (07) Hl@/za;/s > & (@7)Tr(0y, RU(Lie(Ns1), B) <y rest)-
A

(i) If0 < c(v)|A\r]? < 1 for every r € {1,..., s}, then ® (v, ©) is equal to

(—1)%2° > (—1) /A (Lg(Q), Lis Q)]

s’'cs
S'3s

3" DA (o) ;@/%}js *®(@NTr(0y, RT(Lie(Ng), B) sy res:)-
cEG,

The notations RI'(Lie(Ns/), E) <y res and RI'(Lie(Ng/), E) sy resr are
those of proposition 1.4.5.

Proof. Let v € M(R) be semi-simple elliptic. Use the notations of 3.3, in
particular of the proof of proposition 3.3.4. As « is elliptic in M(R), we may
assume that v € T (R). The fact that ®pr(y,0) =0 if ¢(y) < 0 (and that
this can happen only if M is a torus) has already been noted in the proof of
proposition 3.3.4. So we may assume that ¢(v) > 0.

The proofs of (i) and (ii) are similar. Let us prove (ii). Assume that
c(V)|Ar]? < 1 for every r € S. As both sides of the equality we want
to prove are continuous functions of 7, we may assume that c(y)|\.]? <
1 for every r € S and that ~ is regular in G. Let X be an element of
tar (R) such that v = exp(X) (remember that, as the torus Ty is isomorphic
to (Rp/gGm)® x G(U(1)"2%), such a X exists if and only if ¢(y) > 0).
Choose an element B of Bg(Tyr) such that B C Pg. There is a pair (¢, Ag)
associated to E as in 3.3 (¢ is a quasi-character of Z, and Ag € tg(C)*).
Write A = Ad(un)(Ag) € tar(C)* and pp = % > . Then A —pp is

ac®(Ty,B)
the highest weight of F relative to (T, B).
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Let S C S be such that s € S’. We use Kostant’s theorem (see eg
[GHM] §11) to calculate the trace of v on RI'(Lie(Ng/), E) sy resr. Let Q =
W(Tun(C),G(C)), £ be the length function on 2, Qg = W (T (C), Mg (C))
and ®T = &(T);,B). For every w € Q, let T (w) = {a € dT|wla €
—®*}. Then Qf = {w € Q|®"(w) C ®(Tr,Ng)} is a system of represen-
tatives of Qg \ Q. Kostant’s theorem says that, for every k € N,

H¥(Lie(Ng),E)~ €D Voy-ps:
wey, l(w)=k
where, for every w € €, V,(\)—,, is the algebraic representation of Mg/ ¢
with highest weight w(\) — pp (relative to (T, BN Mg/ ¢)).
For every r € {1,...,s}, let
A, 0
Wy : Gm I TM7 A— In—27' ;
0 AL
we use the same notation for the morphism Lie(G,,) — ty; obtained by
differentiating w,. Let k € N. By definition of the truncation,

Hk(Lie(NS/) >t’ res’ = @ Vw(A) PB

where the sum is taken over the set of w € Q ‘s of length k and such that,
for every r € ', (w(A\) — pB,wy) > tr. As t, = (—pp,w,) for every r €
{1,..., s}, the last condition on w is equivalent to : (w(\), w,) > 0, for every
res’.

On the other hand, by the Weyl character formula, for every w € Q,,

Tr (1, Vi) = Bty (X)71 S det(wng)elonr @N=patos)(X),
wMEQS/

1 .. .
where psr = 3 > a. As pgr — pp is invariant by Qg and
QE(I)(T]VIaBﬂMs'Vc)

,— —-1/2
elps—pB)(X) _ 5PS,/(R)()

this formula becomes
TT(%VW(,\)pr) _ AMS/( ) 16P;//2]R) Z det wM) (wa()\))(X)
wzuGQS/

Hence

T’/‘(’j/, RF(LZG(NS’)7 E)>t,",7'€5”)

:AMS/( ) 151351,/]21@() Z Zdet(wa)e(“’M‘*’()‘))(X),

UJMEQS/ w

where the second sum is taken over the set of w € %, such that (w(X), @, ) >
0 for every r € S’. As the w,, r € §', are invariant by Qg/, for every
wp € Qgr,we Qg andr e 5, (W), wr) = (wnw(N), @,). Hence :

Tr(y, RT(Lie(Ns'), E) sy rest) = A, (X) 71652 (v Zdet @O,
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where the sum is taken over the set of w € Q such that (w(X),w,) > 0 for
every r € 5.
Moreover,
M ’ —_
[Dag® (N2 = Anr, (X[ An (X)] 7
But all the roots of Tps in Lie(Mg/)/Lie(M) are complex, so :
AMS/(X)AM(X)il — H (ea(X)/Z _efa(X)/2) ER+,

aEé(Tlu,Lie(MS,)/Lie(M))
a>0

and
[Dae™ (N2 = Ay, (X) A (X) 7
Finally,
DN (DI85 ) (1T, RE(Lie(Nr), E) sy res) = B (X) ™D det(w)e0000,

where the sum is taken as before on the set of w €  such that (w(X), w,) > 0
for every r € 5.

The action of the group &4 on Ty (C) gives an injective morphism &, —
Q. Use this morphism to see G, as a subgroup of 2. For every o € G,
det(o) = 1, and the function Ay is invariant by &,. Hence :

> Dyt (07)[Y20p, 2y (07) /2 Tr (0, RT (Lie(Ngr), E) sy res)
oceS,

=Ap(X)! Z det(w)e@“MX) {5 € &,|(ow(N), w,) > 0 for every r € S'}|.
weN

We now use the formula of [A6] 272-274 (recalled in the proof of proposi-
tion 3.3.4) to calculate ®ps(7y, ©). Let R be the set of real roots in ®(Tyr, G).
For every r € {1,...,s}, let

oy Ty =~ (RE/QGm)SxG(U(l)”_zs) — Gy (M1, -5 Xs)5 ) — (@) A A
Then R = {+ay,...,+as}, RY .= RN®T = {ay,...,as}, and, for every

r€{1,...,s}, the coroot )’ is the morphism
Gm — T, A — ((1,..., 1,0 1,...,1),1).
—_— N
r—1 s—r

Note that @, = o + -+ +ay. As c(y)|\]? €]0, 1] for every r € {1,...,s},
Ri ={-ai,...,—as} = —RT and ex(X) = (=1)*. Let Q* be a positive
root system in RY. If QT # {aY,...,a)}, then 8(Q*, RY) = 0 by property
(i) of the function ¢ of [A6] p 273. Suppose that QT = {aY,...,aY}. Note
that R is the product of the root systems {£a;.}, 1 <r < s. Hence

AQ* RY) = [ [ e{a)} {—ar)).
r=1
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But it is easy to see that ¢({a)},{—a,}) = 2 for every r € {1,...,s} (by
property (iii) of [A6] p 273). Hence ¢(Q*, RY) = 2°. Finally, we find

Dpr(7,0) = (=1)°2°Ap (X) Zdet(w)e(“’()‘))(X),

where the sum is taken over the set of w € Q such that (w()),a;’) > 0 for
every r € {1,...,s}.
To finish the proof, it is enough to show that, if w € € is fixed, then

> (DI (Ls(Q), Ls (@) 7' {0 € &,{ow(N), @) > 0 for every r € S'}|

s’cs
ses’

is equal to 1 if (w(N),a;/) > 0 for every r € {1,...,s} and to 0 otherwise.
This is proved in lemma 3.4.2 below.
(]

Let n € N*. Let S C {1,...,n}. If A= (\,...,\,) € R™, we say that
A >g 0if, for every r € S, Ay + -+ + A > 0, and we write

Gs(\) = {o € &,|0()) > 0}.

If S={ry,...,rp} with ry <--- <y, write
k—1
wg =r1! H(Ti+1 — )l
1=1

Lemma 3.4.2 Let A = (A1,...,\,) € R™. Then

8] —1 (=)™ if X >0 for every r € {1,...,n}
Z (=1)" g |GS(A)|{ 0 otherwise

sc{1,...,n}
San

Proof. First we reformulate the problem. Let A = (A1,...,\,) € R™
Write A > 0if Ay > O, \ + X2 > 0,..., A1 +---+ A, > 0. For every
Ic{l,...,n},let sy(A) = >  A;. Let Pora(n) be the set of ordered partitions

iel

of {1,...,n}. For every p = (I1,...,Ir) € Pora(n), set |p| = k and A, =
(s5,(A)y ..., 81, (\) € RE. Let

Pord(X) = {p € Pora(n)|A, > 0}.
Then it is obvious that :

> E)Flwglesi= >0 (=Pl

sy n) PEPara(N)

We show the lemma by induction on the pair (n,|Pyrq(A)|) (we use the
lexicographical ordering). If n = 1 or if Pyrq(A) = & (ie M + -+ A, <0),
the result is obvious. Assume that n > 2, that P,.q()\) # @ and that the
result is known for :
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- all the elements of R™ if 1 < m < n;
- all the M € R™ such that [Porqa(N)| < [Pora(A)].

Let € be the set of I C {1,...,n} such that there exists p = (I1,...,I;) €
Pora(A) with I; = I; £ is non-empty because P,.4(A) is non-empty. Let
¢ be the minimum of the s;(\)/|I|, for I € £. Let I € £ be an element
with minimal cardinality among the elements J of £ such that s;(\) = |J|.
Define X' = (A},...,Al,) € R"” by :

\ :{ i ifigl
v Ni—e ifiel
Let P’ be the set of p = (I1,...,1;) € Pora(A) such that there exists r €
{1,...,k} with I = U---UI.. Then P/ #£ &.

It is obvious that Pyrq(A) C Pora(A) — P’ (because s;(N') = 0). Let us
show that P,rq(N) = Pora(A) — P'. Let p = (I1,...,Ix) € Pora(A) — P/,
and let us show that p € Pyrg(N). It is enough to show that sp (\) > 0,
because (L U - U, Ir11,...,1) € Pora(A) — P’ for every r € {1,...,k}.
By definition of X, s, (N) = s, (A) —e|lI N I1]. If s, (A) > e|l1], then
s, (X)) >e(|li| = INIL]|) > 0. If s, (A) = e|l1], then |I;| > |I| by definition
of I'and I} # I because p € P/, so Iy ¢ I, and sp, (') = e(|I1|—|INI]|) > 0.

As sp(N') = 0, there exists ¢ € I such that \; < 0. By the induction
hypothesis, Y. (=1)Pl =0. Hence > (=1)Pl = Y (1)l As

PEPora(N) PEPora(N) pEP’

the equality of the lemma does not change if the \; are permuted, we may
assume that there exists m € {1,...,n} such that I = {1,...,m}. As-
sume first that m < n. Let u = (Ar,...,A\p) and v = (Apms1,---, An).
Identify {m + 1,...,n} to {1,...,n — m} by the map k — k — m, and
define a map ¢ : P’ — Pyra(m) X Porg(n — m) as follows : if p =
(I,....Iy) € PPandif r € {1,...,k} issuch that [ U---UI,. = I, set ¢(p) =
((I,...,I),(Ir41,- .., I)). The map ¢ is clearly injective. Let us show that
the image of ¢ 18 Pora(pt) X Pora(v). The inclusion Pyra (i) X Pora(v) C @(P’)
is obvious. Let p = (I1,...,Ix) € P’, and let r € {1,...,k} be such that
I =LU---UIL. We want to show that ¢(p) € Pora(pt) X Pora(v), ie
that, for every s € {r +1,...,k}, 5, u..ur,(A) > 0. After replacing p by
(LU---Ul, Iy U---Ulg Isiq,. .., 1), we may assume that » = 1 (hence
I=1y) and s = 2. Then

812()\) = SIUIZ()\) — S[()\) = SIUI2(>\) — E|I| > E|IUIQ| — E|I| > 0.
Finally :

Z(—1)|p|: Z (1)l Z (1)l

pEP’ PEPord (i) PEPora(v)

Hence the conclusion of the lemma is a consequence of the induction hy-
pothesis, applied to u and v.

We still have to treat the case I = {1,...,n}. Let us show that there is
no partition {I1, Iz} of {1,...,n} such that sy, (A) > 0 and sz,(A) > 0 (in
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particular, there exists at least one i such that A; < 0). If such a partition
existed, then, by definition of I, we would have inequalities sy, (A) > €|I;| and
s1,(A\) > €|Iz], hence s;(A\) > e|I|; but that is impossible. Let P(n) be the set
of (unordered) partitions of {1,...,n}. For every ¢ = {I,,a € A} € P(n),
write |¢| = |A|. Let ¢ = {In,a € A} € P(n). By lemma 3.4.3, applied
to (sr.,(A),--.,s1,, () for a numbering (ai,...,a;) of A (the choice of
numbering is unimportant), there are exactly (|¢| — 1)! way to order ¢ in
order to get an element of P,,.q(\). Hence

S0P = Y (gl - 1

PEPord(N) qeP(n)
If ¢’ is a partition of {1,...,n — 1}, we can associate to it a partition ¢ of
{1,...,n} in one of the following ways :

(i) Adding n to one of the sets of ¢’. There are |¢'| ways of doing this,
and we get |g| = |¢].

(ii) Adding to ¢’ the set {n}. There is only one way of doing this, and we
get || = |¢'[ + 1.

We get every partition of {1,...,n} in this way, and we get it only once.
Hence (remember that n > 2) :

S =l(g-nt= Y )+ YD (=D =0.

ge€P(n) g’ €P(n—1) qg'€P(n—1)
[l

In the lemma below, &,, acts on R™ in the usual way (permuting the
coordinates).

Lemma 3.4.3 Let A = (\1,...,\,) € R®. Assume that \y +---+ X\, >0
and that there is no partition {I,Is} of {1,...,n} such that sy, (\) > 0 and
s1,(A) > 0. Then

{o € G,lo(A\) > 0} = (n—1)L.

Proof. Let 6(\) = {0 € &,|0(\) > 0}. Let 7 € &,, be the permutation
that sends an element i of {1,...,n — 1} to ¢ + 1, and sends n to 1. Let us
show that there exists a unique k € {1,...,n} such that 7% € &()). Let s =
min{A; + ...\, 1 <1 <n}. Let k be the biggest element of {1,...,n} such
that Ay +-- -+ A =s. fle{k+1,...,n},then Ay +- -+ > A+ -+ A,
hence A1 +---+ X >0. If I € {1,...,k}, then

M1+ A+ A+ + N ()\1+"'+>\n)*()\1+"'+/\k)+(>\1+"'+>\l)
—M M) A
0.

AVARVAN]

This proves that 7%(\) = (Aks1,-- -5 A, A1y - -+, Ak) > 0. Suppose that there
exists k,1 € {1,...,n} such that k& < [, 78(\) > 0 and 7/(\) > 0. Let
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I ={k+1,...,l}and I, = {1,...,n}—1I;. Then sy, (A\) = Agp1+---+X\ >0
because 78()\) > 0, and sz, (\) = Np1+- -+ A + Ap + -+ A\p > 0 because
71(A) > 0. This contradicts the assumption on \.

Applying the above reasoning to o(\), for o € &,,, we see that &,, is the
disjoint union of the subsets TkG()\), 1 < k < n. This implies the conclusion
of the lemma.

O
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Chapter Four

Orbital integrals at p

4.1 A SATAKE TRANSFORM CALCULATION (AFTER KOT-
TWITZ)

Lemma 4.1.1 (cf [K3] 2.1.2, [K9] p 193) Let F be a local or global field and
G be a connected reductive algebraic group over F'. For every cocharacter
w: Gy, p — G, there exists a representation r,, of LG(= G x W), unique
up to isomorphism, satisfying the following conditions :

(a) The restriction of r;, to G is irreducible algebraic of highest weight p.

(b) For every Gal(F/F)-fixed splitting of G, the group Wg, embedded
in G by the section associated to the splitting, acts trivially on the
highest weight subspace of 1, (determined by the same splitting).

Let p be a prime number, @p be an algebraic closure of Qp, Q" be the
maximal unramified extension of Q,, in @p, F C @p be a finite unramified
extension of Q,, W be the Weyl group of F, wp be a uniformizer of F,
n = [F : Q,]. The cardinality of the residual field of F' is p™.

Let G be a connected reductive algebraic group over F', and assume that
G is unramified. Fix a hyperspecial maximal compact subgroup K of G(F),
and let H = H(G(F),K) := C*(K \ G(F)/K) be the associated Hecke
algebra. For every cocharacter u : G,, r — G of G, let

]lKu(w;I)K

vol(K) < Tt

fu =

In this section, the L-group of G will be G = G x Wr. Let ¢ — m, be

the bijection between the set of equivalence classes of admissible unramified

morphisms ¢ : Wr — LG and the set of isomorphism classes of spherical
representations of G(F).

Theorem 4.1.2 ([K3] 2.1.3) Let p : Gy, p — G be such that the weights
of the representation Adoyp : G, p — Lie(G@p) are in {—1,0,1}. Fix a
maximal torus T of G such that u factors through T, and an ordering on
the roots of T in G such that u is dominant. Let p be half the sum of the
positive roots.

Then, for every admissible unramified morphism ¢ : Wy — LG,

Tr(7(fu)) = p" =17 Tr(r_u((PF))),
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where r_,, is the representation defined in lemma 4.1.1 above and ®r €
W(Qy"/F) is the geometric Frobenius.

Remark 4.1.3 In 2.1.3 of [K3], the arithmetic Frobenius is used instead of
the geometric Frobenius. The difference comes from the fact that we use
here the other normalization of the class field isomorhism (cf [K9] p 193).

4.2 EXPLICIT CALCULATIONS FOR UNITARY GROUPS

This section contains explicit descriptions of the Satake isomorphism, the
base change map, the transfer map and the twisted transfer (or unstable
base change) map for the spherical Hecke algebras of the unitary groups of
2.1. These calculations will be useful when proving proposition 4.3.1 and in
the applications of chapter 7 and section 8.4.

Let p be a prime number, and let @p and Q" be as in 4.1. Remember that,
if G and H are unramified groups over Q, and if n : 'H := H x Wo, —
LG =G x Wy, is an unramified L-morphism (ie a L-morphism that comes
by inflation from a morphism H x w(Q, /Qp) — G x W(Qp"/Qp)), then
it induces a morphism of algebras b, : Hu — Hg, where Hy (resp. Hg)
is the spherical Hecke algebra of H (resp. G). This construction is recalled
in more detail in 9.2 (just before lemma 9.2.5).

Let E = Q[v—b] be an imaginary quadratic extension where p is un-
ramified, and fix a place p of E above p (ie an embedding E C Qp").
Let ni,...,n, € N* and let J; € GL,,(Z),...,J, € GL,, (Z) be sym-

0 *
metric matrices that are antidiagonal (ie in the subset ).

* 0
Let g; be the floor (integral part) of n;/2, n = ny +---+n, and G =
G(U(J1) x --- x U(J;)). Then the group G is unramified over Q,. Hence
G extends to a reductive group scheme over Z, (ie to a group scheme over
Z,, with connected geometric fibers whose special fiber is a reductive group
over F,); we gave an example of such a group scheme in remark 2.1.1. We
will still denote this group scheme by G. In this section, the L-group of G
will be the L-group over Q,, ie LG =G x Wa,-

Satake isomorphism

Let L C Qp" be an unramified extension of Q,. Let Kp = G(Or); it is a
hyperspecial maximal compact subgroup of G(L). We calculate the Satake
isomorphism for H(G(L),Kr).

Suppose first that G splits over L, ie L D E (if L = Q,, this means
that p splits in E). Then Gp ~ G,,, 1, X GLy, 1, X --- X GL,, . For every
i€ {1,...,r}, let T; be the diagonal torus of GU(J;). Identify T, ; with
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the torus Gy, x G | by the isomorphism

g =diag(A, ..., An,) — (c(g), (u(A1),. .., u(An,))),
where u is the morphism L ®q, F— Lz®1+y® V—=b+— x+yv/—b. A
split maximal torus of Gy, is the diagonal torus T¢ 1, where

Te={(g1,...,9-) € T1 x -+ xTrle(g1) = -+ = c(gr) }-

The above isomorphisms give an isomorphism T¢ 1 ~ G, x G7, . Let
Qa(L) =W (Ta(L),G(L)) be the relative Weyl group of T¢ 1, (as G splits
over L, this group is actually equal to the absolute Weyl group). Then
Qg(L) ~ &, X -+ x &,, . The Satake isomorphism is an isomorphism

H(G(L),Kp) =5 C[X,(Tg)]%e®).
There is an isomorphism
C[X.(Tg)] ~ CIX*F", X7 1 <i<r1<j<n

induced by the isomorphism T¢, 1 > Gy, X Gy, |, defined above. Explicitely

® X corresponds to the cocharacter

A+1 1—
A 7®1+ ® ) '7L17"'7In N
— (Aot 3 eV )

® Letiec{l,...,r}and se{l,...,q;;U{n;+1—gq,...,n;}. Then X,
corresponds to the cocharacter

A — (Il, .. .,Ii,l,diag(al()\), vy Qpy ()\)),Ii+1, .. .,Ir),
with :

/\+1 A—1 — e
®1+ F®\/ if j=s
aj(A) = ’ AT 41 ifs=n+1—j
1 otherwise

e If i € {1,...,r} is such that n; is odd, then Xj (,,41)/2 corresponds to
the cocharacter
I, 0
\/7 ® vV — 9 Ii+1, ceey
0 1,

i

A (Ila"'a-[i—la

We get an isomorphism

CIX.(Tg)?W ~ CIXH @ CIXE 1 <i <r 1 < j < my] XS

)

where &,,; acts by permutations on Xj 1,..., X;, and trivially on the X ;
if ¢/ # 1.

Suppose now that G does not split over L (this implies that p is inert
in E). For every i € {1,...,r}, a maximal split torus of GU(.J;), is S; 1,
where

Si = {diag(A1, ..., A\, Ay, LA N A A €Grmg,} Gq’,Q

P
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if n; is even, and
Si = {diag(A1, ..., Mg, AN AN A AL A € Gg, Gg;gp
if n; is odd. A maximal split torus of G, is S¢ 1, where

Se={(g1,.--,9,) €S1 X - x Syle(gr) = -+ = ¢(g,)}° ~ GU L Har L

m,Qp
Let Q¢ (L) = W(Sg(L), G(L)) be the relative Weyl group of S¢(L). Then
De(L) ~ Q1 X -+ X Q,, where §; is the subgroup of &,,, generated by the
transposition (1,7n;) and by the image of the morphism
o(J) if1<j<g
Sy — Gnyy o [Tijr— ] ifgi+1<j<ni—q
ni+1l—o(mi+1—j) ifni+1—¢;<j<n,
Hence §; is isomorphic to the semi-direct product {£1}% x &,,, where &,
acts on {£1}% by (0, (e1,...,64,)) = (€6-1(1)s+--1E5-1(q,))- The Satake
isomorphism is an isomorphism
H(G(L),Kr) = C[X.(Sg)] ™).
Assume that n; is even. Then there is an isomorphism

CIX.(Si)] = CIX/ ™ XA, .. XL

1 M,q,

that sends X/ to the cocharacter

My, 0
A — ( 0 Iqi )

and X; 5, 1 < s < ¢, to the cocharacter
A— diag(al(A), s Oy ()‘))a

with
A ifj=s
aj(\) =4 A1 ifj=ni+1-s
1 otherwise

Hence we get an isomorphism

(C[X*(Si)]m ~ (C[X{il, Xij,tll’ o ’Xil]{:l:l}qi qui,

1,94
where &, acts by permutations on Xj 1,...,X; 4 and trivially on X, and
{£1}9 acts by ((z1,-.-,84,), Xij) — X5 and ((e1,....20), X)) — X, [ X
j tq ej=—1

Note that the (;-invariant) cocharacter A — AI,,, corresponds to X; :=
2y —1 -1

X/ Xit X g
Assume that n; is odd. Then there is an isomorphism

CIX(Si)] =~ CIX X, X

that sends X; to the cocharacter A — AI,, and X;,, 1 < s < ¢;, to the
cocharacter defined by the same formula as when n; is even. Hence we get
an isomorphism

CIX. (S ~ClX 1, X5, ... X,

}{:I:l}‘“ xGgq,
2,94 ’
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where {£1}% x &, acts as before on X, 1,...,X;, (and trivially on X;).

Finally, we get, if all the n; are even,

CX.(Se)]?¢M) ~C(X] ... X))F, X5 1 <i <1 < < gy 00,
and, if at least one of the n; is odd,

C[X.(Se)]7¢H) ~ C[(Xy ... Xp) 5, XE L 1 < i <1 < < gy 0000,

Let X' = X... X! and X = X1 ... X,.

In order to unify notations later, write, for every ¢ € {1,...,r} and j €
{ni+1—q....,ni}, Xs 5= Xijvzzlﬁlfj and, for every ¢ € {1,...,r} such that

n; is odd, X, n;+1 = 1.

Note that X 2does not stand for the same cocharacter if G splits over L or
does not (neither do the Xj ;, but this is more obvious). Let v : G, .. — G,
be the cocharacter corresponding to X. If G does not split over L, then v is
defined over Q and c(v()\)) = A2 for every A € G,,. If G splits over L, then
v is defined over E (and is not defined over Q) and c¢(v(\)) = A for every
AE Gm,E~

We end this subsection with an explicit version of the result of 4.1. Assume
that G splits over L (ie that L contains E,,), and fix a uniformizer wy, of
L. Set d =[L:Qp]. Let s1,...,s, € N be such that s; < n;. For every
i€ {1,...,r}, there is a cocharacter s, : G,,,g — GU"(n;)g, defined in
2.1.2. Let gt = (ftsy, .-y ps,.) : Goy,g — Gpg and

]IKL,LL(wzl)KL
vol(Kp,)

(with the notations of 4.1, ¢ = f,,). Let 7_, be the representation of “Gp,
associated to —yu as in lemma 4.1.1, and ® € W(Q,"/Q,) be the geometric
Frobenius (so ®¢ is a generator of W(Qu"/L)).

o= € H(G(L),Kp)

Proposition 4.2.1 For every admissible unramified morphism ¢ : Wy —
LG
2

Tr(my(¢)) = ptortmms)/2rdorlne=s) /2 (e (0(97))).
In other words, the Satake transform of ¢ is

pllnm=s) /2t x -1 5L Y f[HXZﬁ

Ipc{1,..., ny} Irc{1,..., nr} i=1j€I;
[11]=s1 | Ip|=sp

Proof. To deduce the first formula from theorem 4.1.2 (ie theorem 2.1.3
of [K3]), it is enough to show that

<P, >= Sl(nl - 51)/2+ +3r(nr - 37‘)/27

where p is half the sum of the roots of T in the standard Borel subgroup of
G (ie the group of upper triangular matrices). This is an easy consequence
of the definition of p.
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In the reformulation below formula (2.3.4) of [K3], theorem 2.1.3 of [K3]
says that the Satake transform of ¢ is
d(s1(n1—s1)/24++sr(nr-—s,)/2) Z v.
veQ (L) (— 1)

To prove the second formula, it is therefore enough to notice that —u €
X.(Tg) corresponds by the isomorphism C[X,(Tg)] ~ C[X*']® (C[ijl] to

X1 H (Xi,l .. -Xi,si)_1~
=1

p

O

The base change map

In this subsection, L is still an unramified extension of Q,. Write Ky =
G(Zp) and d = [L : Q,]. If L contains E,, write a = [L : Eg]. Let
R = Ry q,Gp. Then there is a “diagonal” L-morphism 7 : “G — LR (cf
example 8.1.1). It induces a morphism b, : H(G(L),Kr) — H(G(Q,), Ko),
called base change map (or stable base change map). We want to calculate
this morphism. To avoid confusion, when writing the Satake isomorphism
for H(G(L),Kz), we will use the letter Z (instead of X) for the indeter-
minates (and we will still use X when writing the Satake isomorphism for
H(G(Q)). Ko)).

Assume first that G does not split over L (so that p is inert in E). Then
the base change morphism corresponds by the Satake isomorphisms to the
morphism induced by

Clz*eClzij1<i<rl<j<q] — CXF X 1<i<r1<j<q)]
Z — X4
Zi,j [— XZC%?

Assume that G splits over L but not over Q,. Then L D E,, p is inert
in E and d = 2a. The base change morphism corresponds by the Satake
isomorphisms to the morphism induced by

(C[Zil]@)(C[Z-jEl 1<i<r1<j<n] — (C[Xil,X,ﬂE,1 1<i<r1<j<gq]

1,50 4,5
Z — X¢
X if1<j<g
Zij 1 fg+1<j<n—q
Xijﬁi+l—j ifn;+1—-¢q; <j<n;

Assume that G splits over L and Q. Then psplitsin F and L D E, = Q,,
so d = a. The base change morphism corresponds by the Satake isomor-
phisms to the morphism induced by

Clz¥®Clz ), 1<i<r1<j<n] — CXF|@CX},1<i<r1<j<n

Z — X°
Zij +— Xij

Notice that, with the conventions of the previous subsection in the case
when G does not split over @, the base change morphism is given by the
same formulas in the last two cases (this was the point of the conventions).
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Remark 4.2.2 Assume that p is inert in £ and that L = E, = E,. Then
the image of the base change morphism is C[(X7 . ..Xr)il,Xle, 1<i<
r,1 < j < g% %% In particular, the base change morphism is surjective
if and only if one of the n; is odd.

The transfer map

In this subsection and the next, we consider, to simplify notations, the group
G = GU(J) with J € GL,(Z) symmetric and antidiagonal, but all results
extend in an obvious way to the groups considered before.

Let ny,n9 € N be such that ng is even and n = ny + ny. Let (H, s,19)
be the elliptic endoscopic triple of G associated to (n1,n2) as in proposition
2.3.1 (note that this endoscopic triple is not always elliptic over Q). Let
q (resp. q1, ¢2) be the integral part of n/2 (resp. ni/2, na/2). The group
H is unramified over Q,. We will write H for the group scheme over Z,
extending H that is defined in remark 2.1.1 and Ky o for H(Z,,).

Any unramified L-morphism 7 : “H — G extending 7 induces a mor-
phism b, : H(G(Qp),Ko) — H(H(Qp),Kr,0), called the transfer map. We
want to give explicit formulas for this morphism. We will start with a par-
ticular case. Let, as before, ® € W(Q,"/Qp) be the geometric Frobenius.
Let Nsimpie : LH — G be the unramified morphism extending no and
such that 7(®) is equal to (1,®) is p splits in F, and to ((1,A4),®) if p
is inert in E, where A is defined in proposition 2.3.2. Let by = b :
H(G(Qy), Ko) — H(H(Q)), Kiro).

Then, if p is inert in E, by corresponds by the Satake isomorphisms to the
morphism

Nsimple °

C[X.(Sq)]?¢ @) — C[X,(Sy)] (@)
defined by
X' — X{X}if niseven
X — X1X2 if n is odd
; i <1<
do { )X(;:—ql i ;1_—:1_§q21' <q2
If p splits in E, by corresponds by the Satake isomorphisms to the morphism
C[X*(TG)]QG(QP) N (C[X*(TH)]QH(QP)
defined by

X — X

Xoji—n, ifn+1<i<ny

Now let n : “’H — G be any unramified L-morphism extending 7.
Then 1 = csimpie, Where ¢ : Wo, — Z(H) is a 1-cocycle. Write x,, for
the (unramified) quasi-character of H(Q,,) corresponding to the class of ¢ in
H' (W, , Z(H)). Then by : H(G(Qp),Ko) — H(H(Qp),Kp,0) is given by
the following formula : for every f € H(G(Q,),Ko), b,(f) = xnbo(f)-
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Following Kottwitz ([K9] p 181), we use this to define b, even if 1 is not
unramified. So let n : “lH — LG be a (not necessarily unramified) L-
morphism extending 7. Define a quasi-character x,, of H(Q,) as before
(xn can be ramified), and define b, : H(G(Qy,),Ko) — C*(H(Q))) by the
following formula : for every f € H(G(Qp),Ko), b,(f) = xnbo(f).

The twisted transfer map

Keep the notations of the previous subsection. Fix an unramified extension
L of Q, and write as before K;, = G(Opr), d = [L : Q)] and, if L D E,,
a = [L: Ey]; we will use the same conventions as before when writing the
Satake isomorphism for H(G(L), G(OL)) (ie the indeterminates will be Z
and the Z;). Let n : “H — G be an unramified L-morphism extending
No-

Remember the definition of the twisted endoscopic datum associated to
(H,s,n) and to the field extension L/Q, (cf [K9] p 179-180). Let ® €
W(Qy"/Qy) be the geometric Frobenius, R = Ry g, G and 6 be the auto-
morphism of R corresponding to ®. Then

R =(G)",
where the i-th factor corresponds to the image of ®¢~¢ in Gal(L/Qp) The
group Woq, acts on R via its quotient W(Q,"/Qy), and @ acts on R by

®(g1,---,94) = 9(@( 1) (ga)) = (2(g2), - -, ®(9a), (91)).
In particular, the diagonal embedding G — Ris W, -equivariant, so it ex-
tends in an obvious way to a L-morphism *G — FR; let o/ : 'H —
LR denote the Composition of n : YH — TG and of this morphism.
Let tl,.. Jtq € Z(H )Gal(Q /%) be such that ¢ ...ty = s, and write t =
(t1,...,tq) € R. Define a morphism 7 : HNW(Q“T/QP) — RNW(Q“T/QP)
by :
77‘ is the composition of ng : H — G and of the diagonal embedding
G —R= ( ) ,
n((1,®)) = (¢, 1)n'(1, D).
Then the ﬁ—conjugacy class of 17 does not depend on the choice of 4, ..., g4,
and (H,t,7) is a twisted endoscopic datum for (R, ). The map
by : H(G(L), Kr) — H(H(Qp),Kr o)
induced by 7 is called the twisted transfer map (or the unstable base change
map).

Assume first that 7 = nsimpie, and write 30 for bg. If G does not split over
L, then the twisted transfer map 50 corresponds by the Satake isomorphisms
to the morphism induced by

Cliz*ecC[zf] — CXFRCX{],...,Xih 1®C[X5],..., X5} ]
Z — X
P {sz if1<i<m
g xd ifn+1<i<n

2,1—nq
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If G splits over L (so L D E,,), then the twisted transfer map by corresponds
by the Satake isomorphisms to the morphism induced by

Clz¥®Czf] — CIXFI®CX{],..., X1 1®C[X51,..., X5 ]

1,n1 2,n2
7z — X
p Xg, if1<i<m
v X8, fni+1<i<n

Assume now that 7 is any unramified extension of 79, and define an un-
ramified quasi-character x,, of H(Q,) as in the previous subsection. Then,
for every f € H(G(L),Kp), by(f) = xubo(f).

As in the previous subsection, we can use this to define b5 for a possibly
ramified 7 (this is just [K9] p 181). Let  : LTH — LG be any L-morphism
extending 79, and attach to it a (possibly ramified) quasi-character yx, of
H(Q,). Define b5 : H(G(L),Kr) — C(H(Q,)) by the following formula

: for every f € H(G(L),Kp), by(f) = xnbo(f).

4.3 TWISTED TRANSFER MAP AND CONSTANT TERMS

In this section, we consider, to simplify notation, the situation of the last
subsection of 4.2, but all results extend in an obvious way to the groups
G(U(J1) x --- x U(J,)) of the beginning of 4.2. Assume that G splits over
L (ie that L contains E,,), and fix a L-morphism 1 : “H — LG extending
7o; we do not assume that 7 is unramified.

Let M be a cuspidal standard Levi subgroup of G, and let r € {1,...,q}
be such that M = My 1 ~ (Rg/qGm)" x GU™(m), with m = n — 2r.
Let (M, sar, mar,0) be an element of Eg(M) (cf 2.4) whose image in £(G) is
(H, s,m0). Assume that spr = s4.m;.m,, with A C {1,...,r} and mi; +mq =
m, and where notations are as in lemma 2.4.3; define r; and r9 as in this
lemma. There is a conjugacy class of Levi subgroups of H associated to
(M, sar,ma,0); let My be the standard Levi subgroup in that class. Then
MH =Hn (MH,I X MH,2)7 with

0 Ri)gGom
MH,i = GU" (ni)ﬂ GU*(mZ)
Rg/qGm
0 0

where the diagonal blocks are of size r;, m;,r;. On the other hand, My =
Mg, x My, where My = (Rg/9Gm)™ X (Rg/gG.m)™ is the linear part
of My and My j, = G(U*(mq) x U*(mg)) is the Hermitian part. Similarly,
M = M; x My, where M; = My = (Rg/9G,)" is the linear part of M
and M, = GU*(m) is the Hermitian part. The morphism n : LH — LG

Rp/qGm
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determines a L-morphism 737 : “Mpy = ‘M’ — M extending 1NM,0,
unique up to M-conjugacy; 7y, is unramified if 7 is unramified.
As in lemma 2.4.3, identify M with the Levi subgroup
* 0

C* x GL,,(C)

0 *
(blocks of size r,m,r) of G. Identify ﬁH to a Levi subgroup of Hina
similar way. Let s}, be the element of Z(lVIH) cM~C*x (C*)" x
GL,,(C) x (C*)" equal to (1,(1,...,1),sn,,(1,...,1)), where sy, is the
image of sy, by the projection M — GL,,(C) (in the notation of lemma
2.4.3, sy = S@,my,ms)- Then (Mpy, s}y;,m0,0) is an elliptic endoscopic triple
for M, isomorphic to (M, sar,1mar,0) as an endoscopic M-triple (but not as
an endoscopic G-triple).
Write bs,,,be, + H(M(L),M(Or)) — C*(Mpu(Qp)) for the twisted
transfer maps associated to (M, sar, ) and (Mg, sy, nar), and f — fum
(resp f — fmy, ) for the constant term map H(G(L),Kr) — H(M(L), M(Oy))
or H(G(Qp),Ko) — H(M(Q,), M(Z,)) (resp. H(H(Q}p),Kw,0) — H(Mu(Qp), Mu(Zy))).
Then it is easy to see from the definitions that, if  is unramified, then, for
every f € H(G(L),Kr), bs,, (fm) = (b5(f))my. There is a similar for-
mula for a general n : Let x, be the quasi-character of H(Q,) associated

to n as in the last two subsections of 4.2, and write bs,, o for the twisted

transfer map defined by sz in the case 1 = nsimpre (and 50 = b, mpies a8 be-
fore). ThenN, for every f € H(G(L),Kz), bsy, (fm) = XuMu (@,)bsar.0(fM) =
XM (@) (0o ()M -

Later, we will use the twisted transfer map b53u and not bs,,, so we need to
compare it to bs,, (ot to b), at least on certain elements of H(M(L), M(Op)).
First we give explicit formulas for it in the case 1 = nsimpre. Write Qpr(L) =
W(Tq(L),M(L)) and Qr,; (Qp) = W(Su(Qp), My (Q,)). Then we get Sa-
take isomorphisms H(M(L), M(O1)) =~ C[X.(T¢)]* ) and H(Mg(Q,), My (Z,)) ~
C[X.(Sg)|?n @) and, if n = Nsimple, then the twisted transfer map by,
is induced by the morphism :
Cliz¥eClzf,..., 28] — CIXF|®CX{,...,X{ |®C[X5],..., X5} ]

1,n1 2,9
Z — X°
Zik — Xf,k
Zn+1—ik — Xil,nlJrlfk
Zjl — 2a,l
Znt1—j — X311
Zi — {Xf’ia” fr+l<isrtm
% i—(r14+m1) fr+m+1<i<r+m
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where we wrote {1,...,7} — A = {i1,...,4} and A = {j1,...,Jr,} With
1 < --- <iT1 andj1 < .- <j72.

Let @« € N such that n — ¢ < a < n. Write u = po, where py :
Gm, — GU"(n;)r is the cocharacter defined in 2.1.2. This cocharac-
ter factors through M, and we denote by pys the cocharacter of My that
it induces. Set

]IKL/L(wzl)KL

6= TS MG KoL)
and
1 —1
M M(Op)pnm(wy )M(Op)
¢ = ool (M(O7) € H(M(L),M(Oyp)).

Note that, if & < n—r, then ™ is the product of a function in H(Mp,(L), M (Or))
and of the unit element of H(M;(L), M;(OL)) (because the image of pps is
included in My, 1 in that case).

The Satake transform of ¢ has been calculated in proposition 4.2.1; it is
equal to

Identify H(G(L),Ky) to a subalgebra of H(M(L), M(Or)) using the con-
stant term morphism (via the Satake isomorphisms, this corresponds to the
obvious inclusion C[X,(T¢g)]?¢") C C[X.(Tg)|®™W). Ifa >n—1r+1,
then the Satake transform of ¢M is simply (ZZ;...Z,)" If a < n—r,
then, by proposition 4.2.1 (applied to My,), the Satake transform of ¢™ is

pd(a—r)(n—a—r)/Z(Zzl . ZT)_1 Z H Zfl-

IC{r+1,...,n—r} i€l

[ I|=a—7r

Let f% = bz(¢) € CX(H(Q,)), M1 = by, (™) € C2°(Mp(Qp)) and
M = by (¢m) € C°(Mp(Qy)). By the definition of by, there exists
a quasi-character x,, of H(Q,) such that x,'f* € H(H(Q,),Kpu,); write
Sy € CZ(H(Qp)) for Xy @,) (X ' fH )My (Of course, because we used
by, and not bs,, to define yM# | the functions Yy™# and fl\P/}H are different
in general.)

Let QM# be the subgroup of Qy(Q,) C &,, x &,, generated by the
transpositions ((j,n1+1—75),1), 1 < j <ry,and (1, (j,na+1—3)), 1 < j <.
Then QM# ~ {£1}™ x {£1}" (actually, QM# is even a subgroup of the
relative Weyl group over Q, W(Sy(Q), H(Q))).

Proposition 4.3.1 Let vy € Mg (Q) be such that O, (f§1, ) # 0. Write

YH = YYh, Withy, € My (Q) andy; = (M1, -, A )s (A215- -5 A20,)) €
Mg, (Q) = (EX)™ x (E*)™, and let

1 & -
Nov (1) = 5 > waly(|AziXa,ilp)
i=1
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(where val,, is the p-adic valuation). Then |c(vu )|, = p?, =valy(|ijNijlp)

is an integer for every i,j (in particular, Ns,,(vg) € Z), and one and only
one of the following two assertions is true :

(A) There exists w € QM# uniquely determined by vy, such that w(vg) €
My 1(Zp) My 1 (Qp)-

(B) There exists i € {1,2} and j € {1,...,7;} such that 5-val,(|\; ;X j|p)
is odd.

Besides, case (A) can occur only if « <n —r.
Choose an element v € M(Q,) coming from vy (such a vy always exists
because M is quasi-split over Q,,, cf [K1]). Then

O'YH (fl\I_/IIH) =< 1,8 >< [, SIM > Esy (V)O'YH WMH),
where ¢,,(7) = (=1)Near ) If moreover v, € My ;(Z,,) (this can happen
only if « < n —r), then
1/2
Ony (i) =< 1125 >< 1, 8hy > 0 (1) 0qy (FN),

where P is the standard parabolic subgroup of G with Levi subgroup M.

Let o be the component of v in M (Q,). For every 6 € M(L) o-semi-
simple, let J;, be the component of § in My(L) and define a,(y,d) and
ap(70,0n) as in as [K9] p 180 (cf also subsections A.2.3 and A.3.5 of the
appendix).

From the definition of s, it is clear that

< ap(7,0), 8y >=< (70, 0n), sy >=< (Y0, 0n), sm >

After applying corollary 9.5.3, we get :!

Corollary 4.3.2 There is an equality

S04, (fhy) =< 115 >< 1, 8hy > €0, (1) D < (70, 0n), 581 > AN, 1, (Y, 7)€(6)TO5 ().
5

If moreover v € My(Z,)M},(Q,), then

SOy (i) =< 15 >< thyshr > 0p (1) D < ap(70,0n), 531 > AN, o, (711,7)e(6) TOs (6M).
5

The two sums above are taken over the set of o-conjugacy classes § in
M(L) such that v and N§ (defined in 1.6, after theorem 1.6.1) are M(Q,)-
conjugate; for every such §, we write e(0) = e(Rsp), where Rgqg is the 6-
centralizer of § in R (denoted by I(p) in 1.6) and e is the sign of [K2].

LCorollary 9.5.3 applies only to a particular choice of 7, ie to n = Nsimple- But it is
explained on page 181 of [K9] (after formula (7.3)) why this is enough to prove the next
corollary for any choice of 7.
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Proof of the proposition. It is obvious from the definition of the twisted
transfer maps that it suffices to prove the proposition for 7 = 7gimpre. So we
assume this in all the proof.

It is easy to see that the element w € QM# in (A) is necessarily unique
(if we already know that |c(yz)|, = p?). This comes from the fact that,
for every vy € My (Zy)Mp ;(Q,) such that |c(vm)|, # 1 and for every

We know that the Satake transform of ¢ is

pda(n—a)/2Z—1 Z HZ’L—I

Ic{1,...,n} i€l

[I|=c

For every I C {1,...,n}, write

n(I) =10 {m +1,....n},
and

a=x— I x3 11 %t

i€In{l,...,n1} i€eIn{ni+1,...,n}
Then the Satake transform of fAI}IH (that is equal to the Satake transform of
/1) is

S = pda(nfa)/Q Z (_1)71(1)&[.

As S is the product of X~ and of a polynomial in the Xijjl, if Oy, (fa1,,) #

0, then |c(vx)|, must be equal to p?.

Let Al,l = {1,...,7"1}U{n1 +1—7’1,...,TL1}, AI’Q = {n1+1,...,n1 +
7’2} @] {’I’L +1 - 7"2,...,’/L}7 A = Al,l @] Al’27 Ah71 = {7"1 +1,...,n1 — Tl},
Apoa={nm+r2+1,....,n—ro} and A, = Ap1 U Ap 2. For every I; C Ay,
write ny(I;) = |I; N Ay 2| and

_ —a —a
=11 x5 Il Xain-
JELINA; 1 JELINA; 2
For every I, C Ay, write ny(I1,) = I N Ap 2|, and
_ yv-—a —a —a
cr, = X H Xl,j H X2,j—n1'
JEILNAR 1 JEILNAL 2

As ar = brna,cina, and n(I) = n(I N Ay) + np(I N Ap) for every I C

{1,...,n},

S = pla(n=a)/2 Z Z (_1)7”(11)[)11 Z (_1)nh(1h)clh

k=0 \I,CA,|I;|=k InCAp,|In|=a—k

For every k € {0,...,a}, the polynomial > (=1)*»(n)ep s the
I;LCA;“|I;L|=OC—1€
Satake transform of a function in H(Mpg 4(Q,), Mpu 1(Z,)), that will be
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denoted by 9y, 1. For every I; C A;, the monomial (—1)"1(Il)bfl is the Satake
transform of a function in H(Mp ;(Qp), My ,(Z,)), that will be denoted by
1/)]l. Then

fady =" 2N " >y

k=0 LiCAL L=k

As Oy, (fix,) # 0, there exist k € {0,...,a} and I; C A; such that |I;] =
k and O, (Y1r,¢nk) # 0. Write yg = yyn, with 7, € Mp(Q,) and
Y= (A1, A1), (A2, -5 A2,)) € My i(Qp). Then Oy, (Y1, 9n.k) =
O+, (¥r1,)O~, (¥n ). We have O, (¢r,) # 0 if and only if v; is in the product
of My (Z,) and of the image of p by the cocharacter corresponding to the
monomial (X71...X1,,X21...X2,,)%;y,, and this implies that

o for every j € {1,...,r},
_ 1 ifje]landn1+1—j§§]l
MjAglp=14 p2 ifjm+l—jeliorjm+1—j¢&I
pd ifjgLandn, +1—j€l
o for every j € {1,...,r2},
1 ifny+jelandn+1—j¢1I
p=1 p 2 ifng+jn+l—jeforn+in+l—j¢lI
p~d ifni+jgLandn+1—j€l

X2,jA25

This implies in particular that ivalpﬂ)\mxi,ﬂp) € Z for every i,7. On the

other hand, ¢(vi) = ¢(yn), so |c¢(yn)lp = p%.
There are three cases to consider :

(1) Assume that, for every j € {1,...,r1}, either j€ [orn; +1—j € I,
and that, for every j € {1,...,ro}, eitherny +j € Lorn+1—j€I.

Let w = ((W11y--swi), (W21,...,wam)) € QM be such that, for
every j € {1,...,m}, w1 =1if j ¢ I and wy; = -1 if j € [; and,
for every j € {1,...,r2}, wo; = 1if ny +j ¢ I; and wy; = —1 if

n1+j € I;. It is easy to see that w(vy) € Mgy (Zy)Mpu n(Qp), and it
is clear that 5-val,(|A; ;i j|p) is even for every i, .

On the other hand, k = |I}| = 1 + r2 = r, so, for ¥ = ¥n,, to be
non-zero, we must have a —r <n —2r,ie, a<n—r.

(2) Assume that there exists j € {1,...,71} such that j,n; +1—j € I, or
j,n1 + 1 7] ¢ Il. Then |A1,j>\1,j‘p :p72a7 hence %UQZP(P\LJ')\LHP) =
—1.

(3) Assume that there exists j € {1,...,72} such that n1 +j,n+1—ja € I,
orni+j,n+1—j & I;. Asin case (2), we see that s-val,(|A2 ;A2 j|p) =
—1.

We now show the last two statements of the proposition. First note that
<y s >< p, sy >= (—1)"2. For every I C {1,...,n}, write

m(I)=|IN{ny+ro+1,...,n1 + 72+ ma}|
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The Satake transform of ¢pn; is equal to the Satake transform of ¢, so the
Satake transform of yy™# is

pda(nfa)/Q Z (71)m(1)a1'

Ic{1,....,n}
[I|=c

Hence

«
YpMir = plon=ed 2N "y L >0 (=g,
k=0

= LiCAL L=k

To show the first equality of the proposition, it is therefore enough to see
that, for every I; C A; such that O, (¢1,) # 0, ny(I;) = r2 + €5, () modulo
2; but this is an easy consequence of the non-vanishing condition for O, (¢r,)
that we wrote above.

Assume that v; € My (Zy). Then the only I; C A; such that O,,(¢5,) # 0
is [ ={1,...,m}U{n1 +1,...,n1 +ro}, and |[;| = r and n;([;}) = ro. We
have already seen that 95, = 0 unless a < n — r, so we may assume
this. Then O, (f31,) = Oy (¥'), where ¢/ € H(Mg(Qy), My (Zy)) is the
function with Satake transform

T1 T2
p O (), [ X ] X
j=1 j=1

Applying the calculation of the twisted transfer morphism to M;, and My,
instead of G and H, we find that the Satake transform of fM# is

1 T2
pd(aiT)(niair)/Qwh,r H Xi;l H X;j

j=1 j=1
So, to finish the proof of the proposition, it is enough to show that

—1/2 a—r)(n—a—r —da(n—a
5P((/Dp)(7) :pd( )( )/2—da( )/2.

As v comes from vy, ¢(y) = ¢(yg). On the other hand, v, € M;(Z,)M(Q,),
S0
p@y) () =1.

As the image of v, € GU"(m)(Qy) in G(Q)) is

c(’Yh)Ir 0 0

Yh = 0 Y 0 )
0 0 I

we get

|;(r+m) — |;(7“+m) _ pdr(n—T).

5p@,) () = dp@,) (7n) = lc(n) le(7)
To conclude, it suffices to notice that

an—a)—(a=r)(n—a—-r)=r(n—r).
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Remark 4.3.3 From the proof above, it is easy to see that the set of
(i,7) such that 5-val,(|X; ;i j|p) is odd has an even number of elements.
In particular, the sign €5, () does not change if Ng,, (ym) is replaced by

% ; valy(|A1,iA il p)-
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Chapter Five

The geometric side of the stable trace formula

5.1

NORMALIZATION OF THE HAAR MEASURES

We use the following rules to normalize the Haar measures :

(1)

(2)

(3)

In the situation of theorem 1.6.1, use the normalizations of this theo-
rem.

Let G be a connected reductive group over Q. We always take Haar
measures on G(A¢) such that the volumes of open compact subgroups
are rational numbers. Let p be a prime number such that G is unram-
ified over Q,, et let L be a finite unramified extension of Q,; then we
use the Haar measure on G(L) such that the volume of hyperspecial
maximal compact subgroups is 1. If a Haar measure dgy on G(Ay) is
fixed, then we use the Haar measure dg-, on G(R) such that dgrdg.
is the Tamagawa measure on G(A) (cf [O]).

(cf [K7] 5.2) Let F' be alocal field of characteristic 0, G be a connected
reductive group on F' and v € G(F') be semi-simple. Write I = G, :=
Centg(v)°, and choose Haar measures on G(F) and I(F). If v €
G(F) is stably conjugate to 7, then I’ := G, is an inner form of I,
so the measure on I(F') gives a measure on I’(F'). When we take the
stable orbital integral at v of a function in C2°(G(F)), we use these
measures on the centralizers of elements in the stable conjugacy class
of ~.

Let F be a local field of characteristic 0, G be a connected reductive
group over F' and (H, s,19) be an endoscopic triple for G. Let vy €
H(F) be semi-simple and (G, H)-regular. Assume that there exists an
image v € G(F) of yg. Then I := G, is an inner form of Iy := H,,,
([K7] 3.1). We always choose Haar measures on I(F) and Iy (F) that
correspond to each other.

Let G be a connected reductive group over Q as in 1.6, and let (vyo; 7, 9)
be a triple satisfying conditions (C) of 1.6 and such that the invariant
a(v0;7,9) is trivial. We associate to (yo;7,d) a group I (connected
and reductive over Q) as in 1.6. In particular, Ig is an inner form
of I(00) := Ggr.4,. If we already chose a Haar measure on I(R) (for
example using rule (2), if we have a Haar measure on I(Ay)), then we
take the corresponding Haar measure on I(0c0)(R).
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5.2 NORMALIZATION OF THE TRANSFER FACTORS

The properties of transfer factors that we will use here are stated in [K7].
Note that transfer factors have been defined in all generality (for ordinary
endoscopy) by Langlands and Shelstad, cf [LS1] et [LS2]. The formula of [K7]
5.6 is proved in [LS1] 4.2, and conjecture 5.3 of [K7] is proved in proposition
1 (section 3) of [K8].

Let G be one of the unitary groups of 2.1, and let (H, s,7)q) be an elliptic
endoscopic triple for G. Choose a L-morphism 7 : “H — G extending
1o- The local transfer factors associated to n are defined only up to a scalar.

At the infinite place, normalize the transfer factor as in [K9] §7 p 184-185
(this is recalled in 3.3), using the morphism j of 3.3 and the Borel subgroup
of 3.3.3.

Let p be a prime number unramified in F (so G and H are unramified
over Q). Normalize the transfer factor at p as in [K9] §7 p 180-181. If n is
unramified at p, then this normalization is the one given by the Z,-structures
on G and H (it has been defined by Hales in [H1] II 7, cf also [Wa3] 4.6).

Choose the transfer factors at other places such that condition 6.10 (b) of
[K7] is satisfied. We write AF , for the transfer factors normalized in this
way.

Let M be a cuspidal standard Levi subgroup of G, let (M, s, ma1,0) €
Ec (M), and let (H, s,79) be its image in £(G). As in 3.3 and 4.3, associate
to (M, sar,ma0) & cuspidal standard Levi subgroup My ~ M’ of H and a
L-morphism nys : PMpy = LM’ — EM extending ns,0 (in 3.3 and 4.3, we
took G = GU(p, q), but the general case is similar). We want to define a
normalization of the transfer factors for 7, associated to this data.

At the infinite place, normalize the transfer factor as in 3.3, for the Borel
subgroup of M related to the Borel subgroup of G fixed above as in 3.3.

If v is a finite place of QQ, choose the transfer factor at v that satisfies the
following condition :

Ay (v M = [Dir, ()2 IDM ()52 A (v )R

for every vy € My (Q,) semi-simple G-regular and every image v € M(Q,,)
of vy (cf [K13] lemma 7.5).
We write AMH“QM’U for the transfer factors normalized in this way. Note

that, if p is unramified in F, then AMHMM) depends only on the image
of (M, sar,ma0) in E(M) (because it is simply the transfer factor with
the normalization of [K9] p 180-181, ie, if 7y, is unramified at p, with the
normalization given by the Z,-structures on M and My). However, the
transfer factors AN, ., at other places may depend on (M, sar,nar,0) €

Ea (M), and not only on its image in £(M).
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5.3 FUNDAMENTAL LEMMA AND TRANSFER

We state here the forms of the fundamental lemma and of the transfer con-
jecture that we will need in chapter 6. The local and adelic stable orbital
integrals are defined in [K7] 5.2 et 9.2.

Let G be one of the groups of 2.1, (H,s,1n9) be an elliptic endoscopic
triple of G and 1 : “H — £ G be a L-morphism extending 79. The transfer
conjecture is stated in [K7] 5.4 and 5.5. It says that, for every place v of Q, for
every function f € C°(G(Q,)), there exists a function fH € C*(H(Q,))
such that, if vy € H(Q,) is semi-simple (G, H)-regular, then

SO’)’H (fH) = Z Av(7H77)€(GW)OV(f)7

where the sum is taken over the set of conjugacy classes v in G(Q,) that are
images of vy (so, if vy has no image in G(Q,), we want SO., (fH) = 0),
G, = Centg(v)? and e is the sign of [K2]. We say that the function fH is
a transfer of f.

The fundamental lemma says that, if v is a finite place where G and
H are unramified, if n is unramified at v and if b : H(G(Q,), G(Z,)) —
HH(Qy),H(Z,)) is the morphism induced by 7 (this morphism is made
explicit in 4.2), then, for every f € H(G(Qy), G(Z,)), b(f) is a transfer of
I
If v = oo, the transfer conjecture was proved by Shelstad (cf [Shl]).

For unitary groups, the fundamental lemma and the transfer conjecture
were proved by Laumon-Ngo, Waldspurger and Hales (cf [LN], [Wal], [Wa2]
and [H2]).

We will also need another fundamental lemma. Let p be a finite place
where G and H are unramified, p be the place of E above p determined by
the fixed embedding £ — @p, j € N* and L be the unramified extension
of degree j of E, in @p. Assume that 7 is unramified at p; then it defines a
morphism b : H(G(L),G(0L)) — HH(Q,),H(Z,)) (cf 4.2 for the defini-
tion of b and its description). The fundamental lemma corresponding to this
situation says that, for every ¢ € H(G(L), G(Opr)) and every vg € H(Q,)
semi-simple and (G, H)-regular,

S04, (b(9)) = Y < ap(7036), 5 > Ap(v11,70)e(Gs0)TO5(9) (%)
é

where the sum is taken over the set of o-conjugacy classes § in G(L) such
that NJ is G(Q,)-conjugate to an image 79 € G(Qp) of v, Gy, is the
o-centralizer of § in Ry /g, Gr and a,(70;0) is defined in [K9] §7 p 180 (see
[K9] §7 p 180-181 for more details). This conjecture (modulo a calculation of
transfer factors) is proved in [Wa3] when ¢ is the unit element of the Hecke
algebra H(G(L), G(OL)). The reduction of the general case to this case is
done in chapter 9, and the necessary transfer factor calculation is done in
the appendix by Kottwitz.
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5.4 A RESULT OF KOTTWITZ

We recall here a theorem of Kottwitz about the geometric side of the stable
trace formula for a function that is stable cuspidal at infinity. The reference
for this result is [K13].

Let G be a connected reductive algebraic group over Q. Assume that G
is cuspidal (cf definition 3.1.1) and that the derived group of G is simply
connected. Let K be a maximal compact subgroup of G(R). Let G* be
a quasi-split inner form of G over Q, G be an inner form of G over R such
that G/AG’R is R-anisotropic and T, be a maximal elliptic torus of Gg.
Write

7(G) = ¢(G) vol(G(R)/Ac(R)")
(e(G) is the sign associated to G in [K2]), and
k(G) = [Im(H'(R, Te N Gaer) — H'(R, T,))|.
For every Levi subgroup M of G, set

npy = |(Norg (M) /M)(Q)]-

Let v be a quasi-character of Ag(R)?. Let Ijepmp(G(R), v) (resp. gisc(G(R),v))
be the subset of 7 in Hiemp(G(R)) (resp. Ilgisc(G(R))) such that the re-
striction to Ag(R)? of the central character of 7 is equal to v. Let
C>®(G(R),v~ 1) be the the set of functions fo, : G(R) — C smooth,
with compact support modulo Ag(R)? and such that, for every (z,9) €
Ac(R)? x G(R), fu(2g) = v (2) foo(9)-

We say that fo, € C°(G(R),v 1) is stable cuspidal if fo is left and right
Ko-finite and if the function

Hiemp(G(R),v) — C,m+— Tr(1(fx))
vanishes outside I14;s.(G(R)) and is constant on the L-packets of I1;5.(G(R), v).

Let foo € C°(G(R),v~1). For every L-packet IT of Igs.(G(R),v), write

v
Tr((f)) = > Tr(n(fw)) and O = >, ©,. For every cuspidal Levi
mell mell

subgroup M of G, define a function S®nm(., foo) = SP§; (., foo) on M(R) by
the formula :

SPM (7, foo) = (~1) AN A L(M)K(G) Zch 5 0m)Tr(I(fo)),

where the sum is taken over the set of L-packets II in Hdisc(G(R), v) and
M, = Centn(y). Of course, S®n(7, foo) = 0 unless v is semi-simple and
elliptic in M(R). If M is a Levi subgroup of G that is not cuspidal, set
S®§, = 0.

Let f: G(A) — C. Assume that f = f®fs, with f* € C*(G(Ay))
and fo € C(G(R),r~1). For every Levi subgroup M of G, set

ST (f) = 7(M) ) SO, (f31)SEm(, foo),

~
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where the sum is taken over the set of stable conjugacy classes v in M(Q)
that are semi-simple and elliptic in M(R), and fx7 is the constant term of
f°° at M (the constant term depends on the choice of a parabolic subgroup
of G with Levi subgroup M, but its integral orbitals do not). Set

ST (f) = _(n§) ' ST (1),
M
where the sum is taken over the set of G(Q)-conjugacy classes M of Levi
subgroups of G.

Let T¢ be the distribution of Arthur’s invariant trace formula. For every
(H,s,m0) € £(G) (cf 2.4), fix a L-morphism 7 : “H — LG extending 1y,
and let

(G, H) = 7(G)r7(H) " |AH, s,m0)| .
Kottwitz proved the following theorem in [K13] (theorem 5.1) :

Theorem 5.4.1 Let f = f°f, be as above. Assume that f., is stable
cuspidal and that, for every (H,s,no) € £(G), there exists a transfer f& of
f. Then :

()= > G HSTH(M).

(H7S’WO)EE(G)

We calculate k(G) for G a unitary group.

Lemma 5.4.2 Letpy,...,pr,q1,--.,qr € Nsuch that p;+q; > 1forl <i<
r; writen; = p;+qi,n =n1+---+n, and G = G(U(p1,q1) x- - - xU(pr, qr))-
Then

kE(G) =21
if all the n; are even, and
kE(G)=2"""

otherwise.
In particular, k(Rg/qGm) = k(GU(1)) = 1.

Proof. Write I'(00) = Gal(C/R). In 3.1, we defined an elliptic maximal
torus T, of G and an isomorphism T. — G(U(1)"). Tate-Nakayama du-
ality induces an isomorphism between the dual of I m(Hl(R7 T.N Gger) —
HY(R, T.)) and Im(mo(Tr ™) — mo((Te/Z(G)T)))) (cf [K4] 7.9). More-
over, there is an exact sequence

(Xu(Te/Z(G))T™) — mo(Z(G) ™)) — mo(TL™)) — mo((Te/2(G))T )

(cf [K4] 2.3), and (X.(T./Z(G)))F*) = 0 because T, is elliptic, hence
k(G) = [mo(TL ) Jmo(Z(G)" )| 7.
Of course, Tt = TEME/D o Z(G)F(e) = Z(G)Gal(E/Q | We already

calculated these groups in (i) of lemma 2.3.3. This implies the result.
O
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Remark 5.4.3 Note that k&(G)7(G) =21
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Chapter Six

Stabilization of the fixed point formula

To simplify the notations, we suppose in this chapter that the group G is
GU(p,q), but all the results generalize in an obvious way to the groups

G(U(p1,q1) x -~ x U(pr,q)).

6.1 PRELIMINARY SIMPLIFICATIONS

We first rewrite the fixed point formula using proposition 3.4.1.

Notations are as in chapters 1 (especially section 1.7), 2 and 3. Fix p,q € N
such that n := p+¢ > 1, and let G = GU(p, ¢). We may assume, and we
do, that p > q. Let V be an irreducible algebraic representations of G¢ and
¢ : Wg — LG be an elliptic Langlands parameter corresponding to V* as
in proposition 3.4.1. Let K C C be a number field such that V is defined
over K. Set

0= (-1)19se,.

Fix g € G(Ay), K,K' C G(Ay), j € N*, prime numbers p and £ and a place
A of K above £ as in 1.4 and 1.5. We get a cohomological correspondence

;¢ (BIT,) ICKV — T ICKV.

Proposition 6.1.1 Write Go = Mg = Py = G and Ly = {1}. For every
s€{0,...,q}, set

Try = (=1)°ms(nfp,)"'x(Ls) > Y 037,005, (Mug(z,)Orn (Frrd)

7L €Ls(Q) (v057,0)€CG, ;

51/2( (’Yo)T05(¢ 0%, (v270) 7, ©),

where S = {1,2,...,s} and wherem, = 1 if s <n/2, and m,, /5 = | X, 2| = 2
if n is even. Then, if j is big enough :

Tr(@;, RO(MX (G, X)p, (ICKV)g ZTrs.

If g =1 and K = K’, then the above formula is true for every j € N*.
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Proof. Let m € Z be the weight of V as a representation of G (cf 1.3).
For every r € {1,...,q}, set t, = r(r — n). By proposition 1.4.3, there is a
canonical isomorphism

ICKV ~ W2t1+17---72tq+1V
Write
Tr = Tr(a;, RT(M®(G, X)p, (ICKV)E)).
If j is big enough, then, by theorem 1.7.1,

Tr = Trg —|—E:Trp7
P

where the sum is taken over the set of standard parabolic subgroups of G.
Set Try, = Trg and, for every s € {1,...,q},

We want to show that Tr!, = Try. For s = 0, this comes from the fact that,
for every semi-simple vy € G(Q) that is elliptic in G(R),

Tr(9,V) =O(15 ') = @& (7 ', ©).

Let s € {1,...,q}; write S = {1,...,s}. Let 8" C S be such that s € S".
Then, up to Lg/(Q)-conjugacy, the only cuspidal Levi subgroup of Lg: is
Ls = (Rg/9Gm)°. Hence

Trp, = (—1)"As/Arsdmp (n7s)'x(Ls) > DL ()2 Y

yL€Ls(Q) (v0;71,0)€CG, ;

Or7 (F7)05) O, (Mo 2,))0 - (0, (10)TOs (65)01 ) (v790) Ly (v.%0).
where
Ls/(v2v0) = Tr(vzy0, RU(Lie(Ngr), V)5t 4m,res’)-
As v is in G4(Q),
Spg (g, (10) = ps(@,)(70)-

Hence :

Tl“lS = mSX(Ls) Z Z 0(70;'775)07L7((f007p)Ms)07L(]lLs(Zp))

YLELs(Q) (v057,0)€C _ ;

c(70:7,9)

1/2 im Lory— Lo/ 1/2
010,y (10)TOs(654) S (=) mAes/Arsd) (ps) =Y DES (71) V262 ) (1170 Lt (72%0)-

s'cs
S'3s



main April 10, 2009

STABILIZATION OF THE FIXED POINT FORMULA 91

Consider the action of the group &5 on Mg defined in 3.4 (so &, acts
on Ls = (Rg/gGnm)® by permuting the factors, and it acts trivially on Gy).
Then

c(10: 7, 8) 0,7 (£ 7)) Os, (Mg z,))08 g, (10) TOs (657°)

is invariant by the action of &,. Let v € Mg(Q) be semi-simple and elliptic
in Mg(R). Write var = vrv0, with v € Lg(Q) and v € G(Q). Note that,
for every S” C S such that s € §’, dim(Ar,, /ALy) = dim(An, /Ang)
and DI\I\/E' (vym) = Di’i' (vr). If ~vas satisfies the condition of part (ii) of
proposition 3.4.1, then, by this proposition,

im Lgry\— Y/ ) 2
S ST (s /A (np) T DY (V)Y26 2 ) (V) L (7))

Y ESs.yMm S'CS
S’>s

= (1§t D oSy e),

Y EGs. M

because the function ®Fj (., ©) is invariant by the action of &, and nfj, =
2%s! = 25|G4|. Moreover, also by proposition 3.4.1, for every 75, € Lg(R)
and (70;7.6) € Ca,,; — Cq, ;» Phi.((7£70) 7" ©) = 0 (because c(yry0) =
c(70) <0).

To finish the proof of the proposition, it is enough to show that, if j is
big enough, then, for every v, € Lg(Q) and (y0;7,9) € Cg_ ; such that
Oy, (Iug(2,))TO5(657) Oy (f°P)nas) # 0, the element 270 of Mg(Q)
satisfies the condition of part (ii) of proposition 3.4.1.

Let X be the set of (v1,,70) € Mg(Q) = (E*)* x G4(Q) such that there ex-
ists (7,0) € G4 (AF)x G (L) with (70;7,0) € Cg, ; and O, (I (2,))TOs (65 )05 (f¥P)ms) #
0. By remark 1.7.5, the function yar —— O, ((f*?)ms) on Mg(A%) has
compact support modulo conjugacy. So there exist Cy,Cy € R™* such that,
for every (v = (A1,...,As),%) € 3,

|c(v0)laz = C1

sup |)\r|/2v > Cs.

1<r<s !
On the other hand, if (yp = (A1,...,Xs),%) € X, then |A.|g, = 1 for
1 <r < s (because vy, € Lg(Z,)), and there exists § € G4(L) such that
TO(;((bjGS) # 0 and that N§ is G,(Q,)-conjugate to ~o; this implies that

lc(v0)lg, = lc(0)|L =p* > ¢/,

because d = j or 25 . (If TO(;((;S?S) # 0, then § is o-conjugate to an
element &' of G(Op)pa. (@, )G(OL), so |¢(d)|r = |c(8)|r = p.) Finally,
if (vp =(M1,-.-,X),7%) € X, then

1

2 _ - -1 -2 —j—1p,—1
|C<'70)|001§::25|)‘T|oo_|C('70)|Qplc('70)|A? élilésIArIA; <p’C;Cy .
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Moreover, if (v9;7,9) € C,’GSJ7 then ¢(vp) > 0. Hence, if j is such that
p?C1Cy > 1, then all the elements of 3 satisfy the condition of part (i) of
proposition 3.4.1.

Assume that ¢ = 1 and K = K’. Then theorem 1.7.1 is true for every
j € N*. Moreover, by remark 1.7.5, the support of the function v, +——
On,, ((f*P)my) is contained in the union of the conjugates of a finite union
of open compact subgroups of MS(A?), so we may take C; = Cy = 1, and
every j € N* satisfies p? C1Co > 1.

O

6.2 STABILIZATION OF THE ELLIPTIC PART, AFTER KOT-
TWITZ

In [K9], Kottwitz stabilized the elliptic part of the fixed point formula (e,
with the notations used here, the term Trp). We will recall his result in
this section, and, in the next section, apply his method to the terms Try,

se{l,...,q}.
For every (H,s,m9) € £(G), fix a L-morphism 7 : “H — £G extending
7o (in this section, we make the L-groups with Wg).

Theorem 6.2.1 ([K9] 7.2) There is an equality
To= Y (GH)T(H)Y S50, (fi7).
(H,s,m0)€E(G) TH
where the second sum is taken over the set of semi-simple stable conjugacy

classes in H(Q) that are elliptic in H(R).

We have to explain the notation. Let (H,s,19) € £(G). As in 5.4, write
(G, H) = 7(G)T(H) Y A(H, 5,10)| "

The function fl({j) is a function in C*°(H(A)) such that fg) = fﬁo’pfg’)pr)oo,
with fi” € C(H(AR)), fif), € C°(H(Qy)) and fi.00 € C=(H(R)).

The first function fgr*” is simply a transfer of f>7 € C°(G(A})).

Use the notations of the last subsection of 4.2, and set 7, = B, -
Then f}(f)p € C*(H(Qyp)) is equal to the twisted transfer by (¢]G)

For every elliptic Langlands parameter ¢ : Wg — H x Wy, set
ft,DH = d(H>71 Z f‘n’
m€ll(pn)

(with the notations of 3.1).
Let B be the standard Borel subgroup of G¢ (ie the subgroup of upper tri-
angular matrices). It determines as in 3.3 a subset Q. C Q¢ and a bijection
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Pp(p) — Qu, pu — walpn). Take
fH,oo =< uG,s > (71)(1((}) Z det(w*((PH))ftpHa
pHEPH ()
where ug is the cocharacter of G¢ associated to the Shimura datum as in

2.1. Note that, as suggested by the notation, fI({])p is the only part of fI({j)
that depends on j.

Remark 6.2.2 In theorem 7.2 of [K9], the second sum is taken over the
set of semi-simple elliptic stable conjugacy classes that are (G, H)-regular.
But proposition 3.3.4 implies that SO, (fi,c0) = 0 if v € H(R) is not
(G,H)-regular (cf remark 3.3.5).

6.3 STABILIZATION OF THE OTHER TERMS

The stabilization process that we follow here is mainly due to Kottwitz, and

explained (in a more general situation) in [K13]. The differences between

the stabilization of the trace formula (in [K13]) and the stabilization of the

fixed point formula considered here are concentrated at the places p and oco.

In particular, the vanishing of part of the contribution of the linear part of

Levi subgroups is particular to the stabilization of the fixed point formula.
We will use freely the definitions and notations of 2.4.

Theorem 6.3.1 (i) Let r € {1,...,q}. Write M = My, 1. Then :
Tr, = (n§) ™ > 7(G)7(H) ™Y [Aa (M, sarmaro) |~ ST (fif),
(M ,sn,mm,0)€EEG (M)
where, for every (M, spr,mm,0) € Eac(M), (H, s,10) is the correspond-
ing element of £(G).

(ii) Write G* = GU"(n). Let r € N such that r < n/2. Denote by M*
the standard Levi subgroup of G* that corresponds to {1,...,r} (as
in section 2.2). If r > q + 1, then

> (H) " A (M, 537, mar o)~ ST, (£) = 0.
(M,asl\/l vnM,O)ch* (M*)

Corollary 6.3.2 If j is big enough, then
Te(a;, RO(MS(G, )5, IC¥Ve) = Y (G H)STH(f)).
(H,5,10)€E(G)
If g =1 and K = K’, then this formula is true for every j € N*.

Remark 6.3.3 Let Hx = H(G(Ay),K). Define an object W) of the Grothendieck
group of representations of Hx x Gal(Q/F') in a finite dimensional K-vector
space by
Wy = (1) [H (MG, X)5, ICR V).
i>0
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Then, for every j € N*,
Tr(w;, RT(M™(G, X)i, IC*VE)) = Te(®)h, W),

where @, € Gal(Q/F) is a lifting of the geometric Frobenius at o (the fixed
place of F above p) and h = vol(K) 1k gxk.

So the corollary implies that : For every f>* &€ Hx such that f>* =
1°Plg(z,) and for every j big enough (in a way that may depend on f°°),

Te(@Lf~Wa) = Y WGH)ST(ff),
(H,S,T]O)ES(G)
where, for every (H, s,m9) € £(G), g)p and fi o are defined as before, and
frr P is a transfer of foP.

Proof. The corollary is an immediate consequence of theorem 6.2.1, of the

above theorem, of proposition 6.1.1 and of lemma 2.4.2.
O

Proof of the theorem. As j is fixed, we omit the subscripts “(j)” in this
proof.

We prove (i). As M is a proper Levi subgroup of G, |Ag (M, sar,ma1,0)] =
1 for every (M, spr,mm0) € Eg(M) (lemma 2.4.3). Write, with the nota-
tions of the theorem,

T, = > (H)"'STH, (fu).
(M,s01,mm,0) EEG (M)

By the definition of STI{}[, in 5.4,

Trhy = > T(H) "' (M) Y SO, ((FF )M ) SR (7, frtoo)s
(M, sar,mm,0) €EEG (M) v
where the second sum is taken over the set of semi-simple stable conjugacy
classes of M'(Q) that are elliptic in M'(R). By proposition 3.3.4 (and remark
3.3.5), the terms indexed by a stable conjugacy class v’ that is not (M, M’)-
regular all vanish. By lemma 2.4.5,
Ty =Y Y, m(M)7(HE) (k)
M KERG(T/Q)e
where :

® The first sum is taken over the set of semi-simple stable conjugacy classes
~var in M(Q) that are elliptic in M(R).

e [ =M,,,, and Rc(I/Q) is defined above lemma 2.4.5.

® Let vy be as above and k € Rg(I/Q). Let (M, spr,ma1,0,7) be an
endoscopic G-quadruple associated to k by lemma 2.4.5. The subset
Ra(I/Q). of R (I/Q) is the set of  such that (M, sy, mar0) € Ea(M).
If k € Ra(I/Q)e, set

Yy, k) = SO ((fF M) S (7, fraeo),
where (H, s,70) is as before the image of (M, sar,m,0) in E(G).
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Fix vu, £ € Ra(I/Q)e and (M, spr,ma1,0,7) as above. Let (H, s, n0) be
the element of £(G) associated to (M, sar,Ma0), and define s, as in 4.3.
Let vy be the component of v3; in the Hermitian part G, (Q) of M(Q). We
want to calculate ¥ (yar, k). This number is the product of three terms :

(a) Outside of p and oo : by (ii) of lemma 6.3.4,
SO4 (™M) = Y Anpoer (7, 1)e() 05 (fx "),

il
where the sum is taken over the set of semi-simple conjugacy classes
v = (Yo)vtp,o I M(ﬁ’;) such that =, is stably conjugate to v, for

every v, and e(y) = e(Mg, ., )- By [K7] 5.6, this sum is equal to
VF#£P,00

A () Y < alyan )k > e(9)05(Far ™),
2l

where the sum is over the same set as before and «a(yar,7y) is the
invariant denoted by inv(yar,y) in [K7] (the article [K7] is only stating
a conjecture, but this conjecture has been proved since, see 5.3 for
explanations). Moreover, as the linear part of M is isomorphic to
(REg/@Gm)", we may replace a(vyar,7y) with a(yo,vr), where 74 is the
component of v in G, (A%).

(b) Atp: By corollary 4.3.2 (and with the notations of 4.3), SO ((fa,p) ™)

is equal to

< W, 8 >< , 3,]\/[ > Esnr (’-YM) Z < O‘p(’YOa 5h)7 Sp > AM’,SM,;U(’}/’7M)6(6)T06((¢]G)M)7
§

and, if yi € L, (Z,)G.(Qy), to

< s >< g, Sy > 5113{2((@1,)(71\/1) Y < (30, 8n) 531 > AN,y (Vs 100)e(8)TO05 (1, (0,) X 6577)-
§

Both sums are taken over the set of o-conjugacy classes § in M(L)
such that vy € N4, and dy, is the component of ¢ in G,.(L).

(c) At co : By the definitions and proposition 3.3.4, S®IL, (7, fi ) is
equal to

< s > (1) AR R (M) R (H) "0 T AN 00 (7 100 PR (315 ©)

(note that App ~ Apy and Ay ~ Ag because the endoscopic data
(H, s,m0) and (M, sar,mar,0) are elliptic, and that o(I) = 9(M.,) be-
cause [ is an inner form of M/, by [K7] 3.1).

Finally, we find that ¢(yar, k) is equal to
(—1) T ARG e (yar) (M )k (H) ™!

> < aly0;7m,0n), 5 > e(1)e(O)D(I) 04 (far ") TOs (65 )m) PRt (125 ©),
(7,0)



main April 10, 2009

96 CHAPTER 6

where the sum is taken over the set of equivalence classes of (7, d) € M(A})x
M(L) such that (yar;7,0) satisfies conditions (C) of 1.6 and, if (4, d) is the
component of (7,4) in G,(A}) x G,.(L), then a(yo; v, 0n) € R(I/Q)7 is the
invariant associated to (7o; v, 0n) by Kottwitz in [K9] §2 (it is easy to check
that (yo;7n,0n) also satisfies conditions (C) of 1.6). We say that (v1,01)
and (72, 02) are equivalent if 1 and o are M(A?)—conjugate and d; and d
are o-conjugate in M(L). In particular, ¥(vas, k) is the product of a term
depending only on the image of x in v (I/Q) and of k(M')k(H) tes,, (var)-
Moreover, if v € L, (Z,)G,(Qp), then (v, k) is equal to

(_l)dim(AM/Ac)k(M’)k(H)”(Sll)/f(Qp) (vm)

D <90 7m:80)s 5 > e(1)e(8)B() T 05 (far )T Os (1L, (0,) X 65 )25t (Vaf' ©),
(7,6)

where the sum is taken over the same set. Note that, as a(yo;7n,0n) €
Am(I/Q)P, the number < a(Yo;Yn,0x), & > depends only on the image of

Kk in Am(1/Q).
Let X1, be the set of (A1,...,\:) € L.(Q) = (E*)" such that :

o for every i € {1,...,7}, |,\iXZ,|p € p2Z, -
e there exists i € {1,..., 7} such that s-val,(|A;\;|p) is odd.

Remember that we defined in 4.3 a subgroup QM of the group of automor-
phisms of M (it was called QM# in 4.3); if we write M = (Rg/gGm)" x G,
then QM is the group generated by the involutions

(A5, 9) — ((Mse e e, A7 e(9) 7 iy - -5 A, 9),
with 1 <4 < r. The order of the group 2 is 2". On the other hand, there
is an action of &, on M, given by the formula

(U’ (()‘17 ceey )‘r)>g)) — (()‘0*1(1)7 B )‘0*1(7"))79)'
The subset ¥1G,(Q) of M, (Q) is of course stable by &,. By proposition
4.3.1, if yir € M(Q) is such that 1(ya, k) # 0, then either there exists
w € QM (uniquely determined) such that w(vas) € Ly (Z,)G,(Q), or yur €
Y1 G,(Q). By (i) of lemma 6.3.6, if vyy € X1 G,(Q), then, for every sy €
fni(1/Q),

YooY e (a)T(M)EM )T (H) T TR(H) T = 0.
K=RM Y €6 Y

Hence

SO (M) T(H) (yar, ) =0,

™ K
where the first sum is taken over the set of semi-simple stable conjugacy
classes ypr in M(Q) that are elliptic in M(R) and such that there is no w €
OM such that w(yar) € L (Z,)G(Q). As QM is a subgroup of Norg (M)(Q),
the first expression above for (v, k) shows that ¥ (w(va), k) = Y (var, K)
for every w € QM. So we get :
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Tl = (—1)5mAn /A9 S VY2 (40) 37 e(y)e(d)5(1) 04 (F357)TOs(In 0, % 657)
Y™ (7,9)

(1 ©) Y <alyimsdn)man > Y T(M)RM)r(H) T R(H) T,
kM ERM(I/Q) rERG(I/Qe

K=K\ f

where the first sum is taken over the set of semi-simple stable conjugacy
classes vy in M(Q) that are elliptic in M(R) and the second sum is taken
over the set of equivalence classes (7, d) in M(A%) xM(L) such that (yar; 7y, 9)
satisfies conditions (C) of 1.6. By (ii) of lemma 6.3.6, for every ky €

fm(1/Q),
T(G) (M)~ Y T(M)K(M)r(H) " k(H) T =

K— KM

2-" if r<mn/2
27t ifr=n/2

In particular, this sum is independant of kps. So, by the reasoning of [K9)

§4 and by the definition of T([) in 5.4 and lemma 6.3.7 (and the fact that
L, is a torus), we get

MO T = Crmx@) Y Y o e, (000, (357)
7 €L-(Q) ('YO;’Yh,Jh)GC/GT,]'

On (1L, (2,))T 05, (657) @R ((1170) ", ©),

where the integer m,. is as in proposition 6.1.1 (ie equal to 2 if » = n/2 and
to 1 if » < n/2). This (combined with proposition 6.1.1) finishes the proof
of the equality of (i).

We now prove (ii). The proof is very similar to that of (i). Assume that
r > q+ 1, and write

T, = > r(H) ™ A (M s o) ST (7).
(M, s ,mm,0)EEq* (M*)
Then, as in the prooof of (i), we see that
=% Y r(M)rE) k),
v kERGx(1/Q)e

where :

® The first sum is taken over the set of semi-simple stable conjugacy classes
vy in M*(Q) that are elliptic in M*(R).

* I =M} ,and Rg~(I/Q) is defined above lemma 2.4.5.

® The subset Rg+(I/Q). of Rg~(I/Q) is defined as above. If k € Ra~(I/Q).
and (M, sar, mar,0,7) is an endoscopic G*-quadruple associated to k by
lemma 2.4.5, then

Yy k) = SO ((fF )m) S5 (7 fra,c0),
where (H, s, o) is the image of (M, spr,mar,0) in E(G*).
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If there exists a place v # p,00 of Q such that Mg = does not transfer to
Gg, (see lemma 6.3.5), then Tr, = 0 by (ii) of lemma 6.3.5. So we may
assume that Mg = transfers to G@ for every v # p,00. Then, reasoning
exactly as in the proof of (i) (and using (i) of lemma 6.3.5), we see that, for
every vy and every k as above, ¥ (v, k) is the product of a term depending
only on the image of x in - (1/Q) and of k(M/)k(H) 'es,, (yam). Now, to
show that Tr!. = 0, we can use (i) of lemma 6.3.6 as in the proof of (i).

(I

The next two lemmas are results of [K13].

Lemma 6.3.4 (cf [K13] 7.10 and lemma 7.6) Fix a place v of Q. Let M
be a Levi subgroup of Gg,, (M', snr,m0m,0) € Egg, (M) and (H, s,10) be the
image of (M, spr,ma0) in E(Gg, ). As in lemma 2.4.2, we identify M’ with
a Levi subgroup of H. Choose compatible extensions n: 'H — YGg, and

v M — LM of g and N0, and normalize transfer factors as in 5.2.

(i) Let f € C*(G(Qy)). Then, for every v € M(Q,) semi-simple and
G-regular,
SO, (fm) = D5 (N1 *S0, (1)
(Remember that D$;(v) = det(1 — Ad(y), Lie(G)/Lie(M).)

(ii) Let f € C=(G(Qy)), and let fH € C>*(H(Q,)) be a transfer of f.
Then, for every vy € M'(Q,) semi-simple and (M, M')-regular,

SO (FM)mr) = Y AV oy, (v 7)e(M) O, (faa),

where the sum is taken over the set of semi-simple conjugacy classes =y
in M(Q,) that are images of yy.

Proof. (cf [K13]) We show (i). Let v € M(Q,) be semi-simple and G-
regular. By the descent formula ([A2] corollary 8.3),

O, (1) = DS (M/204(f)-

On the other hand, as M, = G, and as the morphism H'(Q,, M) —
H'(Q,, G) is injective, ! the obvious map Ker(H'(Q,,M,) — H'(Q,, M)) —
Ker(H'(Q,, G,) — H!(Q,, G)) is a bijection. In other words, there is a
natural bijection from the set of conjugacy classes in the stable conjugacy
class of v in M(Q,) to the set of conjugacy classes in the stable conjugacy
class of v in G(Q,). This proves the equality of (i).

IThis is explained in [K13] A.1, and is true for any reductive group over a field of
characteristic 0 : Choose a parabolic subgroup P of G with Levi subgroup M. Then the
map H'(Q,, M) — H'(Qy,P) is bijective, and the map H'(Q,,P) — H(Q,, G) is
injective (the second map has a trivial kernel by theorem 4.13(c) of [BT], and it is not
hard to deduce from this that it is injective).
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We show (ii). By lemma 2.4.A of [LS2], it is enough to show the equality
for vy regular in H. We may even assume that all the images of vy in
M(Q,) are regular in G; in that case, all the signs e(M,) in the equality
that we are trying to prove are trivial. Applying (i) to fH, we get

SO, (FH)wr) = D3 (Vi) SO, (F).
By definition of the transfer, this implies that

SO (fM)mr) = D3 ()2 Y~ AR (v, )04, (f),

Y

where the sum is taken over the set of conjugacy classes v in G(Q,) that
are images of yg. Such a conjugacy class has a non-empty intersection with
M(Q,), so the equality of (ii) is a consequence of the descent formula and
of the normalization of the transfer factors.

]

Lemma 6.3.5 (cf [K13] lemma 7.4 and A.2) Write as before G* = GU™(n).
Fix a place v of Q. Let M* be a Levi subgroup of G, . As in [K13] A.2, we
say that M* transfers to Gg, if there exists an inner twisting ¢ : G* — G
such that the restriction of v to A+ is defined over Q,,.

(i) Assume that M* transfers to Gq,, and let ¢ : G* — G be an inner
twisting such that ¢ya,,. is defined over Q,. Then M := ¢(M*) is a
Levi subgroup of Ggq,, and {p- : M* — M is an inner twisting.

(ii) Assume that M* does not transfer to Gg,. Let (M',sar, o) €
Eay, (M), and let (H, s,m9) be the image of (M, sar, M 0) inE(Ggy,) =
E(Gg,). As in lemma 2.4.2, we identify M’ with a Levi subgroup of
H. Let f € C(G(Q,)), and let fH € C>*(H(Q,)) be a transfer of f.
Then, for every vy € M'(Q,) semi-simple and (M, M')-regular,

SOy, (FH)mr) = 0.

Proof. Point (i) follows from the fact that M = Centg,, (Y(Ap-)). We
prove (ii). By lemma 2.4.A of [LS2], we may assume that v is regular in
H; by continuity, we may even assume that vy is G*-regular. Let Ty be
the centralizer of vy in H. It is a maximal torus of My and H, and it
transfers to M* and G* because vy is G*-regular. By (i) of lemma 6.3.4
and the definition of the transfer, to show that SO., ((fH)m/) = 0, it is
enough to show that T g, seen as a maximal torus in G*, does not transfer
to G. Assume that Ty transfers to G. Then there exists an inner twisting
Y1 G* — G such that ¢, is defined over Q,; but Ay« C Th, 80 Pja,,.
is defined over Q,, and this contradicts the fact that M* does not transfer
to GQu'

O
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Lemma 6.3.6 We use the notations of the proof of theorem 6.3.1. Let
Kym € Ry (I/Q)

(i) If yp € £ G (Q), then
S e ()T (MM (H) T R(H) T = 0.

w€ERG(I/Qe ~}, €6y
M

K

27" ifr <n/2

T(GrM)t YT (MM (H) T R(H) ={ 9 iy — /2

rERG(I/Qe
K——Kp\p

Proof. Remember that M = My, 1 ~ (Rp/gGm)" x GU(p —7,q — ).
By remark 5.4.3, 7(H)k(H) = 2"~! for every (H,s,n) € £(G) and, for
every (M/a SManM,O) € 5G(M)ﬂ
2n=2r=lif <2
1 ifr=n/2

In particular, the term 7(M')k(M’)7(H) 'k(H)~! in the two sums of the
lemma does not depend on x; it is equal to 272" if r < n/2, and to 217" =
2721 if » = n/2. Besides, by lemma 2.3.3, 7(G)7(M)~! is equal to 1 if
r<n/2,and to 2 if r = n/2.

We calculate &,, == {k € Ra(I/Q)c|k — rar}. Write I' = Gal(Q/Q),
and choose an embedding M C G as in lemma 2.4.3. Then we get isomor-
phisms Z(G) ~ CX x C* and Z(M) ~ C* x (CX)" x CX x (C*)" such that

~

the embedding Z(G) C Z(M) is (A, p) — (A, (o« -« o), s (p4y ..., 1)) and

~ —

that the action of Gal(E/Q) on Z(G) and Z(M) is given by the following
formulas

F(M') (M) = K(M)r(M) = {

() = (" pnh)

T, Ay A ) s (N ND)) = O™ 2 A AN A (N,
(remember that 7 is the non-trivial element of Gal(£/Q)). This implies
that (Z(M)/Z(CA}))F ~ (C*)" is connected (this is a general fact, cf [K13]
A.5). By the exact sequence of [K4] 2.3, the morphism H'(Q, Z(G)) —
H'(Q, Z(ﬁ)) is injective. By lemma 2.3.3 and [K4] (4.2.2), Ker'(Q, Z(é)) =
Ker'(Q, Z (ﬁ)) = 1; so the following commutative diagram has exact rows :

PV TRt O P

YO

1 —= 8c(I/Q) —= (2(1)/Z(G))F — HY(Q, Z(G))

| | |

1 —— 8&m(I/Q) — (2(I)/Z(M))" — H(Q, Z(M))
Let € Am(I/Q). Then z, seen as an element of (Z(f)/Z(ﬁ))F, has a trivial
image in H'(Q, Z(M)), so it is in the image of Z(I)T — (Z(I)/Z(M))T.
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~ ~

In particular, there exists y € (Z(I)/Z(G))'' that is sent to x. As the
map HI(Q,Z(C‘.)) — Hl(Q,Z(ﬁ) is injective, y has a trivial image in
H!'(Q, Z(@)), soyisin Rg(I/Q). This proves that the map « : Ra (I/Q) —
Am(I/Q) in the diagram above is surjective. We want to determine its ker-
nel. There is an obvious injection Ker(a) — (Z(ﬁ)/Z(@))F By the in-
jectivity of HY(Q, Z(G)) — H(Q, Z(M)), the image of (Z(M)/Z(G))" in
(Z(f)/Z((AS‘r))F is included in R (I/Q); this implies that Ker(«) = (Z(ﬁ)/Z(ar))F
Finally, we get an exact sequence

1 — (Z(M)/2(G))" — Ra(I/Q) — &m(I/Q) — 1
(it is the exact sequence of [K13] (7.2.1)).

If k € R(knm) and v}, € S,yar, write €,(v),) instead of e, (v),) (this
sign depends only on k, cf remark 4.3.3). As I is the centralizer of an
elliptic element of M(Q), it is easy to see from lemma 2.4.3 that R(kps)
is non-empty and that we can choose kg € R(kpr) such that ., (7)) = 1
for every v}, € M(Q). Fix such a ko. For every A C {1,...,r}, let sa
be the image in Z(l\//\I)/Z((A}) of the element (1, (s1,...,5:),1,(8p,...,51)) of
Z(ﬁ), where s; = 1if i € A and s; = —1if i € A. Lemma 2.4.3 implies
that R(kar) = {Kko + sa, A C {1,...,r}}. If r < n/2, then the s4 are
pairwise distinct, so [R(kpr)| = 27. If r = n/2, then s4 = s4 if and only if
{1,...,7} = AU A’ so |R(k)| = 2"~ 1. This finishes the proof of (ii).

We now prove (i). Let vy € £ G, (Q). We want to show that

Z Z Esmr (7?\/1) =0.
KER(KM) Vi €S rYM
Write yar = (M1,---5,M0),9) € (BX)" x G-(Q), and let B the set of i €
{1,...,7} such that s-val,(|A;A;]p) is odd.

It is easy to see from the definition of eg,, that, for every ¢ € &, and
AC{l,...,r}, enprsa(o(yar)) = (=D)IANBI (If » = n/2, this sign is the
same for A and {1,...,7} — A because |B| is even by remark 4.3.3.) So it is
enough to show that, for every o € &,, > (=1)A77B) = 0. But

AcA{1,...,r}
Z (—=1)lAneB) = gn—I1BI Z (=),
AC{1,...,r} ACo(B)

and this is equal to 0 because B is non-empty by the hypothesis on ;.
O

Lemma 6.3.7 Let s € {1,...,q}. Write S ={1,...,s}. Then
X(Ls) = vol(AL, (R)* \ Ls(R))™"

(where Ay, is the maximal split subtorus of Lg, ie G2,).

Proof. By [GKM] 7.10 and the fact that Lg/A 1 is R-anisotropic, we get
X(Ls) = (=1)"®<)7(Lg) vol(A L, (R)* \ Ls(R))~"d(Ls).
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As Lg is a torus, ¢(Lg) = 0 and d(Lgs) = 1. Moreover, by lemma 2.3.3,
T(Ls) =1.
O
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Chapter Seven

Applications

This chapter contains a few applications of corollary 6.3.2. First we show
how corollary 6.3.2 implies a variant of theorem 5.4.1 for the unitary groups
of 2.1. The only reason we do this is to make the other applications in this
chapter logically independant of the unpublished [K13] (this independance
is of course only formal, as the whole stabilization of the fixed point formula
in this book was inspired by [K13]). Then we gave applications to the calcu-
lation of the (Hecke) isotypical components of the intersection cohomology
and to the Ramanujan-Petersson conjecture.

7.1 STABLE TRACE FORMULA

The simplest way to apply corollary 6.3.2 is to use theorem 5.4.1 (ie the
main result of [K13]) to calculate the terms ST (fg). In this section, we
show how to avoid this reference to the unpublished [K13].

Notations are as in chapter 6, but with G any of the unitary groups
defined in 2.1. As in 6.2, fix, for every (H,s,n9) € £(G), a L-morphism
n:H — G extending 7.

Definition 7.1.1 Let foo € C*°(G(R)). Suppose that foo = > ¢, fy, Where

the sum is taken over the set of equivalence classes of ellip(’/c;ic Langlands
parameters ¢ : Wr — G x Wg and the c, are complex numbers that
are almost all 0 (f, is defined in the beginning of 6.2). Then, for every
(H,s,m0) € E(G), set

(fOO)H =< uG,s > thp Z det(w*((PH))ftpH’
¥ PHE®H(p)

where the bijection @ (p) — Qu, pu — w.(py) is as in 6.2 determined
by the standard Borel subgroup of Geg.

Remark 7.1.2 By the trace Paley-Wiener theorem of Clozel and Delorme
([CD], cf the beginning of section 3 of [A6]), if foo € C®(G(R)) is sta-
ble cuspidal, then f., satifies the condition of definition 7.1.1, so (foo)m is
defined.

Definition 7.1.3 Let ay,bq,...,a.,b. € N be such that a; > b; for all 7 and
G = G(U(ay,b1) x --- x U(ay,b,)). Write n; = a; + b;; then the quasi-split
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inner form of G is G(U*(ny) x --+ x U*(n,)). Fix nf,ny,...,nf,n, €N
such that n; = n; +n; for every i € {1,...,7} and that n +--- +n, is
even. Let (H, s,19) be the elliptic endoscopic triple for G associated to these
integers as in proposition 2.3.1. For every i € {1,...,r}, if I; C {1,...,n;},
set n;(L;) = [IN{n; +1,...,n;}|. We define a rational number g 11 by

tam = (G, H)|mo (X)) Z Z (=1)ma (P tetnn(ln)

where X is the symmetric space appearing in the Shimura data of section
2.1 for G.

Proposition 7.1.4 Let f = f>f. be as in theorem 5.4.1. Assume that
foo 1s stable cuspidal and that, for every (H,s,n9) € £(G), there exists a
transfer (f>°)H of f>. Then :

79 = > euST((f*)*(fo)n).

(H,s,m0)€E

Remark 7.1.5 It is not very hard to see that proposition 7.1.4 is a conse-
quence of theorem 5.4.1. The goal here is to prove it directly.

To prove this proposition, we first need an extension of corollary 6.3.2
(proposition 7.1.7 below).
Fix a prime number p where G is unramified. Remember that we defined,

for every m € N*, a function ¢$ on G(L), where L is an unramified exten-
sion of Qy; if (H,s,no) € E(G), write flgm; for the function in C°(H(Q),))
obtained by twisted transfer from ¢S as in 4.3. In the proof of propo-
sition 4.3.1, we have calculated the Satake transform S of fgfp),

! g’;}, where x,, is the quasi-character of H(Q,) associated

or more
precisely of X,

to Mg, ° H x Wg, — G x Wy, as in the last two subsections of 4.2.

Notice that the expression for the Satake transform S makes sense for any
m € Z.

Definition 7.1.6 If m € Z, we define f{") € C°(H(Q,)) in the following

way 1 X! I({”Q € H(H(Q,),H(Z,)), and its Satake transform is given by the
polynomial S in the proof of proposition 4.3.1 (where of course the integer
a in the definition of S is replaced by m).

Fix fP € C°(G(A%)) and an irreducible algebraic representation V' of

Gg. For every (H,s,m0) € £(G) and m € Z, let félm) = ﬁoofl({TtLszH,oo €
C*°(H(A)), where fi;™ and fu, o are as in 6.2.



main April 10, 2009

APPLICATIONS 105

Proposition 7.1.7 Assume that p is inert in E. * Then, with the notations
of 6.3, for every m € Z,

Te(®U W) = Y. G H)STT (),
(H757770)€5(G)
where [ = f*Plgz,)-

Notice that, for m >> 0, this is simply corollary 6.3.2 (cf the remark
following this corollary).

Proof. Fix an (arbitrary) embedding ¢ : K C C and write W = ¢, (W)).
Then W is a virtual complex representation of Hyx x Gal(Q/F). As the
actions of ®, and f* on W commute, there exist a finite set Iy and families
of complex numbers (¢;)icz, and («;)ier, such that, for every m € Z,

Te(@ >, W) = Z ciag.
i€l
We now want to find a similar expression for the right hand side of the
equality of the proposition. Remember from the definitions in 5.4 that

STH(HF) = > (05,7 (Mu) Y SO, (5P M) SO (A )M ) SPRE,, (Vi1 Fro0),
Mpy VH
where the first sum is taken over the set of conjugacy classes of cuspidal
Levi subgroups My of H and the second sum over the set of semi-simple
stable conjugacy classes yg € My (Q) that are elliptic in Mg (R). Note that
the first sum is finite. In the second sum, all but finitely many terms are
zero, but the set of vy such that the term associated to vy is non-zero may
depend on m.
Fix (H,s,n0) € £(G) and a cuspidal Levi subgroup My of H. By
the Howe conjecture, proved by Clozel in [Cl1], the space of linear forms
HMpu(Qp),Mpy(Z,)) — C generated by the elements h — SO, (h),
for yg4 € Mpu(Qp) semi-simple elliptic, is finite-dimensional. As p is in-
ert in E, any semi-simple vy € My (Q) that is elliptic in Mg (R) is also
elliptic in Mg (Qp). 2 So we find that the space D of linear forms on
HMg(Qp), Mg (Z,)) generated by the h — SO, (h), for vy € My (Q)
semi-simple and elliptic in Mg (R), is finite-dimensional.
On the other hand, by Kazhdan’s density theorem ([Ka] theorem 0), ev-
ery distribution h — SO, (h) on H(Mg(Qp), My (Z,)) is a finite linear
combination of distributions of the type h — Tr(w(h)), for 7 a smooth irre-
ducible representation of Mg (Z,) (that we may assume to be unramified).
So the space D is generated by a finite number of distributions of that type.
Using the form of the Satake transform of X;,,l I(FI?ZZ’ it is easy to see
that this implies that there exist a finite set Ips, m and a family of com-

IThis is not really necessary but makes the proof slightly simpler.

2Such a g is elliptic in Mg (R) (resp. Mg (Qp)) if and only if it is contained in
no Levi subgroup of My (R) (resp. My (Qp)). But the Levi subgroups of My (R) and
My (Qp) are all defined over Q.
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plex numbers (Bury, 1, )iely, » such that, for every vy € Mpy(Q) semi-
simple and elliptic in My (R), there exists a family of complex numbers

(dMH7H,i(’YH))iEIMH1H with

SO (S "Mt ) SO (A M ) SORY,, (it frroe) =D Aty 11 (Vi) Bty 11

1€lMy =

for every m € Z.

Let mg € Z. We want to prove the equality of the proposition for m = my.
Let N € N such that the equality of the proposition is true for m > N (such
a N exists by corollary 6.3.2). We may assume that mo < N. Let

M=+ > > |luy.nl
(H,s,m0)€E(G) My

where the second sum is taken over a set of conjugacy classes of cuspidal
Levi subgroups of H. For every H and My as before, let I'pr,, g be the
set of semi-simple stable conjugacy classes vy € My (Q) that are elliptic in
My (R) and such that there exists m € Z with mg <m < N + M and

SO0 (£ )M )SOny (F M ) SO, (Vi1 fr1,00) # 0

This set is finite. So, by the above calculations, there exist families of com-
plex numbers (dMH,H,i)ieIMH,Ha for all My and H as before, such that, for
every m € Z with mg<m< N+ M -1,

Z UG, H)STH () = Z Z Z A, 1,0y H
(H,s,m0)€E(G) (H,s,m0)€E(G) My i€y 1

All the sums above are finite. So we can reformulate this as : there exist
a finite set J (with |J| = > > |Inm,,m]) and families of complex numbers
H

7§z

(dj)jes and (B;);jes such that, if mg < m < N + M — 1, then
o UG H)STI(HY) =Y iy
(H’SvnO)ES(G) jeJ
So the result that we want to prove is that the equality

Z Ci()é;n = Z djﬁ;n

i€lp JjeJ

IN

holds for m = mgy. But we know that this equality holds if IV m <
N+ M —1, and M = |Iy| + |J], so this equality holds for all m € Z.

O

Proof of proposition 7.1.4. We may assume that > is a product ) f,,
P
with f, = lg(z,) for almost all p. Let K = [1K, be a neat open compact

P
subgroup of G(A ) such that f € H(G(Ay),K). Fix a prime number p that is
inert in £ and such that G is unramified at p, f, = lg(z,) and K, = G(Z,).
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Define a virtual representation W of H(G(Ay),K) x Gal(Q/F) as in the
proof of proposition 7.1.7. Then, by formula (3.5) and theorem 6.1 of [A6],
and by theorem 7.14.B and paragraph (7.19) of [GKM] : 3

Te(f>, W) = |mo(X)|TC(f).

On the other hand, using proposition 7.1.7 at the place p and for m = 0, we
find

(W)= Y UG H)STHE(RY).
(H,s,m0)€E(G)
But it is obvious from the definitions of félmp) and (g g that

0 LG H
St = o o) o, b, )

and we know that x,, I (z,) is a transfer of f, = lg(z,) by the fundamental
lemma (cf 5.3). This finishes the proof.
O

7.2 ISOTYPICAL COMPONENTS OF THE INTERSECTION
COHOMOLOGY

Notations are still as in 7.1, and we assume that G = GU(p, q), with n =
p+q (for the other unitary groups of 2.1, everything would work the same way
, but with more complicated notations). In particular, V is an irreducible
algebraic representations of G defined over a number field K, A is a place
of K over ¢ and ¢ : Wr — G x Wg is an elliptic Langlands parameter
corresponding to the contragredient V* of V' (as in proposition 3.4.1).

Let Hx = H(G(Af),K). Define, as in 6.3, an object W of the Grothendieck
group of representations of H x Gal(Q/F) in a finite dimensional K -vector
space by

Wy =Y (1) [H(M¥(G, X)5, ICKVg)).
i>0
Let ¢+ : Ky — C be an embedding. Then there is an isotypical decomposi-
tion of ¢.(W)) as a Hgx-module :

(W) = (W) (mp) @ 7f,
my
where the sum is taken over the set of isomorphism classes of irreducible
admissible representations 7y of G(Ay) such that 77? # 0 and where the

31n the articles [A6] and [GKM], the authors consider only connected symmetric spaces,
i.e., they use mo(G(R)) \ X instead of X (in the cases considered here, G(R) acts transi-
tively on X, so mo(G(R)) \ X is connected). When we pass from mo(G(R)) \ X to X, the
trace of Hecke operators is multiplied by |m(X)].
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t«(Wy)(my) are virtual representations of Gal(Q/F) in finite dimensional C-
vector spaces. As there is only a finite number of 7; such that ¢, (W) (7s) #
0, we may assume, after replacing K by a finite extension, that there exist
virtual representations W (ms) of Gal(Q/F) in finite dimensional K \-vector
spaces such that ¢, (Wi(7¢)) = . (W) (7¢). So we get

Wy = ZW)\(Wf) ® Ty

f

Notation 7.2.1 Let H be a connected reductive group over Q and £ be a
quasi-character of Ay (R)°. We write II(H(A), ¢) for the set of isomorphism
classes of irreducible admissible representations of H(A) on which Az (R)°
acts by £. For every m € II(H(A), £), let mg;sc(m) be the multiplicity of 7 in
the discrete part of L2(H(Q) \ H(A), ¢) (cf [A6], §2).

Let £ be the quasi-character by which the group Ag(R)" acts on the
contragredient of V.

For every (H,s,m9) € £(G), fix a L-morphism 7 : “H — LG extending
no as in proposition 2.3.2. Let £°(G) be the set of (H,s,n0) € £(G) such
that H is not an inner form of G. If ny,...,n, € N* and H = G(U*(n;) x

- x U*(n,)), we define in the same way a subset £°(H) of £(H) and fix,
for every (H', s,m0) € £(H), a L-morphism 7 : “H' — FH extending 7, as
in proposition 2.3.2.

Let Fg be the set of sequence (e, ...,e,) of variable length r € N*, with
e1 = (Hy,s1,m) € £& and, for every i € {2,...,7}, e; = (Hy,55,m:) € &y,

Let e = (e1,...,e.) € Fag. Write e; = (H;,s;,m;) and Hy = G. Set
€(§)2T7 Hg:Hm 77227710"'077TILH9—>LG,
t(e) = LG HitH H, - - - UH,_ H,

and
L/(Q) =G Hi)m, B, - tH,_, H,

For every finite set S of prime numbers, write Ag = HS Qp and Af
pe
"'Qp; if 7 = @', is an irreducible admissible representations of G(A
D F= £
pES

write 75 = & , and 75 = Q' 7, if G is unramified at every p € S, write
peS pgS
S = [1 G(Z,). If /9 € CX(G(AF)) and fs € C°(G(Ag)), define

PES
functions (f9)¢ € C°(H(A )

)
(fe=(.
(fs)== (.-

Define a function f% on H

[ =

and ( )g € COO(HQ(AS)) by
((fSyH e
A((fs)H)Fz L H

(R) by

e ((foo)Hl)HQ i )Hrv

| m

—~
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where fo = (—1)2(%)f, (this function is defined in 6.2). The function f%
is stable cuspidal by definition.
Let k € {1,...,7}. Consider the morphism

i Wr AN LHk,R Jeo, L Hy_ 1,R o (AHk 1)R’
where j is the obvious inclusion, 7, is induced by 7, and p is the dual
of the inclusion Ap, , — Hi_;. The morphism ¢ is the Langlands
parameter of a quasi-character on Ap, ,(R), and we write xj for the re-
striction of this quasi-character to Ag, ,(R)°. As Ay, =---= Ag, = Ag
(because (Hy, sk, nk0) is an elliptic endoscopic datum for Hy_; for every
k€ {1,...,r}), we may define a quasi-character & on Ap, (R)? by the for-

mula

Ee=Ctaxi'- o

This quasi-character satisfies the following property : if o, : Wg — FH, g
is a Langlands parameter corresponding to a L-packet of representations of
H,(R) with central character & on A, (R)?, then 1, 0 oy, : Wg — LGg
corresponds to a L-packet of representations of G(R) with central charac-
ter g on Ag(R)?. (This is the construction of [K13] 5.5). Write II, =
II(He(A),&). Let Re(V) be the set of mo € II(H(R)) such that there
exists an elliptic Langlands parameter Ye : Wp — LHER satisfying the
following properties : 7. o @ is G-conjugate to @, and Tr(moo(fy,)) # 0
(remember that f,, is defined in 6.2). Then R.(V') is finite.

If p is a prime number unramified in E, let 7., = and write

es\ﬁgx Wao,
Ne,p,simple - Hg — LG for the L-morphism extending N1,0 ©...7Mr0 and
equal to the composition of the analogs of the morphism 7s;y,pe of the last
two subsections of 4.2. Write 1., = e p, simple, Where c: Wo, — Z(ﬁ ) is
a l-cocycle. Let x¢,p = Xy, be the quasi-character of H.(Q),) corresponding

to the class of ¢ in H* (Wa,,Z (ﬁe))

Suppose that (Hj, 51,771 0) is the elliptic endoscopic triple for G defined
by a pair (nT,n~) € N? as in proposition 2.3.1 (so n = n* +n~ and n~ is
even). Write

He = G(U"(nf) x - x U'(nf) x U'(ny) x -~ x U*(ny)),

where the identification is chosen such that 730 - -on, sends U* (nf) X e X
)-

U*(n) (resp. U*(ny) x -+ x U*(ny)) in U*(nt) (resp U*( -)
prf,...,pj‘,pf,...,ps_ € N are such that 1 §pi+ < nl and 1 <p; <n;

for every i € {1,...,r} and j € {1,..., s}, write

----- P PT by (“pf"'"“pi’“pf""’“p;) Gmp — Hep

(cf 2.1.2 for the definition of u,), and

(o) = (~1T
Let M. be the set of cocharacters ot oot oD ps with p =pf +---+pf +
py + -+ p,. For every pn € M, and every finite place p of F' where H, is
unramified, we get a representation r_,, of “He ,_, defined in 4.1.1.
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For every irreducible admissible representations 7. y of H(Af), let

ce(me) = Z Maisc(Te,f @ Te,00) Tr(Te 00 (f5))

Te,00 EII(He (R)),
e, f®Te, 00 €lle
(as Tr(me,00(f)) = 0 unless T 0o € Re(V), this sum has only a finite
number of non-zero terms).
Write Ilg = II(G(A), {g). For every irreducible admissible representation
my of G(Af), let

ca(my) = Z Maise(Ty @ Too) Tr(moo (foo))

oo ET(G(R)),

Too®7 pENG
(this sum has only a finite number of non-zero terms because there are only
finitely many 7o in II(G(R)) such that Tr(me(fso)) # 0). Remember that
there is a cocharacter ug : Gy, g — GE associated to the Shimura datum
(cf 2.1); this cocharacter gives a representation r_, . of LGFP, for every
finite place p of F' where G is unramified.

Let 74 = @Q'm, be an irreducible admissible representation of G(Ay) such
P
that w;{ # 0, and let e € Fg. Write R.(my) for the set of equivalence

classes of irreducible admissible representations 7, j = ®'m., of Hy(Af)
P

such that, for almost every prime number p where 7y and 7. s are unramified,
the morphism 7, : “H, — G sends a Langlands parameter of 7., to a
Langlands parameter of .

Let p be a prime number. Remember that we fixed embeddings F C Q C
@p, that determine a place p of F' above p and a morphism Gal(@p /Fo) —
Gal(Q/F). Let &, € Gal(Q,/F,) be a lift of the geometric Frobenius,
and use the same notation for its image in Gal(Q/F). If H is a reductive
unramified group over Q, and , is an unramified representation of H(Q,),
denote by ¢, : Wg, — LHQP a Langlands parameter of m,.

Theorem 7.2.2 Let 7y be an irreducible admissible representation of G(Ay)
such that W;{ # 0. Then there exists a function f> € C°(G(Ay)) such that,
for almost every prime number p and for every m € Z,

Te(®(, Wa(ms)) = (Np)" e (ny) dim(mf) Tr(r_pg © o, (97))

FNE)™E Y (DM ue) Y eelme ) Tr(me((£7)9)

eeFa Te,f ERe(Ty)

Z (1 - (_1)8(#)[/(6))) TI‘(’/‘_H © @T@,p@X&,p ((I)gl))’

neEMe L(Q

where the second sum in the right hand side is taken only over those . ¢ such
that Tep @ Xe,p is unramified, d = dim(M¥ (G, X)) and Np = #(Og, /).
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Remark 7.2.3 The lack of control over the set of “good” prime numbers
in the theorem above comes from the fact that we do not have a strong
multiplicity one theorem for G (and not from a lack of information about
the integral models of Shimura varieties). If 7y extends to an automorphic
representation of G(A) whose base change to G(Ag) is cuspidal (cf section
8.5), then it is possible to do better by using corollary 8.5.3.

Proof. Tt is enough to prove the equality of the theorem for m big enough
(where the meaning of “big enough” can depend on p).

Let R’ be the set of isomorphism classes of irreducible admissible repre-
sentations 7' of G(Ay) satisfying the following properties :

o mp Ay

o (7))K #0;

® Wi(r}) # 0 or ca(nm}) # 0.

Then R’ is finite, so there exists h € Hk = H(G(Ay), K) such that Tr(ms(h)) =
Tr(my(1x)) and Tr(7%(h)) = 0 for every s € R'.

Let T be a finite set of prime numbers such that all the representations in
R’ are unramified outside of T', that G is unramified at every p ¢ T, that K =
KTKT with K¢ C G(AT) and that h = hT]lKT with hp € H(G(AT),KT)
Then, for every function g7 in H(G(A?), KT), Tr(rp(hrg?)) = Tr(rr(1k,.)) Tr(r? (g7))
and Tr(n)(hrg")) = 0 if 7 € R

For every e € Fg, let R, be the set of isomorphism classes of irre-
ducible admissible representations p; of He(Ay) such that ps & Re(my),
Tr(ps(he)) # 0 and c.(pf) # 0. As Fg is finite anf R/, is finite for every
e € Fg, there exists g7 € H(G(A?), KT) such that :

* Tr(r"(g")) = 1;
* for every ¢ € Fg and py € R, if k7 is the function on Hg(A}) ob-

tained from g? by the base change morphism associated to 7., then
Te(p” (k7)) = 0.

Let S O T be a finite set of prime numbers such that g7 = gs_7lks, with
gs—r a function on G(Ag_r). Set

£ =hrg".

Let p € S be a prime number big enough for corollary 6.3.2 to be true. Then
[ = f*Plgz,), and there are functions (f°?)% and (f°°)¢ defined as
above, for every e € Fg.

Let m € Z. Consider the following functions :

Fim = poorfim £ € C2(G(AR))C(G(Q,))C™ (G(R))
and

() (prom) LM £y e O (H(AD))C (H(Q,))C™(H(R))
for every (H,s,m9) € £(G), where :
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. f(m) e H(G (Qp) G(Z,)) is the function obtained by base change from
the function ¢ of theorem 1.6.1;

(m) € C*(H(Qp)) is the function obtained by twisted transfer from
¢G
Then, by corollary 6.3.2 and the choice of f, for m big enough,

@[ WAry) = TH @ f W) = YD (G H)ST ()
(H,s,m0)€E(G)

By proposition 7.1.4 and the fact that félm) is simply a transfer of f(™) if
H = G* (the quasi-split inner form of G), we get :

Te(®7 £, Wi(rp)) = TE(F)+ 3 (~1)“Du(e)THe(fme)+ 3 (~1)4e)-

e€EFa e€Fa

where, for every e = ((Hy,s1,m),...,(Hy,s0,m)) € Fa, we wrote H, =

H,,
Fomre = (porye(fimers
and
FEm = (M) oo
with

JE = G ()™
By the calculation of [A6] p 267-268 :
(m) Z mdwc (f(m)»

p€lla

THe f(m)7 Z mdzsc (f(m)£))

pelle

TH f(m) Z mdzsc (f(m)))

pElle
Let € = ((H1,81’771)7 ceey (Hr,srﬂ?r)) € fG and p = poo,p ® Pp ® Poo =
Pf ® po € Ile. Then
Te(p(f")€)) = Te(p™P (7)) Tr(pp(£{™)%) Tr(pos (f%))-

As Xe,p(fp ) H(H,(Q,),H,(Z,)), the trace above is 0 unless p, @ Xep
is unramified. So

Te(p(£1"€)) = Tr(ps (£)%) Tre(pp (F™)9) Tr(poo (££)),
because both sides are zero if unless p, ® x.,p is unramified and, if p, ® x.,p is
unramified, then Tr(pp(XeplH,(z,))) = dim((pp ® Xep)Hr%»)) =1 (and, by

the fundamental lemma, we may assume that ( fém) )¢ is equal to xe plH, (z,))-

L (e)THe(fm),
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Assume that p, ® X, is unramified, and let ¢, oy, , : Wo, — “H,.q, be
a Langlands parameter of p, ® X¢p,. Then, by proposition 4.2.1 and the
calculation of the transfer of a function in the spherical Hecke algebra in 4.2,
we get
Tr(pp((f5™)%)) = (N)™ 2 Y~ Tr(r—p 0 @p,ene, (PF))-
HEM,
Similarly, using the calculation of the twisted transfer in 4.2, we see that
Tr(p(f™)) is equal to 0 if p, ® x..p is ramified, and to
Te(ps((f)%)) Tr(poo (f£)) (N Q)™ D7 (1) W Tr(r_y 0 0y, x., (PF))
HEMe
if pp ® Xe,p is unramified.
Moreover, by the choice of f>, if py & R.(mf), then :
ce(ps) Tr(pp((F)%)) = 0.
A similar (but simpler) calculation gives, for every p = py ® pos € Il
: cG(pf)Tr(pf(fo"’pf,(,m))) = 0 if p is ramified at p or if py % 7f, and, if
pr ~m¢ (so p is unramified at p), then
Te(p(£0™)) = dim () Tr(poc (foo) (N Q) ™2 Te(r g, © o, (D12)).
This calculations imply the equality of the theorem.
O

Remark 7.2.4 Take any > in C°(G(Ay)). Then the calculations in the
proof of the theorem show that for every prime number p unramified in E
and such that f> = f*Plg(z,), and for every m € Z :

S UG H)STT(HY) = (No)™ 23 ca(mp) Te(ms(£)) Tr(r—ug © @, (®F))

(H,s.m0)€€(G) -
+(N[Q)md/2 Z (_1)£(§)L(§> Z ce(me,f) Tr(me,r ((f7)%))
ecFa Te.f
> (= )L E) Tl o, (O2)

NEMQ

where the first (resp. third) sum on the right hand side is taken over the set
of isomomorphism classes of irreducible admissible respresentations 7 (resp.
Te,5) of G(Ay) (resp. He(Ay)) such that 7, is unramified (resp. Te,p ® Xep
is unramified), and the function fl(fg for m < 0 is defined in definition 7.1.6.

This implies that corollary 6.3.2 is true for every j € Z, and not just
for j big enough (because that corollary can be rewritten as an equality

Yool = Y dif), where (¢;)ier, (06)ier, (di)rex and (Bx)rex are finite
i€l kEK

families of complex numbers). This is the statement of proposition 7.1.7
(if p is inert), but note that proposition 7.1.7 was used in the proof of this

remark.
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For every i € Z, consider the representation H'(M¥(G, X)T@, IC’KV@) of

Hk x Gal(Q/F). After making K bigger, we may assume that all the Hg-
isotypical components of this representations are defined over K. Write W}\
for the semi-simplifications of this representations, and let

. . K
WY = P Wi(ry) @7y
my
be their isotypical decompositions as Hk-modules (so, as before, the sum is

taken over the set of isomorphism classes of irreducible admissible represen-
tations 7y of G(Ay) such that 7 # 0). Of course, Wy = 3 (—=1)*[Wy] and
i€z
Wi(my) = > (=1)"[W3(my)] for every my.
i€z

Then, just as in Kottwitz’s article [K10] (see also 5.2 of Clozel’s article
[C15]), we get the following characterization of the representations 7 that
appear in W, :

Remark 7.2.5 Let 7y be an irreducible admissible representation of G(Ay)
such that 71'? # 0. Then the following conditions are equivalent :

(1) Walmy) # 0.
(2) There exists i € Z such that Wi(r¢) # 0.

(3) There exists mo, € [I(G(R)) and i € Z such that mgs.(mf ® mo0) # 0
and H' (g, K'.; 1o © V) £ 0.

The notations used in condition (3) are those of the proof of lemma 7.3.5.
Moreover, all this conditions are implied by :

(4) cc(my) #0.

Assume that, for every e € Fg and for every w5 € Re(my), ce(me,f) = 0.
Then (1) implies (4).

Proof. 1t is obvious that (1) implies (2).
By lemma 3.2 of [K10], there exists a positive integer N such that, for
every To, € II(G(R)),

Tr(Too(foo)) = N1 Z ) dim(H (g, K/, Too @ V).
1E€EZL
This shows in particular that (4) implies (3).
By Matsushima’s formula (generalized by Borel and Casselman) and Zucker’s
conjecture (proved by Looijenga, Saper-Stern, Looijenga-Rapoport), for ev-
ery i € Z, there is an isomorphism of C-vector spaces :

UWi(mp)) = @ Maisc(Tf @ Too) H'(g, K/, moo ® V)
Too €II(G(R))
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(remember that ¢ : K — C is an embedding that was fixed at the be-
gining of this section). This is explained in the proof of lemma 7.3.5. The
equivalence of (2) and (3) follows from this formula.

We show that (2) implies (1). This is done just as in section 6 of [K10].
Let m be the weight of V in the sense of 1.3. Then the local system FXV
defined by V is pure of weight —m (cf 1.3), so the intersection complexe
ICRV is also pure of weight —m. Hence, for every i € Z, Wi(rs) is pure
of weight —m + i as a representation of Gal(Q/F) (ie it is unramified and
pure of weight —m + 4 at almost all places of F'). In particular, Wi (ms) and
W)j\ (m¢) cannot have isomorphic irreducible subquotients if ¢ # j, so there
are no cancellations in the sum W (7)) = > (—1)*[W3(7¢)]. This show that

i€z
(2) implies (1).

We now prove the last statement. By the assumption on 7y and theorem

7.2.2, for almost every prime number p and every m € Z,

Te(®, W (7)) = (Vo)™ 2eq () dim(xf) Te(r_ g © or, (2])):

Fix p big enough for this equality to be true. If Wix(my) # 0, then there
exists m € Z such that Tr(®}, Wi(7s)) # 0, so ca(my) # 0.
U

7.3 APPLICATION TO THE RAMANUJAN-PETERSSON CON-
JECTURE

We keep the notations of 7.2, but we take here G = G(U(p1,q1) X -+ %
U(pr,q-)), with p1,q1,...,pr,q € N such that, for every i € {1,...,r},
n; := p;+q; > 1. Assume that, forevery i € {1,...,r},if n; > 2, then ¢; > 1.
Write n = ny+---+n, and d = dim M¥(G, X) (sod = p1q1 +- - - +prq,).Let
T be the diagonal torus of G.

Theorem 7.3.1 Let w¢ be an irreducible admissible representation of G(Ay)

such that there exists an irreducible representation T, of G(R) with Tr(meo (foo)) #
0 and mg;sc(Ty @7 ) # 0. For every prime number p where 7y is unramified,

let

(P, (7, 20, (G 28)))) € TO@ /)

1o frn,
be the Langlands parameter of m,. Assume that V is pure of weight 0 in the
sense of 1.3 (ie that G,,, seen as a subgroup of the center of G, acts trivially
on V). Then, for every p where G is unramified,

:~--:|z£f’1)...z,§p) | =1.

1n7‘

|27 = |47 ... 2% |

Moreover :

(i) Assume that the highest weight of V' is regular. Then, for p big enough,

for everyi € {1,...,7} and j € {1,...,n;}, |zl(1;)| =1.
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(ii) Assume that r = 1, that Wx(ms) # 0 and that, for every e € Fg and
for every me f € Re(f), ce(me,f) = 0. Then, for p big enough :

e if p splits in E, then, for every j € {1,...,n1}, logp|z§?| €
1 Z,
ged(p1,91)

oif p is inert in E, then, for every j € {1,...,n1}, logp|z§13| €

1
gcd(2,p1,q1) L.

Proof. Let K be a neat open compact subgroup of G(A[) such that 77;< #*
{0}.

The center Z of G is isomorphic in an obvious way to G(U(1)"). As 7y is
irreducible, Z(Ay) acts on the space of 7y by a character x : Z(Ay) — C*,
that is unramified wherever 7y is and trivial on KN Z(Af). The character
X is also trivial on Z(Q), because there exists a representation 7, of G(R)
such that mo ® 7y is a direct factor of L?(G(Q) \ G(A), 1) (where 1 is the
trivial character of Ag(R)?, ie the character by which Ag(R)? acts on V).
Hence x is trivial on Z(Q)(KN Z(Ay)); as Z(Q)(KN Z(Ay)) is a subgroup
of finite index of Z(Ay), x is of finite order. (As Z(R)/Ag(R)? is compact,
this implies in particular that the central character of o ® 7y is unitary.)

Use 2.3 to identify Z and C* x (C*)". For every p where 7y is unramified,
let (y®), (y§”), e ,yﬁp))) € ZGal@/Q) be the Langlands parameter of Xp-
As x is of finite order, |y®)| = |y§p)| == |y£p)| =1.

The morphism G = C* x GL,, (C) x -+ x GL, (C) — Z = C* x (CX)",
(z,(91,---,9r)) — (2z,det(g1),...,det(g,)) is dual to the inclusion Z C G.
So, for every p where 7y is unramified, 2(») = y® and zi(’pl) e ZZ(I;Z = yP)
for every i € {1,...,r}. This proves the first statement of the theorem.

We show (i). Assume that the highest weight of V' is regular. Let R, be
the set of T, € II(G(R)) such that 7o @7 € Ilg and Tr (7T (foo)) # 0. By
the proof of lemma 6.2 of [A6], all the representations 7o, € II(G(R)) such
that Tr(7moo(foo)) # O are in the discrete series. So R is contained in the
discrete series L-packet associated to the contragredient of V. In particular,
the function 7o, — Tr(7eo(foo)) is constant on Re, S0

CG(TFf) = Z mdisc(ﬂ-oo & 7Tf) ’I‘r(ﬂ'oo(foo)) 7é 0.

Moo ERo

We prove the result by induction on the set of (n,...,n,) € (N*)" such that
ny+---+n, =n, with the ordering : (nf,...,nl,) < (n1,...,n,) if and only
if ' >

Assume first that, for every e € Fg and for every w5 € I (7f), ce(me,f) =
0. Let p be a prime number big enough for theorem 7.2.2 to be true. Then,
for every m € Z :

(@], Wa(p)) = (N9)™ e () dim(n§) Te(r_ . © or, (B1)).
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Let 1,...,zs € Cbe the eigenvalues of &, acting on Wx(7¢), and ay,...,as €
Z be their multiplicities. For every m € Z,

( W)\ﬂ'f Zam

By lemma 7.3.5, the cohomology of ICKV is concentrated in degree d. As
ICKV is pure of weight 0 (because V is pure of weight 0), log, |z1] =
. log,, || = n(p)d/2, where n(p) = log,(Np).
On the other hand, by lemma 7.3.2, for every m € Z :

Tr(r—uc®<p7rp (q)?;m)) = (Z(p))_zm Z s Z H H —2m[Fg Qp]

Ji1c{1,..., ni} JrC{1,..., nr} i=1j€J;
[J11=P1 [Jr|=pr

As |2(P)| = 1, this implies that, for all J; € {1,...,n1},...,J. C {1,...,n,}
such that [J1| = p1,...,|Jr| = Dr,

Z Zlogp|z(p)| =0.

i=1j€J;

By the first statement of the theorem and lemma 7.3.3, we get log,, |zz(1;)| =0,

ie |zl(1;)| =1, foreveryie {1,...,r} and j € {1,...,n;}.
Assume now that there exists e € Fg and 7y € Ilc(my) such that
Ce(Te,r) # 0. Write (with the notations of 7.2)

H, = G(U*(n}) x --- x U*(nl)).
Of course, (n},...,nl,) < (ni,...,n.).
Let Ty be the diagonal torus of He. If p is a prime number where 7, ¢ is
unramified, let
(G TS RN

ny r/ 1

7t£]/3) , ))) c TGal(Qp/Qp)

be the Langlands parameter of 7, . By the definition of R.(7¢) (and the
fact that, in proposition 2.3.2, we chose a unitary character u), up to a

permutation of the t(-p -)7 there is an equality

(Z(p)’u(P) (p) (p) (p) (P)Z(p) u® 20 ) ): (t(p),tgz”i,...,tgp%,l ) t(p)

11’Z 11> ulnl 1ngre rl r,1o o Yrng

(p)

for almost every p, where the u,; . are complex numbers with absolute value

1. So it is enough to show that |t p)| =1 for all ¢, j, if p is big enough.

As co(me,5) # 0, there exists m¢ o € II(Hc(R)) and an elliptic Langlands
parameter oy : Wg — LH, g such that mgsc(me 0o @ Te,f) # 0, e 0 @ is
é-conjugate to ¢ and

Tr(7e, 00 (fsoH)) #0,

where f,, is the stable cuspidal function associated to ¢g defined at the
end of 6.2. By lemma 7.3.4, ¢y is the Langlands parameter of a L-packet

v bpr gy

t(p)

s bt 7
TN
T
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of the discrete series of H,(R) associated to an irreducible algebraic repre-
sentation of H, ¢ with regular highest weight and pure of weight 0. So the
representation 7 r of H(Ay) satisfies all the conditions of point (i) of the
theorem, and we can apply the induction hypothesis to finish the proof.

We show (ii). Without the assumption on the highest weight of V', the
complex ICRV is still pure of weight 0, but its cohomology is not necessarily
concentrated in degree d. By the hypothesis on 7¢, for p big enough and for
every m € Z, there is an equality

(Np)"2eq(ny) dim(nf) Tr(r— g o0m, (9F)) = Tr(@f, Wa(my)) Zaz ",

where, as in (i), #1,...,2s € C are the eigenvalues of ®, acting on Wy ()
and aq,...,as € Z are their multiplicities. In particular, all the a; have
the same sign (the sign of cq(7y)), so Wi(my) is concentrated either in odd
degree or in even degree, and the weights of Wy (7¢) are either all even or all
odd. By applying the same reasoning as above, we find, for p big enough, a
linear system :

1
Zlng‘zgz,)])|:§wJ, JC{l,...,nl}, |J|:pl7
jeJ
where the w; are in Z and all have the same parity. As p; < ny if ny > 2, this

implies that log, |z§pj)| — logp |z(p) | € Z for every j,j' € {1,...,n1}. On the

other hand, we know that Z log,, |z§p])| = 0. So, for every J C {1,...,n1}
j=1
such that |J| = q1, > log, |z§pj)| €Z.
JEJ i

Let a € R be such that log, |z£’7)1)\—a € Z. Then log, \z&”—a € Z for every
jeA{l,....,n1}, so pra,qra € Z, and ged(p1,q1)a € Z. Assume that p is
inert in E. Then the fact that (2(P), (zﬁpl), . zgpr)“)) is Gal(Q,/Qy)-invariant

implies that, for every j € {1,...,m}, log, |zl)j\ + log,, |z§1,21+17j\ =0. So
200 € Z.
O

Lemma 7.3.2 Use the notations of theorem 7.3.1 above. Fix a prime num-
ber p where w¢ is unramified and m € Z. Then

Tr(r*uc; ° (pﬂp((Dm _ (P) —m Z Z H H (P) —m| g,:Qp]’

Jr i=1j€J;

where :

(i) if F = Q, p is inert in E and m is odd, then, for every i € {1,...,r},
the i-th sum is taken over the set of subsets J; of {1,...,n;} such that

{1,y = Ji={ni +1—j4,j € Ji};
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(ii) in all other cases, the i-th sum is taken over the set of subsets J; of
{1,...,n;} such that |J;| = p;, and all the signs are equal to 1.

Proof. To make notations simpler, we assume that » = 1. (The proof is
exactly the same in the general case.) We first determine the representation
T_pe of LGp. Asr_,,, is the contragredient of r,,, it is enough to calculate
7. Remember that T is the diagonal torus of G, and that T = C* x
(C)m C G =C* x GL,, (C). The cocharacter ug of T corresponds to the
following character of T :

D1
(A A r<izns) — AT A
i=1
P1 p1
So the space of r,,, is V,, = A C™*, where GL,, (C) acts by A of the standard
representation, and C* acts by the character z — z. Let (e1,...,e,,) be

the canonical basis of C"'. Then the family (e, A Aei, )J1<ii<-<ip, <m
is a basis of V,,. From the definition of r, . (cf lemma 4.1.1), it is easy to
see that Wg acts trivially on V,, and that, if F' = Q (so n; is even and
p1 = n1/2), then an element of Wy — Wg sends e;, A -+ A €i, , where
1 <4 < -0 <y, < g, to key, /\-~-/\ejp1, with 1 < j; < -+ <
jpl S ny and {’I’Ll +1 —j1,...,n1 +1 _jpl} = {1,...,7’11} — {ih...,ipl}.
By definition of the Langlands parameter, we may assume that ¢ (®,) =
(2P FoQ] (PYF®] (P Fel)) @) (remember that @, is a
lift in Gal(Q,/F,,) of the geometric Frobenius). If F = E, p is split in F
or m is even, then the image of Q7' in Wy is an element of Wg, so T
acts trivially on V), (if p is split in E, this comes from the fact that the
image of Wq, in Wy is included in Wg). If ' = Q and p is inert in E,
then Gal(E,/Q,) — Gal(E/Q), and the image of ®, in Gal(E,/Q,) gen-
erates Gal(E,/Q,), so &' ¢ Wk for m odd. The formula of the lemma is a
consequence of these remarks and of the explicit description of 7.

O
Lemma 7.3.3 (i) Let n,p € N be such that 1 < p < maz(1l,n—1). Then
there exist Jy,...,Jn C {1,...,n} such that |J;| =--- = |J,| =p and

that the only solution of the system of linear equations
ijzo, 1<i<n,
j€Jd;
is the zero solution.
(ii)) Let r € N*, ny,...,n, > 2 and p1,...,pr € N be such that 1 <

pi <n;—1forl <i<r. Foreveryié€ {l,...,r}, choose subsets
Jits-ordin, of {1,...,n;} of cardinality p; and satisfying the property
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of (i). Then the only solution of the system of linear equations
Uz
> X, =0, 1<i<m,
j=1

YN X =0, ki, k) € {1, . om )} x - x {1,....n,},

=1 j€Jik,

is the zero solution.

Proof. We show (i) by induction on n. If n = 1, the result is obvious.
Suppose that n > 2, and let p € {1,...,n —1}. Assume first that p < n —2.
Then, by the induction hypothesis, there exist Jo,...,J, C {2,...,n} of
cardinality p such that the only solution of the system of linear equations
(with unknowns Xo, ..., X,,)

Y X;=0 2<i<n

J€J;
is the zero solution. Take J; = {1,2,...,p}. It is clear that Jy, ..., J, satisfy
the condition of (i). Assume now that p =n — 1. For every i € {1,...,n},
let J; ={1,...,n}—{i}. To show that J1,...,J, satisfy the condition of (i),
it is enough to show that det(A — I,) # 0, where A € M,,(Z) is the matrix
all of whose entries are equal to 1. But it is clear that the kernel of A is of
dimension n — 1 and that n is an eigenvalue of A, so A has no eigenvalue
A € {0,n}. In particular, det(A — I,,) # 0.

We show (ii) by induction on r. The case r = 1 is obvious, so we assume

that r > 2. Let (S) be the system of linear equations of (ii). For 2 <i <r,
fix k; € {1,...,n;}. Then, by the case r = 1, the system (S’) :

Z Z Xi,; =0, kie{l,....,n1},

=1 j€Jik,

has a unique solution in (X1 1,..., X1, ), that is equal to the obvious solu-
tion

ni
So the system (S’) and the equation ) X; ; = 0 imply :
j=1

.
Xip=-=Xim = Y Xi;=0.
1=2 j€Ji K,

To finish the proof, apply the induction hypothesis to the system analogous
to (S) but with 2 < <.
O
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We now take G = G(U*(ny) x - -- x U*(n,)). Then G = C* x GLy,, (C) x
.-+ X GL,, (C), with the action of Wy described in 2.3. Let T be the elliptic
maximal torus of G defined in 3.1, and ug € G(C) be the element defined
in 3.1, so that ualTuG is the diagonal torus of G. Let B D T be the Borel
subgroup of G¢ image by Int(ug) of the group of upper triangular matrices
(we identify G¢ to Gyc X GLy, ¢ X -+ X GL,,, (C) as in 2.3). Identify T¢
t0 Gpc X Gl e x -+ x Gl and T to €% x (C¥)™ x -+ x (C*)™ as in
3.1
X*(T) be the highest weight of V relatively to (T, B); the notation means
that a is the character

r o n;
(7, (zigh<icra<i<n) — 2" [T 255
i=1j=1
By definition of the highest weight, a,a; ; € Z and a;1 > a;0 > -+ > a4 p,
for every i € {1,...,r}. Notice also that the weight of V, in the sense of 1.3,
roon;
is 2a + Z E Qg j.
i=1j=1
Let (H, s,70) be the elliptic endoscopic triple for G associated to ((n],ny),. .., (n,n;))
as in proposition 2.3.1. Then H = G(U*(n]") x U*(ny) x --- x U*(n}) x
U*(n, )), and we define an elliptic maximal torus Ty of H and a Borel
subgroup By D Tg of He in the same way as T and B. Let

Qo ={w=(w1,...,wr) € Gy, x---xG,, |Vi,w and w ! are increasing}.

—1
i{1,....n"} il{nf +1,...n:}
2, is the set of representatives of Q(T g (C), H(C)) \ Q(T(C), G(C)) deter-
mined by B and By as in 3.3.

Lemma 7.3.4 Let ¢ : Wg — Gy be a Langlands parameter of the L-
packet of the discrete series of G(R) associated to V and n: P Hg — LG
be a L-morphism extending ng as in proposition 2.3.2. Remember that
we wrote @ g () for the set of equivalence classes of Langlands parameters
op : Wg — “Hpg such that 1o o and ¢ are equivalent.

Then every oy € ®y(p) is the parameter of a L-packet of the discrete
series of H(R) corresponding to an algebraic representation of Hg; this al-
gebraic representation has a regular highest weight if a is regular, and its
weight in the sense of 1.3 is equal to the weight of V.

Proof. We may assume that
90(7—> = ((17 ((I)r_Lllv EERE) @;}))7 T)
and that, for every z € C*,
p(z) = (2275, (Bi(2), ..., Br(2))), 2),

where
T ng

§=2_ 2 au

i=1 j=1
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and
n;—1 1-n; n;—3 3—n; 1-n; nj—1
Bi(z) = diag(z™2 Foi1z T ALl pTy Ti2mTy iz Ty HOing T i)

(Remember that Wg = W¢ LI Wer, with We = C*, 72 = —1 and, for every
2€C*, r217t =2

Let C be the odd integer associated to n as below proposition 2.3.2. Let
w=(wi,...,wy) € Q, and let g be the element of P (p) associated to w
as in 3.3. Write, for every i € {1,...,7}, jis = w; '(s) if 1 < s < n} and
kit =w; (t+n)) if 1 <t <n;. Then we may assume that

pnlr) = (L (@10 et o)) 7)
and that, for every z € C*,
pr(z) = ("2, (Bf (2), By (2),..., B} (2), B (2))), 2),

with
+
+ + + + t=ny + ng —1
nf-1 L 1-n] + nf-3 L 3-n] n +a’ B M
Bj(z) = diag(le+ai,lz R Y , 2 g ta st 70’1’,27 ce 2 2 infz ? ’ ”;r),
where a;fs =aij,, +5—jis +n; (1=C)/2 € Z, and with
-~ . ni_71+ _ 17"7'1;_7 _ 7z;73+ _ 37"1'_7 _ 1727% +a7 _ nizil—a_i _

Bi (Z) = dzag(z 2 i1z 2 ai,l’z 2 X272 al,z’ CoyZ iy i )’

where a; , = @, , +t— ki +nf(14+C)/2€Z. Letic€ {l,...,r}. For all
se{l,...,nf —1}and t € {1,...,n] — 1},

afy—af o = (@i, —aiji )+ Gistr = Jis — 1)

a;t - a;t—&-l = (aiyki,t - aiyk'i,t+1) + (ki,tJrl - ki,t - 1)3

SO ajjs > ai‘s 41 and a;, > a; 4, and the inequalities are strict if a is regular.

Notice also that

r n;r ron;
- + - _
DS D) IS 9 S
i=1 s=1 i=1 t=1
So ¢y is the paramater of the discrete series of H(R) associated to the alge-
braic representation of H of highest weight (a, ((a7,); < <+ (07,)1 <p<n-)1<i<r)-
This representation has a regular highest weight if a is regular by the above
calculations, and its weight in the sense of 1.3 is the same as the weight of
V because 2a + Sy =2a+ S.
|

We use again the notations of the beginning of this section.

Lemma 7.3.5 If the highest weight of V is regular, then, for every neat
open compact subgroup K of G(A}), the cohomology of the complex ICXV
is concentrated in degree d.
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Proof. By Zucker’s conjecture (proved by Looijenga [Lo], Looijenga-Rapoport
[LoR] and Saper-Stern [SS]), the intersection cohomology of M¥ (G, X)*(C)
with coefficients in FXV is isomorphic to the L2-cohomology of M¥(G, X)(C)
with coefficients in FXV. By a result of Borel and Casselman (theorem 4.5
of [BC]), the HY of this L2-cohomology is isomorphic (as a representation of
(K \ G(A)/K)) to

@mdisc(ﬂ-) (Hq(g7 Kgo; Too ® V) ® ﬂ-}()’

where the sum is taken over the set of isomorphism classes of irreducible ad-
missible representations of G(A), g = Lie(G(R))®C and K/, = K Ag(R)?,
with Ko a maximal compact subgroup of G(R). By the proof of lemma 6.2
of [A6], if 7o is an irreducible admissible representation of G(R) such that
H*(g, K. ;oo ® V) # 0, then 7o is in the discrete series of G(R) (this is
the only part where we use the fact that the highest weight of V is regu-
lar). By theorem II.5.3 of [BW], if 7 is in the discrete series of G(R), then
H(g, K/ ; moo @ V) = 0 for every q # d.

O
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Chapter Eight

The twisted trace formula

8.1 NON-CONNECTED GROUPS

We first recall some definitions from section 1 of [A4].

Let G be a reductive group (not necessarily connnected) over a field K.
Fix a connected component G of é, and assume that G generates G and
that G(K) # @. Let G° be the connected component of G that contains 1.

Consider the polynomial

det((t + 1) — Ad(g), Lie(G")) = > D(g
k>0
on G(K). The smallest integer k for which Dy does not vanish identically
is called the rank of G; we will denote by r. An element g of G(K) is called
regular if D,.(g) # 0.

A parabolic subgroup of G is the normalizer in G of a parabolic subgroup
of G°. A parabolic subset of G is a non-empty subset of G that is equal to
the intersection of G with a parabolic subgroup of G. If P is a parabolic
subset of G, write P for the subgroup of G generated by P and P for the
intersection P N G (then P = Norg(P°) and P=PNG).

Let P be a parabolic subset of G. The unipotent radical Np of P is by
definition the unipotent radical of PO, A Levi component M of P is a subset
of P that is equal to M N G, where M is the normalizer in G of a Levi
component M? of P°. If M is a Levi component of P, then P = MNp.

A Levi subset of G is a Levi component of a paraboliNC subset of G. Let
M be a Levi subset of G. Let M be the subgroup of G generated by M,
M = G°N'M, Aj; be the maximal split subtorus of the centralizer of M
in M? (so Ay C Ajppo), X*(M) be the group of characters of M that are
defined over K, ap; = Hom(X*(M),R) and

n§; = | Norgo(g)(M)/M°(Q)|.

Fix a minimal parabolic subgroup Py of G® and a Levi subgroup My of
Py. Write Ay = Ay, and ap = ap,. If P is a parabolic subset of G such
that PY O Py, then P has a unique Levi component M such that M° > My;
write Mp = M. Let ®(A /., P) be the set of roots of Ay, in Lie(Np).

Let WOG be the set of linear automorphisms of ay induced by elements of
G(K) that normalize Ag, and Wy = W’ . The group Wy acts on W on
the left and on the right, and both these actions are simply transitive.
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Here, we will be interested in the case where G = G%x (6) and G = GO x0),
where G° is a connected reductive group over K and 6 is an automorphism
of finite order of G°.

In this situation, we say that an element g € G°(K) is 6-semi-simple
(resp. 6O-regular, resp.  strongly 0-regular) if g6 € G(K) is semi-simple
(resp. regular, resp. strongly regular) in G (an element of v of é(K ) is
called strongly regular if its centralizer is a torus.) Let Gg_,.eg be the
open subset of f-regular elements in G°. We say that g1,go € G°(K) are
0-conjugate if g10, g20 € G(K) are conjugate under é(K) If g € GY(K), let
Centgo(gf) be the centralizer of gf € G(K) in G°; we call this group the 6-
centralizer of g. Write Gge for the connected component of 1 in Centgo(g8).
Finally, we say that an element g € GY(K) is @-elliptic if Ago, = Ac.

Assume that there exists a §-stable minimal parabolic subgroup P of G°
and a f-stable Levi subgroup Mg of Pg. We say that a parabolic subset
P of G is standard if P D Py x (), and that a Levi subset M of G is
standard if there exists a standard parabolic subset P such that M = Mp
(so M D My x (f)). Then the map P —— PY is a bijection from the
set of standard parabolic subsets of G onto the set of f-stable standard
parabolic subgroups of GAO/. If P is a standard parabolic subset of G, then
P = P%x (), P = P%, Mp = M x (0) and Mp = M%0. It is easy to see
that the centralizer of Mp in M% is Z(M$%)%; so Ay, is the maximal split
subtorus of Z(M%)?.

Example 8.1.1 Let H be a connected reductive quasi-split group over K
and E/K be a cyclic extension. Let G? = Rp,kHg, 0 be the isomorphism of
GY induced by a fixed generator of Gal(E/K), G = G?x(f) and G = G°x.
Fix a Borel subgroup By of H and a Levi subrgoup Ty of By. Then
B’ := Rp/x B,k is a 0-stable Borel subgroup of G%, and T° := Rg,xTu
is a f-stable maximal torus of G®. The standard parabolic subsets of G
are in bijection with the #-stable standard parabolic subgroups of G, ie
with the standard parabolic subgroups of H. If P corresponds to Py, then
PH = PO ﬂH, PO = RE/KPH,K and AMP = AMPH'

Assume that K is local or global. Then we can associate to H an en-
doscopic datum (H*, M, s,§) for (G°,0,1) in the sense of [KS] 2.1. If r =
[E : K], then G° ~ H", with 6(z1,...,2,) = (22,...,2,,21). The diagonal
embedding H— G°is Wik~ equwarlant hence extends in an obvious way
to a L-morphism & : H := “H — LGP, Finally, take s = 1.

Assume that we are in the situation of the example above. In [La3] 2.4,
Labesse defines the norm Ny of a f-semi-simple element v of G°(K) (and
shows that it exists); Ay is a stable conjugacy class in H(K) that depends
only on the stable §-conjugacy class of v, and every element of Ny is stably
conjugate to Nvy :=~0(v)...0FKI-1(y) ¢ GO(K) = H(E).
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If M is a Levi subset of G, write, for every #-semi-simple v € M°(K),
D$; () = det(1 — Ad(y) o 0, Lie(G)/Lie(M°)).

If M is a standard Levi subset of G (or, more generally, any Levi subset
of G such that § € M), set My = (M°)? = M" N H; then My is a Levi
subgroup of H.

Lemma 8.1.2 Let M be a standard Levi subset of G. Then, for every
6-semi-simple v € M°(K) :

D5 (v) = Dif,, (N).

Assume now that K =R and E = C. We will recall results of Clozel and
Delorme about #-stable tempered representations of G°(R).

Remember that an admissible representation 7 of G°(R) is called §-stable
if  ~ mo#6. In that case, there exists an intertwining operator A, : 7 —
7o 6. We say that A, is normalized if A2 = 1. The data of a normalized
intertwining operator on 7 is equivalent to that of a representation of é(R)
extending 7. If 7 is irreducible and -stable, then, by a Schur’s theorem, it
always has a normalized intertwining operator.

For ¢ a quasi-character of Ag(R)?, let C°(G%(R),€) be the set of func-
tions f € C°°(G°(R)) that have compact support modulo Ag(R)° and such
that f(zg) = £(2)f(g) for every (z,9) € Ag(R)" x G°(R).

The following theorem is due to Clozel (cf [C12] 4.1, 5.12, 8.4).

Theorem 8.1.3 Let w be an irreducible admissible 0-stable representation
of GY(R) and A, be a normalized intertwining operator on 7. Let & be the
quasi-character through which Ag(R)® acts on the space of w. Then the
map

CX(GR),€7") — C,  fr— Te(n(f)Ar)

extends to a distribution on G°(R) that is invariant under -conjugacy; this
distribution is tempered if 7 is tempered. Call this distribution the twisted
character of m and denote it by ©,.

Let ¢ : Wg — “H be a tempered Langlands parameter; it defines a L-
packet Iy of tempered representations of H(R). Write O, = Y. Oy,

T €lly
where, for every mg € Iy, O, is the character of my. Then the represen-

tation m of G°(R) = H(C) associated to ©|w.. is tempered and 6-stable, and,
if Ar is a normalized intertwining operator on 7, there exists ¢ € {£1} such
that, for every 0-regular g € G°(R) :

ew(g) = 66HH (Ng)

In particular, © is invariant under stable #-conjugacy.
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Remark 8.1.4 Let m be an irreducible tempered #-stable representation
of GY(R). If the infinitesimal character of 7 is equal to that of a finite-
dimensional §-stable representation of G°(R), then there exists a tempered
Langlands parameter ¢ : Wg — “H such that 7 is associated to the pa-
rameter @y, (cf [J] (5.16)).

Assume from now on that H(R) has a discrete series. Let K/ be the set
of fixed points of a Cartan involution of G°(R) that commutes with 6. Write
g = Lie(G)(C). For every admissible §-stable representation p of G(R), let

ep(,p) =Y _(—1)" Tr(6, H'(g, KL, ; p))
i>0
be the twisted Euler-Poincare characteristic of p. It depends on the choice
of a normalized intertwining operator on p. An admissible representation
of GY(R) is called @-discrete if it is irreducible tempered f-stable and is
not a subquotient of a representation induced from an admissible #-stable
representation of a proper 6-stable Levi subgroup (cf [AC] 1.2.3).
The following theorem is due to Labesse (cf [La2] proposition 12).

Theorem 8.1.5 Let 7 be a §-discrete representation of G°(R), and let £ be
the quasi-character through which Ag(R)? acts on the space of w. Assume
that 7 is associated to a Langlands parameter o, : We — “H satisfying
P = Plwe, where ¢ @ W — LH is a Langlands parameter of the L-
packet of the discrete series of H(R) associated to the contragredient of
an irreducible algebraic representation V of H. As in section 3 of [CI2], we
associate to V a O-stable algebraic representation W of G and a normalized
intertwining operator Ay on W.

Then there exists a function ¢ € C°(G(R), 1), K/ -finite on the right
and on the left modulo Ag(R)?, such that, for every admissible §-stable
representation p of G°(R) that is of finite length and such that PlAc®R)O =&
and every normalized intertwining operator A, on p,

Tr(p(¢)A,) = ep(0, p@ W).

Such a function ¢ is called twisted pseudo-coefficient of w. This name is
justified by the next remark.

Remark 8.1.6 Let m and ¢ be as in the above theorem, and let A, be a
normalized intertwining operator on 7. By the proof of proposition 3.6 of
[C15] and by theorem 2 (p 217) of [De],

Tr(m(¢)Ar) # 0

and, for every irreducible #-stable tempered representation p of G°(R) and
every normalized intertwining operator A, on p,

Tr(p(9)Ap) =0

if p 2 7. In particular, the function ¢ is cuspidal (the definition of “cuspidal”
is recalled, for example, at the beginning of section 7 of [A3]).
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Definition 8.1.7 Let T, be a torus of GY such that T.(R) is a maximal
torus of K/_. Set

d(G) = | Ker(H (R, T.) — H'(R, G"))|
k(G) = [Im(H"(R, (T.)s.) — H'(R, T.)),

with (T¢)sc the inverse image of T, by the morphism GY, — G (where
GY — GY,, is the simply connected covering of GY_,.). *

Remark 8.1.8 As G° comes from a complex group by restriction of scalars,
HY(R,G°%) = {1}, s0 d(G) = [H' (R, T.)|. For example, if H = G(U*(n;) x
-+ xU*(n,)) (cf 2.1 for the definition of this group) with n :=n;+---+n, >
1, then T, = G(U(1)"), so d(G) = 2"~ 1.

On the other hand, if the derived group of G is simply connected, then
k(G) = [Im(H (R, T, N Gger) — HY(R, T.))|.

Remember that a §-semi-simple element g of G(R) is called -elliptic if
AGSg =Ag(=Ap).

Lemma 8.1.9 Let g € G°(R) be #-semi-simple. Then g is §-elliptic if and
only if N'g is elliptic. Moreover, if g is not -elliptic, then there exists a
proper Levi subset M of G such that g8 € M(R) and Gga c MO,

Proof. Let g € G°(R) be #-semi-simple. As h := gf(g) is G°(R)-conjugate
to an element of H(R) (cf [C12] p 55), we may assume, after replacing g by a
6-conjugate, that h € H(R). Let L = GY. Then L is stable by the morphism
(of algebraic groups over R) 6’ : x — 6(g)0(2)0(g)~!, and it is easy to see
that 9"L is an involution and that Gga = L% and H, = LY. This implies
that Z(Hp,) = Z(L)? and that Z(G%) = Z(L)”. But 6(g) € L(R) (we
assumed that gf(g) € H(R), so g and 6(g) commute), so 0|z r) = 0|/Z(L)'
Hence AG(;a = Ap,, and this proves that g is f-elliptic if and only if h is
elliptic.

Suppose that g is not #-elliptic. Then A is not elliptic, so there exists a
proper Levi subgroup My of H such that H;, € M. Let M°? = Re/rMy c;
it is a f-stable proper Levi subgroup of G°. Let M be the Levi subset of
G associated to M. As G} ¢ M?, GY; C M; moreover, g € G} (R), so
g0 € M(R).

O

Note that, by the above proof, for every #-semi-simple ¢ € G°(R), if
h € N(g), then Gy, is an inner form of Hy. Later, when we calculate
orbital integrals at gf and h, we always choose Haar measures on Gge and
H;, that correspond to each other.

LCf [CL] A.1 for the definition of d(G); Clozel and Labesse use a maximal R-anisotropic
torus instead of a maximal R-elliptic torus, but this does not give the correct result if
Ag # {1} (cf [K13] 1.1 for the case of connected groups).
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Finally, we calculate the twisted orbital integrals of some of the twisted
pseudo-coefficients defined above at #-semi-simple elements. To avoid techni-
cal complications, assume that G9°" is simply connected. If ¢ € C°(GO(R), &)
(¢ is a quasi-character on Ag(R)?) and g € G°(R), the twisted orbital inte-
gral of ¢ at g (also called orbital integral of ¢ at gf) is by definition

Ou(@) = | B g0(w)da
Gy (R\GO(R)
(of course, it depends of the choice of Haar measures on G°(R) and G{,(R)).

Let G’ be a reductive connected algebraic group over R. If G’ has an
inner form G that is anisotropic modulo its center, set

v(G') = (~1)1C)vol(G'(R) /Agy (R)*)d(G) Y,
where d(G’) is defined in 3.1.

Lemma 8.1.10 Let V' be an irreducible algebraic representation of H, ¢ :
Wxr — YH be a Langlands parameter of the L-packet of the discrete series
of H(R) associated to V*, my« be the representation of H(C) = G°(R)
corresponding to |y, (so my~ is §-discrete) and ¢y~ be a twisted pseudo-
coefficient of my«. Let g € G°(R) be §-semi-simple. Then

Ogo(pv+) = v(Gg) 'Oy (9)
if g is O-elliptic, and
Ogo(pv+) =0
if g is not f-elliptic.

The proof of this lemma is inspired by the proof of theorem 2.12 of [CCl].

Proof. To simplify the notation, we will write 7 = 7wy« and ¢ = ¢py«.
If V is the trivial representation, then the twisted orbital integrals of ¢
are calculated in theorem A.1.1 of [CL]; write ¢p = ¢. (Note that Clozel and

Labesse choose the Haar measure on Gge (R) for which VO](GI(R)/AGW (R)?) =

1, where G is an inner form of Gy that is anisotropic modulo its center).

Assume that V is any irreducible algebraic representation of H. Let W
be the f-stable algebraic representation of G° associated to V as in theo-
rem 8.1.5, with the normalized intertwining operator A, fixed in that the-
orem. Write ¢’ = Oy ¢g. As Oy is invariant by 6-conjugacy, proposition
3.4 of [C12] implies that, for every #-semi-simple g € G°(R), Oyo(¢') =
Og0(00)Oxv(g). So it is enough to show that ¢ and ¢’ have the same or-
bital integrals. By theorem 1 of [KRo], in order to prove this, it suffices to
show that, for every f-stable tempered representation p of G°(R) and every
normalized intertwining operator A, on p,

Tr(p(¢)Ap) = Tr(p(¢) Ap)-
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Fix such a representation p. Then it is easy to see that

Tr(p(¢')Ap) = Tr((p @ W)(¢0) (A, @ Aw)).

Hence

Tr(p(¢')Ap) = ep(8, p @ W) = Tr(p(4)A,).

Corollary 8.1.11 Use the notations of lemma 8.1.10 above.

(i) The function ¢y~ is stabilizing (“stabilisante”) in the sense of [La3]
3.8.2.
(ii) Let fy~ = —— Y. fry, where II(p) is the discrete series L-

@I 2

packet of H(R) associated to ¢ : Wg — “H and, for every represen-
tation wy in the discrete series of H(R), fr,, is a pseudo-coefficient of
7wy . Then the functions ¢y~ and d(G) fy« are associated in the sense
of [Lal] 3.2.

Proof. The result follows from lemma 8.1.10 and the proof of theorem
A.1.1 of [CL] (and lemma A.1.2 of [CL)).
O

8.2 THE INVARIANT TRACE FORMULA

Note first that, thanks to the work of Delorme-Mezo ([DeM]) and Kottwitz-
Rogawski ([KRo]), Arthur’s invariant trace formula (see, e.g., [A3]) is now
available for non-connected groups as well as for connected groups.

In [A6], Arthur gave a simple form of the invariant trace formula (on a
connected group) for a function that it stable cuspidal at infinity (this notion
is defined at the beginning of section 4 of [A6] and recalled in 5.4). The goal
of this section is to give a similar formula for a (very) particular class of
non-connected groups.

Let H be a connected reductive quasi-split group over Q; fix a Borel
subgroup of H and a Levi subgroup of this Borel. Fix an imaginary quadratic
extension E of Q, and take G? = Rp/oHE. Assume that the derived group
of H is simply connected and that H is cuspidal (in the sense of definition
3.1.1). A Levisubset M of G is called cuspidal if it is conjugate to a standard
Levi subset M’ such that M/; is cuspidal.

We first define the analogs of the functions ®%;(.,0) of 3.2.

Lemma 8.2.1 Let m be a 6-stable irreducible tempered representation of
G(R). Fix a normalized intertwining operator A, on 7. Assume that there
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exists a Langlands parameter ¢ : Wr — “H such that 7 is associated to
©we- Let M be a standard cuspidal Levi subset of G, and let Ty be a
maximal torus of Mg r that is anisotropic modulo Ay, . Write D for the
set of v € GO(R) such that v9(y) € Ty (R). Then the function

DNG(R)g—reg — C, 7+ [DF(M)|"*Ox(7)

extends to a continuous function D — C, that will be denoted by ®§,(., ©).

Extend ®§,(.,0,) to a function on M°(R) in the following way : if v €
MPO(R) is 6-elliptic (in M°(R)), then it is f-conjugate to 7/ € D, and we set
5, (7,0,) = ®§,(7/,O,); otherwise, we set ®§,(v,0,) = 0. The function
5, (., 0,) is clearly invariant by stable §-conjugacy. As every Levi subset of
G is G(R)-conjugate to a standard Levi subset, we can define in the same
way a function ®§,(.,0,) for any cuspidal Levi subset M.

The lemma above follows from the similar lemma for connected groups
(lemma 3.2.1, due to Arthur and Shelstad), from theorem 8.1.3 (due to
Clozel) and from lemma 8.1.2.

Let Iy_4is.(G°(R)) be the set of isomorphism classes of #-discrete rep-
resentations of G?(R). For every m € Ilp_gis.(G°(R)), fix a normalizing
operator A, on .

Definition 8.2.2 Let M be a cuspidal Levi subset of G. Let £ be a -stable
quasi-character of Ago(R)?. For every function ¢ € C°(G(R),£71) that
is left and right Ko-finite modulo Ago(R)? and every v € MY(R), write :

OF; (7, ¢) = (—1)dmAa/Ac)y(V0) > B85 (7, Oxv) Tr(m(¢) Ar),
w€Ip_qisc(GO(R))

and :

SO (7, ¢) = (—1) 1A /A k(M) K(G)~T(MY,) ! > G, (7, O ) Te(m() Ar).
T€llg_qisc(GO(R))

The notations k and v are defined in 5.4, and the notation v is that of 8.1.

Let My be the minimal -stable Levi subgroup of G corresponding to the
fixed minimal Levi subgroup of H (M is a torus because H is quasi-split)
and ¢ be a f-stable quasi-character of Ago(R)?. Define an action of the
group G(A) on L2(G(Q) \ G(A),£) in the following way : the subgroup
GY(A) acts in the usual way, and 6 acts by ¢ — ¢of. For every irreducible
f-stable representation 7 of G°(A) such that mg;s.(m) # 0 (ie such that 7 is
a direct factor of L?2(G%(Q)\ GY(A), €), seen as a representation of G(A)),
fix a normalized intertwining operator A, on 7. If m and ©’ are such that
Too = T, choose intertwining operators that are compatible at infinity.
For the f-stable irreducible admissible representations of G(R) that don’t
appear in this way, use any normalised intertwining operator. If m is as
above, let # (resp. 7~) be the representation of G(A) defined by 7 and
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Ay (vesp. —Ay), and let m, () (resp. my;,.(m)) be the multiplicity of 7+
(resp. 77) in L*(G%(Q) \ G°(A),¢).

We write C°(GY(A), £71) for the vector space of functions ¢ : GO(A) —
C that are finite linear combinations of functions of the form ¢*° ® ¢, with
6 € C2(GO(Ay)) and ¢n € C(GO(R), €).

Let M be a Levi subset of G. If M is cuspidal, then, for every function
= > @ oo € C®°(G(A), 1), write

7 geom(®) = D vOLM (Q)Anr (R)® \ M3y (4))040(¢57) 2] (7, $oo);

where the sum is taken over the set of #-conjugacy classes of #-semi-simple
elements of M%(Q) and ¢S is the constant term of ¢> at M (defined in
exactly the same way as in the case of connected groups).

If M is not cuspidal, set TAC/’L geom = 0

For every t > 0, define Il4;.(G,t) and the function agise = adGisc :
I4is¢(G,t) — C as in section 4 of [A3] (p 515-517).

Let T¢ be the distribution of the #-twisted invariant trace formula on
GY(A). The following proposition is the analog of theorem 6.1 of [A6] (and
of the formula below (3.5) of this article).

Proposition 8.2.3 ? Let ¢ = ¢®¢o € CX(G(A),£71). Assume that
there exists an irreducible algebraic representation V of H such that, if
¢ : Wg — YH is the Langlands parameter of the discrete series L-packet
Iy of H(R) associated to V and 7, is the 0-discrete representation of G°(R)
with Langlands parameter ¢, , then ¢ is a twisted pseudo-coefficient of
Teo. Then

TG(¢) = Z(ng/f)_lTl\C/;[,geom(¢) = Z Z a‘disc(ﬂ-) Tr(ﬂ—(QS)A’ﬂ')?

M t20 m€lgisc(Gt)

where the first sum is taken over the set of G°(Q)-conjugacy classes of Levi
subsets M of G.

Remarks 8.2.4 (1) If 7 is a cuspidal #-stable representation of G?(A),
then agisc(m) = m3 . (7) + my;,.(m). (This is an easy consequence of
the definition of agisc, cf [A3] (4.3) and (4.4).)

(2) The spectral side of the formula of [A6] (formula above (3.5)) is sim-
pler, because only the discrete automorphic representations of G°(A)
can contribute. However, in the twisted case, it is not possible to
eliminate the contributions from the discrete spectrum of proper Levi
subsets (because there might be representations of M[(A) that are fixed
by a regular element of WOG and still have a regular archimedean in-
finitesimal character).

2] thank Sug Woo Shin for pointing out that I had forgotten terms on the spectral side
of this proposition.
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(3) In theorem 3.3 of [A3], the sum is taken over all Levi subsets M of
G such that M° contains My, and the coefficients are [WM ||[W{|~1
instead of (n§;)~1; it is easy to see that these are just two ways to
write the same thing.

Proof. The second formula (ie the spectral side) is just (a) of theorem 7.1
of [A3], because ¢ is cuspidal at infinity.

We show the first formula. We have to compute the value at ¢ of the
invariant distributions I$; of [A2]. As ¢ is cuspidal, we see by using the
splitting formula (proposition 9.1 of [A2]) as in [A6] §3 that it is enough to
compute the I, at infinity, ie to prove the analog of theorem 5.1 of [A6].
Moreover, by corollary 9.2 of [A2] applied to the set of places S = {c0}, and
thanks to the cuspidality of ¢.,, we see that the term corresponding to M
is non-zero only if Ay = Ay, 3

So we may assume that A = Apy,. We want to show that I]\Cf[(.7 Do) =0
if M is not cuspidal and that, for every cuspidal Levi subset M of G and
for every v € M°(R) :

I§; (s $o0) = DM ()25 (7, o), (%)
where, if 70 = (06)u is the Jordan decomposition of «6, then

DM () = det((1 — Ad(0) 0 ), Lie(M") / Lie(M2,)).

(Note that, if M is cuspidal, then Ay = Ajg.) This implies in particular
that I} (7, ¢oo) = 0if 7 is not f-semi-simple. The rest of the proof of theorem
6.1 of [A6] applies without any changes to the case of non-connected groups.

The case where M is not cuspidal is treated in lemma 8.2.6. In the rest
of this proof, we assume that M is cuspidal.

For connected groups, the analog of formula (x) for a semi-simple regular
~v is theorem 6.4 of [A5] (cf formula (4.1) of [A6]). Arthur shows in section
5 of [A6] that the analog of (x) for any v is a conseqeunce of this case.

We first show that formula (x) for a #-semi-simple f-regular v implies
formula (%) for any ~, by adapting the reasoning in section 5 of [A6]. The
reasoning in the second half of page 277 of [A6] applies to the case considered
here and shows that it is enough to prove (x) for a v € M°(R) such that
MY, = GY,. Lemma 8.2.5 below is the analog of lemma 5.3 of [A6]. Once
this lemma is known, the rest of the reasoning of [A6] applies. This is because
Arthur reduces to the semi-simple regular case by using the results on orbital
integrals at unipotent elements of [A6] p 275-277, and we can apply the same
results here, because these orbitals integrals are taken on the connected
group MY, (where, as before, v = (of)u is the Jordan decomposition of
~).

It remains to show formula () for a #-semi-simple f-regular . The article
[A5] is written in the setting of connected groups, but it is easy to check that,

3] thank Robert Kottwitz for patiently explaining to me this subtlety of the trace
formula.
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now the invariant formula for non-connected groups is known, all the article
until, and including, corollary 6.3, applies to the general (not necessarily
connected) case. We can write statements analogous to theorem 6.4 and
lemma 6.6 of [A5], by making the following changes : take a 6-discrete
representation ., of G°(R) (instead of a discrete series representation of
G(R)), and replace the character of w4, by the twisted character.

The proof of lemma 6.6 of [A5] applies to the non-connected case, if we
replace Ilsepmp by the set of isomorphism classes of §-stable tempered repre-
sentations, Ilg;sc by Ip_g4isc and “regular” by “f-regular”.

The proof of theorem 6.4 of [A5] proceeds by induction on M, starting
from the case M = G, and uses lemma 6.6 of [A5] and three properties of
the characters of discrete series representations : the differential equations
that they satisfy, the conditions at the boundary of the set of regular ele-
ments and the growth properties. For the twisted characters of #-discrete
representations, there are of course similar differential equations; the bound
that we need (in the third property) is proved by Clozel in theorem 5.1 of
[C12]; as for the boundary conditions, they follow from theorem 7.2 of [Cl2]
(called theorem 8.1.3 in this book) and from the case of connected groups.
Once these results are known, the reduction to the case M = G is the same
as in [A5]. But the case M = G is exactly lemma 8.1.10.

O

Lemma 8.2.5 Write ®,, = |DM(.)|7'/2I§;.

Let M be a cuspidal Levi subset of G and v € MY(R) be such that
Gge = Mge. Let v0 = (00)u be the Jordan decomposition of v8. Then there
exist stable cuspidal functions fi, ..., f, on MY (R) and a neighbourhood U
of 1 in MY, (R), invariant by MY ,(R)-conjugacy, such that, for every p € U

(1)3\4(:“03 ¢00) = Z(nge (Hﬁfi)' (**)
1=1

Proof. If o is not #-elliptic in M(R), then, by lemma 8.1.9, there exists a
proper Levi subset Mj of Mg such that 0 € M;(R) and Mﬂ%ﬁg c MY If
w € MY, (R) is small enough, then M(()ao) ., 1s also included in M. Applying
the descent property (corollary 8.3 of [A2]) and using the cuspidality of ¢n,
we see that @), (uo, doo) = 0, so that we can take f; = 0.

We may therefore assume that o is f-elliptic in M°(R). We may also
assume that M is standard. Let Ty be a maximal torus in My r that is
anisotropic modulo A ,7,,. Then o is f-conjugate to an element ¢’ such that
o'0(c’) € Ty(R). As I§; is invariant by 6-conjugacy, we may assume that
h:=c0(c) € Ty(R). As G, is an inner form of Hy, over R, the maximal
torus Ty of Hy, transfers to a maximal torus T of G; of course, h € T(R).
Let U be an invariant neighbourhood of 1 in MY, (R) small enough so that
po is O-regular if p € UNT(R) is regular in M?,. Then, by formula (x) in the
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proof of proposition 8.2.3 above for a #-regular element (the proof of formula
(%) in this case does not depend on the lemma), for every p € UNT(R) that
is regular in MY, :

(I)/]\/[ (,U,O', ¢00) = (I’fl (,ua-a ¢00) = <_1)dim(AM/AG)(I)gI (,UO', @ngo),
and we know that this is equal to
+|D}f, (N (po)[V*Omy, (W (p0))

(where the sign depends on the choice of normalized intertwining operator
ol Ty ). By the proof of lemma 5.3 of [A6] and lemma 4.1 of [A6], there
exists f1,..., f, stable cuspidal on MY, (R) such that (xx) is satisfied for
every u € UNT(R) that is regular in M2,.

It remains to show that, for this choice of fi,..., f, and maybe after
making U smaller, formula (xx) is true for every p € U. But the end of the
proof of lemma 5.3 of [A6] applies without any changes to the non-connected
case.

O

Lemma 8.2.6 Let M be a Levi subset of G. Assume that Ay = Ay, and
that M is not cuspidal. Then I§;(., o) = 0.

Proof. We may assume that M is standard. We first show that [ ]GV[ (7, boo) =
0 if v is f-regular in M. Let v € MY(R) be f-regular in M". We may
assume that v0(y) € Mpy(R). The centralizer Ty of v0(vy) in My is a
maximal torus of My r. By the assumption on M, the torus Ty /A is
not anisotropic, so there exists a Levi subgroup My g # Mpggr of Mpyr
such that Ty C My g (for example the centralizer of the R-split part of
Tyx). Let M; be the corresponding Levi subset of Gg. Then v € M{(R)
and M _, = MJ,. By the descent formula (theorem 8.3 of [A2]) and the
cuspidality of oo, I$; (7, o) = 0.

We now show the statement of the lemma. By formula (2.2) of [A2], it
is enough to prove that, for every Levi subset M’ of G containing M and
every v € M?(R) such that M, = GY,, IS (7, ¢oo) = 0. If M’ # M, this
follows from the descent formula (theorem 8.3 of [A2]) and the cuspidality
of ¢oo. It remains to show that I$; (7, poo) = 0, if ¥ € MO(R) is such that
MY, = GY,. Let v0 = (06)u be the Jordan decomposition of 76. By (2.3)
of [A2], there exists f € C2°(M°(R)) and an open neighbourhood U of 1 in
MY, (R) such that, for every p € U, I$;(u0, ¢oo) = Ouoo(f). Hence, by the
beginning of the proof, O,¢(f) = I§; (10, poo) = 0 if pu € U is such that po
is @-regular. This implies that O,¢(f) = 0 for every p € U. On the other
hand, after replacing v by a 6-conjugate, we may assume that v € U. So
I (7, ¢oo) = 0.

O
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8.3 STABILIZATION OF THE INVARIANT TRACE FORMULA

In this section, we stabilize the invariant trace formula of proposition 8.2.3 if
H is one of the quasi-split unitary groups of 2.1. Actually, there is nothing
to stabilize; the invariant trace formula is already stable in this case, and we
simply show this.

We use the notations and assumptions of 8.2 and 5.4.

Proposition 8.3.1 Assume that H is one of the quasi-split unitary groups

of 2.1 and that F is the imaginary quadratic extension of Q that was

used to define H. Let f = @ f, € CF(H(A),¢;Y) and ¢ = R b, €
v v

CX(GO(A),£7Y) (where € is the restriction of € to Ay (R)?). Assume

that, for every finite place v of Q, the functions f, and ¢, are associated

in the sense of [La3] 3.2, that the function ¢, is of the type considered in

proposition 8.2.3 and that fo = ﬁ > fru (cf corollary 8.1.11). Then
mH €lly

there exists a constant C € R* (depending only on H and the choice of

normalized intertwining operators on 6-stable automorphic representations

of GY(A)), such that, for every Levi subset M of G,

T]\?I,geom(d)) = Cf‘EE;STﬁH (f)
In particular,
_ ~4G)
T (¢) = CmSTH(f)‘

Remark 8.3.2 After maybe choosing different normalized intertwining op-
erators on the #-stable automorphic representations of G°(A), we may as-
sume that C' is positive.

Proof. To see that the equalities for the T ]\Cj geom 1mply the equality for
TS, it is enough to notice that the obvious map from the set of G°(Q)-
conjugacy classes of Levi subsets of M to the set H(Q)-conjugacy classes of
Levi subgroups of H is a bijection, and that n{ = n§; if My corresponds
to M.

Let M be a standard cuspidal Levi subset of G. As the morphism
H!(K,M°) — H!(K,G") is injective (see the proof of lemma 6.3.4) and
H'(K,G% = {1} for every field K, the assumption on G° implies that
dMpg,M°) = 1, where d(My, M) is defined in [La3] 1.9.3. By lemma
8.1.2 and the fact that the descent formula (corollary 8.3 of [A2]) works just
as well for twisted orbital integrals, the proof of lemma 6.3.4 applies in the
case considered here and shows that the functions ¢»s and fas, are associ-
ated at every finite place. Using this fact and lemma 8.3.3, we may apply
the stabilization process of chapter 4 of [La3], on the group Mx < 6 >, to
TS (¢). As the set of places {oo} is (M, M g )-essential (by lemma A.2.1

,geom
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of [CL], whose proof adapts immediately to the case of unitary similitude
groups), we get :
i1, geom(9) = OT(M°)7 (M)~ td(M)k(Mp) ~ k(H) STy, (f),
with C' € R* (the factor 2~ 4™(@) of [La3] 4.3.2 does not appear here be-
cause we are taking functions in C°(GY(A),£71) and not in C°(GO(A));
and the factor Jz(6) does not appear because, following Arthur, we con-
sider the action of these functions on L?(G%(Q) \ G°(A),¢) and not on
L*(GP(Q) Ao (R)?\ GY(A))).
To finish the proof, it is enough to check that :
T(M°) d(M)
(H) = d(G) :

T(Mpy) k(Mp) 7(H)
By (ii) of lemma 2.3.3, 7(G%) = 7(M°) = 1. So the equality above follows
from remarks 5.4.3 and 8.1.8.

O

In the following lemma, we consider the situation of the beginning of 8.2,
so that H is a cuspidal connected reductive group over QQ, E is an imaginary
quadratic extension of Q and G° = Ry soHE. Fix a 0-stable Borel subgroup
of G° (or, equivalently, a Borel subgroup of H).

Lemma 8.3.3 Use the notations of [La3] 2.7. Let ¢, be as in proposition
8.2.3, M be a standard cuspidal Levi subset of G, and y € M°(R) be §-semi-
simple. Set fo, = ﬁ > fry (cf corollary 8.1.11). Then there exists a

g €lly
constant C' € R* (that is independent of M and positive for a good choice
of normalized intertwining operators) such that :

Yo )G (00 be) = K(M)TTR(G)d(M)SDF (7, o)
[x]€D(Iy,MR)
= CAM)k(My) ™ k(H)S®1, (N7, foo),
and, if k € R(1,,M";R) — {1},
Z e(0,) < K, & > D5, (04, doo) = 0.

[#]€D (I, M°R)

Proof. Once we notice that ®%,(v,0,v) is invariant under stable 6-
conjugacy, the proof is exactly the same as in theorem A.1.1 of [CL]. To
show the second line of the first equality, use the definitions, theorem 8.1.3,
remark 8.1.6, lemma 8.1.2 and the fact that, if v € G°(R) and h € Ay, then
H;, is an inner form of Gge.

O

We finish this section by recalling a few results on the transfer and the
fundamental lemma for base change. Assume that we are in the situation
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of example 8.1.1, with K a local field of characteristic 0. If two functions
f € C*(GOK)) and h € C*(H(K)) are associated in the sense of [La3]
3.2, we also say that h is a transfer of f to H. Labesse proved the following
result.

Theorem 8.3.4 ([La3] theorem 3.3.1 and proposition 3.5.2) Let f € C2°(G°(K)).
Then there exists a transfer of f to H.

Labesse has also proved a result about inverse transfer. We say that an
element vy € H(K) is a norm if there exists v € G°(K) such that vy € N7.
Assume that K is non-archimedean.

Proposition 8.3.5 ([Lal] proposition 3.3.2, proposition 3.5.3) Let h € C°(H(K))
be such that SO., (h) = 0 for every semi-simple vy € H(K) that is not a
norm. Then there exists f € C2°(G°(K)) such that h is a transfer of f.

So, in order to determine which functions on H(K) are transfers of func-
tions on G°(K), we need to describe the set of norms on H(K). To do
this, we use the results of 2.5 of [Lal]. In the next lemma, assume that
H = G(U*(n1) x --- x U*(n,)) with ny,...,n, € N* (notations are as in
2.2) and that G° = Rg,oHE, where E is the quadratic extension of Q used
to define H. Take K = Q,, where p is a prime number.

Lemma 8.3.6 Let Dy = H/H". Then a semi-simple element of H(Q,)
is a norm if and only if its image in Dy (Q,) is a norm. If p splits and is
unramified in E, or if H = GU™(n) with n odd, or if p is unramified in E
and (at least) one of the n; is odd, then every semi-simple element of H(Q,)
is a norm. *

Proof. Notice that, if p splits and is unramified in F, then G°(Q,) ~
H(Q,) x H(Q,), and the naive norm map G°(Q,) — G°(Q,), g — ¢6(9),
is actually a surjection from G°(Q,) to H(Q,); there is a similar statement
for Dg. So the lemma, is trivial in that case.

Hence, for the rest of the proof, we assume that there is only one place
p of E above p, ie that p is inert or ramified in E (this is just to avoid
a discussion of cases; the results of Labesse apply of course just as well in
the general case). As H" is simply connected, Dy (Q,) = HY,(Q,, H), in
the notation of [La3] 1.6. Similarly, for every Levi subgroup My of Hg,,
if we set Dy, = My /M%7 then Dy, (Q,) = HY,(Q,, Mp). Let v be a
semi-simple element of H(Q,), and let My be a Levi subgroup of Hg, such
that v € My (Q,) and v is elliptic in My. By proposition 2.5.3 of [La3], v is
a norm if and only if its image in Das,, (Qp) is a norm. So, to prove the first
statement of the lemma, it is enough to show that an element of Dy, (Q,) is
a norm if and only if its image by the canonical map Dy, (Q,) — D (Q,)

4Note that the first assertion of this lemma is also a consequence of lemma 4.2.1 of
[Ha] (and of proposition 2.5.3 of [La3]).
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is a norm. As H does not split over Q,, My is H(Q,)-conjugate to a Levi
subgroup of H (defined over Q), so we may assume that My is a standard
Levi subgroup of H and is defined over Q. By 2.2, there exist s, my,...,m, €
N such that ny +---+n, =mqy +---+m, + 2s, n; —m; is even for every 1,
and My ~ (Rg/9Gn)® x G(U*(my) x --- x U*(m,)). The derived group
of H is SU*(n1) x --- x SU*(n,;), so the map G(U*(ny) x ... U*(n,)) —
G % (Rg/qGm)", (91,---,9r) = (c(g1),det(g1),...,det(g,)) induces an
isomorphism

Dy AN {()\,Zl, .. .,ZT) € Gy, X (RE/QGm)T‘VZ',ZiEi = )\n,}
Similarly, there is an isomorphism

Dty — Dyt X Dty

where DMH,l = (RE/QGm)S and
DMH,h = {(/\,221, .. .,Z,-) S GmX(RE/QGm)qVZ',ZiEi =\ if m; >0and z;, =1if m; = O}

The canonical map Djs,, — Dp sends the factor Dy, ; to 1 and is induced
on the factor Dy, » by themap (A, z1,...,2,) — (A, Nra=ma)/2 N} /2, )
As every element in Dy, 1(Q)) is obviously a norm, it is now clear that an
element of Dy, (Qp) is a norm if and only if its image in Dy (Q,) is a norm.
Assume that H = GU*(n) with n odd, and write n = 2m + 1, m € N.

m

Then it is easy to check that the map H — Rg /G, g — det(g)c(g) ™™,
induces an isomorphism Dy —— Rp /0Gm. So every element of Dy (Q,) is
a norm, and consequently every semi-simple element of H(Q,) is a norm.

Assume that H = G(U*(ny) x --- x U*(n,)) with ny,...,n, € N*
that n; is odd and that p is inert and unramified in E. Write n; =
2my 4+ 1, my € N. Then the map G, x (Rg/9Gn)", (A, 21,...,2) —
(AT 2 (2 A2 g (27 TA™ )8 L 2 (27 TA) ™) (together with the
description of Dy given above) induces an isomorphism

Dy ~ Rp oGy, x U(1)" 1

It is obvious that every element of (Rp;9Gnm)(Qp) = E, is a norm, so,
to finish the proof of the lemma, it is enough to show that every element
of U(1)(Qp) is a norm. Let z € U(1)(Qp). Then z is an element of E
such that 2z = 1, and we want to show that there exists y € E)* such that
2z =yy '. Write z = ap®, with a € OEP and k € Z. Then 2z = aap** =1,
so k =0 and aa = 1, and we want to show that there exists b € (’)EP such

that @ = bb . By Hensel’s lemma, it is enough to check the analog of
this for the reduction modulo p of a. As p is inert and unramified in F,
Ogp,/(p) = Fp2. Let u : FZQ — IF;2 be the group morphism that sends b

to bb . Then ©(b) = b'7P for every b, so the image of ¢ is of cardinality
p? —1/(p—1) = p+ 1. But this image is contained in U(1)(F,), and
U(1)(F,) = {a € F,|aP™ = 1} is of cardinality p+1, s0 p(F,) = U(1)(F,).
This finishes the proof.

O
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The above lemma (together with the result of Labesse about inverse trans-
fer, ie proposition 8.3.5, and the fact that the group of norms in a torus con-
tains an open neighbourhood of 1) has the following immediate consequence

Lemma 8.3.7 If p splits and is unramified in F, or if H = GU™(n) with n
odd, or if p is unramified in E and one of the n; is odd, then every function
in C°(H(Qy)) is a transfer of a function in C2°(G°(Qp)). In general, the set
of functions in C2°(H(Q),)) that are a transfer of a function in C2°(G°(Q,))
is a subalgebra of C2°(H(Q,)), and it contains all the functions with small
enough support.

Transfer is explicit if we are in an unramified situation. Assume that K
is non-archimedean, that the group H is unramified over K and that the
extension E/K is unramified. Let Kg and Ky be hyperspecial maximal
compact subgroups of G?(K) and H(K) such that Ky = H(K) N Kg and
9(Kg) = Kg. The L-morphism ¢ : LH — £GP defined in example 8.1.1 in-
duces an morphism of algebras b : H(G°(K),Kg) — H(H(K),Ky), called
base change morphism. The following theorem, known under the name of
“fundamental lemma for base change”, is due to Kottwitz (for the unit ele-
ment of H(G%(K),Kg)), Clozel and Labesse (for the other elements).

Theorem 8.3.8 ([K6], [Cl3], [Lal], [La3] 3.7) Let f € H(G"(K),Kg).
Then b(f) is a transfer of f to H.

Let us write down explicit formulas for the base change morphism in the
case of unitary groups. Let H = G(U*(ny) x -+ x U*(n,)), E be the
imaginary quadratic extension of Q used to define H and p be a prime
number that is unramified in E. The groups G° and H have obvious Z,-
models (cf remark 2.1.1), and we take K¢ = G°(Z,) and Ky = H(Z,). Use
the notations of chapter 4.

If p is inert in F, the base change morphism is calculated in section 4.2
(with L = E, and G = H).

Assume that p splits in E. Then G(%p ~ Hg, x Hg,, and, for every

g=(g1,92) € G*(Q,) = H(Q,) x H(Q,), g192 € Ng. To simplify notations,
we assume that 7 = 1. Then there is an isomorphism (defined in 4.2)

HH(Q,),Kp) ~ CIXF @ CIXT, ... X5
So there is an obvious isomorphism
H(G’(Q,),Ke) ~ CIZF|®C[ZT,. .., Z11|®"ClZ |9 C 2Ty, . .., ZEy®n,
and the base change morphism is induced by
Z; — X, Zij — X;.

In particular, the base change morphism is surjective if p splits in E. If p
is inert in E, then the image of the base change morphism is given in remark
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4.2.2; in particular, the base change morphism is surjective if and only if one
of the n; is odd.

The following lemma will be useful in the applications of the next sec-
tion. We assume again that H is any connected unramified group on a
non-archimedean local field K and that the extension F/K is unramified,
and we choose hyperspecial maximal compact subgroups Ky and Kg of
H(K) and G°(K) as before.

Lemma 8.3.9 Let m be a 0-stable admissible irreducible representation of
GY(K) and A, be a normalized intertwining operator on w. Let € be an
element of {£1} such that A, acts on 7%¢ by multiplication by ¢ (such
a € exists because A, stabilizes 7%¢ and dim m¥¢ < 1). Then, for every
Ie H(GO(K)7 KG)’

Tr(7(f)Ax) = e Tr(n(f))-

8.4 APPLICATIONS

Notations here are slightly different from the ones used in 8.3. Let H =
G(U(p1,q1) x -+ x U(py,q)) (this group is defined in 2.1), H* be a quasi-
split inner form of H (so H* = G(U*(ny) x---xU*(n,)), where n; = p;+¢;),
FE be the imaginary quadratic extension of (Q that was used in the definition
of H. Set G = R /gH},. Of course, G ~ Ry /oHp.

If V is an irreducible algebraic representation of H, let ¢y be a twisted
pseudo-coefficient of the f-discrete representation 7y of GO(R) associated to
©|\we, Where ¢ @ Wg — LH is a Langlands parameter of the L-packet of
the discrete series of H(R) associated to V.

Let M be the set of conjugacy classes of Levi subsets M of G such that,
for every i € {1,...,r}, M’N Rg/gGLy, g is equal to Rp/gGLy, g or to a
maximal Levi subgroup of RE/QGLTH’E. Let M € M. Then there exist
non-negative integers n",ny,...,n;, n- such that, for every i € {1,...,r},
n; =n} +n; and M°N Rp,qGL,, g = Rg /@GL,+ 5 X Rp/qGL, - . Let
Mg be the set of M € Mg such that we can choose the nj,ni_ so that
ny +---+n;, is even. If M is in Mg and the n;",n; are as above, then we
may assume that ny +---+n, is even; let (Has, Sa,,, Mr,,,0) be the elliptic
endoscopic datum for H defined by the n;r, n; as in proposition 2.3.1, and
NH, be a L-morphism extending ng,, o as in proposition 2.3.2. This defines
a bijection between Mg and the set &g of 7.2.

Let M € Mg. Let £ : 'H = 'H* — GO be the L-morphism defined in
example 8.1.1; as M = Rg,oHwn e, we get in the same way a L-morphism
v THy — MO, Let na be the morphism

IMO ~ (Hy x Hy) x Wy — LG~ (H x H) x Wy
((h17h2)7w) U ((77HM,1(h1aw)anHM-,l(thw))vw)a

where ng,, 1 : LHy — H is the first component of ng,,. It is clear that
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N is a L-morphism that makes the following diagram commute :

NH
Hy ——'H

ok

LMO W) LGO

Note that the embedding M — G induced by nar is Wo-equivariant. Let
MM, simple LMO — LGY be the obvious L-morphism extending this embed-
ding (ie the one that is equal to identity on Wg). Write na = ey, simples
where ¢y : W — Z (ﬁo) is a 1-cocycle, and let x s be the quasi-character
of MP(A) associated to the class of ¢y in H'(Wg, Z(MO). (In general, x s
can be non-trivial.)

Let S be a set of places of Q. Write Ag = [['Q, and A® = [[ Q,. We

vES vgS
say that a function fg € C°(H(Ag)) satisfies condition (H) if, for every
M € Mg, there exists a transfer fglM of fs to Hjs and a function ¢g s €
O (MP(Ag)) such that the functions ¢ ar and f& are associated at every
place in S.

The next lemma gives examples of functions that satisfy condition (H).
For every place v of Q, we say that a semi-simple element v € H(Q,) is a
norm if there exists ¢ € G°(Q,) such that v € Ng (this condition makes
sense because Ng is a stable conjugacy class in H*(Q,) and H is an inner
form of H*).

Lemma 8.4.1 Let v be a finite place of Q.

(i) Every function in C2°(H(Q,)) with support in a small enough neigh-
bourhood of 1 satisfies condition (H).

(ii)) Assume that H is quasi-split over Q,, (but not necessarily unramified).
Then, for every ¢ € C*°(GY(Q,)) with support in a small enough
neighbourhood of 1, there exists f € C3°(H(Q,)) associated to ¢ and
satisfying condition (H).

(iii) Assume that v is unramified in E (so Hg, = Hp is unramified). Let
M € M. Then the commutative diagram

NH pr
LHM — Ly

EMi lf
L\O L0
M=~ 2 G
gives a commutative diagram

H(G"(Qv), G*(Zy)) HH(Qy), H(Zy))

| |

XM,UH(MO(Qv)a M° (Zv)) —> Xnm,, ,UH(HM (QU)7 Hy (Zv))
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(where Xy, v is defined as in the last two subsections of 4.2), satis-
fying the following properties :

- the upper horizontal arrow is the base change map;

- the lower horizontal arrow sends a function X ,v¢., With ¢, €
H(M®(Q,), M°(Z,)), to the function Xy, v fv, where f, € H(Hp (Q,), Har(Zy))
is the image of ¢, by the base change map;

- the left vertical arrow sends a function in H(G°(Q,), G°(Z,)) to
the product of its constant term at M and of XM,v;

- the right vertical arrow is the transfer map defined by ng,, as in
4.2.

In particular, every function in the image of the base change mor-
phism H(G®(Q,), G (Z,)) — H(H(Q,),H(Z,)) satisfies condi-
tion (H).

(iv) Ifv is unramified in E and one of the n; is odd, then every function
in C*(H(Q,)) satisfies condition (H).

Proof. Point (iii) is immediate (because the fundamental lemma is known,
cf 5.3). Point (iv) is a direct consequence of lemma 8.3.7.

We show (i). For every M € Mg, there is a H*(Q)-conjugacy class of
embeddings Hjy; — H*; fix an embedding in this class. Identify Hgp and
H% with G, g X GL,,, g X - - X GL,,, g using the morphism defined in the
beginning of 2.3. Let M € M. There exists an open neighbourhood Uj of
1in H)/(Q,) such that every semi-simple element in Uj; is a norm. Choose
an open neighbourhood Vs of 1 in H*(F ®g Q,) = H(E ®¢g Q,) such that
every semi-simple element of Hj,(Q,) that is H*(E ®g Q,)-conjugate to an
element of Vi is Hjs(Q,)-conjugate to an element of Uy (cf lemma 8.4.2
below).

Let V.= (| Viyand U=V NH(Q,). Then U is an open neighbour-

MeMea

hood of 1 in H(Q,). Let f € C°(H(Q,)) with support contained in U. We
show that f satisfies condition (H). For every M € Mg, choose a transfer
fHM of f to Hy. To show that there exists a function in C°(M%(Q,))
associated to fH it is enough, by proposition 3.3.2 of [La3], to show that,
for every semi-simple v € Hp(Q,), SO, (f¥) = 0 if v is not a norm. Let
v € Huy(Q,) be semi-simple and such that SO, (f#) # 0. Then, by the
definition of the transfer, there exists an image J of v in H(Q,) such that
Os(f) # 0. In other words, v is H*(E ®g Q,)-conjugate to an element of U.
As U C V), this implies that v is Hps(Q,)-conjugate to an element of Uy,
hence that v is conjugate to a norm, ie that ~ is itself a norm.

We show (ii). By (i), it is enough to check that, if U is a neighbourhood
of 1 in H(Q,), then there exists a neighbourhood V of 1 in G°(Q,) such
that every function ¢ € C°(G°(Q,)) with support contained in V admits
a transfer f € C°(H(Q,)) with support contained in U. This follows from
the proof of theorem 3.3.1 of [La3].
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Lemma 8.4.2 Let F' be a local field of characteristic 0, E be a finite exten-
sion of F' and H be a connected reductive group on F'. Set G = Rg,rHg.
Let M be a Levi subgroup of G. Assume that there exists a connected
reductive group Hyy on F' such that M = Rp,rHy R (Hj/ is not neces-
sarily a subgroup of H). Let U be a neighbourhood of 1 in Hp/(F). Then
there exists a neighbourhood V' of 1 in G(F) such that : for every semi-
simple v € Hp (F), if v is G(F)-conjugate to an element of V', then + is
H,(F')-conjugate to an element of U.

Proof. Let (Sq,...,S,) be a system of representatives of the set of H (F')-
conjugacy classes of maximal tori of Hy, (this set is finite because the
characteristic of F' is 0). For every i € {1,...,r}, set T; = Rp,pS; and
U, = UNS;(F), and choose a neighbourhood W; of 1 in T;(F) = S;(E) such
that W; N S;(F) C U;. Let i € {1,...,r}. Then T; is a maximal torus of
M, hence of G, so, by lemme 3.1.2 of [La3], there exists a neighbourhood V;
of 1 in G(F) such that, if an element ¢t € T;(F') has a conjugate in V;, then
teW;. Set V=V.

i=1

Let v € Hp(F') be semi-simple and G(F')-conjugate to an element of V.
As 7y is semi-simple, there exists a maximal torus of Hj,; containing -y, so
we may assume that there exists ¢ € {1,...,7} such that v € S;(F). In
particular, v € T;(F). As v is G(F')-conjugate to an element of V;, v € W.
But W; NS, (F) C U, so that v € U; C U.

O

We come back to the situation of the beginning of this section. Fix a
prime number p that is unramified in F, a neat open compact subgroup
K =KPH(Z,) (with KP C H(A%)) of H(Ay), an irreducible algebraic repre-
sentation V' of H and a function fP:*° € H(H(A?),Kp). Assume that [P
satisfies condition (H).

Let M € Mg, and define, for every j € Z, a function gb(]) ol OOQS(]),pqSM,oo €
C>(MP(A)), compactly supported modulo A ;0 (R)?, in the following way.
Choose ¢~ € C‘X’(MO(AP)) that is associated at every place to a trans-
fer (fP> )HM of fP* to Hjys. The calculations of 4.2 and (iii) of lemma
8.4.1 show that the function fyy (J ) deﬁned in definition 7.1.6 is the prod-
uct of Xy, p and of a spherical functlon in the image of the base change map

(MO(Qp)aMO(Zp)) — HMHM(Qp),Hy(Zp)). Take (bMp € H(MO(Qp)»MO(Zp))
to be xamp@’, where ¢ is any spherical function in the inverse image of

X;}}M pfg])w p by the base change map. To define ¢, use the notations

introduced before and in lemma 7.3.4. Lemma 7.3.4 gives an irreducible
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algebraic representation V,, of Hys for every w € Q, ~ ®p(p). Take

PM 00 = Z det(w)ov,

weN,

where det(w) is defined in remark 3.3.2 and ¢y - is defined at the beginning
of this section.
Let
T(HM) _
cyp = (—1)q(H)L(H,H]\/j)C]\/[Wk(M) 1 < WH,SH > QX,
where pg is the cocharacter of Hg determined by the Shimura datum as in
2.1 and C); € R* is the constant of proposition 8.3.1 for M.

Theorem 8.4.3 For every j € Z,

Te(f7>°®], RU(M® (H, X)5, IC¥Vg)) = >~ en T (4)),
MeMa
where (H, X) is the Shimura datum of 2.1 and ®,, is defined in 7.3.

Proof. The theorem is an easy consequence of corollary 6.3.2 (and remark
7.2.4), lemma 7.3.4 and proposition 8.3.1 (see also remark 1.3.2 for the choice

of p).
]

It is possible to deduce from theorem 8.4.3 and proposition 8.2.3 an ex-
pression for the logarithm of the L-function (at a good prime number) of the
intersection complex ICXV, if K is a small enough open compact subgroup
of G(Af)

Remember that we defined in 2.1 a morphism pg : Gy, g — Hg. The
formula for ppy is :

Gm,E — HE = Gm,E X GL7L1,E' X X GLnT,E

L 2, 0 zl, 0
s e L) (e L)

For every M € Mg, let Myg,, be the set of Hys(FE)-conjugacy classes of
cocharacters jip,, : Gy, g — Hjz g such that the cocharacter G, g e
Hy g — Hg is H(E)-conjugate to pg. Let M € M. Write as before
H]\/[’E = Gm,E X GLni",E X GLnl_,E X X GLn;*',E X GLnr_,E' Then every

element pyr,, of My, has a unique representative of the form

zI + 0 zI -~ 0 zI v+ 0 zI - 0
Py Py Pr Pr
z (Z7< 0 I+>7< 0 I))?( 0 I+)’( 0 I))?
9, qy qr qr

with p” +p; = p;. Write s(um,,) =py + -+ p; and d(pm,) = pia +
pray +--+pfa +prgr . Let d = d(un) = pigy + -+ + prgr (d is the
dimension of M¥(H, X), for every open compact subgroup K of H(A})).
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Remember that every cocharacter pg,, : Gn g — Hy g defines a rep-
resentation r_,, —of LHy g (cf lemma 4.1.1).

We recall the definition of the L-function at a good p of the intersection
complex.

Definition 8.4.4 Let p a prime number as in 1.3, and let p be a place of
E above p. Set

1
K _ —ms mx K * Ky,
log Ly, (s, ICV) = Z>1 —(Np)™"™ Ta(®(", RD(M™ (G, X) g, IC"Vy)),
where @, € Wg, is a lift of the geometric Frobenius, Np = #(Og,, /), and
s € C (the series converges for Re(s) >> 0).

Corollary 8.4.5 Let K be a small enough open compact subgroup of H(Ay).
Then there exist functions ¢p; € C°°(MP(A)) with compact support modulo
A0 (R)Y, for every M € Mg, such that, for every prime number p as in 1.3
(ie such that p is unramified in E and K = K?G(Z,,)) and for every place p
of E above p,

log L (s, ICXV) = Z CMZ Z alle ()

MeMg 120 7 €Ml gise (M, t)

d
Tr(mar (da1) Ay, ) Z (_1>S(NHA{)10ngJ(S_ 57(7TM®XM)KJ,TLNHM),

By €Muy,

where, for every M € M¢ and myr € Hgise(M,t), (T ® Xar) Is the local
component at @ of Tp ® X, seen as a representation of Hy(Ag).

Proof. By lemma 8.4.1, if K is a small enough open compact subgroup
of H(Ay), then the function 1k satisfies condition (H). Fix such a K, and
assume also that K is neat. Let S be a finite set of prime numbers containing
the set of prime numbers that are ramified in F and such that K = KgK?5,

with Ks¢ € H(Ag) and K = [[ H(Z,). For every M € Mg, choose a
pES
transfer f&* of Ik, to Hys and a function ¢prs € C°(MO9(Ag)) associated

to 4, and wiite 6%, = Xarpporag g, where Ky =TT MO(Z,), and

PES
Or = dursPh
Let p ¢ S and j € N*. We want to define, for every pm,, € Mu,,, a

function ¢,(f21M » € HIM®(Q,), M°(Z,)). Remember that we fixed a place p
of £ above p. Let L be the unramified extension of E, of degree j in Q,.

For every up,, € Mu,,, let d)ﬁf},M@ be the product of (N g)I(@=d(tuy))/2

and of the image of the function f,,,, . in H(M°(L),M°(OL)) (defined by
par,z as in 4.1) by the morphism

H(Ha (L), Hy(Or) — H(Hy (B), Hy(Op,)) — HM’(Qp), M°(Zy)),
where the first arrow is the base change morphism and the second arrow is
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- identity if p is inert in E (so M°(Q,) = Hy(E,,));

- the morphism h +—— (h, 1y, (0, ,)) if p splits in E and @' is the second
©
place of E above p (so M°(Q,) = Huy (E,) x Hy(E)).

Let 7, be an unramified f-stable representation of M%(Q,) and ¢, :
Wq, — “MY be a Langlands parameter of m,. As 7, is f-stable, we may
assume that ¢, factors through the image of LH MQ, — LM&p. Let ¢,
be the morphism Wg, — LHyy,, E, deduced from @, . If pis inert in E,
then Hy/(E,) = M°(Q,), and ¢,, is a Langlands parameter of m,, seen as
a representation of Hys(E). If p splits in E and ¢’ is the second place of
E above p, then M°(Q,) = Hy(E,) x Hy(Ey ), so m, = m ® 7/, where
7 (resp. 7') is an unramified representation of Hys(E,) (resp. Has(Er)).
The morphism ¢, is a Langlands parameter of 7. By theorem 4.1.2 and
lemma 8.3.9, if A, is a normalized intertwining operator on 7, then

Te(mp(S51),, p)Ar,) = (NO) 2 Te(r_ 0 00(@2)) Tr(mp(Iaroz,)) Ar, ).
Set
Wp= D (uemden
HeH €My,
The calculations of 4.2 and (iii) of lemma 8.4.1 imply that the function
x;,;M 7pf§{il » € H(Hm(Qp), Har(Zy)) is the image by the base change map
of the function ¢5&)’; (as before, f I(;L p 18 the function of definition 7.1.6). So
we can take qﬁg\ﬁp = XM,qug\JZ;, in theorem 8.4.3, and the corollary follows

from this theorem and from proposition 8.2.3.
O

Another application of theorem 8.4.3 is the next corollary. In this corollary,
E is still an imaginary quadratic extension of Q. Fix n € N* and let
6 be the involution (X, g) — (A\,A'g!) of Rg/g(Gm,p X GLy,g) (where
(A, g) = (), 9) is the action of the non-trivial element of Gal(E/Q)). Then
6 defines an involution of C* x GL,(C) = (Rg/q(Gm,r X GL, £))(R). The
morphism 6 is the involution induced by the non-trivial element of Gal(E/Q),
if Gy, g X GL,, g is identified to GU(n)g. If p is a finite unramified place

of E and 7, is an unramified representation of GU(n)(E,,), let log L(s, my,)
2
(resp. log L(s, Ty, \)) be the logarithm of the L-function of m, and of the
2 —
representation idex ® st (resp. idex ® A st) of GU(n) = C* x GL,(C),
where st is the standard representation of GL,,(C).

Corollary 8.4.6 Let m be a 6-stable cuspidal automorphic representation
of A}, x GL, (Ag) such that m is tempered (where oo is the unique infinite
place of E). Assume that there exists an irreducible algebraic representation
V of GU(n) such that ep(0, 7o, ® W) # 0, where W is the §-stable repre-
sentation of C* x GL,,(C) associated to V (cf theorem 8.1.5). Let m be the
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weight of V' in the sense of 1.3 (ie, the relative integer such that the central
subgroup G,, of GU(n) acts on V' by x — a™). Let S be the union of
the set of prime numbers that ramify in E and of the set of prime numbers
under finite places of E where mw is ramified. Then there exists a number
field K, a positive integer N and, for every finite place \ of K, a continuous
finite-dimensional representation o of Gal(Q/E) with coefficients in Ky,
such that :

(i) The representation o is unramified outside of S U {{}, where { is
the prime number under X\, pure of weight —m + 1 — n if n is not
dividible by 4 and mixed with weights between —m +2(2 —n) — 1 and
—m+2(2 —n) + 1 if n is dividible by 4. If n is dividible by 4 and the
highest weight of V' is regular, then o is pure of weight —m+2(2—n).

(ii) For every place p of E above a prime number p ¢ S, for every finite
place A fp of K,

log Ly, (s,00) = Nlog L(s + %,ﬂ@)
if n is not dividible by 4, and
2

log L,(s,0x) = Nlog L(s + (n — 2), 7, /\)

if n is dividible by 4 (where 7, is the local component at p of 7, seen
as a representation of GU(n)(Ag)).

Proof. We can, without changing the properties of m, replace € by its
product with an inner automorphism of Rg/q(Gm, g X GLy g). So we may

(and will) assume that 0(X, g) = (A, AJp,.q,"g ' J,. Y, ), where p1, 1 € N* are
such that p1 + ¢1 = n and Jp, 4, € GL,,(Z) is the matrix (defined in 2.1) of
the Hermitian form that gives the group GU(p1, ¢1).

Write as before H = GU(py, 1) and G° = Rg/gHp. Then G° =
RE/9Gm,e X RE/gGLy,, g, and the involution ¢ of GO defined above is equal
to the involution induced by the non-trivial element of Gal(E/Q). Assume
that the group H is quasi-split (but not necessarily unramified) at every
finite place of Q. As ep(0, oo ® W) # 0 and 7, is tempered, remark 8.1.6
and theorem 8.1.5 imply that 7., = my«, where my« is the #-discrete repre-
sentation of G°(R) associated to V* as in lemma 8.1.10.

Let Ks C G°(Ag) be an open compact subgroup such that Tr(mg(lkg)Arg) #
0 (where A, is any intertwining operator on 7g). By lemma 8.4.1, by tak-
ing Kg small enough, we may assume that there exists a function fg €
C*(H(Ag)) associated to ¢g := Ik, and satisfying condition (H). For ev-
ery M € Mg, fix a transfer ng of fs to Hy and a function ¢urg €
O (MP(Ag)) associated to 5. Ifp & S, M € Mg and ¢, € H(G°(Q,), G*(Z,)),
let b(¢) € H(H(Q,), H(Zy)), b(¢p)"™ € H(H(Qp), Har(Zy)) and b,y €
H(M°(Q,), M°(Z,)) be the functions obtained from ¢, by following the ar-
rows of the commutative diagram of point (iii) of lemma 8.4.1. Finally,
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for every M € Mg, define a function ¢pr0o € C°(M°(R)) from V as in
theorem 8.4.3.
Let Ky, C H(Ag) be an open compact subgroup small enough for fg to
be bi-invariant under Kz 5. Set Ky = K s [[ H(Z,); then Ky is an open
PES
compact subgroup of H(Ay), and we may assume (by making K, ¢ smaller)

that Ky is neat. Then the results of 1.7 apply to H, Ky and every p &€ S.
In the beginning of 7.2, we explained how to get a number field K and, for
every finite place A of K, a virtual finite-dimensional A-adic representation
W) of Gal(Q/E) x H(H(A¢),Kp) (the cohomology of the complex IC¥# V)
such that there is a decomposition

W = @ Wilrns) ® 7',
7TH,f
where the direct sum is taken over the set of isomorphism classes of irre-
ducible admissible representations mg ; of H(Af) such that ﬂgfjc # 0, and

the Wy (mp,¢) are virtual A-adic representations of Gal(Q/E).

Let IIg(7y) be the set of isomorphism classes of irreducible admissible
representations 7y r of H(Ay) such that ﬂgf; # 0 (so mg, s is unramified
outside of ), that Wx(mp,s) # 0 and that, for every p & S, if g, :
Wg, — “Hyg, is a Langlands parameter of 7, then the composition of
¢y, and of the inclusion “Hg, — “G¢, (defined in example 8.1.1) is a
Langlands parameter of 7.

By the multiplicity 1 theorem of Piatetski-Shapiro, mgis.(m) = 1. So
there is a normalized intertwining operator on 7 such that mj{isc(w) =1
and my; .(m) = 0; denote this intertwining operator by A.. Let as before
ww : Gn,g — Hg be the cocharacter defined by the Shimura datum, r_,,,,
be the representation of “Hg determined by —pug (cf 4.1) and d = p1q;. Set
¢ = ¢s [] 1goz,) and f* = fs [] 1u(z,). Let p be a finite place of E

pgS pgS
above a prime number p ¢ S. Let 7, be the local component at o of 7 (seen

as a representation of H(Ag)) and ¢, : Wg, — LHEW be a Langlands
parameter of m,. We are going to show that, for every finite place A fp of
K and for every j € Z,

ca(NO)V 2 Te(r_,000(B)) Tr(mp(0)Ax) = > Te(mm,p(f)) Te(®, Wa(mm,g)),

mH, fE€Nn ()
(%)

where @, € W, is a lift of the geometric Frobenius. It suffices to show this
equality for j > 0.
Let A be a finite place of K such that A\ Jp. Let j € N*. Define a function
1(,3) € H(G°(Q,), G%(Z,)) using g and j, as in the proof of corollary 8.4.5.
We recall the definition. Let L be an unramified extension of F, of degree j.
Then d),(f) is the image of the function f,, r € H(H(L),H(OL)) determined
by wpg as in 4.1 by the morphism
H(H(L),H(Or)) — H(H(Ey),H(Og,)) — H(G(Q,), G*(Z,)),
where the first arrow is the base change morphism and the second arrow is
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- identity if p is inert in E (so G°(Q,) = H(E,));

- the morphism h —— (h, lg(o, ,)) if p splits in E and ¢’ is the second
©
place of E above p (so G°(Q,) = H(E,) x H(E,)).

Then b(gbz(f)) is the function fg,, defined after theorem 6.2.1. Moreover, by
theorem 4.1.2 and lemma 8.3.9, if 7, is the local component at p of 7 (seen
as a representation of GY(A)) and A, is a normalized intertwining operator
on mp,, then :

Tr(mp () Ar,) = (N)? Y2 Tr(r_ ., 0 9o (®0)) Tr(mp(1go(z,) ) Ar, )
Let M € Mg. Let Ry be the set of mps € Igisc(M,t), with ¢ > 0, such
that :

(i) mar ® xar is unramified at every finite place v € S;
(i) afisc(mar) # 0;

(111) Tr(WNI,S(¢M,S)AﬂA1) 7é 0 and Tr(TrM,oo(QbM,oo)A‘er) 7£ 0 (Where Aﬂ'M
is a normalized intertwining operator on mys);

(iv) if M = G, then mys % 7.

Then R), is finite.
Let Ry be the set of isomorphism classes of irreducible admissible repre-
sentations g,y of H(Af) such that :

(i) w5 #0;
(i) 7m,p & Uu(m);
(iii) Wi(mm,r) # 0.

Then Ry is also finite.

By the strong multiplicity 1 theorem of Jacquet-Shalika for G (cf theorem
4.4 of [JS]) and corollary 8.5.3 (cf also remark 8.5.4), there exists a function
goutrt ¢ H(GO(A?U{]D})7 Kgu{p}) (where Kgu{p} = JI G%%Z,)) such

vgSu{p}
that :

o Tr(rSUir} (gSUPh A ) = Tr(nSUPH (¢SVIPHA) = 1,
o for every my s € Ry, Te(mp {71 (b(g5“1)))) = 0 (where b(g5U(}) €
H(H(A?U{p}), Kf{U{p}) is the base change of gSU{r});

o forevery mp ¢ € g (r), Te(rp 17} (b(gSV ) = Ta(mpr, SV} (£501RY))
(this actually follows from the first condition and from the fundamental
lemma for base change);

o for every M € Mg, every mys € Rps and every normalized intertwining
operator A,, on Ty, Tr(ﬂjsvf{p}(g}\g/fu{p})AﬂM) = 0 (where gf/[u{p} is the
function obtained from gS“{?} by following the left vertical arrow in the
diagram of (iii) of lemma 8.4.1).
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Then

Te(my (656590 09) Ay) = T (s (67) An ) (Np) /2 Te(r_y, 0 9 (89)),
and, by theorem 8.4.3 (and the fact that Tr(7eo (pg,00)) = 1),

ce Tr(mp(ps® 1Pl Ar) = Z Tr(®),x fs f 5P gz, ), Wa(mm,p)@mgh).

wH,f €p(my)

This proves equality (x).

Remember that we wanted the group GU(p1, ¢1) to be quasi-split at every
finite place of Q. We use here the calculations of the Galois cohomology of
unitary groups of section 2 of [C15]. If n is odd, these calculations imply that
the group GU(p1, q1) is quasi-split at every finite place of Q for any p; and
q1. Take p1 =1 and ¢; = n — 1. Now assume that n is even. If n/2 is odd,
take py = 1 and ¢ =n — 1. If n/2 is even, take p; =2 and ¢y = n — 2. We
check that, with these choices, GU(p1, ¢1) is indeed quasi-split at every finite
place of Q. Let D be the discriminant of E. Let ¢ be a prime number. If ¢
does not divide D, then GU(p1, ¢1) is unramified at ¢ (so, in particular, it is
quasi-split). Assume that ¢ divides D. Then the cohomological invariant of
GU(p1,¢1) at ¢ is 0 if —1 is a norm in Qg, and ¢; +n/2 mod 2 otherwise.
But, by the choice of g1, g1 +n/2 is always even, so GU(p1, q1) is quasi-split
at q.

In the rest of proof, take p; and ¢; as in the discussion above. Note that
d=n—11if n is not dividible by 4, and d = 2(n — 2) if n is dividible by 4.

We now apply lemma 7.3.2. As H splits over E, the representation r_,,,,
of THy = H x W determined by the cocharacter ug of Hg is trivial on Wg.
Let st¥ be the contragredient of the standard representation of GL,,(C) and
X be the character z — z~! of C*. By lemma 7.3.2, the restriction of r_,,,

2
to H=C* x GL,(C) is x ® stV if n is not dividible by 4, and y ® A stV if
n is dividible by 4.

Let o be a finite place of E above a prime number p € S, and A [p be a
finite place of K. Fix a Langlands parameter (z, (21,...,2,)) of m, in the
maximal torus C* x (C*)™ of H=C* x GL,(C). By reasoning as in the
beginning of the proof of theorem 7.3.1 (or by applying corollary 8.5.3 and
theorem 7.3.1), we see that log ., 2| € 7. For every my, 5 € Iy (my), let a;,
i € Ir, ;, be the eigenvalues of @, acting on Wx(7g s), n; € Z, i € I
be their multiplicities, and

by, = cg' Te(mp(¢™) Ar) ™" Tr(mm ¢ ()
(b,,wa does not depend on p). By equality (x), for every j € Z :

(Np)dj/szj Z Hzfj = Z [ Z niag, ()

JCA{1l,....n} leJ II el
i € 7, p €l (7 y) 1€l s

H,f?

where k = 1 if n is not dividible by 4, and k = 2 if n is dividible by 4. So
there exists a positive integer N (independent from @) such that Ni, . :=



main April 10, 2009

THE TWISTED TRACE FORMULA 153

Nbry, , € Z, for every mp,y € Uy (my). Moreover, for every my y € Iy (my)

and i € I, ., the product Ny, .n; is positive. In particular,

gy = @ N.,rHnyA(WHyf)v

mH, €L (my)

is a real representation of Gal(Q/E) (and not just a virtual representation).
Then equality (*x) becomes : for every finite place p of E above a prime
number p € S, if A [p, then, for every j € Z,

k
N(Ngp) 7 Tr((idex @ J\ st)(0p(®1)) = Tr(®7,,0),

where k is as before equal to 1 if n is not dividible by 4, and to 2 if n
is dividible by 4. This is point (ii) of the lemma (as GU(n) is an inner
form of GU(p1,q1), we can see ¢, as the Langlands parameter of the local
component at g of 7, seen as a representation of GU(n)(Ag)).

It remains to determine the weight of o). As the algebraic representation
V of GU(n) is pure of weight m in the sense of 1.3, the complex ICXV is
pure of weight —m. Let

2d
Wi = Z(—l)iwi
i=0
be the decomposition of W)y according to cohomology degree. For every
irreducible admissible representation g s of H(A) such that W;{I?f # 0,
there is a decomposition

2d

Wa(rag) =Y (1) Wi(ru.p),
=0

and the representation Wi(rg ¢) of Gal(Q/E) is pure of weight —m +1i— 2d.

Remember that (2, (21, ..., 2,)) is the Langlands parameter of 7,. Assume
first that n is not dividible by 4. Then equality (+x) implies that log ., |2:| €
%Z for every i € {1,...,n} (because the a; and z satisfy the same property).
But we know that —4™ < logn,, |2i] < 152 for every i € {1,...,n} (cf
[Cl4] lemma 4.10; note that the conditions on 7, imply that 7 is algebraic
regular in the sense of [Cl4], and that Clozel uses a different normalization of
the Langlands parameter at ), so logy,, |2i| = —% for every i. This implies
that, if mg ; € Iy (ny), then W(wg ¢) = 0 for every i # d. Hence oy is
pure of weight —-m —d=-m+1—n.

Assume now that n is dividible by 4. Equality (**) implies only that

10gy,, |zi| € $Z. As before, we know that the logy,, |z are in | — 152 150,
so log, |z € {42, -2, 152} for every i € {1,...,n}. Applying (s*)

again, we see that the only Wi(wH’f) that can appear in o) are those with
d—1<1i<d+ 1. This proves the bounds on the weights of o). Assume
that the highest weight of V is regular. Then, by lemma 7.3.5, W% = 0 if
i #d, so oy is of weight —m —d = —m + 2(2 — n).
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To formulate the last two corollaries, we will use the following definition
of Clozel :

Definition 8.4.7 (cf [Cl4] 1.2.3 or [CI5] 3.1) Let m be a cuspidal automor-
phic representation of GL,,(A) (resp. GL,(Ag), where E is an imaginary
quadratic extension of Q). Then 7 is called algebraic if there exist a Lang-
lands parameter ¢ : W — GL,(C) (resp. ¢ : Wg — GL,(C)) of 7
and p1,...,Pn,q1,---,qn € Z such that, for every z € W = C*,

ZP1+%EQ1+TLT71 0
p(z) =
0 ZPnﬁL%E%H“nTil
We may assume that p; > --- > p,. The representation 7 is called reqular

algebraic if p1 > -+ > py,.

If 7 is regular algebraic, then there is an algebraic representation W of
GL, (resp. Rg;9GL,, g) associated to 7 as in [Cl4] 3.5 and [CI5] 3.2 : the
highest weight of W is (p1,p2+1,...,pn+(n—1)) (resp. ((p1,p2+1,...,pn+
(n—1),(qn,gn-1+1,...,q1 + (n —1)))). We say that = is very regular if
the highest weight of W is regular.

We summarize a few results of Clozel about regular algebraic representa-
tions in the next lemma.

Lemma 8.4.8 Let E be an imaginary quadratic extension of Q. Let G° =
GLn or RE/QGLnE

(i) Let 7 be a cuspidal automorphic representation of G°(A). Then the
following conditions are equivalent :

(a) m is regular algebraic.

(b) The infinitesimal character of T, is that of an algebraic repre-
sentation of G°.

(c) There exists an algebraic representation W of G° and a charac-
ter ¢ of G°(R) of order 2 such that such that H*(g,K/_; &(mo ®
W*)) # 0, where g = Lie(G°(C)) and K’ is the set of fixed
points of a Cartan involution of G°(R).

Moreover, if 7 is regular algebraic, then 7., is essentially tempered.

(ii) Assume that G° = Rp/qGLy, . Let 0 be the involution of G° defined
by g — G~ '. Let 7 be a #-stable cuspidal automorphic representation
of GY(A). Then the following conditions are equivalent :

(a) 7 is regular algebraic.
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(b) There exists a O-stable algebraic representation W of G° such
that ep(0, moo @ W*) # 0 (where ep(0, .) is defined before theorem
8.1.5).

Moreover, if 7 is regular algebraic, then 7, is tempered.

Proof.

(i)

The equivalence of (a) and (b) is obvious from the definition, and
(c) implies (b) by Wigner’s lemma. The fact that (a) implies (c) is
lemma 3.14 of [C14] (cf also proposition 3.5 of [C15] for the case G? =
Rp/gGLy, k). The last sentence of (i) is lemma 4.19 of [Cl4].

It is obvious (by Wigner’s lemma and (i)) that (b) implies (a). The
fact that (a) implies (b) is proved in proposition 3.5 of [Cl5]. The
last sentence is a remark made at the beginning of 3.2 of [CI5] : if
7 is regular algebraic, then 7, is essentially tempered; as it is also
f-stable, it must be tempered.

O

As in the lemma above, denote by 6 the automorphism g — tg~! of

Corollary 8.4.9 Let m be a 6-stable cuspidal automorphic representation
of GL,,(Ag) that is regular algebraic. Let S be the union of the set of prime
numbers that ramify in E and of the set of prime numbers under finite places

of F

where 7 is ramified. Then there exists a number field K, a positive

integer N and, for every finite place A of K, a continuous finite-dimensional
representation oy of Gal(Q/E) with coefficients in K, such that :

(i)

(if)

The representation oy is unramified outside of S U {{}, where { is the
prime number under A, pure of weight 1 — n if n is not dividible by 4
and mixed with weights between 2(2 —n) — 1 and 2(2 —n) + 1 if n is
dividible by 4. If n is dividible by 4 and w is very regular, then oy is
pure of weight 2(2 — n).

For every place p of E above a prime number p & S, for every finite
place A fp of K,
n—1
log L,(s,00) = Nlog L(s + TJT‘O)

if n is not dividible by 4, and
2
log Ly (s,0) = Nlog L(s + (n — 2), 7y, /\)

if n is dividible by 4 (where w, is the local component at o of 7, seen
as a representation of U(n)(Ag)).
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(The first L-function is the one associated to the standard representation

of GL,,(C) = U(n), and the second L-function is the one associated to the
exterior square of the standard representation.)

Proof. Tt is enough to show that there exists a character x : Ag/E* —
C* such that y ® 7 satisfies the conditions of corollary 8.4.6, with V of
weight 0. This follows from lemma VI.2.10 of [HT].

|

Using the base change of Arthur and Clozel ([AC]), it is possible to deduce
from the last corollary results about self-dual automorphic representations
of GL,(A). Here, we will treat only the case n odd (which is simpler); in the
general case, the next corollary would not hold for all quadratic imaginary
extensions F.

Corollary 8.4.10 Assume that n is odd. Let 7 be a self-dual cuspidal auto-
morphic representation of GL,,(A), and assume that 7 is regular algebraic.
Let E be a quadratic imaginary extension of Q. Write S for the union of the
set of prime numbers that ramify in E and the set of prime numbers where T
is ramified. Then there exist a number field K, a positive integer N and, for
every finite place A of K, a (continuous finite-dimensional) representation
oy of Gal(Q/E) with coefficients in K, such that :

i e representations o) are unramified outside of S and pure of weig
i) th tati ified outside of S and f weight
1—n;

(ii) for every finite place p of E above a prime number p ¢ S, for every
finite place A [p of K, for every j € Z,

Tr(0x(®],)) = N(Np)’ "D/ Te(pr, (),

where ¢, : Wg, — GL,(C) is a Langlands parameter of 7, and
o, € Wg, is a lift of the geometric Frobenius.

In particular, T satisfies the Ramanujan-Petersson conjecture at every un-
ramified place.

Proof. Let @ be as before the involution g — ‘g1 of Rg/oGL, . If
V is an irreducible algebraic representation of GL,,, it defines a #-discrete
representation my of GL,,(F ®g R) as in lemma 8.1.10.

Let 7 be the automorphic representation of GL,,(Ag) obtained from 7 by
base change (cf [AC] theorem I11.4.2). Because n is odd, 7 is necessarily
cuspidal (this follows from (b) of loc. cit.). 5 By the definition of base
change, 7 is regular algebraic. Let (p1,...,p,) € Z", with py > --+ > pp,
be the n-uple of integers associated to 7 as in definition 8.4.7. As 7 is self-
dual, p; + pnr1—i =1 —n for every i € {1,...,n}. For every i € {1,...,n},

5T think Sug Woo Shin for pointing out this useful fact to me.
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set a; = p;+i—1. Then > a; = 0. Let V be the irreducible algebraic

i=1
representation of GL,, with highest weight (a1,...,a,), and let W* be the
f-stable algebraic representation of Rg/gGLy g defined by V* as in remark
8.1.6. (As the notation suggests, W* is the contragredient of the irreducible
algebraic representation W of Rp,oGL,, g associated to m as in definition
8.4.7.) By proposition 3.5 of [Cl5], ep(0, Teo @ W*) # 0. As Ty is tempered,
theorem 8.1.5 and remark 8.1.6 imply that 7, >~ 7y, so that 7 is 6-discrete.

We may therefore apply corollary 8.4.9 to m. We get a family of repre-
sentations oy of Gal(Q/FE). Point (i) follows from (i) of corollary 8.4.9. Tt
remains to check the equality in point (ii).

Let H= U(n), H = GL,, G° = RgoHEp = Rp/gHY, and let 6" be
the involution g — g of G%. As in 2.3, let ®,, € GL,(Z) be the matrix
with coefficients : (®,);; = (=1)"'8; ,41—;. There is an isomorphism
GY ~ GL,(C) x GL,(C) such that :

- the embedding H' = GL,(C) — GOis g— (9,9);
- the embedding H = GL,(C) — G0 is g — (g, ®ntg~ 10 1):;

- for every (g,h) € G°, 0(g, h) = (®,'h~10; 1, @, g ®, 1) and 0 (g, 1) =
(h,9).

Let T be the diagonal torus of G°. Let p € S be a prime number. Denote
by & = (41, -, yn)s (21, - - 2)) € T @/@) the Langlands parameter of
Tp. As mp, is f-stable and ¢'-stable, we may assume that 5(:5) = @(x) =z,
ie that y; = z; = y;}_l_i for every i € {1,...,n}. Assume that p is inert in
E. Then H(E,) ~ H'(E,), and the Langlands parameter of m,, seen as a
representation of H(E,) or H'(E,), is (y},...,y2); on the other hand, the
Langlands parameter of 7, is (y1,...,%n), hence the image of &g, by ¢,
is (y2,...,92). Assume that p splits in E, and let p and ¢’ be the places
of E above p. Then G°(Q,) = H(E,) x H(E,) = H(E,) x H(E,).
Write m, = 7, ® 7y = 7, ® 7, where m, (resp. 7, resp. T, resp.
) is an unramified representation of H(E,) (resp. H(E), resp. H'(E,,),
resp. H'(E/)). Then the Langlands parameter of 7, m, 7y, 7, or ﬂ'go,
is (y1,...,Yn). These calculations show that point (ii) follows from (ii) of
corollary 8.4.9.

O

8.5 A SIMPLE CASE OF BASE CHANGE

As an application of the techniques in this chapter (and of the knowledge
about automorphic representations of general linear groups), it is possible to
obtain some weak base change results between general unitary groups and
general linear groups. These results are spelled out in this section.
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Use the notations of the beginning of 8.4; in particular, H = G(U(p1, q1) X
-~ x U(pp,qr)), GY = Rp/oHp and ¢ : LH — GO is the “diagonal” L-
morphism.

As before, if L is a connected reductive group over Q, p is a prime number
where L is unramified and 7z, , is an unramified representation of L(Q,), we

will denote by ¢,  : Wg, — L x Wy, a Langlands parameter of 7z, ,,.

Definition 8.5.1 Let L be a Levi subgroup of G® (it does not have to
be the identity component of a Levi subset of G). Then there is a Wgp-
embedding L — (’-;0’ unique up to éo—conjugacy; fix such an embedding,
and let i : 'L — £GY be the obvious L-morphism extending it (ie the
L-morphism whose restriction to Wy is the identity).

As G is isomorphic to Rg/qg(Gm,z X GLyn, g X --- X GL,, g), Lis a
direct product of Rg/9Gm e and of groups of the type Rp/;qGLy, g, m €
N*. Choose an isomorphism L ~ Rp/qg(Gm g X GLyy, g X -+ X GLy, E),
and denote by 6, the automorphism (z,g1,...,q) — (T,7'g; ', ..., 7'g; )
of L; the class of 61 in the group of outer automorphisms of L does not
depend on the choices. (Note also that 6 and fgo are equal up to an inner
automorphism, so we can take 6 = go.)

Let 7 be an irreducible admissible representation of H(A) and 7y, be an
irreducible admissible representation of L(A). Let v be a finite place where
my and 7y, are unramified. We say t/l\lat 7wy and 7wy, correspond to each other
at v if o pny, , and np o @y, , are G'-conjugate.

Remark 8.5.2 Let v be a finite place of Q that is unramified in F, L be
a Levi subgroup of G°, 77, , be an unramified representation of L°(Q,) and
TH,» be an unramified representation of H(Q,). Then {oyy,  and npopx,

are G%-conjugate if and only if, for every ¢, € H(G(Q,), G (Z,)),

Tr(m, (bf(¢v))) = Tr(WL,v((d’v)L));

where (¢,)r, is the constant term of ¢, at L (and b¢ is, as in 4.2, the base
change map H(G°(Q,), G°(Z,)) — H(H(Q,),H(Z,))).

Corollary 8.5.3 (i) Let my be an irreducible admissible representation
of H(A). Assume that :

- there exists a neat open compact subgroup Ky of H(Ay) such
that WEHf # {0};

- there exist an irreducible algebraic representation V of H and
i € Z such that mgisc(mg) # 0 and H' (5, K. ;700 @ V) # 0,
where h = Lie(H(R)) ® C and the notations are those of remark
7.2.5 (or lemma 7.3.5).

(In other words, wg is a discrete automorphic representation of H(A)
and appears in the intersection cohomology of some Shimura variety
associated to H.)
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Then there exists a Levi subgroup L of G°, a cuspidal automorphic
representation 7y, of L(A) and an automorphic character xr of L(A)
such that 7 ® le is Op-stable and that wy and m; correspond to
each other at almost every finite place. If L = G°, then we can take
xr = 1, and 7y, is regular algebraic.

(ii) Assume that H is quasi-split at every finite place of Q. Let 7 be a
f-stable cuspidal automorphic representation of G°(A). Assume that
there exists an irreducible algebraic representation V' of H such that
Tr(moo (¢v)) # 0, where ¢y € C°(G°(R)) is associated to V as in
lemma 8.1.10. (In other words, m is regular algebraic, cf lemma 8.4.8.)
Let S be the union of the set of finite places that are ramified in
FE and of the set of places where w is ramified. Then there exists an
automorphic representation my of H(A), unramified outside of S, such
that m and my correspond to each other at every finite place v &€ S.
Moreover :

- my satifies the conditions of (i) for V and some Ky;

- if 7y satisfies the conditions of (i) and is isomorphic to g at
almost every finite place, then w'y is cuspidal (in particular, mg
is cuspidal);

- in the notation of 7.2, for every e € Fu, Re(mm,f) = @ (ie g
“does not come from an endoscopic group of H”).

Remark 8.5.4 Note that, using (ii) of the corollary, we can strengthen (i)
a little. We obtain the following statement : if, in (i), H is quasi-split at
every finite place of Q and L = GO, then 7y is unramified at v as soon as
m:= my is, and 7y and 7 correspond to each other at every finite place of
Q where 7 is unramified.

In the rest of this section, we use the following notations : if S is a set of

places of Q, then Zg = [[ Z, and Z° =[]  Z,.
veS vgSU{co}

Proof. We show (i). Let 7, Ky and V be as in (i). Let W) be the virtual
A-adic representation of H(H(A ), Kg) x Gal(Q/E) defined by Ky and V as
in 7.2. After replacing Kg by a smaller open compact subgroup of H(Ay),
we may assume that 1k, satisfies condition (H) of 8.4 (cf (i) of lemma 8.4.1)
and that Ky = HW&OO Kg,y. For every set S of finite places of Q, we will
write Ky g = [ Kp,, and Kfl = I XKgup. Let S be a finite set of

vES vgSU{oo}
finite places of Q such that, for every v ¢ SU{co}, H is unramified at v and
KH,'U = H(Zv) Set fS = ]1KH,S'

Let ITI'(7pr) be the set of isomorphism classes of irreducible admissible

representations 7 of H(A) such that :

- my satisfies the conditions of (i) for the same Ky and V' as wy;
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- for almost every finite place v of Q such that H is unramified at v,
§0Pry, and {0 @y are GO-conjugate.

(We use the notation IT'(7) to avoid confusion with the set Il of the proof
of (ii).) Then II'(7y) is finite (in fact, the set of 7}, that satisfy the first
condition defining I (7 ) is already finite). So there exists a finite set T > S
of finite places of Q and a function fr_g € H(H(Ar_s), Ky r—s) such that

- fr—s isin the image of the base change map b¢ : H(G°(Ar_g), G*(Zr_s)) —
HMH(Ar_s),Kur—s) (hence, by (iii) of lemma 8.4.1, it satisfies con-
dition (H)).

- Let 7% be an irreducible admissible representation of H(A) that satis-
fies the conditions of (i) for K and V. Then Tr(ry 7 o(fr-s)) =1
if 7%y € Il'(my ), and 0 otherwise.

- For every v ¢ T finite, for every 7y € II'(7p), § 0 ¢ryy, and 0 o
are ao—conjugate.

Write fr = fsfr—s. Asin 8.4, fr determines functions ¢y € C°(MY(Ar)),
for M € Mg.

Fix a prime number p ¢ T. Then, with the notations of 7.2, for ev-
ery m € Z and every fTY{P} in the image of the base change map be :

H(GO(A?U{”}), GO(ZTU{p})) N H(H(A?U{p}), KEU{”}),
Te(®7 frf TP W) = Te(rg P (FTO0h) ST dim((w) %) Tr(@0, W),

Ty €N (7 H)
Note that the virtual representation > dim((7)¥# )Wy (7y) of Gal(Q/E)
i €I (mh)
is not trivial. This is proved as the fact that (2) implies (1) in remark 7.2.5
(see this proof for more details) : Let w be the weight of V in the sense
of 1.3. Then, for every 7t € Il'(rg), Wa(rly) = > (=1)'Wi(r), with
i€z
Wi(n’y) a true (not virtual) representation of Gal(Q/E) that is unramified
and of weight —w +4 at almost every place of E. Hence there can be no can-
cellation in the sum Y. dim((7};)¥# )W, (7). (And the assumptions
why €I (mr)

on 7y imply that Wy (mg) is not trivial, by remark 7.2.5.) So there exists
an integer m € Z such that

Co= > dim((np)"") Te(®F, Wi(ny)) # 0.
€ (TH)
For every M € Mg, write ¢, = d)g\Zf;, where gbg\zg is as in 8.4, and define
M, as in loc. cit. Then, by theorem 8.4.3 and the calculations above (and
(iii) of lemma 8.4.1), for every ¢7 1P} ¢ H(GO(A?U{p}), GO(zZTVir})),

CTe(rp TV = N en T (éur),
MeMcga
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where [T} = be(¢7U) and gar = ar.rdarpdrs 7 a0, with gy
equal to the product of y o270ty and of the constant term of ¢TYiP} at
M|Go(AT )
MP.
By lemma 8.5.5 below, the right hand side of this equality, seen as a linear
form T over H(GO(A?U{p}), GO(ZTV1P}h)) is a finite linear combination of

linear maps of the form ¢7“{P} —— Tr(mp((¢TYP}) 1)), with L, 7 and
(¢TYPH) | as in this lemma. By the strong multiplicity 1 theorem of Jacquet
and Shalika (cf theorem 4.4 of [JS]), there exist a Levi subgroup L of G, a
cuspidal automorphic representation 7y, of L(A), an automorphic character
xr of L(A), a scalar a € C*, a finite set ¥ D T U {p} of finite places of
Q and a function ¢x_7uppy € H(G(Ax_1ugp}), G*(Zs—rufpy)) such that :
7 @ x; ' is Oz-stable and, for every ¢* € H(GO(A?), G°(Z*)),

T(¢s-ru(p¢”) = aTe(nL ((67)L))
(a is non-zero because T is non-zero, and that in turn follows from the fact
that C' # 0; the existence of x such that 7 ® le is f#p-stable comes from
lemma 8.5.5).
Let D = CTr(my s_rufp}(be(ds—1(py)). Then we finally find that, for
every ¢~ € H(G(AY), GO(Z%)),
(

D Tr(my ¢ (be(¢™))) = a Te(nL ((¢7)1))-
In particular, D # 0 (because a # 0). This equality implies that 7y and 7,
correspond to each other at every finite place v € ¥. Assume that L = GO.
Then it is obvious from the definition of T and from the definition of ¢¢ oo
in 8.4 that the infinitesimal character of 7y, is equal to that of an algebraic
representation of G°. By (i) of lemma 8.4.8, 7y, is regular algebraic. This
finishes the proof of (i).

We show (ii). Assume that H is quasi-split at every finite place of v, and let
7, V and S be as (ii). Fix an open compact subgroup K = [, K, of G°(Ay)
such that Tr(7s(1k)Ax,) # 0, that K, = G(Z,) for v € S and that Ik has
a transfer to H satisfying condition (H) (such a K exists by lemma 8.4.1).
Set Ks = [[,c5 Kv, ¢s = Ik, and let fs € C°(H(Ag)) be a transfer of ¢
satisfying condition (H). Choose an open compact subgroup Kz s of H(Ag)
such that fg is bi-Kpy g-invariant, and set Ky = Kg s [ H(Z,). After

vgZSU{oc0
making K g g smaller, we may assume that Ky is neat. Let {Wi be the A-adic
virtual representation of H(H(Ay),Ky) x Gal(Q/E) defined by Ky and V
as in 7.2.

Let ¢° € 'H(GO(A}?),GO(ZS)). By theorem 8.4.3 for a prime number
p & S where ¢ is lgo(z,) and for j = 0, there exist scalars ¢}, € R, for
M € Mg, such that

Te(fsbe(6%),Wa) = D T (dsMOR1OM 00);
MeMa
where ¢sr € CF(M°(Ag)) and ¢3; € CSO(MO(A}?)) are the functions
associated to ¢g and ¢° as in the beginning of 8.4 (so gbﬁ,l is the product of



main April 10, 2009

162 CHAPTER 8

X M| MO (A%) and of the constant term of ¢° at M?) and ¢pr,o. € C°(M°(R))

is obtained from V" as in loc. cit. (so ¢¢ oo is the function ¢y that appears
in the statement of (ii)). But, as in he proof of proposition 7.1.4, we see

that, for any M € Mg, the function f}}?{)p of definition 7.1.6 is equal to
the product of

LH L H
«(H,Hn)

/ _ LH,H Lo . 12 S
M e Mg, ¢y = ﬁcM, in particular, c¢),; does not depend on ¢~, and

and of a transfer of 1y (z,) to Hy. So, for every

¢ # 0 (because all the signs in the definition of ¢y g are obviously equal to

1).
Consider the function T' that sends ¢° to > ), TM(¢psMOPrPM.0)-
MeMa

It is a linear form on H(GO(A?),GO(ZS)). By lemma 8.5.5, T is a finite
linear combination of characters on H(G® (A?), G%(Z%)) of the form ¢ —
Tr(77((¢%)1)), where L is a Levi subgroup of G and 7, is a cuspidal
automorphic representation of L(A). By the strong multiplicity 1 theorem
of Jacquet and Shalika, these characters are pairwaise distinct. Hence, by the
choice of ¢g, the assumption on 7 and the fact that ¢, # 0, the coefficient
of the character ¢° — Tr(7%(¢%)) in T is non-zero.

Let Ry be the set of equivalence classes of irreducible admissible repre-
sentations of H(A) that satisfy the conditions of (i) for Ky and V. Then Ry
is finite. Define an equivalence relation ~ on Ry in the following way : if
T, Ty € Ry, then my ~ 77y if and only if, for every finite place v ¢ S of Q,
§0pry, and o, are GO-conjugate (g and 7l are necessarily unram-
ified at v because we have chosen K u to be hyperspecial outside of S). Let
Iy € Ry / ~. Then, if ¢° € H(GY(A%), GO(Z%)), the value Tr (5} (b (¢°)))
is the same for every 7y € Ily; denote it by Tr(IIF (be(¢”))). Let

c(My)= > dim(Wi(rn)) Tr(rms(fs))

g €lly

(where the W (7g) are as in 7.2).
By the definition of the Wyx(wg), Wx = >, Wi(mmg) ® ﬂgfjc Hence,

THERH

for every ¢° € H(G°(A%), GY(Z%)),
T(¢%) = Tr(fsbe(¢%),Wa) = Y e(lly) Te(Il5; (be(6°)))-

MgERy/~

As the characters of H(G%(A%), G°(Z%)) are linearly independant, there ex-
ists Iy € Rpy/ ~ such that, for every ¢° € H(G°(A%), GY(Z?)), Tr(I13; (b (¢°))) =
Tr(79(4%)). Let mg be any element of Ilz. It is unramified outside of S
and corresponds to 7 at every finite v & S.

It remains to prove the last three properties on wg. The first one is true
because Ty € Ry by construction. The second and third ones are easy

consequences of (i) and of the strong multiplicity 1 theorem for G°.
O
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Lemma 8.5.5 Let S be a set of finite places of Q that contains all the finite
places that ramify in E and let V' be an irreducible algebraic representation
of H. Fix functions ¢,s € C>®(M°(Ag)), M € Mg, and let PM,00, M €
Mg, be the functions associated to V as in 8.4. Consider the linear form
T: 'H(GO(A?)7 G%(Z%)) — C that sends ¢° to

Z e TM (dar),

MeMeg

where the ¢, are obtained from ¢° as in 8.4.
Then T is a finite linear combination of linear maps of the form ¢5 —
Tr(77 ((¢°)1)), where :

(a) L is a Levi subgroup of GY.

(b) 7, is a cuspidal automorphic representation of L(A) such that there
exists an automorphic character xj of L(A) such that mp ® le is
0r-stable; if L = G°, then we can take xr = 1.

(c) (%)L is the constant term of ¢° at L.

Proof. If we did not care about condition (b) on 7, the lemma would
be an easy consequence of proposition 8.2.3, (iii) of lemma 8.4.1 and lemma
8.3.9. As we do, we must know more precisely what kind of automorphic
representations appear on the spectral side of T (¢,s). This is the object
of lemma 8.5.6 below. Once we know this lemma (for all M € Mg), the
proof is straightforward.

O

Lemma 8.5.6 6 Let V be an irreducible algebraic representation of H, and
¢y € C*°(G(R)) be the function associated to V as in 8.4. Let t > 0 and
let m € Mgisc(G,t) such that agise(m) Tr(noo(dv)Ar.,) # 0 (the notations
are those of 8.2). Choose a Levi subgroup L of G, a parabolic subgroup Q
of GY with Levi subgroup L and a cuspidal automorphic representation 7,
of L(A) such that 7 is a subquotient of the parabolic induction IndSOWL.

Then there exists an automorphic character x, such that 7 ® xp, is 0p-
stable.

Proof. Remember that, in this section, we take § on G? = REg/0(Gm,e X
GL,, g X --- x GL,_g) to be (z,91,...,9,) — (T,'gy ", ..., T'g 1) (0 is
determined only up to inner automorphisms, and this is a possible choice
of #). Let Ty be the diagonal torus of H. Then Tx(C) is the diagonal
torus of H(C) ~ C* x GL,,(C) x --- x GL,,(C). Let T = Rg/Tu k,
let 6’ be the automorphism of H(C) defined by the same formula as 6, and

SMost of this lemma (and of its proof) was worked out during conversations with Sug
Woo Shin.
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choose an isomorphism G°(C) ~ H(C) x H(C) such that  corresponds to
the automorphism (hy,h2) — (6'(hz2),6(h1)) of H(C) x H(C) and that
T(C) is sent to Ty (C) x Ty (C). Let ty = Lie(Ty)(C) and t = Lie(T)(C).
Then t = ty @ ty, and 6 acts on t by (t1,t2) — (¢(t2),¢(t1)), where ¢ is
the involution (t, (ti,j)lgigr,lgjgni) [ (t, (t - ti,j)1<i<r 1<j<ni) of tH =
CopCm@---®C". Let A € tj; be a representative of the infinitesimal
character of V, seen as a representation of H(R). Then ) is regular, and
(A, t(N)) € t* = t}; @ t}; represents the infinitesimal character of the 6-stable
representation W of G°(R) associated to V (as in theorem 8.1.5). By the
definition of ¢y in theorem 8.1.5, the assumption that Tr(meo(pv)Ar_) #
0 implies that ep(f, 7o ® W) # 0, and, by Wigner’s lemma, this implies
that the infinitesimal character of 7 is (—A,—¢(\)). In particular, the
infinitesimal character of my, is regular.

Let L be a Levi subgroup of G. We may assume that L is standard (in
particular, it is stable by 6, and 0|, = 01,), and we write

IR,

L

L = Rg(Gme x [[ [] GLmj.p),

j=1k=1
where the m ;, are non-negative integers such that n; = m; 1 +---+m;,, for
every j € {1,...,r}. We use the notations of [A3], in particular of section 4 of

rol
this article. Then a, = R& @ P R, and 0 acts by (¢, (L)) — (&, (E—tix))-

j=1k=1

In particular, ago = R@® @ R, and 6 acts by (¢, (t;)) — (¢, (t — t;)),
j=1

S0 ag = aGG:()l = R. The group WGO(aL) is equal to the group of linear

automorphisms of ar that are induced by an element of Norgo(qg)(L), so it
is embedded in an obvious way in &;, X --- x &, (but this embedding is far
from being an equality in general; for example, WS (a;,) contains the factor
&y, if and only if mjy = --- = my;, =n;/l;). The set W%(ar) is equal to
W (ap)0.

It will be useful to determine the subset W% (ar,),e, of regular elements
of W% az). Remember ([A3] p 517) that an element s of W (ay) is in
W (ar)rey if and only if det(s — ay/ag 7 0. By the above calculations,

vl
ar/ag = P 679 R, and 67, acts by multiplication by —1. Let s € W%(ar),
j=1k=1

and write s = of, with 0 = (o1,...,0,) € W (ay) C &, x -+ x &,
Then O'QL acts on CLL/ClG by (/\j,k)lgjgr,lgkglj — (_)‘jﬁjfl(k))lﬁjﬁr,lﬁkﬁlj7
so it is regular if and only if o, acting in the obvious way on R x - .- x Rl7,
does not have —1 as an eigenvalue. This is equivalent to the fact that, for
every j € {1,...,r}, there are only cycles of odd length in the decomposition
of 0; as a product of cycles with disjoint supports.

We will need another fact. Let s = (0y,...,0,.)0; € W% (ar) as before
(we do not assume that s is regular). Let 7, » be an irreducible admissible
representation of L(R). As L is standard, T is a maximal torus of L. Assume
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that the infinitesimal character of 7 o, has a representative of the form
(e, e(p)) € t*, with p € t§;, and that 7, o is s-stable. Then, for every
j €{1,...,r}, there are only cycles of length < 2 in the decomposition of
o; as a product of cycles with disjoint supports (in other words, O'JQ» =1
for every j € {1,...,7}). To prove this, we assume (to simplify notations)
that » = 1; the general case is similar, because it is possible to reason
independently on each factor GL,,, g. Write n = ny, 0 = 0,, € &,, and
L = Rp/o(Gm,p XGLy, g XX GLy, 1), with n = my+---+my. For every
j e {17...71}, set Ij = {m1+~~~+mj_1+1,...,m1+~~~+ml} C {1,,n}
Let (u,e(p)), with p € t};, be a representative of the infinitesimal character
of T 0. Write pt = (po, ..., pn) € t; = C P C". As 7p o is of-stable, its
infinitesimal character is o6 -stable. This means that there exists 7 € G,
such that :

(a) for every j € {1,...,l}, 7(I;) = I,(;) (ie 7, seen as an element of the
Weyl group of T(Q) in GY(Q), normalizes L and induces o on ay);

(b) (_lu’lv ceey _,un) = (:uT(l)v cee 7#7(77,)) (le (u? l’(:u)) is stable by 7-07 where
7 is again seen as an element of the Weyl group of T(Q) in G°(Q)).

Assume that, in the decomposition of o as a product of cycles with disjoint
supports, there is a cycle of length > 3. Then, by (a), there is also a cycle
of length > 3 in the decomposition of 7 as a product of cycles with disjoint
supports. But, by (b), this contradicts the fact that p is regular.

We now come back to the proof of the lemma. By the definition of the
coefficients agisc = ag’;sc in section 4 of [A3], the fact that agisc(m) # 0
implies that there exists a Levi subgroup L of G® (that we may assume
to be standard), a discrete automorphic representation 7y, of L(A) and an
element s of WG(aL)Teg such that 7y, is s-stable and 7 is a subquotient of the
parabolic induction of 77, (where, for example, we use the standard parabolic
subgroup of GY having L as Levi subgroup). In particular, the infinitesimal
character of 7y o is represented by (—A, —¢(A)) (and it is regular). By the
two facts proved above, s is equal to 8;. That is, 7y, is a 0p-stable discrete
automorphic representation of L°(A). Hence, if we know that the lemma is
true for discrete automorphic representations (and for any Levi subgroup of
GY), then we now that it is true in general. So we may assume that 7 is
discrete.

From now on, we assume that the automorphic representation m of G°(A)
is discrete (and of course f-stable). Let L be a standard Levi subgroup of
G and 71, be a cuspidal automorphic representation of L(A) such that 7 is
a subquotient of the parabolic induction of L (as before, use the standard
parabolic subgroup of G° with Levi subgroup L). We want to show that
mp, is @ -stable. As 7 is f-stable, there exists s € WG(aL) such that ny, is
s-stable (note that s does not have to be regular now). We also know that
7 is discrete; so, by a result of Moeglin and Waldspurger (the main theorem
of [MW]), there exist mq,...,my,l1,...,m, € N, an automorphic character
x of A} and cuspidal automorphic representations 7; of GL,,,(Ag), for
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1 < j <r, such that :

- nj =lym; for every j € {1,...,r}

- L=Rg/0(Gm,p X (GLp, )" X -+ x (GLp, p)");

-7 = X®7m Q- @7, where m; is the cuspidal automorphic rep-
resentation 7;|det |i7Y/2 @ 7;det |=3/2 @ .. @ 7| det |1713)/2 of
GL,,; (Ag).

Write s = 0, with 0 = (01,...,0,) € &), X -+ X &) = WGO(aL). As

is a subquotient of the parabolic induction of 7y, the infinitesimal character

of T o is representated by (=X, —¢())), and so, by the fact proved above,

0? = 1. For every j € {1,...,r}, denote by 6,,, the automorphism g —
tg_l of GLmj’ g- Then the fact that 7y is 06 -stable means that, for every
je{l,...,r} and for every k € {1,...,1,},

Tj‘ det ‘(ljf2k+1)/2 ~ (7_]_| det |(lj720']'(k)+1)/2)00mj _ (Tjoem )| det |(20j(k:)717lj)/2,

J

ie that
7j 0 O, >~ 7| det |liti=h=os(k),

In particular, we see by taking the absolute values of the central characters in
the equality above that, for every j € {1,...,r}, the function k — k4o, (k)

lj

is constant on {1,...,l;}. But, if j € {1,...,r}, then > (k + o;(k)) =

k=1
Li(l; +1),s0 k+0oj(k) =1; +1 for every k € {1,...,l;}. This show that
Tj =~ Tj0b,, forevery j € {1,...,r}, and it easily implies that 7, is 67-stable

after we twist it by an automorphic character.
|
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Chapter Nine

The twisted fundamental lemma

The goal of this chapter is to show that, for the special kind of twisted en-
doscopic transfer that appears in the stabilization of the fixed point formula
and for the groups considered in this book (and some others), the twisted
fundamental lemma for the whole Hecke algebra follows from the twisted fun-
damental lemma for the unit element. No attempt has been made to prove
a general result, and the method is absolutely not original : it is simply an
adaptation of the method used by Hales in the untwisted case ([H2]), and
this was inspired by the method used by Clozel in the case of base change
([C13]) and by the simplification suggested by the referee of the article [C13].

The definitions and facts about twisted groups recalled in 8.1 will be used
freely in this chapter.

9.1 NOTATIONS

We will consider the following situation : Let F' be a local non-archimedean
field of characteristic 0. Fix an algebraic closure F of F, let I'r = Gal(F/F)
and denote by F%" the maximal unramified extension of F in F. Fix a
uniformizer wpr of F. Let G be a connected reductive unramified group
over F. Assume that G is defined over Op and that G(Op) is a hyper-
special maximal compact subgroup of G(F). For such a group G, write
He = H(G(F),G(OF)) = CZ(G(OF) \ G(F)/G(OF)). Let (H,s,m0) be
an endoscopic triple for G (in the sense of [K4] 7.4). Assume that :

- H is unramified over F, H is defined over Or and H(OF) is a hyper-
special maximal compact subgroup of H(F);

- there exists a L-morphism n : Y'H — G extending 7o and unram-
ified, ie coming by inflation from a L-morphism H x Gal(K/F) —
G x Gal(K/F), where K is a finite unramified extension of F'.

Choose a generator o of Wgur/p. Let E/F be a finite unramified extension
of F in F, and let d € N* be the degree of E/F. Write R = Rp/rGp. Let
0 be the automorphism of R induced by the image of o in Gal(E/F).
Kottwitz explained in [K9] p 179-180 how to get from this twisted endo-
scopic data for (R, 6,1) (in the sense of [KS] 2.1). We recall his construction.
There is an obvious isomorphism R = éd, and the actions of 8 and o are
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given by the formulas

9(917"'7961) = (927'~'agdvgl)

o(g1,---594) = (0(g2),--.0(ga),0(g1))-

In particular, the diagonal embedding G — Ris W r-equivariant, hence
extends in an obvious way to a L-morphism “G — FR. Let ¢’ : 'H — 'R
be the composition of the morphism 7 : © H— LG and of this L-morphism.
As F is local, we may assume that s € Z(H)'7. Let t1,...,ts € Z(H)'F be
such that s = t1...t4. Set t = (t1,...,tq) € R. Let £€:TH — TR be the

morphism such that :

- 5|ﬁ is the composition of 7 : H — G and of the diagonal embedding

G — R;

- for every w € Wy that is a pre-image of 0 € Wgur/p, {(1,w) =

(t,1)¢'(1,w).

Then (H,“H, t, &) are twisted endoscopic data for (R, 6, 1). Kottwitz shows
([K9], p 180) that the equivalence class of these twisted endoscopic data does
not depend on the choice of tq,..., 4.

The morphism £ induces a morphism

Hr — Hu,

that will be denoted by be (in 4.2, this morphism is explicitely calculated for
the unitary groups of 2.1).

Let A¢ be the transfer factors defined by &, normalized as in [Wa3] 4.6.
The twisted fundamental lemma for a function f € Hpg is the following
statement : for every vy € H(F') semi-simple and strongly G-regular,

Ay, f) = S04, (be(f)) = D Ae(vm,8)Os0(f) = 0
é

where the sum is taken over the set of #-conjugacy classes of #-semi-simple
d € R(F). (Remember that a semi-simple vz € H(F) is called strongly
G-regular if it has an image in G(F) whose centralizer is a torus.)

Remark 9.1.1 There is an obvious variant of this statement where E is
replaced by a finite product of finite unramified extensions of F' such that
Autp(FE) is a cyclic group.

9.2 LOCAL DATA
Notations are as in 9.1. Fix a Borel subgroup B (resp. Bpy) of G (resp.

H) defined over O and a maximal torus Tg¢ C Bg (resp. Ty C Bpy)
defined over Op. Let T = RE/FTG,E and B = RE/FBG,E- Denote by
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Ig (resp. Ip) the Iwahori subgroup of R(F') (resp. H(F)) defined by the
Borel subgroup Bg (resp. Bp).

Let II(R) (resp. II(H)) be the set of equivalence classes of irreducible
f-stable representations m of R(F') (resp. of irreducible representations 7y
of H(F)) such that 7/% # {0} (vesp. 7t # {0}). For every 7 € II(R), fix
a normalized intertwining operator A, on 7 (remember that an intertwining
operator on 7 is a R(F)-equivariant isomorphism m — 7 0§, and that an
intertwining operator A, is called normalized if A = 1). If 7 is unramified,
choose the intertwining operator that fixes the elements of the subspace
,/TR(OF).

The definition of local data used here is the obvious adaptation of the
definition of Hales ([H2] 4.1).

Definition 9.2.1 Local data for R and (H,H, s, &) are the data of a set [

and of two families of complex numbers, (aﬁ(ﬁ))iel,weH(RI% and (af (TH))iel,myen(a),
such that, for every i € I, the numbers al*(7) (resp. al (7)) are zero for

almost every 7 € II(R) (resp. 7y € II(H)) and that, for every f € Hp, the
following conditions are equivalent :

(a) foreveryi € I, Y. af(r)Tr(n(f)Az)= > af(rw) Tr(ma (be(f)));
n€Il(R) my €II(H)

(b) for every vy € H(F) that is semi-simple, elliptic and strongly G-
regular, A(vg, f) =0.

Proposition 9.2.2 Assume that G is adjoint, that the endoscopic triple
(H, s,m0) for G is elliptic, that the center of H is connected and that there
exist local data for R and (H,*H, s,¢).

Then, for every f € Hr and for every vy € H(F') semi-simple elliptic and
strongly G-regular, A(vg, f) = 0.

Remark 9.2.3 If G is adjoint and (H, s, 1) is elliptic, then the morphism
¢ : LH — LR comes by inflation from a morphism H x Gal(K/F) —
R x Gal(K/F), where K is a finite unramified extension of F. Let us prove
this. By the definition of ¢, £(1 x 09) = ¢(s x %) (remember that ¢’
is the composition of  : “H — G and of the “diagonal embedding”

~ ~

LG — LR). We know that s € Z(H)'*Z(G). As G is adjoint, Z(G)
is finite; because the endoscopic triple (H, s, no) is elliptic, Z(H)T* is also
finite. The finite subgroup Z(é)Z(ﬁ)FF of Z(ﬁ) is invariant by o, so there
exists k € N* such that the restriction of 0@ to this subgroup is trivial. Let
s' = s50%(s)...0¥*=1D(s). Then &' is fixed by 0¢, and (s xo®)* = ' x0o%. As
s’ is in the finite group Z(é)Z(ﬁ)FF, there exists [ € N* such that s/' = 1.
Then
(150 0™) = ¢/((s % 0)H) = (s % a™)) = (1 o)

By the assumption on 7, there exists » € N* such that n(1 x o") =1 x o".
So we get finally : £(1 x o) =1 x gk,
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Before proving the proposition, we show a few lemmas.

Remember that an element of H(F) or G(F) is called strongly compact if
it belongs to a compact subgroup, and compact if its image in the adjoint
group of H resp. G is strongly compact (cf [H1] §2). Every semi-simple
ellipic element of G(F') or H(F') is compact, and an element that is stably
conjugate to a compact element is also compact (this follows easily from
the characterization of compact elements in [H1] §2). If the center of G is
anisotropic (eg if G is adjoint), then an element of G(F') is compact if and
only if it is strongly compact.

Lemma 9.2.4 Assume that the centers of G and H are anisotropic. Let
A : Hgp — C be a linear form. Assume that : for every f € Hpg, if
A, (f) = 0 for every vy € H(F') semi-simple elliptic and strongly G-regular,
then A(f) = 0.

Then A is a linear combination of linear forms vy +—— A(ym, f), with
v € H(F') semi-simple elliptic and strongly G-regular.

Proof. Let Uy C H(F) be the set of compact elements of H(F) and
Ugr be the set of f-semi-simple elements of R(F) whose norm contains a
compact element of G(F). Then Up is compact modulo H(F')-conjugacy
and Ug is compact modulo #-conjugacy (these notions are defined before
theorem 2.8 of [Cl3]). By the twisted version of the Howe conjecture (ie
theorem 2.8 of [Cl3]), the vector space of distributions on Hp generated by
the f +—— Oso(f), 6 € Ur and the f —— O, (be(f)), ya € Ur, is finite-
dimensional. If vy € H(F) is elliptic semi-simple, then vy € Upy, and every
image of vy in R(F) is in Ug. In particular, the vector space generated by
the distributions vy —— A(vm, f), for vy € H(F) elliptic semi-simple and
strongly G-regular, is finite-dimensional. The lemma follows from this.

([l

Let Sy be the maximal split subtorus of Ty, Sk be the maximal split
subtorus of Tr and Qg = Q(Sy(F),H(F)), Qr = Q(Sgr(F),R(F)) be
the relative Weyl groups.  Identify Hy (resp. Hg) to C[Sy /] (resp.
C[Sk/Qk]) by the Satake isomorphism. If z € Sy (resp. Sg) and f € Hy
(resp. Hg), write f(z) for f(2Qp) (resp. f(2Qr)).

We recall the definition of the morphism bs : Hrp — Hpy induced by
& (cf [Bo] sections 6 and 7). The group Qg (resp. §2r) is naturally iso-
morphic to the subgroup of I'p-fixed points of the Weyl group Q(’T‘H,IA{)
(resp. Q(T‘R, FA{)) Let Ny (resp Ng) be the inverse image of Qg (resp. Qg)
in Norﬁ(’i‘H) (resp. Norﬁ(’f‘R))7 let Yy = Sy (resp. Yz = Sg) and let
(H x )4, (resp. (R x 0)s5) be the set of semi-simple elements of H x o C
H x Wpur /g (resp. RxoCRx Wpur/p) (remember that o is a fixed gen-
erator of WF'LM‘/F). As X, (Sy) = X*(TH)FF (resp. X«(Sgr) = )(*(r]:‘R)FF)7
the group Qg (resp. Qg) acts naturally on Yy (resp. Yr). Moreover :

e the restriction to (TL#)0 (resp. (T%H#)) of the morphism v : Ty —
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Yy (resp. v : ’T‘R — Ypg) dual of the inclusion Sy C Tpgy (resp.
Sr C Tg) is an isogeny ([Bo] 6.3);

e the map Ty x 0 — Yy (resp. T x 0 — Yg) that sends  x o to v(t)
induces a bijection

(TH X 0)/IntNH LYH/QH

(resp.  (Tg x 0)/Int Ngp =5 Yr/QR)

([Bo], lemma 6.4);
® the inclusion induces a bijection

(Ty x0)/Int Ny = (H % 0),,/Int H

(resp. (Tr NU)/IntNRL(RXIO')SS/IDtE)
([Bo], lemma 6.5).

In particular we get bijections ¢g : (ﬁ X J)SS/Inth = Yy /Qpy and
: (R % 0)ss/Int R > Y /Qz. The morphism 3% LH — LR is unram-
1ﬁed hence it induces a morphism (H x ¢)y/Int H — (R x 0),s/Int R,
and this gives a morphism b; : Vi /Qy — Yg/Qr. The morphism b :
C[Yr/Qr] — C[Yr /] is the dual of b.
Let Y} (resp. Y%) be the maximal compact subgroup of Yy (resp. Yg).

Lemma 9.2.5 The morphism b} : Yu/Qy — Yr/Qr sends Yj;/Qpu to
Yﬁ/QR and (YH — Yﬁ)/QH to (YR — Yﬁ)/QR

Proof. Let K be an unramified extension of F' such that H and G split
over K; write r = [K : F]. For every g x o € Hx o or R x o, write
N(gxo)=go(g)...o" " (g).

Let G’ be the set of complex points of an algebraic group over C. Copying
the definition of [H1] §2, say that an element g € G’ is strongly compact
if there exists a compact subgroup of G’ containing g. It is easy to see
that this is equivalent to the fact that there exists a faithful representation
p: G' — GL,,(C) such that the eigenvalues of p(g) all have module 1. So
a morphism of algebraic groups over C sends strongly compact elements to
strongly compact elements.

Let g € H be such that g x o is semi-simple. We show that ¢y (g x o) €
Y4 /Qp if and only if N(g x o) is strongly compact. After replacing g X o
by a ﬁ—conjugate, we may assume that g € TH. Assume that N(g x o) is
strongly compact. Then v(N(gx o)) =v(g)" € Yy is strongly compact, and
this implies that v(g) is strongly compact, ie that v(g) € Y. Assume now
that o (gxo) =v(g )QH €Y} /Qu, ie that v(g) € Y}. Thenv(N(gxo)) =
v(g)" € Y. Moreover, Ty is abelian, so N(gx o) € TFH As the restriction
of v to Tl;IH is finite, it is easy to see that the fact that v(N(g x o)) € Y}
implies that N(g x o) is strongly compact.
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Of course, there is a similar statement for R. Hence, to finish the proof,
it is enough to show that, for every g x 0 € H x o, N(g x o) is strongly
compact if and only if N(£(g x o)) is strongly compact. Let &y : H — Rbe
the morphism induced by . Write ' X0 = £(1 x ). Then, for every g € H,
N((gxo)) =& (N(gxo))N(t' xo). By remark 9.2.3, we may assume (after
replacing K by a bigger unramified extension of F') that £(1 xo") =1x0",
ie that N(#' ¥ o) = 1. Then the statement of the lemma follows from the
injectivity of &.

(Il

Lemma 9.2.6 For every § € R(F) that is -regular 6-semi-simple and 6-
elliptic, for every vy € H(F') that is regular semi-simple and elliptic, the
distributions f —— Osg(f) and f +—— O, (be(f)) on Hr are tempered.

Proof. Remember that a distribution on Hp, is called tempered if it extends
continuously to the Schwartz space of rapidly decreasing bi-R(Opg)-invariant
functions on R(F') (defined, for example, in section 5 of [Cl3]). For the first
distribution of the lemma, this is proved in lemma 5.2 of [Cl3]. Moreover,
the distribution fg +—— O, (fu) on Hpy is tempered (this is a particular
case of lemma 5.2 of [C13]). So, to prove that the second distribution of the
lemma is tempered, it is enough to show that the morphism b¢ : Hp — Hpu
extends to the Schwartz spaces. To show this last statement, it is enough to
show, by the proof of lemma 5.1 of [Cl3], that b sends YH /Oy to Y /QR.
This follows from lemma 9.2.5 above.

O

Call a f-semi-simple element of R(F') §-compact if its norm is compact. Let
1. be the characteristic function of the set of semi-simple compact elements
of H(F'), and 1y_. be the characteristic function of the set of f-semi-simple 6-
compact elements of R(F'). If my is an irreducible admissible representation
of H(F'), m is a #-stable irreducible admissible representation of R(F') and
Ay is a normalized intertwining operator on 7, define the compact trace of
my and the twisted 6-compact trace of m by the formulas :

Tro(ma(fu)) = Tr(rag(1efrm)), fu € CZ(H(F))
Tro_o(m(f)Ay) = Te(r(lo_of)As),  f € CX(R(F)).

Lemma 9.2.7 Let w be a 0-stable irreducible admissible representation of
R(F), and let A, be a normalized intertwining operator on 7. Assume that
the distribution f —— Trg_.(n(f)Ar) on Hpg is not identically zero. Then
m € II(R).

Proof. By the corollary to proposition 2.4 of [C13], there exists a f-stable
parabolic subgroup P D Bpr of R such that mn, is unramified, where Np is
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the unipotent radical of P and 7, is the unnormalized Jacquet module (ie
the module of N p(F)-coinvariants of 7). So, if N is the unipotent radical
of B, then 7y is unramified. By proposition 2.4 of [Cas], this implies that
mlr £ {0}.

O

Lemma 9.2.8 Assume that the centers of G and H are anisotropic and
that the center of H is connected. Let 6 € R(F) be 0-regular 0-semi-
simple and 6-elliptic, and vy € H(F) be regular semi-simple and ellip-
tic. Then the distribution f —— Osg(f) on Hg is a linear combination
of distributions f +—— Tro_.(n(f)A:), with 7 € I(R), and the distri-
bution fg +—— SO,, (fu) on Hy is a linear combination of distributions
fu— Tre(mu(fu)), with mg € II(H) coming from an element of TI(H,4).

Proof. We show the first assertion of the lemma. Let f € Hp be such that
Tro_o(m(f)Ax) = 0 for every 7 € II(R); let us show that Os9(f) = 0. As ¢ is
f-elliptic, hence §-compact, Oso(f) = Oso(lg—cf). But Tr(nm(lo—cf)Ar) =
Tro_o(m(f)Ar) = 0 for every m € II(R), so, by the main theorem of [KRo]
and lemma 9.2.7, Os9(1p_.f) = 0.

On the other hand, by the twisted version of the Howe conjecture (theo-
rem 2.8 of [Cl3]), the space generated by the distributions (on Hg) f —
Tro_o(m(f)Ax), m € II(R), is finite-dimensional. This implies the first asser-
tion.

We show the second assertion of the lemma. As Z(H) is anisotropic and
connected, lemma 9.4.4 implies that, for every fg € Hu, SO, (fu) =
SO, (fr), where vy is the image of vy in Hagj(F)) and fg is the image of
fu in Hpy,,, (defined in lemma 9.4.4). So the second assertion of the lemma
follows from the first, applied to the group H,q; (with 8 =1).

O

Identify the group of unramified characters of Tr(F') to Yx in the usual
way (cf [Bo] 9.5). For every z € Yg, let ¢, be the unramified character of
Tr(F) corresponding to z and denote by I(z) the representation of R(F)
obtained by (normalized) parabolic induction from 1, :

I(z) = Ind (5% @ v.),

where, if N is the unipotent radical of Br, dp(t) = | det(Ad(t), Lie(N))|r
for every t € T (F) ((5}3/; ® 1, is seen as a character on Bg(F') via the

~

projection Bg(F) — Tgr(F)). If 8(z) = z, then ¢, = 1, 06, so I(z) is
f-stable. In that case, let A,y be the linear endomorphism of the space
of I(z) that sends a function f to the function z —— f(6(z)) (remember
that the space of I(z) is a space of functions R(F') — C); then Aj(.) is a
normalized intertwining operator on I(z). We will use similar notations for
H (without the intertwining operators, of course).
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Lemma 9.2.9 Assume that G is adjoint and that the center of H is anisotropic
(the second assumption is true, for example, if G is adjoint and the en-
doscopic triple (H,s,n9) is elliptic). Let m € II(R). Then there exist
a @-stable 2z’ € Yr — Y}, a f-stable subquotient n’ of I(z') and a nor-
malized intertwining operator A, on ' such that, for every f € Hpg,
Tro—o(m(f)Ax) = Tro—o(n'(f)Anr)-

Similarly, if 7y € T(H) comes from a representation in II(Hgq), then
there exist 2y, € Yy — Y}y and a subquotient ©; of I(z};) such that, for
every fu € Hu, Tre(mu(fu)) = Tre(my (fu)).

Proof. By proposition 2.6 of [Cas], there exists zg € Y such that 7 is
a subrepresentation of I(zp). By examining the proof of this proposition,
we see that 6(z9) € Qgrzo. By lemma 4.7 of [Cl3], there exists a #-stable
z in Qgzo. Then 7 is a subquotient of I(z) (because I(zp) and I(z) have
the same composition factors). If z ¢ Y%, this finishes the proof of the
first statement (take 2’ = z and 7’ = 7). Assume that z € Y. As G is
adjoint, by a result of Keys (cf [Ke], in particular the end of section 3), the
representation I(z) is irreducible, hence m = I(z). Let 2’ € Yr — Y} be
f-stable. The unramified characters x, and ./ corresponding to z and 2z’
are equal on the set of f-compact elements of Tr(F'). Hence, by theorem
3 of [VD]’ Tr@—c(ﬂ-(f)ATr) = Tr@—c(l(zl)(f)AI(z’)) for every f € Cgo (R(F))
This finishes the proof of the first statement (take n’ = I(2')).

The same reasoning (without the twist by ) applies to 7y, or rather
to the representation of H,4(F') inducing 7g; note that, as the center of
H is anisotropic, Yy = Yg,,. We need the fact that 7z comes from a
representation in II(H,4) to apply Keys’s result.

O

In the following lemma, N is the unipotent radical of Br and, for every
representation 7 of R(F), mx is the T g(F)-module of N(F)-coinvariants of
T

Lemma 9.2.10 Let 7 be a 0-stable admissible representation of R(F) of
finite length, and let A, be an intertwining operator on w. The semi-
simplification of 5;1/2 ® 7N Is a sum of characters of Tr(F); let z1,..., 2,
be the points of Yy corresponding to the 6-stable unramified characters that
appear in that way. Then the distribution f — Tr(w(f)As) on Hg is a
linear combination of distributions f — f(z;), 1 <1i <mn. Moreover, if 7 is
a subquotient of I1(z), with z € Yr @-stable, then the z; are all in Qpz.

Of course, there is a similar result for H.

Proof. As 7 and its semi-simplification have the same character, we may
assume that 7 is irreducible. We may also assume that 7 is unramified
(otherwise the result is trivial). By proposition 2.6 of [Cas|, there exists
z € Yg such that 7 is a subquotient of I(z). Reasoning as in the proof



main April 10, 2009

THE TWISTED FUNDAMENTAL LEMMA 175

of lemma 9.2.9 above, we may assume that z is #-stable. By corollary 2.2
of [Cas], I(2)(PF) is 1-dimensional; hence I(z)F(©Or) = 7F(Or) By the
explicit description of a basis of I(2)*(©r) in [Car] 3.7 and the definition
of the Satake transform (see for example [Car] 4.2), for every f € Hp,
Tr(f, I(2)"Or) = Tr(f, 7 Or)) = f(2). As 7f(OF) is 1-dimensional and
stable by A, the restriction of A, to this subspace is the multiplication by
a scalar. So the distribution f — Tr(w(f)A,) is equal to a scalar multiple
of the distribution z — f(z). By theorem 3.5 of [Car], the z; are all in
Qrz. This finishes the proof of the lemma.

O

For every A € X*(Yg), set
fr= Y A €C[Yg]" ~ C[Yr/Qr] ~ Hr.

wEeNR

Lemma 9.2.11 There exists a non-empty open cone C in X*(Yr)®zR such
that

(a) for every O-stable z € Yg, for every 0-stable subquotient m of I(z)
and for every intertwining operator A, on 7, the restriction to C' N
X*(YR) of the function A — Trg_.(mw(f\)Az) on X*(YRg) is a linear
combination of the functions A — A(wz), w € Qp.

Assume moreover that there exists an admissible embedding Ty — G
with image Tg ! and that the center of G is connected (both assumptions
are automatic if G is adjoint, cf lemma 9.4.6).

Then there exists a non-empty open cone C' in X*(Ygr) ®z R that satisfies
condition (a) above and also the following condition :

(b) for every zy € Yy, for every subquotient wy of I(zp), the restriction
to C N X*(YR) of the function A — Tr.(mu(be(fr))) on X*(YRg) Is a
linear combination of the functions A — Awbi(zn)), with w € Q.

Proof. We will need some new notations. If P O Bpg be is a parabolic
subgroup of R, let Np be the unipotent radical of P, Mp be the Levi
subgroup of P that contains Tg, Qa, = Q(Sr(F), Mp(F)) be the relative
Weyl group of Mp, dp be the function v — |det(Ad(v), Lie(Np))|r on
P(F), aprp, = Hom(X* (A, ), R) and ap = dim(aps,). Assume that P is
f-stable. Let Py and Mg be the parabolic subgroup and the Levi subgroup
of G corresponding to P and Mp (cf example 8.1.1). Denote by Hyy, :
My(F) — ap, := Hom(X*(Apy, ), R) the Harish-Chandra morphism (cf
[A1] p 917), 7§ : ar := Hom(X*(T¢g),R) — {0,1} the characteristic
function of the obtuse Weyl chamber defined by Py (cf [Al] p 936) and
XNy = %gﬂ o Hyy, (there is a canonical injective morphism aps, C ar). Define

Tt would be enough to assume this over an unramified extension K/F such that the
base change morphism H(R(K), R(Ok)) — H(R(F), R(OF)) is surjective.
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a function Xn, 9 on Mp(F) by : Xnp.e(m) = Xn,(Nm) if m € Mp(F)
is @-semi-simple, and Xn,,9 = O otherwise. If 7 is a f-stable admissible
representation of R(F') of finite length and A, is an intertwining operator on
m, denote by 7N, the Jacquet module of 7 (ie the module of N p-coinvariants
of ) and by A, the intertwining operator on mn, induced by A,. If f € Hpg,
denote by f() € Hpg, the constant term of f at P.

Let 7 be a 6-stable admissible representation of R(F') of finite length and
Ay be an intertwining operator on w. The corollary to proposition 2.4 of
[C13] says that, for every f € Hp,

Trg—o(m(f)Ar) = > (=1)% 7% Te((05"% @ 7 ) (v o f D) AR), ()
P

where the sum is taken over the set of #-stable parabolic subgroups P of R
that contain Bg.

Let N : ap, — arg, A — A+ 0(A) + - + 6971()), and identify
X*(Yr) ®z R to ar,. Let A € X*(Yg) and let P DO Bpg be a f-stable
parabolic subgroup of R. Then f)(\P) = 3 W\ € C[Yr/*™r ~ Hyyp, and it

weN
follows easily from the definitions that, for ]:avery w € Qp,

e D N =2E(NO®) YD A

UJ’GQ]MP w/EQJMP

From the definition of the functions f']%, it is clear that there exists a finite
union D C ag,, of hyperplanes (containing the origin) such that, for every
parabolic subgroup Py of G, %190 is constant on the connected components
of ar — D (take for D the union of the kernels of the fundamental weights of
T¢ in Bg). Then D' := N~Y(D) C ar,, is a finite union of hyperplanes and,
for every f-stable parabolic subgroup P D Bpg of R, the function %g; oN
is constant on the connected components of ar, — D’. After replacing D’

by U w(D’), we may assume that, for every connected component C' of
wENR
ar, — D', for all \, X € C, for every #-stable parabolic subgroup P D Bg of

R and for every w € Qg,
75 o N(AY) =75 o N((X)“).

Let C be a connected component of ar, — D’. The calculations above show
that there exist subsets Q) of Qp, indexed by the set of §-stable parabolic
subgroups P of R containing Bg, such that : for every A € C, for every P,

o) = Z Y.

’
wGQMP

Let z € Ygr be O-stable, let m be a #-stable subquotient of I(z) and let
A be an intertwining operator on 7. For every #-stable parabolic subgroup
P D By of R,

~1/2 ~1/2 -1/2
§BR/ ®TNp, = 5BR/nMp ® (0p / ® TNp)Ng g -
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By formula (%), the calculation of the functions Yn, o f )(\P) above and lemma

9.2.10 (applied to the representations (5;1/2 ® TNp ), the restriction to C'N
X*(Yg) of the function A —— Tro_.(7(fx)Ar) is a linear combination of
functions A — A(wz), with w € Q. Hence C' is a cone satisfying condition
(a) of the lemma.

We now show the second statement of the lemma. After replacing the
embeddings of T g and TG in H and G by conjugates we may assume that
&o induces a I' p-equivariant isomorphism Ty —— TG Use this isomorphism
to identify Ty and Tg. By the definition of , the restriction to Ty of
& : H — G induces a I'p-equivariant morphism Ty — Tg. Let t x o0 =
£ (1 X U) Then t' centralizes the image (by the diagonal embedding) of
TG in R = Gd as Gder is simply connected, ¢’ € TR The isomorphism
Ty ~ Tq fixed above induces an isomorphism ar, ~ ar,, and we can see
the morphism N : ar, — arg, A — A+0(\)+---+0971(\) defined above
as a morphism art, — ar,,. We may identify at, and at,, to X*(Yg)®zR
and X*(Yy) ®z R, and then N sends X*(Yg) to X*(Yy). It is easy to see
that b);: : C[YR/QR] — C[YH/QH} sends f)\ to |QH|71 Z /\(t/)fN()\w), for

weR
every A € X*(Yg), where A(t') denotes the value of A at the image of ¢’ by
the obvious morphism TR — Y = §R. Let Dy C ar,, be the union of the
kernels of the fundamental weights of Ty in By, and let D% be the union
of the w(N~*(Dg)), for w € Q. Then, for every connected component C
of ap, — DYy, for all A, X € C, for every parabolic subgroup Py D By of H
and for every w € Qg,

o N(A®) =+, o N((V)¥).

By the untwisted version of the reasoning above (applied to the calculation
of compact traces of representations of II(H)), such a connected component
C satisfies condition (b). Hence a connected component of at, — (DU D)
satisfies conditions (a) and (b).

O

The next lemma will be used in section 9.3. It is a vanishing result similar
to proposition 3.7.2 of [La3].

Lemma 9.2.12 Assume that there exists an admissible embedding Ty —
G with image T and that the center of G is connected. Let vy € H(F') be
semi-simple elliptic and strongly G-regular. Assume that, for every 0-semi-
simple 6 € R(F), no element of N'¢ is an image of vy in G(F'). Then, for

every f € Hg, Oy, (be(f)) =0.

As the condition on 7y is stable by stable conjugacy, the lemma implies
that, under the same hypothesis on vy, SO, (be(f)) = 0 for every f € Hp.

Proof. The proof is an adaptation of the proof of proposition 3.7.2 of [La3].
We first reformulate the condition on 7y. By proposition 2.5.3 of [La3], a
semi-simple elliptic element of G(F') is a norm if and only if its image in
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HY, (F,G) is a norm. Using the proof of proposition 1.7.3 of [La3], we
get canonical isomorphisms HY, (F, G) = H' (Tp, Z(G))? and H, (F,H) =
H'(Cp, Z(H))P (where © means Pontryagin dual). As there is a canonical
I'p-equivariant embedding Z ((A}) c Z (ﬁ), we get a canonical morphism
HY, (F,H) — H?, (F, G). The condition of the lemma on 7y is equivalent
to the following condition : the image of vy in Hgb(F, G) is not a norm.

Assume that gy satisfies this condition. Then there exists a character
x of HY, (F,G) that is trivial on the norms and such that xm(vm) # 1,
where xp is the character of H(F') obtained by composing x and the mor-
phism H(F) — H?, (F,H) — H?, (F,G). By the proof of lemma 3.7.1
of [La3|, x induces a character xr, of Ty (F). Let us show that, for ev-
ery f € Hg, be(f) = xmbe(f) (this finishes the proof of the lemma, be-
cause xm(vy) # 1 for every vy € H(F) that is conjugate to vg). To
do this, we imitate the proof of lemma 3.7.1 of [La3] and we show that
Tr(m(be(f))) = Te(m(xube(f))) for every f € Hpr and every unramified rep-
resentation 7 of H(F'). Identify Ty to Tg by an admissible embedding,
and let N : X.(Sg) — X.(Sy) be the norm morphism as in the proof
of lemma 9.2.11 above. By the proof of the second part of lemma 9.2.11,
every function in Hy = C[Sy/Qpu] = C[Sy|?# that is in the image of bg
is a linear combination of elements N (), with u € X,(Sg). If z € Sy
and X, is the unramified character of Ty (F') corresponding to z, let 7, be
the unramified representation of H(F') obtained from x, (7. is the unique
unramified subquotient of I(z), see eg [Car] p 152). Finally, let 2y € Sy be
the element corresponding to the unramified character xp, of Ty (F). As
Xty 1s trivial on the norms, N(u)(z0) =1 for every u € X.(Sg).

Let f € Hp. By lemma 9.2.10, for every z € Sp, Tr(m.(be(f))) is a linear
combination of the bg(f)(wz), with w € Qg . Hence, by the discussion above,

for every z € Sy, Tr(m.(be(f))) = Tr(maz (be(f))); but Tr(m., (be(f))) =
Tr(m, (xabe(f))), so Tr(m,(be(f))) = Tr(wz(XHbg( ))). This implies that

be(f) = xmbe (f)- .

Proof of proposition 9.2.2. Note that, by lemma 9.4.6, there exists an
admissible embedding Ty — G with image Tq.

Let (af(7))ier, rer(r) and (a; (WH))7€I ruen(a) be the local data. By the
definition of local data, it is enough to show that, for every i € I and every
I € Hr,

. M Te(r(NHA) = Y af (ru) Te(ru(be(f)))-
r€T(R) 7y €TI(H)
Fix i € I, and let A be the distribution on Hp defined by
AN =) af(m)Te(n(f)Ax) — Y aff (mu) Te(ru (be(f))).
n€T(R) 7 €TI(H)
We want to show that A = 0. The distribution A is a sum of characters
of Hi. In other words, there exist z1,...,2, € Yg such that A is a linear
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combination of the distributions z; — f(z;); we may assume that z; and Zj
are not {)g-conjugate if i # j. Write

= Z cif(zi)

with ¢1,...,¢, € C. By the definition of local data and lemma 9.2.4, A is a
linear combination of distributions f —— A(vgy, f), with yg € H(F) elliptic
semi-simple and strongly G-regular. By lemma 9.2.6, the distribution A is
tempered. By lemma 5.5 of [Cl3], we may assume that z1,...,2, € Y. On
the other hand, by lemma 9.2.8, the distribution A is a linear combination
of distributions f +—— Trg_.(7(f)Ar) and f — Tr.(mu(be(f))), with 7 €
II(R) and 7y € II(H). By lemma 9.2.11, there exists a non-empty open
cone C of X*(Yr) ®z R and y1,...,ym € Ygr such that the restriction to
C'NX*(YR) of the function A — A(fx) on X*(YR) is a linear combination
of the functions A — A(y;), 1 < i < m. By the explicit description of the
y; given in lemma 9.2.11 and lemmas 9.2.9 and 9.2.5, we may assume that
Y1, Ym € YR — Y. Let dy,...,dp, € C be such that

NEDI)
i=1
for every A € C' N X*(Yr). Consider the characters v and ¢ of X*(Yg)
defined by o(A) = > > c;AMwsz;) and ¢’ (A) = E diA(y;). Then p(A) =

=1 weNR

W'\ = A(fn)if A e CNnX*(Ygr). AsCnN X*(YR) generates the group
X*(Yr), the characters ¢ and ¢’ are equal. But the family (A — A(2))zevy
of characters of X*(Yg) is free and {wz;,1 <i <n,w € Qr}N{y1,.. ., Ym} =
@ (because the first set is included in Y} and the second set is included in
Yr — YY), so ¢ = ¢ = 0. By the linear independance of the characters
A — Awz;), this implies that ¢; = --- = ¢, = 0, hence, finally, that A = 0.

O

9.3 CONSTRUCTION OF LOCAL DATA

The goal of this section is to construct local data. The method is global and
uses the trace formula. The first thing to do is to show that there exists a
global situation that gives back the situation of 9.1 at one place.

Lemma 9.3.1 Let F, E, G, (H,s,n0) and n be as in 9.1. Assume that
there exists a finite unramified extension K of E such that the groups G
and H split over K and that the morphisms 1 and £ come from morphisms
HxGal(K/F) — G xGal(K/F) andeGal(K/F) — RNGal(K/F) (if
G is adjoint, then such a K exists by remark 9.2.3). Then, for everey r € N*,

there exist a number field kr, finite Galois extensions ki /kg/kr, a finite set
Sp of finite places of kr, an element vy of Sy, connected reductive groups G
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and H over kr and L-morphisms n: I'H — LG and § IH R, where
R= RkE/kngE, such that :

(i) The groups H and G are quasi-split over kr and split over k.

(ii)) The set Sy has r elements. Let v € Sy. Then the place v is inert
in kg, and there are isomorphisms kp, ~ F, kg, ~ E, kx, ~ K,
G, ~ G, H, ~ H. The group G has elliptic maximal tori T that stay
elliptic over kg ,,. Moreover, the obvious morphism Gal(kg ,/kry) —
Gal(kk /kF) is an isomorphism (in particular, the extension kg /kp is

cyclic).
(iii) kp is totally imaginary.

(iv) (H,*H,s,n) are endoscopic data for (G,1,1), and (H,"H,t,¢) are
endoscopic data for (R, 8,1), where 6 is the automorphism of R defined
by the generator of Gal(kg /kr) given by the isomorphism Gal(E/F) ~
Gal(kE,vo/kF,vo) ;) Gal(kE/kF) of (11)

(v) Foreveryv € Sy, n, corresponds ton : “H — LG and §7j corresponds

to & : 'H — LR (by the isomorphisms of (ii)). For every infinite place
v ofkp, themorphismﬂv HxWe=HxW¢e — GxWc=GxW¢
is equal to ng X idy,.

Moreover :
(vi) There exist infinitely many places of kr that split totally in k.

(vii) For every finite set S of places of kr such that Sy ¢ S, the group

H(kp) is dense in [[ H(kp,). The same statement is true if H is
vES
replaced by G, R or by a torus of H, G or R.

Proof. If r = 1, the existence of kr, kg, krx, G, H and Sy = {vg} satisfying
(1), (i) and (iii) is a consequence of the proof of proposition 11.1 of [Wal]. As
in [C13] p 293, we pass from the case r = 1 to the general case by replacing
krp by an extension of degree r where vy splits totally (this extension is
necessarily linearly disjoint from kg, because vy is inert in kg ). By the last
sentence of (ii),  gives a L-morphism H x Gal(kx /kr) — G x Gal(kx /kr)
and £ gives a L-morphism ﬁ x Gal(kg /kp) — E x Gal(kg /kr). Take as n
and ¢ the L-morphisms “H — G and “H — R that make the obvious
diagrams commute. Then (iv) and (v) are clear. Point (vi) follows from
the Cebotarev density theorem (cf [Ne], chapter VII, theorem 13.4 and in
particular corollary 13.6). As all the places of Sy are inert in kg, (vii) follows
from (b) of lemma 1 of [KRo].

O

The main result of this section is the next proposition.
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Proposition 9.3.2 Assume that G is adjoint and that the endoscopic triple
(H, s,m0) is elliptic. Let kp, kg, etc, be as in lemma 9.3.1 above, with r = 3.
Assume that, for almost every place v of kg, the fundamental lemma for the
unit element of the Hecke algebra is known for (R,,,0,,1) and (H,,“H,, t, §U)
(at almost every place v of F', the local situation is as in remark 9.1.1).

Then there exist local data for R and (H,*H,t,¢).

The proposition is proved at the end of this section, after a few lemmas.

We will need a simple form of the trace formula, due originally to Deligne
and Kazhdan (see the article [He] of Henniart, sections 4.8 et 4.9, for the
untwisted case, and lemma 1.2.5 of the book [AC] of Arthur and Clozel
for the twisted case). The next lemma is the obvious generalization (to
groups that are not necessarily GL,,) of lemma 1.2.5 of [AC], and the proof
of this lemma applies without any change (in condition (3’) on page 14 of
[AC], the assumption that the functions ¢,,, are all coefficients of the same
supercuspidal representation is not necessary).

Lemma 9.3.3 Let F' be a number field, E/F be a cyclic extension of degree
d and G be a connected adjoint group over F. Set R = Rp,rGg, fix a
generator of Gal(E/F) and let 0 be the automorphism of R induced by
this generator. Let ¢ € C°(R(F)). Denote by r(¢) the endomorphism of
L? := L*(R(F) \ R(AFr)) obtained by making ¢ act by right convolution,
and let Iy be the endomorphism f +—— fo6~! of L?. Assume that :

(0) ¢ = Q) ¢, where the tensor product is taken over the set of places v of

v
F and ¢, € CX(R(F),)) for every v; moreover, at almost every finite
place v where R is unramified, ¢, is the characteristic function of a
hyperspecial maximal compact subgroup of R(F,).

(1) There exists a finite place v of F that splits totally in E and such that,
on R(F,) ~ G(F,)4, ¢ = ¢1 @ - -+ ® ¢a, where the ¢; € C=(G(F,))
are supercuspidal functions (in the sense of [He] 4.8).

(2) There exists a finite place v of F' such that the support of ¢, is con-
tained in the set of f-elliptic 6-semi-simple and strongly 0-regular ele-
ments of R(F,).

Then 7(¢)Iy sends L? to the subspace of cuspidal functions (in particular,
the endomorphism r(¢$)Iy has a trace), and

Te(r(9)Ig) = Y vol(Gso(F) \ Gs(Ar))Oso(0),
5

where the sum is taken over the set of #-conjugacy classes of 6-elliptic 6-
semi-simple and strongly 6-regular § € R(F).

Lemma 9.3.4 ([H2] lemma 5.1) Let F, G and H be as in 9.1 (in particular,
F' is a non-archimedean local field, G is an unramified group over F' and H is
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an unramified endoscopic group of G). Assume that the centers of G and H
are anisotropic. Let T be an unramified elliptic maximal torus of H; assume
that T is defined over Op and that T(F) C H(Op). Let j : T — G be
an admissible embedding defined over Or. Set N = Norg ) (j(T(F))), and
make N act on T(F) via j.

Then there exist functions f € CX°(G(F)) and fy € C°(H(F)) such that

® f and fy are supercuspidal (in the sense of [He] 4.8; in particular, a
linear combination of coefficients of supercuspidal representations is a
supercuspidal function);

® the function v — O.(f) (resp. vu +— SO, (fu)) on G(F) (resp.
H(F)) is not identically zero, and its support is contained in the set of
semi-simple strongly regular (resp. strongly G-regular) elements that
are conjugate to an element of j(T(F')) (resp. T(F));

® the function vy — O, (fu) on T(F) is invariant under the action of
N.

The next two lemmas will be useful to construct transfers (and inverse
transfers) of certain functions. The first lemma is a particular case of a
theorem of Vignéras (theorem A of [Vi]).

Lemma 9.3.5 Let F be a non-archimedean local field and G be a con-
nected reductive group over F'. Denote by G(F)ss—req the set of semi-
simple strongly regular elements of G(F'). Let I' : G(F)ss—reg — C be
a function that is invariant by G(F)-conjugacy and such that, for every
v € G(F)ss—reg, the restriction of ' to G(F) N G(F')ss—req Is locally con-
stant with compact support. Then there exists f € CS°(G(F)ss—reg) Such
that, for every v € G(F)ss—reg, I'(7) = O4(f).

We will need a twisted variant of this lemma and some consequences of it.
In the next lemma, F is still a non-archimedean local field and G a connected
reductive group over F. We also assume that F' is of characteristic 0. Let E
be a finite étale F-algebra such that Autp(FE) is cyclic. Set R = Rg/pGg,
fix a generator of Autp(E) and denote by 6 the automorphism of R induced
by this generator (so the situation is that of example 8.1.1, except that F
does not have to be a field). Use the definitions of 8.1. Let § € R(F) be
f-semi-simple and strongly #-regular, and write T = Rsp. As in [La3] 1.8,
set

D(T, R; F) = Ker(H' (F, T) — H'(F,R)).

As F is local and non-archimedean, the pointed set (T, G; F') is canoni-
cally isomorphic to an abelian group (cf [La3] lemma 1.8.3); so we will see
D(T, R; F) as an abelian group. If 6’ € R(F) is stably #-conjugate to ¢, then
it defines an element inv(é,6’) of (T, R; F). The map §' — inv(d, ') in-
duces a bijection from the set of #-conjugacy classes in the stable 8-conjugacy
class of § to the set D(T, R; F) (cf [La3] 2.3). Remember also (cf [A4] §1)
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that T is a torus of R and that, if (T(F)d),cg4 is the set of strongly #-regular
elements of T(F')d, then the map u : (T(F)d)req x T(F)\ R(F) — R(F),
(g,7) — x~1gf(x), is finite on its image and open.

Now forget about § and fix a maximal torus T of G (that can also be seen
as a torus of R via the obvious embedding G C R). Let 2 be the set of
f-semi-simple strongly f-regular § € R(F) such that there exists z € R(F)
with Rsg = 2Tz~ 1. If & is a character of D(T, R; F), f € C>°(Q2) and § € Q

is such that Rsg = T, set
Os(f) =Y _(inv(8,8"), %) Osro(f),

5/
where the sum is taken over the set of 6-conjugacy classes in the stable 6-
conjugacy class of §. Then Of,(f) is a (twisted) s-orbital integral of f. (This
definition is a particular case of [La3] 2.7).

Lemma 9.3.6 Let T and 2 be as above. Let I' : Q — C be a function that
is invariant by 6-conjugacy and such that, for every § € (Q, the restriction
of T to Rsp(F)d N Q is locally constant with compact support. Then there
exists f € C°(Q) such that, for every 6 € Q, T'(§) = Oso(f).

Let x be a character of ©(T, R; F). Assume that, for every § € Q such
that Rss = T, for every §' € Q that is stably 6-conjugate to 0, T'(0) =
(inv(6,0"), k)T'(¢"). Then there exists g € C°(2) such that

(a) for every § € Q such that Rsg =T, T'(0) = O§,(9);

(b) for every character k' of ®(T, R; F') such that v # x and for every
0 € Q such that Rso =T, O5,(g) = 0.

Moreover, for every character k of (T, R; F'), for every § € Q and every
open neighbourhood Q' of §, there exists a function T satisfying the condi-
tions above and such that T'(§) # 0 and that T'(§') = 0 if ¢’ is not stably
f-conjugate to an element of .

Proof. Let T = Tq,..., T, be a system of representatives of the set of
R(F)-conjugacy classes of tori of R (defined over F') that are equal to a
xTx!, with € R(F). For every i € {1,...,n}, denote by €; the set of
0 € Q such that Rsg is R(F')-conjugate to T;. The ; are pairwise disjoint

open subsets of 2, and Q@ = |J ;. Let ¢ € {1,...,n}. If § € Q; is such

=1
that Rso = Ty, let us be the function (T;(F)0)req x Ti(F) \ R(F) —
R(F),(z,y) — y~txy. Then (; is the union of the images of the s, this
images are open, and two of these images are either equal or disjoint. So
there exists a finite family (0;;);cs, of elements of §2; such that Rs, ;o = T;
for every j and that Q; = [ Im(us,;). Write us; = us,;, Qij = Im(us;)
i€J;
and T';; = 1o, . T". Then thejfunctions I';; are invariant by -conjugacy, and

I =T
2,3

i3
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For every 4,7’ € {1,...,n}, let A(4,4') be the (finite) set of isomorphisms
T, — Ty (over F) of the form Int(x), with z € R(F). If i = ¢, write
A() = A(i,7"). Let i € {1,...,n}. For every j € J;, i’ € {1,...,n}, j/ € Jy
and a € A(i,4), the map {z € T;(F)|zd;; € Ti(F)reg} — D(T;,R; F),
x — inv(xd;;, a(x)dy ) is locally constant. For every j € J;, the support
of T';j o u;; is contained in a set of the form w x T;(F) \ R(F), with w a
compact subset of (T;(F)d;;)req- S0 it is easy to see that there exist open
compact subsets w;i, k € K;, of T;(F), and functions I';;;, € C°(Q;;),
invariant by #-conjugacy, such that :

(1) for every j € J; and k € K, wirdij C (T;(F)dij)reqg, and the support
of the function T is contained in w;;(wixdi; X T;(F) \ R(F));

(2) for every k € K, the images of the w;; by the elements of A(i) are
pairwise disjoint;

(3) forevery j € J;, I'i; = > Tyji.
keK;
Let i € {1,...,n}, j € J; and k € K;. By point (2) above, the restriction of
U;j 10 wikdi; x T;(F) \ R(F) is injective. Let U; be an open compact subset
of volume 1 of T;(F) \ G(F). Denote by f;;r the product of I';;z and of
the characteristic function of w;;(w;xd;; x U;). Then fi;r € C°(£2) and, for
every § € Q, Oso(fiji) = T'ijr(0). So the function f := Y f;i satisfies the
ijk

condition of the first statement of the lemma. ’

Let k be a character of (T, R; F). Assume that I" satisfies the condition
of the second statement of the lemma. If ' is a character of ®(T, R; F) and
6 € Q is such that Rsp = T, then

O55(f) =Y (inv(3,8"), ") Ogip(f) = D (inv(6,8'),5)T(5")
5 5

B (inv(8,4"), k')
B 1—‘(5); (inv(6,8"), k)’

where the sum is taken over the set of #-conjugacy classes in the stable
f-conjugacy class of 6. So we can take g = |D(T, R; F)|~1f.

We show the last statement of the lemma. Let k be a character of
D(T,R; F). Choose (arbitrarily) an element jo of Ji, and write §; = d1 -
For every i € {1,...,n}, let J/ be the set of j € J; such that ;; is stably
f-conjugate to an element of T4 (F')d1; after translating (on the left) d;; by
an element of T;(F'), we may assume that d;; is stably #-conjugate to §; for
every j € J/. For every i € {1,...,n} and j € J/, choose z;; € R(F) such
that 6;; = x;;610(z;;)", and let a;; be the element of A(1,7) induced by
Int(z;;). Let w C T1(F) be an open compact subset such that :

* lcw;
o for every i € {1,...,n}, the images of w by the elements of A(1,%) are
pairwise disjoint;
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e foreveryi € {l,...,n},j€ J/ and a € A(1,1), a(w)di; C (Ti(F)dij)reg
and the function x — (inv(zd1, a(x)d;;), k) is constant on w.

For everyi € {1,...,n} and j € J/, let T';; be the product of the character-
istic function of u;;(a;; (w)d;; x T; (F)\R(F)) and of (inv(yd1, ai; (y)di;), k),
where y is any element of w. Set I' = Y I';;. Let 6 € Q be such that

0.

Rsp = T. Then I'(6) = |A(1)] if 0 is B-conjugate to an element of wdy,
and T'(§) = 0 otherwise (in particular, T' is not identically zero). Let
0 € R(F) be stably 6-conjugate to d;. There exists a unique pair (i,7),
with ¢ € {1,...,n} and j € J/, such that ¢ is f-conjugate to an element
of T;(F)d;;. If ¢ is not stably 6-conjugate to an element of wdq, then §
is not f-conjugate to an element of a;;(w)d;;, and I'(6) = 0. Otherwise,
T'(6) = (inv(d1,9), k)L AQ)| = (inv(d1,8), k) 1T(d1).

Let § € Q. After changing the order of the T; and choosing other repre-
sentatives for the ¢1;, we may assume that the fixed 0, is 6. As it is always
possible to replace w by a smaller open compact (containing 1), this proves
the last statement of the lemma.

O

The two lemmas above have the following consequence :

Lemma 9.3.7 Assume that F', E, G, R and 0 are as in lemma 9.3.6. Let
(H,s,m9) be an endoscopic triple for G. Assume that this local situation
comes from a global situation as in lemma 9.3.1. In particular, H is the first
element of endoscopic data (H,*H,t,£) for (R,0,1). Let A¢ be the transfer
factors defined by ¢ (with any normalization). Then :

(i) Every function f € CS°(R(F')) with support in the set of §-semi-simple
strongly 0-regular elements admits a transfer to H.

(ii) Let Ty be a maximal torus of H. Choose an admissible embedding
Jj: Ty — G, and make N := Norgr(j(Tu(F))) act on Ty(F)
via j. Let fi € C°(H(F)) be a function with support in the set of
strongly regular elements that are stably conjugate to an element of
Ty(F). Assume that the function Ty(F) — C, vg — O, (fu),
is invariant under the action of N. Then there exists f € C>°(R(F))
such that fy is a transfer of f to H.

The notion of transfer (or of “matching functions”) in that case of defined
in [KS] 5.5.

Proof. To prove (i), define a function Iy on the set of semi-simple strongly
G-regular elements of H(F) by I'y(ve) = > A¢(vm,0)Os0(f), where the
0

sum is taken over the set of f-conjugacy classes of R(F'), and apply lemma
9.3.5 to I'gy. To show (ii), construct a function I" on the set of #-semi-simple
strongly f-regular elements of R(F') in the following way : If there does not
exist any vy € H(F) such that A¢(yg,d) # 0, set T'(6) = 0; if there exists
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va € H(F) such that A¢(ym,d) # 0, set T(8) = Ae(vm,6) " SO0, (fu).
The function T is well-defined by the assumption on fg (and lemma 5.1.B
of [KS]). So (ii) follows from theorem 5.1.D of [KS] and from lemma 9.3.6.

O

Remark 9.3.8 We need to be able to compare the groups of endoscopic
characters of [KS| and [La3]. In the situation of the lemma above, but
with F' global or local (and allowed to be archimedean), if Tg is a #-stable
maximal torus of R coming from a torus T of G, Labesse defined groups
R(T,R;F); C K(T,R;F) ([La3] 1.8) and Kottwitz and Shelstad defined
groups &(Tg, 0, R)1 C R(Tg, 0, R) ([KS] 6.4; Kottwitz and Shelstad assume
that F' is a number field, but it is possible to write the same definitions
if F is local, erasing of course the quotient by Ker! in the definition of
f1). As we are interested in endoscopic data for the triple (R,0,1)
(whose third element, that could in general be an element of H (W, Z (é))7
is trivial here), we must use the group K(Tg,0,T); (cf [KS] 7.1 and 7.2)
to parametrize this data. Labesse showed that the groups &(T, R, F') and
R(Tg, 0, R) are canonically isomorphic (cf the end of [La3] 2.6). Using the
techniques of [La3] 1.7, it is easy to see that this isomorphism identifies
R(T,R; F); and R(Tg,0,R);.

The next lemma explains what happens if £ = F<.

Lemma 9.3.9 Let F be a local or global field, G be a connected reductive
group over F and d € N*. Set R = G%, and let § be the automorphism of R
that sends (g1, -.-,94) to (g92,-..,94,91). Then :

(i) The set of equivalence classes of endoscopic data for (R, 6,1) is canon-
ically isomorphic to the set of equivalence classes of endoscopic data
for (G, 1,1).

(ii) Let ¢ € C°(R(F)). Assume that ¢ = ¢1 ® -+ ® ¢a, With ¢1,..., P4 €
C>(G(F)). Then, for every v = (71,...,7a) € R(F),

Ov9(¢) = O’Yl-u‘rd (¢1 ke ok ¢d)

(provided, of course, that the measures are normalized in compatible
ways).

Proof. Point (ii) is a particular case of [AC] I.5. Point (i) is almost obvious.
We explain how the isomorphism is constructed. The dual group of R is
R = G, with the diagonal action of Gal(F/F), so the diagonal embedding
G — R extends in an obvious way to a L-morphism 7 : G — EFR.
If (H,H,s,&) are endoscopic data for (G,1,1), it defines endoscopic data
(H,H,n(s),n o &) for (R,0,1). Conversely, let (H,H,s,&) be endoscopic
data for (R,0,1). Write {(h x w) = (&1(h ¥ w),...,&(h X w)) x w, with
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hxweH~HxWp, and s = (s1,...,54). Let &g : H — LG, h xw —
&1(h xw) xw. Then (H,H, s ...54,&c) are endoscopic data for (G, 1,1).
O

The next lemma is the analog of a statement proved in [H2], p 20-22. Tt
is proved exactly in the same way, using the twisted version of the Paley-
Wiener theorem (cf the article [DeM] of Delorme and Mezo) instead of the
untwisted version. (The statment on the support of functions in E is shown
by using the control over the support of the functions given by theorem 3 of
[DeM].)

Lemma 9.3.10 Let G be a connected reductive group over C, (H, s, ng)
be an endoscopic triple for G and d € N*. Set R = G%, and denote by
0 the automorphism of R defined by 6(g1,...,94) = (92,---,94,91). Let
n = no X idw,. : Y'H — EG be the obvious extension of 1y, and & be the
composition of  and of the obvious (“diagonal”) embedding *G — LR.
Fix maximal compact subgroups K and Ky of G(C) and H(C), write Kr =
K¢ and denote by C°(G(C),Kg) (resp. C(H(C),Kg), C=(R(C),Kg))
the space of C* functions with compact support and Kg-finite (resp. Kg-
finite, Kg-finite) on G(C) (resp. H(C), R(C)). Let II(H) (resp. II4(R)) be
the set of isomorphism classes of irreducible unitary representations of H(C)
(resp. of B-stable irreducible unitary representations of R(C)), and ey, (H)
(resp. Ilg_temp(R)) be the subset of tempered representations. For every
7 € Iy(R), choose a normalized intertwining operator A, on w. For every
T € Hyg_temp(R), let g (m) be the set of mpy € Iliepmp(m) whose functorial
transfer to R is m (so wy is in Iy () if and only if there exists a Langlands
parameter g : We — YH of my such that £opyy is a Langlands parameter
of 7). Let N : C®(R(C),Kg) = C®(G(C),Kg)®? — C>*(G(C),Kg) be
the morphism of C-algebras such that, for every f1,..., fq € C*(G(C),Kg),
N(fi® - ® fa) = fix-x fa

Then there exists a vector space E C C°(R(C), Kg) and a compact subset
C of H(C) such that :

(i) There exists f € E and a transfer f € C°(H(C),Ky) of N(f) to H
such that the stable orbital integrals of fH are not identically zero on
the set of regular semi-simple elliptic elements of H(C).

(ii) For every f € E and every transfer f7 of N(f), SO, (f*) =0 if yu
is not conjugate to an element of C.

(iii) Let (a(m))rer,(r) and (b(TH))r, encry be families of complex numbers
such that, for every f € E and every transfer f € C°(H(C),Ky) of
N(f) toH, the sums A(f) := > a(r) Tr(n(f)A;) and Ay (fH) =

Tell(R)
S b(ry) Tr(mg(fH)) are absolutely convergent. Then the fol-
ﬂHEH(H)
lowing conditions are equivalent :



main April 10, 2009

188 CHAPTER 9

(A) for every f € E and every transfer f € C°(H(C),Kz) of N(f)
to H, A(f) = Au(f");

(B) for every f € E, for every transfer f% € C*(H(C),Kg) of
N(f) to H and for every m € Ig_temp(R), a(m) Tr(n(f)Ar) =
> () Te(ru (7).

7!‘H€HH(7T)

The next lemma is proved in [Cl3], p 292.

Lemma 9.3.11 Notations are as in 9.1. Let f € Hpg. If there exists a
dense subset D of the set of elliptic semi-simple strongly G-regular elements
of H(F) such that A(ym, f) = 0 for every yg € D, then A(yy, f) = 0 for
every elliptic semi-simple strongly G-regular vy € H(F).

Lemma 9.3.12 Let F' be a number field, E be a cyclic extension of F' and
G be a connected reductive group over F'. Set R = Rp/pGg, choose a
generator of Gal(E/F) and denote by 6 the automorphism of R induced by
this generator. Let K be a finite extension of E such that G splits over K.
Assume that the center of G is connected and that there exists a finite place
v of F', inert in K, such that the morphism Gal(K,/F,) — Gal(K/F) is
an isomorphism. Then localization induces an injective map from the set of
equivalence classes of endoscopic data for (R, 0,1) to the set of equivalence
classes of endoscopic data for (R,,0,,1).

Proof. Let (H, H, s,£),(H',H', s', &) be endoscopic data for (R, 9, 1) whose
localizations are equivalent (as endoscopic data for (R,,60,,1)). By lemma
9.3.9, the endoscopic data for (R, 0k, 1) defined by (H, H, s,£) and (H', H', s', ')
are equivalent to endoscopic data coming from endoscopic data for (Gg,1,1).
As the derived group of G is simply connected (because the center of G
is connected) and Gg is split, if (G',G’,sg,&c) are endoscopic data for
(Gk,1,1), then G’ is split, so G/ ~ G’ x Wk, and we may assume that
&c is the product of an embedding G’ — R and of the identity on Wk.
Hence, after replacing (H, H, s,£) and (H', H', s’,¢’) by equivalent data, we
may assume that & and & come from L-morphisms H x Gal(K/F) —
R x Gal(K/F) and H' x Gal(K/F) — R x Gal(K/F). As the data
(H,H,s,&) and (H',H',s',£’) are equivalent at v, we may identify H and B
and assume that s = s'. As Gal(K,/F,) — Gal(K/F) (and Gal(F/K) acts
trivially on H and H’ ), the isomorphism H = H’ extends to an isomorphism
H ~ H’ that identifies £ and £’. So the data (H, H, s,£) and (H',H’, ', &)
are equivalent, and the first statement of the lemma is proved.

O

Proof of proposition 9.3.2. Write Sy = {vg,v1,ve}. Identify kp ., k& v,
etc, to F, E, etc. We will prove the proposition by applying the twisted
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trace formula on R to functions whose local component at vg is a function
in HR.

Let T¢ be an elliptic maximal torus of G such that T¢ g, 1s also elliptic.
Fix an admissible embedding Ty — G with image T, where Ty is an
elliptic maximal torus of H, and let Tp = Ry, k. Ta ks Let x be the
element of R(Tg,0,kr)1 = R(Tq, R;kr)1 (cf remark 9.3.8) associated to
the endoscopic data (H,H, t,¢) by the map of [KS] 7.2. Write &,, for the
image of x by the localization map &(Ty,R;kr) — R(Thw, R, krv,)
(cf [La3] p 43). Choose a function ¢,, € C°(R(kr.,)) that satisfies the
conditions of lemma 9.3.6 (ie such that the support of ¢,, is contained in the
union of the stable #-conjugates of Tr(kr ., ), that the x,,-orbital integrals
of ¢,, are not all zero and that the ], -orbital integrals of ¢,, are all zero if
Kl # kv, ). Let f be a transfer of ¢,,, to H, . Let f € C°(H(kp,,)) be a
function with support in the set of semi-simple strongly G-regular elements,
whose orbital integrals are constant on stable conjugacy classes and whose
stable orbital integrals are not all zero (such a function exists by lemma
9.3.6, applied with # = 1 and x = 1). Fix a function ¢,, € CX(R(kp,))
such that fZ is a transfer of ¢,, (such a function exists by lemma 9.3.7).

Let vz and vy be finite places of kr where all the data are unramified (ie
where the situation is as in remark 9.1.1); assume moreover that vz splits to-
tally in kg (this is possible by (vi) of lemma 9.3.1). Let f,, € C°(G(kF.v;))
be as in lemma 9.3.4. Write ¢, = fu, @ -+ ® fu, € C°(R(kp,)) (Where
we identified R(kp,v,) to G(kp,u,)?), and choose a transfer fZ of ¢, (such
a transfer exists by lemma 9.3.7). Let f& € C°(H(kp,,)) be as in lemma
9.3.4. Choose a function ¢,, € C2°(R(kp,u,) such that ff is a transfer of
¢u, (such a function exists by lemma 9.3.7).

Let S be the set of infinite places of kr (by (iii) of lemma 9.3.1, they are
all complex). Write Hyo = [] H(kp,) and R = [] R(kpw). Let E be

VESso VES
a subspace of C3°(Ro) and Cy be a compact subset of H, that satisfy the
conditions of lemma 9.3.10. Let ¢p,o € E and f(foo be a transfer of ¢g o
such that the stable orbital integrals of f(foo on elliptic elements of H,, are
not all zero.

Let D; be the set of semi-simple strongly G-regular elliptic elements of
H(F) coming from a vy € H(kr) such that

- there exists 6 € R(kp) and an image v of vy in G(kr) such that
v e N;

- for every v € {v1, va, v3,v4}, SOWH(fz{I) # 0;

- 50y, (fol0) # 0.

Let Dy be the set of semi-simple strongly G-regular elliptic elements of
H(F) that have no image in G(F)) that is a norm. By (vii) of lemma 9.3.1,
D := D; U Dy is dense in the set of semi-simple strongly G-regular elliptic
elements of H(F'). By lemma 9.3.11, we may replace the set of semi-simple
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strongly G-regular elliptic elements of H(F') by D in the definition of local
data. By lemma 9.2.12, we may even replace D by D; in this definition.
Let vy € Dy (we use the same notation for the element of H(F') and for the
element of H(kr) that induces it). Let S be a finite set of finite places of kp
such that {vg,v1,v2,v3,v4} C S and that, for every finite place v & S of kp,
all the data are unramified at v, yg € H(Og,. ,) and the fundamental lemma
for the unit of the Hecke algebra is known for (R,,6,,1) and (H,, “H,, t, £,)-

For every v € S — {vp, v1, v, v3,v4}, choose associated functions £ and ¢,
such that SO.,, (fH) # 0 (this is possible by the end of lemma 9.3.6). Let
Co 3 vm be a compact subset of H(F') that meets all the conjugacy classes of
semi-simple elliptic elements of H(F) (such a Cj exists because the center of
H is anisotropic). By proposition 8.2 of [K7], there is only a finite number of
conjugacy classes of semi-simple elements v}, of H(kp) such that v} € Co,
Vir € Cooy SOy (fi) # 0 for every v € S — {vo} and v} € H(Oy,.,) for
every finite place v € S. By the end of lemma 9.3.6, after adding a place
in S and fixing well-chosen functions at that place, we may assume that g
is, up to conjugacy, the only semi-simple element of H(kr) that satisfies
the list of properties given above. For every finite place v € S of kg, take
¢v = 1o, ) and fi' = Iuo,, )-

Let ¢,, € Hr and Jg = be(hyy). FiX ¢oo € E and a transfer fZ of ¢oo,
and set ¢ = ¢oo @ @ ¢, and f7 = f 2 & fH. Then lemma 9.3.3 applies

VF#£ 0O VF#00
to f and ¢, thanks to the choice of the functions at vs and v4. As in 5.4 and
8.2, let TE%2 and TH be the distributions of the é-twisted invariant trace
formula on R and of the invariant trace formula on H.

By lemma 9.3.3, TE(f) is equal to the strongly regular elliptic part of
the trace formula for H, so we may use the stabilization of [L3]. By the
choice of fg , the only endoscopic group of H that appears is H itself; so we
need neither the transfer hypothesis nor the fundamental lemma to stabilize
TE(f). We get

TE(f) = STE(F™),

where STir is the distribution denoted by ST}* in [KS] 7.4 (the strongly
G-regular elliptic part of the stable trace formula for H). Moreover, by the
choice of fH,

STg(fH) = a(booSO’YH (bf(¢vo)),

where a4, is the product of SO, (fs) and of a non-zero scalar that does
not depend on ¢, and ¢y, .

Similarly, by lemma 9.3.3, T2*¢(¢) is equal to the strongly f-regular 6-
elliptic part of the trace formula for R x 8, se we may apply the stabilization
of chapters 6 and 7 of [KS]. By the choice of ¢,,, the only endoscopic data
of (R,0,1) that appear are (H,H,t,£). (Equality (7.4.1) of [KS] expresses
TE?9($) as a sum over elliptic endoscopic data of (R,6,1). The proof of
lemma 7.3.C and theorem 5.1.D of [KS] show that the global x-orbital inte-
grals that appear in this sum are products of local k-orbital integrals. By the
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choice of ¢,,,, these products of local k-orbital integrals are zero for the endo-
scopic data that are not equivalent to (H, M, t,£) at the place v;. By lemma
9.3.12, (H,H,t,£) are the only endoscopic data satisfying this condition.)
By equality (7.4.1) and the proof of lemma 7.3.C of [KS], we get

TE><Q(¢) — b¢m Z AE(’YH7 5)Oéﬁ(¢v0)v
)

where the sum is taken over the set of §-conjugacy classes of R(F') and bg_
is the product of SO,,, (fZ) and of a non-zero scalar that does not depend
on ¢, and Poo.

Hence A(ym, dv,) = 0 if and only if, for every ¢o, € E, ag TEY(¢) —
b, TE(fH) = 0 (the “only if” part comes from the fact that a,__ by, # 0 for
at least one choice of ¢,). By lemmas 9.3.3 and 9.3.10, this last condition
is equivalent to a family of identities of the form

Tr(7o0 (Poo) Ar.) Z a(mo) Tr(mo(PuyAr,))

mo€I(R)

= Y Teae)U) Y b o) T (be(6u,))),

TH, 00 €Ml (Too) mH,0€II(H)

for oo € Ig_temp(Roo) and ¢oo € E, where the notations are as in lemma
9.3.10. By Harish-Chandra’s finiteness theorem (cf [BJ] 4.3(i)), the sums
that appear in these equalities have only a finite number of non-zero terms.
Finally, we showed that the identity A(vm,$v,) = 0 is equivalent to a
family of identities like those that appear in the definition of local data.
To obtain local data for R and (H,*H,t,£), we simply have to repeat this

process for all the elements of D1.
O

9.4 TECHNICAL LEMMAS

We use the notations of 9.1.

Let vy € H(F) be semi-simple and v € G(F) be an image of vg. Let
My be a Levi subgroup of H such that v € Mg (F) and My, = H,,,.
Langlands and Shelstad ([L.S2] §1, see also section 7 of [K13]) associated to
such a My a Levi subgroup M of G such that v € M(F') and M, = G, an
endoscopic triple (Mp, sar,7ar,0) for M and a L-morphism nys : PMpy —
LM extending Nm,0 and such that there is a commutative diagram

nm
My — LM

.y

LH477>LG
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where the left (resp. right) vertical map is in the canonical ﬁ—conjugacy
(resp. é—conjugacy) class of L-morphisms “My — H (resp. 'M —
LG). (If G and H are as in 2.3, this construction is made more explicit in
4.3.) Write Mp = Rg,pM (a 6-stable Levi subgroup of R), and let 6 be
the restriction of 8 to M g. Asin 9.1, associate to (Mg, sar, 7ar) endoscopic
data (MH, LMH, tM, fM) for (MR, GM, 1)

The next lemma is a generalization of the beginning of [H1] 12, and can
be proved exactly in the same way (because there is a descent formula for
twisted orbital integrals, cf for example corollary 8.3 of [A2]). Note that we
also need to use lemma 4.2.1 of [H2] (and the remarks below it).

Lemma 9.4.1 Assume that, for every proper Levi subgroup My of H, the
twisted fundamental lemma is known for Mg and (Mg, “Mpg, tar, €ar) and
for all the functions of Hys,. Then, for every f € Hg and every vy € H(F)
that is semi-simple and is not elliptic,

Ay, f) = 0.

Lemma 9.4.2 Let x be a character of R(F') such that x = x of. Then x
is contant on the -semi-simple stable 0-conjugacy classes of R(F').

Proof. If § =1 (ie if E = F), this is lemma 3.2 of [H2]. In the general
case, the result follows from the case # = 1 and from lemma 2.4.3 of [La3].
O

Notations are still as in 9.1. Let B¢ be a Borel subgroup of G and T be
a Levi subgroup of Bg. Assume that the center of G is connected and that
there exists a maximal torus Ty of H and an admissible embedding T —
G with image T¢ (if G is adjoint, this is always the case by lemma 9.4.6).
Use the same notations as in lemma 9.2.11 (in particular, Tr = Rg/r T E).

Let Z(R)g be the group of #-coinvariants of the center Z(R) of R. There
is a canonical injective morphism N : Z(R)p — Z(H) (cf [KS] 5.1, p 53).
Let Z be a subtorus of Z(R)y; denote by Zr the inverse image of Z in Z(R)
and by Zp the image of Z in Z(H). Let xpy be an unramified character of
Zu(F). Write xgp = (Ag'(x#r © N))|zn(rF), where ¢ : Z(R)(F) — C* is
the character defined in [KS] 5.1 p 53; then x g is also unramified, by (i) of
lemma 9.4.3 below.

Let HR,yp (resp. He,y,, ) be the algebra of functions f : R(F) — C (resp.
f:H(F) — C) that are right and left invariant by R(Op) (resp. H(OF)),
have compact support modulo Zr(F) (resp. Zy(F)), and such that, for
every (z,7) € Zn(F) x R(F) (resp. Zu(F) x B(F)), f(zz) = x5 (=) f(x)
(resp. f(22) = x5 (2)f(x)). The product is the convolution product, that
sends (f, g) to
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(resp. fxg:zr— flay™Ng(y)dy).
Zu(F)\H(F)

There is a surjective morphism vg : Hg — Hpy, (resp. vy : Hy —

H i,y ) that sends f to z — fZR(F) Xz (2)f(z2)dz (vesp. z — fZR(F) X5 (2) f(zx)dz).
If yw € H(F) and f € Hpu v, then we can define O, (f) by the usual for-

mula (the integral converges). If § € R(F) and f € Hpg,yn, set

Osa(f) = / f(a180(x))da
ZRr(F)Rse(F)\R(F)

(f(x~166(z)) depends only on the class of x in Zg(F)Rs¢(F)\ R(F), because
Xr is trivial on elements of the form 2710(z), 2 € Zg(F)). We define k-
orbital integrals and stable orbital integrals as before for functions of Hg
and HHJ(H'

Lemma 9.4.3 (i) As in the proof of lemma 9.2.11, write {(1 X o) =
t' x o; we may assume that t' € Tr. As Z(R) is an unramified torus,
there is a canonical surjective morphism Z(R)(F) — X.(Z(R)q) with
kernel the maximal compact subgroup of Z(R)(F'), where Z(R)q is
the maximal split subtorus of Z(R) (cf [Bo] 9.5). Define a character

o on Z(R)(F) in/tlf following way : if z € Z(R)(F), and if u €
X.(Z(R)q) = X*(Z(R),) is the image of z by the above morphism,
Ao (z) is the value ﬂ at the/iinage of =1 € Ty by the canonical
morphism T — Z(R) — Z(R),-

Then A¢c = Ay (in particular, A¢ is unramified).

(ii) There exists a morphism be . : Hryx — HHxy that makes the
following diagram commute

VR
Hr > HR»(R

bﬁl \Lbﬁ-,XH

Hy ,,H; HH:XH

Let vi € H(F') be semi-simple and strongly G-regular. Use the mor-
phism be »y : Hryn — HHy to define a linear form A, (vm,.) on
HR,xr that is the analog of the linear form A(yg,.) on Hg of 9.1 (use
the same formula). Then the following conditions are equivalent :

(a) for every z € Zy(F), for every f € Hg, Azyu, f) =0;
(b) for every z € Zy(F), for every f € Hryn, Ay (27w, f) =0.

Proof. Point (i) follows from the definitions of A¢ ([KS] 5.1) and of the
transfer factor Arrr ([KS] 4.4).

We show (ii). Let z € Z(R)(F). For every function f : R(F) — C,
let R.f be the function  — f(zx). Denote by A, the image of z by the
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canonical map Z(R)(F) C Tr(F) — X.(Yr). Then, for every A € X*(Yg),
R.fx = fatr.- Moreover, it is easy to see that, for every A € X*(Yg),
v (vr(f))) is generated by the functions xg(2) 'R, f\, 2 € Zg(F). There
are obviously similar statements for H instead of R.

To show the existence of the morphism b¢ v, : Hrxny — HHyu, it is
enough to show that, for every A € X*(Yg), all the elements of v;' (vr(f2))
have the same image by v obe. Let A € X*(Yg). Let z € Zgr(F); denote by
zp the image of z in Zy(F). Tt is enough to show that be(x5' (2)R.fa) =
Xu(zr) " R, be(fr). By the explicit calculation of be fy in the proof of
lemma 9.2.11, be(R. fx) = A.(t')R.,, be(fr); hence the equality that we are
trying to prove follows from (i) and from the definition of xg.

Let f € Hg and § € R(F). It is easy to see that

Osntvni) = [ @ @0z = [ @ E)0s(R)iz
Z(F) Z(F)

(O.s0(f) depends only on the image of z in Z(F), because the function
0 — Osy(f) is invariant by #-conjugacy). Similarly, for every f € Hy and
vu € H(F),

O (vmlf) = [

X (211)Oerpy (Fdzrr = / X (2#) 0y (Bey F)dzn.
Zu(F)

Zu(F)

Remember ([KS] 5.1) that A¢ is such that, for every semi-simple strongly
regular vy € H(F'), every 6-semi-simple strongly -regular § € R(F') and
every z € Z(R)(F),

Ae(zuvm, 20) = Aot (2)Ae(vm, 0),

where zp is the image of z in Z(H)(F'). By this fact and the above formulas
for the integral orbitals, it is clear that (a) implies (b).

Let yg € H(F) be semi-simple strongly G-regular. Assume that (b) is
satisfied for yp; we want to show (a). Let A € X*(Yg). Denote by °Z
(resp. °Zg, °Zp) the maximal compact subgroup of Z(F) (resp. Zr(F),
Zy(F)). The function f, is obviously invariant by translation by °Zz, and,
moreover, all the unramified #-stable characters of R(F) are constant on its
support (because f) is a linear combination of characteristic functions of sets
R(Op)u(wr)R(OF), where wp is a uniformizer of F and p € X*(Ygr) =
X, (Tg)'F is such that A~ is a cocharacter of Rye,.). Hence, for z € Zg(F),
R.f\ depends only on the image of z in °Zr \ Zg(F) and, for every 6-
semi-simple stable #-conjugacy class C of R(F'), there exists a unique z €
0Zr \ Zr(F) such that, for every 2’ € °Zg \ Zr(F) — {2z} and every § € C,
Os9(R./ f») = 0 (use lemma 9.4.2). There are similar results for H and
be(fy).

Let C be the set of 6 € R(F') such that A¢(ym,d) # 0. Then C is ei-
ther the empty set or a f#-semi-simple #-regular stable #-conjugacy class.
So, by the reasoning above and the formulas for the orbital integrals of
vr(fy) and vy (be(fy)), there exists z € °Z \ Z(F) such that Osg(vr(f))) =
Xr(2)1O0s0(R. fr), for every 6 € C, and that SO, (Vi (be(f1))) = xu (zr) " SO, (R.pybe(f2)),
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where z € °Zg \ Zg(F) is the image of z. If z # 1, then A(yg, f) = 0,
because all the orbital integrals that appear in this expression are zero. If
z =1, then A(vg, fr) = 0 by condition (b) and the properties of A\¢.

O

We still denote by F' a non-archimedean local field (of characteristic 0)
and by F a finite unramified extension of F. Let G be a connected unram-
ified group over F', defined over O and such that G(Op) is a hyperspecial
maximal compact subgroup of G(F). Set R = Rp/pGg, and let 6 be
the automorphism of R induced by a chosen generator of Gal(E/F). Let
Zg be a subtorus of Z(G) defined over Op, and let Zr = Rg/pZc k-
Let G' = G/Zg, R' = R/Zr = Rg/rG%, u : R — R’ be the ob-
vious morphism, H' = Hpr and H be the convolution algebra of func-
tions R(F) — C that are bi-invariant by R(Op), invariant by Zr(F') and
with compact support modulo Zgr(F) (with the notations of lemma 9.4.3,
H =Hr,1). As Zg is connected, we see as in [C13] 6.1 (p 284) that Lang’s
theorem (cf for example theorem 4.4.17 of [Sp]) and Hensel’s lemma imply
that u : R(Op) — R'(Op) is surjective. So w induces a morphism of al-
gebras ¢ : H — H’ (for every f € H and every x € R'(F), ¢(f)(x) is
equal to 0 if z € u(R(F)) and to f(u=1(z)) if € u(R(F))). For every § in
R(F') or R'(F), denote by C(9) (resp. Cg(9)) the f-conjugacy (resp. stable
f-conjugacy) class of §.

Lemma 9.4.4 Assume that 6 acts trivially on H'(F, Zg).
Let § € R(F) be 0-semi-simple; write 6’ = u(d). Then u(Cs:(9)) = Cst(8).
So there exists a (necessarily finite) family (8;);cr of elements of R(F) that

are stably 0-conjugate to §, such that C(0") = [[ u(C(d;)). Moreover, for
i€l
every f € H,

Oso((£)) =Y _ Os,0(f)-

i€l

(As always, we use the Haar measures on R(F) and R'(F') such that the
volumes of R(Op) and R'(Op) are equal to 1.)

Proof. Tt is clear that u(Cs:(d)) C Cst(8’). We show the other inclusion.
Let 4" € R'(F) be stably #-conjugate to ¢’. As u(R(F)) = Ker(R'(F) —
H'(F,Zg)) is the intersection of kernels of f-stable characters of R'(F),
lemma 9.4.2 implies that there exists v € R(F') such that v = u(y). It is
easy to see that v and ¢ are stably #-conjugate.

Fix a family (d;);er as in the statement of the lemma, and write K =
R(OF), K’ = R'(OF). We show the equality of orbital integrals. Let f € H.
We may assume that f = 14, where A is a compact subset of R(F') such
that A = Zr(F)KAK. Then o(f) = 1,(4), so

Oso((f)) = D vol(u(A) N RL(F))7",
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where the sum is taken over a set of representatives ' of the K’-f-conjugacy
classes of elements of u(A) that are f-conjugate to ¢’ (in R'(F)). There are
similar formulas for the twisted orbital integrals of f at the §; ; for every
11,

Os0(f) =Y _vol((AN Ryo(F) ZR(F)/Zr(F) ™",

5
where the sum is taken over a set of representatives «y of the K-8-conjugacy

classes of elements of A that are @-conjugate to ¢; (in R(F)). To show
the formula of the lemma, it is therefore enough to notice that, for every
v € R(F), u induces an isomorphism (ANR.¢(F))Zr(F)/Zr(F) — u(A)N
Ru(y)e-

(]

We use again the notations of 9.1. Assume that (1 x o) € éder x o and
that s € éder. Then (H, “H, s,7) defines in an obvious way endoscopic data
(H',LH' s, for G’ := G/Z(G)° (because G’ = Gg.,). As in 9.1, we get
from this endoscopic data (H',“H’,t',¢’) for (R',0), where R’ = Rg/rG.

Lemma 9.4.5 Assume that 6 acts trivially on H'(F, Z(R)°) and that G
and H satisfy the conditions of lemma 9.4.3.

Then the fundamental lemma is true for (R,0) and (H,H,t, &) if and
only if it is true for (R',0) and (H',*H’ ¢/ ¢’).

Proof. Let Zp = Z(R)°, and let Zy be the image of Z(G)° in Z(H).
Then H' = H/Zy. It is easy to check that, if vy € H(F) is semi-simple and
strongly G-regular, if 6 € R(F) is #-semi-simple and strongly #-regular, and
if (yu, ) is sent to (v}, d’) € H'(F) x R'(F') by the obvious projection, then
Ae(vm,0) = Agr (g, 0"). Apply lemma 9.4.3 with xg = 1 and xg = 1 (this
is possible because the character A\c that appears in this lemma is trivial,
thank to the assumption that (1 x o) € Gger % o). This lemma shows
that we may replace the Hecke algebras of R and H by the Hecke algebras
of Zr(F)-invariant or Zy (F)-invariant functions. To finish the proof, apply
lemma 9.4.4.

O

The next lemma and its proof were communicated to me by Robert Kot-
twitz. (Any mistakes that I may have inserted are my sole responsibility.)

Lemma 9.4.6 Let F be a non-archimedean local field of characteristic 0,
G be an adjoint quasi-split group over F' and (H,s,n9) be an endoscopic
triple for G. Fix a Borel subgroup B (resp. By ) of G (resp. H) and a Levi
subgroup T¢ (resp. Ty) of B (resp. By ). Then there exists an admissible
embedding Ty — G with image Tq.

Proof. Write I' = Gal(F/F). Choose embeddings Te ¢ B C G and
Ty C By C H that are preserved by the action of I' on G and H.
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As F is local, we may assume that s € Z(ﬁ)F. By the definition of an

endoscopic triple, for every 7 € I, there exists g, € G such that : for every
h € H,

g-7(n0(h)gz " = mo(7(h)). (%)

In particular, the G-conjugacy class of no(s) is fixed by the action of T on G.
By lemma 4.8 of [C13], 7o(s) is G-conjugate to an element of TL,. Replacing
no by a G-conjugate, we may assume that 79(s) € TL. Then

T C Centg (10(s)) = Centg(no(s))’ = H

(Centg (10(s)) is connected because G is semi-simple and simply connected),
so by further conjugating 79 by an element in no(ﬁ) (which does not change

no(s), since s € Z(H)), we may also assume that 79(Ty) = Tg and

no(Br) =B Nno(H).

Since no(s) is fixed by T, for every 7 € T, g-n0(s)g;* = no(s), so that
gr € Centg(no(s)) = no(H). Moreover (x), together with the fact that
I' preserves (]§,’i‘g) and (EH,TH), implies that h, := n()_l(gT) conjugates
(I§H, ’fH) into itself. Therefore i, € Ty, and (*) now shows that g induces
a I'-equivariant isomorphism ’i‘H = 'fg. Dual to this is an admissible
isomorphism Ty — Tg.

O

Let F be a non-archimedean local field of characteristic 0. Let n,ni,...,n, €
N*. Set PGL,, = GL,,/Z(GL,). For every quadratic extension E of F,
set PGU(n, E) = GU(n, E)/Z(GU(n, E)), where GU(n, E) is the unitary
group defined by the extension E/F and by the Hermitian form with matrix

0 1
Ip 1= € GL,(2).
1 0
More generally, set P(U(n, F) x --- x U(n,, E)) = (GU(n1,E) x -+ X
GU(n,, E))/Z, where Z = Rp/9G,, embedded diagonally. Set PGSO,, =
GSO(J,,)/Z(GSO(J,)), where GSO(J,,) = GO(J,)°, and PGSp,, =
GSp(.J,)/Z(GSp(.J,), where

T = ( _OJ ‘é ) € GLy, (7).

IfY!, ..., Y" € {GSO, GSp}, we denote by P(Y, x---x Y, ) the quotient
of Ynl1 X - x Y7 by G, embedded diagonally.

Lemma 9.4.7 Let G be a simple adjoint unramified group over F'.

(i) If G is of type A, then there exists a finite unramified extension K
of F, a quadratic unramified extension E of K and a non-negative
integer n such that G = Rg,pPGL, or G = Rg,/rPGU(n, E). If
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G = Rg/rPGL,, then G has no non-trivial elliptic endoscopic groups.
If G = Rg/pPGU(n, E), then the elliptic endoscopic groups of G
are the Rg/pP(GU(n1, E) x GU(ng, E)), with ny,ny € N such that
n = ni + ny and that ny is even.

(ii) If G is of type B, then there exists a finite unramified extension K of F'
and a non-negative integer n such that G = Rg/pPGSOQOa,11. The el-
liptic endoscopic groups of G are the Ry /pP(GSO2;,, 11 xGSO2p, 1),
with ni,ns € N such that n = ny + ns.

(iii) If G is of type C, then there exists a finite unramified extension K of
F and a non-negative integer n such that G = Rg,pPGSpy,. The
elliptic endoscopic groups of G are the P(GSOay,, x GSp,, ), with
ni,ns € N such that n = ny + no and ny # 1.

In particular, if G is adjoint of type A, B or C, then the hypothesis of
proposition 9.2.2 on the center of H (ie that this center be connected) is
satisfied.

Proof. Let K be the smallest extension of F' on which G splits, and fix
a generator o of Gal(K/F). Then Gg ~ (G')", where r € N* and G’ is
an adjoint absolutely simple group over K. Let 6 be the automorphism
(over K) of (G')" induced by o. If G is of type B or C, then G’ is also of
type B or C, so G’ is equal to PGSO,, or PGSp,,,, and G’ has no non-
trivial outer automorphisms (cf [Di] IV.6 and IV.7), so we may assume that
0 acts by permuting the factors of (G’)". As K is the smallest extension on
which G splits, 6 has to be a n-cycle. So G ~ Rg,;pG’. To compute the
elliptic endosocopic triples for G, we may assume that K = F. Then G is
split and has a connected center, so its endoscopic groups are also split (cf
definition 1.8.1 of [Ng]). From this observation, it is easy to see that the
elliptic endoscopic groups of G are the ones given in the statement of the
lemma.

Assume that G is of type A. Then there exists n € N* such that G’ =
PGL,, i, and Out(G’) is isomorphic to Z/2Z (cf [Di] IV.6). We may assume
that 0 € (Z/27)" x &,, where (Z/2Z)" acts on (G')" via the isomorphism
7/27 ~ Out(G’) (and a splitting of Aut(G’) — Out(G’)) and &, acts
on (G)" by permuting the factors. Write 8 = € x 7, with € € (Z/2Z)" and
7 € 6,,. Asin the first case, 7 has to be a n-cycle. After conjugating 7 by an
element of (Z/2Z)" x &,., we may assume that ¢ € {(1,...,1),(-1,1,...,1)}
(because €1 X 7 and €3 x 7 are conjugate if and only if there exists n €
(Z/2Z)" such that 169 = n7(n), and the image of the morphism (Z/2Z)" —
(z)2Z2)", n — n7(n) is {(e1,...,er) € (Z/2Z)"|e1...e, = 1}). If 0 =
(1,...,1) x 7, then G ~ Rg/pPGL,, and it is not hard to see that G has

no non-trivial elliptic endoscopic triples. Assume that § = (—1,1,...,1) x 7.
Then 6 is of order 27, so [K : F| = 2r and G = Rk pPGU(n, K), where
K’ is the subfield of K fixed by 6"(= (—1,...,—1) x 1). The calculation of

the elliptic endoscopic triples of G is done just as in proposition 2.3.1 (with
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the obvious changes).

9.5 RESULTS

Proposition 9.5.1 Let X € {A,B,C}. Let F be a non-archimedean local
field and G be an adjoint unramified group over F', of type X. Assume that
there exists N € N* such that, for all F', E', G/, R’ and (H',YH',#',¢') asin
9.1, the twisted fundamental lemma, is true for the unit of the Hecke algebra
if G’ is adjoint of type X, dim(G’) < dim(G) and the residual characteristic
of F' does not divide N.

Then, for every finite unramified extension E of F and for all twisted
endoscopic data (H,*H,t,¢) for R = Rg/rGEg as in 9.1, the twisted fun-
damental lemma is true for R and (H,“H,t,£) and for all the functions in
the Hecke algebra.

Proof. By lemma 9.4.1, lemma 9.4.6, lemma 9.4.7 lemma 9.3.1, proposition
9.3.2 and proposition 9.2.2; the twisted fundamental lemma for G follows
from the twisted fundamental lemma for all proper Levi subgroups of G (if
G has no elliptic maximal torus, then lemma 9.4.1 is enough to see this).
But, by the classification of adjoint unramified groups of type X given in
lemma 9.4.7, every proper Levi subgroup of G is isomorphic to a group
Go x Gy X --- x G, with Gq,..., G, of the form RK/FGLm, where K is
a finite unramified extension of F' and m € N*, and G¢ adjoint unramified
of type X and such that dim(Gy) < dim(G). If 1 < ¢ < r, G; has no
non-trivial elliptic endoscopic groups, so the twisted fundamental lemma for
G; follows from descent (lemma 9.4.1) and from the fundamental lemma for
stable base change, that has been proved in the case of general linear groups
by Arthur and Clozel ([AC], chapter I, proposition 3.1). Hence, to prove the
proposition, it suffices to reason by induction on the dimension of G.

O

Corollary 9.5.2 We use the notations of 9.1. If F' = Q,, G is one of the
unitary groups G(U*(n1) x --- x U*(n,.)) of 2.1 and the morphism 7 is the
morphism Nsimpie of 4.2, then the twisted fundamental lemma is true.

Proof. As the center of G is connected, the corollary follows from propo-
sition 9.5.1 above and from lemma 9.4.5, so it is enought to check that
the hypotheses of this lemma are satisfied. The endoscopic triple (H, s, 7q)
satisfies the hypotheses of lemma 9.4.3, by the explicit description of the en-
doscopic triples of G given in proposition 2.3.1. It is obvious that s € Gger
and 7(1 x o) € Gger X 0. Finally, the center of G is an induced torus, so its
first Galois cohomology group on any extension of F' is trivial.



main April 10, 2009

200 CHAPTER 9

O

The result that we really need in this text is formula (x) of 5.3. We recall
this formula. Notations are still as in 9.1, with E a field. Let A, be the
transfer factors for the morphism 7 : “H — G, with the normalization
given by the Op-structures on H and G (cf [H1] II 7 or [Wa3] 4.6). If
§ € R(F) is f-semi-simple and v € N§, Kottwitz defined in [K9] §7 p 180
an element ay,(7,8) of X*(Z(G,)'7) (remember that G., = Cent,(G)°).
The result that we want to prove is the following : For every vy € H(F)
semi-simple, for every f € Hpg, let v be an image of vy in G(F') (such a ~
exists because G is quasi-split). Then

SO (be()) =Y < ap(7,8),5 > Ay(ya, 7)e(Rso)Os0(f), (%)
s

where the sum is taken over the set of f-semi-simple f-conjugacy classes §
of R(F) such that v € N§, Rsg is the connected compoenent of 1 of the
centralizer of 66 in R and e(Rsg) is the sign defined by Kottwitz in [K2].

Corollary 9.5.3 Assume that F' = Q, and that G is one of the unitary
groups G(U*(ny1) x -+ x U*(n,)) of 2.1. Then formula (x) above is true.

Proof. If vy is strongly regular, then formula () follows from corollary
9.5.2 and from corollary A.2.10 of the appendix.

The reduction from the general case to the case where vy is strongly
regular is done in section A.3 of the appendix (see in particular proposition
A.3.14).

O

Remark 9.5.4 The last two corollaries are also true (with the same proof)
for any group G with connected center and such that all its endoscopic
triples satisfy the conditions of lemma 9.4.5. Examples of such groups are
the symplectics groups of [M3] (cf proposition 2.1.1 of [M3]).
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Appendix A

Comparison of two versions of twisted transfer

factors

R. Kottwitz

In order to stabilize the Lefschetz formula for Shimura varieties over finite
fields, one needs to use twisted transfer factors for cyclic base change. Now
these twisted transfer factors can be expressed in terms of standard transfer
factors, the ratio between the two being given by a Galois cohomological
factor involving an invariant denoted by inv(v,d) in [KS]. However, in the
stabilization of the Lefschetz formula it is more natural to use a different
invariant «(v,d). The purpose of this appendix is to relate the invariants
inv(7,d) and a(v,d) (see Theorem A.2.5), and then to justify the use made
in [K9] of transfer factors

Ao(vm,6) = Doy, 7)(a(y,6),5) 7",
first in the case when vy is strongly G-regular semisimple (see Corollary
A.2.10) and then in the more general case in which g is assumed only to be
(G, H)-regular (see Proposition A.3.14, where, however, the derived group
of G is assumed to be simply connected).
I would like to thank Sophie Morel for her very helpful comments on a
first version of this appendix.

A.1 COMPARISON OF Ag(vy,5) AND Ag(yu,7)

In the case of cyclic base change the twisted transfer factors Ag(ym,d) of
[KS] are closely related to the standard transfer factors Ag(vm,y) of [LS1].
This fact, first observed by Shelstad [Sh2] in the case of base change for C/R,
was one of several guiding principles used to arrive at the general twisted
transfer factors defined in [KS]. Thus there is nothing really new in this
section. After reviewing some basic notions, we prove Proposition A.1.10,
which gives the precise relationship between Ag (v, d) and Ag(ym,7)-

A.1.1 Set-up

We consider a finite cyclic extension E/F of local fields of characteristic zero.
We put d := [E : F] and choose a generator o of Gal(E/F). In addition
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we choose an algebraic closure F of F that contains E. We write I' for the
absolute Galois group Gal(F/F) and Wg for the absolute Weil group of F.
There is then a canonical homomorphism Wgr — I' that will go unnamed.

We also consider a quasisplit connected reductive group G over F. Put
Rg := Resg,p(GE), where G is the E-group obtained from G by extension
of scalars, and Resg,r denotes Weil’s restriction of scalars. As usual there
is a natural automorphism 6 of R¢ inducing o on G(E) via the canonical
identification Rg(F) = G(E).

A.1.2 Description of Rg

For any I'-group A (that is, a group A equipped with an action of ') we ob-
tain by restriction a I' g-group Ag (with I'p denoting the subgroup Gal(F/E)
of T'), and we write I(A) for the I'-group obtained from Ag by induction
from I'g to T.

Then I(A) has the following description in terms of A. Let J denote the
set of embeddings of E in F over F, with jo denoting the inclusion E C F.
The group T acts on the left of J by 7j:=70j (for 7 €T, j € J), and the
group Gal(E/F) acts on the right of J by jo? := joo?. An element x € I(A)
is then a map j — z; from J to A. An element 7 € " acts on « € I(A) by

(1)) = T(2r15).
There is a right action of Gal(E/F') on the I'-group I(A) given by
(x0")j = Tjp—i.

We have Rg = I (G) as ['-group. Bearing in mind that for any automor-
phisms 67, 65 of a connected reductive group one has the rule 6,6, = éQél,
we see that the natural left action of Gal(E/F) on R is converted into a
right action of Gal(E/F) on R¢, and hence that the automorphism 6 of R
is given by

(éZE)] = Jngfl.
There is an obvious embedding
A—I(A)
of I'-groups, sending a € A to the constant map J — A with value a, and

this map identifies A with the group of fixed points of Gal(E/F) on I(A).
In particular we get

i:G~(Re)’ = Re,
which we extend to an embedding
i: G- IRg
by mapping g7 to i(g)7 (for g € G, 7 € Wr). Note that i(*Q@) is the group
of fixed points of the automorphism @ of Ry defined by
Lo(xr) := O(z)T
for x € Rg, 7€ Wp.
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A.1.3 Endoscopic groups and twisted endoscopic groups

Let (H, s,n) be an endoscopic datum for G. Thus s € Z(H)T and n: LH —
L@ is an L-homomorphism that restricts to an isomorphism H— (G,,(s))o.
When the derived group of G is not simply connected, we should actually
allow for a z-extension of H, as in [LS1] and [KS], but since this wrinkle
does not perturb the arguments below in any non-trivial way, we prefer to
ignore it.

Following Shelstad [Sh2], we now explain how to regard H as a twisted
endoscopic group for (Rg,8). Let Z denote the centralizer of in(H) in Rg.
Since the centralizer of n(H) in G is n(Z(H)), we see that Z is the subgroup
of Re consisting of all maps J — n(Z(fI)) Thus, as a group, Z can be
identified with I(Z(H)). Since Z(H) is a T-group, so too is I(Z(H)) = Z,
but the embedding Z — Re is not I'-equivariant. The subgroup Z is
however stable under 6.

Using s € Z(H)", we now define an element § € Z by the rule

s ifj=y
5j 1= AR (A.1.3.1)
1 if j # Jo.
Thus § maps to s under the norm map Z — Z(H) (given by = — [Liesz)-
It is easy to see that the composition
HL G5 Re
identifies H with the identity component of the O-centralizer of 5 in Rg.

A.1.4 Allowed embeddings

We now have part of what is needed to view H as a twisted endoscopic
group for (Rg,0), but in addition to 3 we need suitable 7 : H — “Rg. In
the situation of interest in the next section of this appendix, we may even
take H = L H, so this is the only case we will discuss further.

When H = L'H, in order to get a twisted endoscopic datum (H, 3,1)
for (Rg,0), we need for 77 : “H — LRg to be one of Shelstad’s allowed
embeddings [Sh2], which is to say that 7, in must have the same restriction
to H, and that (¥ H) must be contained in the group of fixed points of the
automorphism Int(3) o “0 of “Rg.

In subsection A.2.6 we will see that, when E/F is an unramified extension
of p-adic fields and o is the Frobenius automorphism, there exists a canonical
allowed embedding 7 determined by 5. In this section, however, we work with
an arbitrary allowed embedding.

We are going to use 7 to produce a 1-cocycle of Wg in 2 12% Z. For this
we need to compare (as in [KS]) 7 to the L-homomorphism
in:YH -G - FRg.
Since 1 and in agree on H, there is a unique 1-cocycle a of Wg in Z such
that

() = arin(r)
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for all T € Wg. The pair (a1, 3) is a 1-cocycle of Wr in Z =% Z. Here one

must not forget that the I'-action on Z comes from viewing it as I(Z(H)).
In fact the map 7 — a sets up a bijection between allowed embeddings 7

and 1-cocycles a of W in Z such that (a1, 3) is a 1-cocycle in Z 179 2.

A.1.5 Canonical twisted and standard transfer factors

We now choose an F-splitting [LS1, p. 224] for our quasisplit group G. This
choice determines canonical transfer factors Ag(vm,7) (see [LS1, p. 248]).

Our F-splitting of G can also be viewed as a o-invariant E-splitting, and
therefore gives rise to an (F, 6)-splitting [KS, p. 61] of Rg, which then de-
termines canonical twisted transfer factors Ag(vm,d) (see [KS, p. 62]). Our
goal is to express Ag(vq,d) as the product of Ag(vg,v) and a simple Galois
cohomological factor involving an invariant inv(vy, §) that we are now going
to discuss.

It may be useful to recall (though it will play no role in this appendix) that
when G is unramified, and we fix an O-structure on G for which G(O) is a
hyperspecial maximal compact subgroup of G(F), there is an obvious notion
of O-splitting, namely an F-splitting that is defined over O and reduces
modulo the maximal ideal in O to a splitting for the special fiber of G. When
such an O-splitting is used, and H is also unramified, the transfer factors
Ao(yH,7) so obtained are the ones needed for the fundamental lemma for
the spherical Hecke algebra on G obtained from G(Q). In the case that E/F
is unramified, the same is true for the twisted fundamental lemma for the
spherical Hecke algebra for G(E) obtained from G(Og).

A.1.6 Definition of the invariant inv(y, )

We consider a maximal F-torus Ty of H and an admissible isomorphism
Ty ~ T between Ty and a maximal F-torus T of G. We consider vy in
Ty (F) whose image «y in T'(F) is strongly G-regular. The standard transfer
factor Ag(yp,7) is then defined. We also consider 6 € Rg(F) = G(E)
whose abstract norm [KS, 3.2] is the stable conjugacy class of 7. The twisted
transfer factor Ag(vg, d) is then defined.

The position of § relative to « is measured by

inv(y,8) € H(F, Ry —% Ry),

whose definition [KS, p. 63] we now recall. Our assumption that the abstract
norm of § is v does not imply that J is stably 6-conjugate to an element in the
F-points of the #-stable maximal F-torus Ry of Rg. It does however imply
that there exists g € Rg(F) such that g(Né)g~! =+, where N : Rg — Rg is
the F-morphism 2 — z6(2)6%(z) - - - 07! (x), and v is viewed as an element of
Rg(F) = G(E) via the obvious inclusion G(F) C G(E). Put ¢ := gé6(g)~*
and define a 1-cocycle t of T by t, := gr(g)~* (for 7 € T'). Note that the
strong regularity of « implies that its centralizer in R¢g is Rp.



main April 10, 2009

COMPARISON OF TWO VERSIONS OF TWISTED TRANSFER FACTORS 205

Lemma A.1.7 The pair (t71,§') is a 1-cocycle of T' in Ry 19, Rr.

Proof. We first check that & € Ry (F). Observe that N§' = «. Therefore
v =0(y) = 0(N¥') = (8')TH(N§")o" = (8") 71,

which shows that ¢’ centralizes v and hence lies in Ry. We note for later
use that the f-centralizer of ¢’ in Rg is T, viewed as the subtorus of #-fixed
points in Rr.

Next, a short calculation using the definitions of §" and ¢, shows that

(") r7(8) = 0(t,). (A.1.7.1)
To see that ¢, € Rr(F), we begin by noting that (A.1.7.1) says that ¢,
f-conjugates (") into §’. Now
N(7(6") = 7(N§') = 7(7) = v = N(0'),

showing that the two elements 7(§’) and ¢’ in Ry have the same image
under thg norm homomorphism N : Ry — Rp, and hence that there exists
u € Rr(F) that 6-conjugates ¢’ into 7(4’). Thus ¢,u lies in the 6-centralizer
(namely T = RY) of ¢’, which implies that ¢, lies in Ry (F).

The 1-cocycle condition for (¢71,§’) is none other than (A.1.7.1), and the
proof is complete. O

Definition A.1.8 We define inv(7, J) to be the class in H!(F, Ry ~—% Ry
of the 1-cocycle (¢~ 1,4").

A.1.9 Main proposition

The last thing to do before stating Proposition A.1.10 is to relate Z to Rr.
This is very easy. Since Ty is a maximal torus in H, there is a canonical I'-
equivariant embedding Z (H) — Ty. Our admissible isomorphism Ty ~ T

y;ields Ty ~ T, so that we end up with a I'-equivariant embedding Z(H) —
T, to which we may apply our restriction-induction functor I, obtaining a
I'-equivariant embedding

k:Z < Ry,
which is compatible with the f-actions as well. We then obtain an induced
homomorphism

H'(Wp, 2 2% 2) = HY(Wp, Ry =5 Ry). (A.1.9.1)
Near the end of subsection A.1.4 we used §,77 to produce a 1-cocycle
(a1, 3) of Wp in Z 19, Z, to which we may apply the homomorphism

k, obtaining a 1-cocycle in Ry 19, ]:ZT, which, since k is injective, we may
as well continue to denote simply by (a~!,5). Recall from Appendix A of

[KS] that there is a C*-valued pairing (-, ) between H'(F, Ry = Rr) and

HY(Wp, Ry 1-9, RT) Thus it makes sense to form the complex number
(inv(v,96), (a™1, 5)).
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Proposition A.1.10 There is an equality
AO(’YH» 5) = AO(VH? ’Y)<1nv(7a 5)7 (ailv §)>

Proof. Since the restricted root system [KS, 1.3] of Ry can be identified with
the root system of T', we may use the same a-data and y-data for 7" and Rp.
When this is done, one has

Ar(vm,6) = Ar(va,7)
Arr(vm,0) = Arr(vm, )
Arv(vm,9) = Arv(vm, ).
It remains only to prove that

Arrr(vi,8) = Arrr (v, 7) (v (y, ), (a7, 3)).
To do so we must recall how Ajyy is defined. We use (see [LS1]) the chosen
x-data to obtain embeddings
& T Ea,
& T EH.

Replacing & by a conjugate under G, we may assume that né; and & agree
on T, and then there exists a unique 1-cocycle b of Wg in T so that

(n€2)(7) = &1(br7)
for all 7 € Wgp. We then have (see [LS1, p. 246])

Arrr(ym,v) = (7,0),
where (-, -) now denotes the Langlands pairing between T'(F) and H'(Wp, T').

Similarly we have two embeddings i1,7¢, : “T — *R¢ that agree on T,
and therefore there exists a unique 1-cocycle ¢ of Wp in Rr (which arises
here because it is the centralizer in Rg of (i€1)(T")) such that

(7€2)(1) = er ((i€1)(7))

for all 7 € Wpg. Then (¢, 3) is a 1-cocycle of Wg in Ry 1-9, RT, and (see
pages 40 and 63 of [KS])
AIII(’YHa 6) = <iIlV(’y, 6)7 (0717 '§)>

It is clear from the definitions that the 1-cocycles a, b, c satisty the equality
¢ = ab, in which we use k: Z — Rr and T' = (R7)? — Rr to view a, b as
1-cocycles in Rp. Therefore

(c™1,3) =(a 1,34 1),
which shows that
Arrr(vm, ) = (inv(y,6), (a7, 3)) (inv(y,8), (b, 1))

It remains only to observe that (inv(y, ), (b,1))~* = (v, b), a consequence of
the first part of Lemma A.1.12, to be proved next. Here we use the obvious

fact that the image of inv(vy,d) under H!(F, Ry 19, Rr) = T(F)is~. O



main April 10, 2009

COMPARISON OF TWO VERSIONS OF TWISTED TRANSFER FACTORS 207

A.1.11 Compatibility properties for the pairing (-, -)

In this subsection we consider a homomorphism f : T' — U of F-tori. We
follow all the conventions of Appendix A in [KS] concerning H'(F,T — U)
and H' (W, U— T) We denote by K the kernel of f and by C' the cokernel
of f. Of course C is necessarily a torus, and we now assume that K is also
a torus. Dual to the exact sequence

1-K—->T—-U—-C—1
is the exact sequence
1—>CA'—>U—>T—>R'—>1,
which we use to identify €' with ker f and K with cok f. From [KS, p. 119]

we obtain two long exact sequences, the relevant portions of which are

v

H'(F,K) SH'(F.T - U) £ C(F)
H (Wi, &) SH (We, T — T) 25 BT
The following lemma concerns the compatibility of these two exact sequences

with the pairing [KS] between H'(F,T — U) and H'(Wp,U — T).

Lemma A.1.12 The pairing (-, -) satisfies the following two compatibilities.

1. Let z € HY(F,T — U) and ¢ € H'(Wp, (). Then

(z,7'¢) = (j'x, )L,

where the pairing on the right side is the Langlands pairing between
C(F) and H*(Wg,C).
2. Let k€ H'(F,K) and & € H'(Wp,U — T). Then
(i'k,2) = (k,j'%),

where the pairing on the right is the Tate-Nakayama pairing between
the groups H'(F,K) and K*.

Proof. Using that the pairing in [KS] is functorial in T — U (apply this
functoriality to (K — 1) — (T — U) and (T — U) — (1 — C)), we reduce
the lemma to the case in which one of T.,U is trivial, which can then be
handled using the compatibilities (A.3.13) and (A.3.14) of [KS]. O

A.2 RELATION BETWEEN inv(y,5) AND a(y, )

We retain all the assumptions and notation of the previous section. In par-

ticular we have the invariant inv(vy,d) € H'(F, Rr 1-6, Rr). Throughout
this section we assume that E/F is an unramified extension of p-adic fields,
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and that o is the Frobenius automorphism of E/F. In this situation there
is another invariant measuring the position of § relative to . This invariant
arose naturally in [K9] in the course of stabilizing the Lefschetz formula for
Shimura varieties over finite fields. This second invariant, denoted a(v,J),
lies in the group B(T') introduced in [K5] and studied further in [K12].
The goal of this section is to compare inv(y,d) and «a(y,d) and then to
rewrite the ratio of Ag(vm,d) and Ag(vym,7y) in terms of a(v,§) rather than
inv(y,d). Since the two invariants lie in different groups, the reader may be
wondering what it means to compare them. Note however that H!(F,T)

injects naturally into both H!(F, Ry = Ry) and B(T'), which suggests
that we need a group A and a commutative diagram of the form

HYF,T) —— HYF,Rr =% Ry)

l |

B(T) —— A
in which the two new arrows are injective. It should seem plausible that A
ought to be a group B(Rr 1= Rr) bearing the same relation to H'(F, Ry RN
Rr) as B(T) does to HY(F,T).

Such a group has already been been introduced and studied in sections
9-13 of [K12]. The rest of this section will lean heavily on those sections
of [K12], whose raison d’étre is precisely this application to twisted transfer
factors.

This section begins with a review of the relevant material from [K12],
and then recalls the definition of a(7,d). Next comes a theorem comparing
inv(y,d) and a(vy,d). The two invariants do not become equal in B(Ryp 19,
Ryr); the relation between them is more subtle than that, as we will see in
Theorem A.2.5. Finally, we express the ratio of twisted to standard transfer
factors in terms of a(v, d).

A.2.1 Review of B(T — U)

Let L denote the completion of the maximal unramified extension F"" of
F in F. We use ¢ to denote the Frobenius automorphism of L/F. We are
already using o to denote the Frobenius automorphism of E/F, but since
E C F'" C L and o on L restricts to ¢ on F, this abuse of notation should
lead to no confusion.

In this subsection f : T" — U will denote any homomorphism of F-tori.
We then have the group [K12, 12.2]

B(T — U) = H'({0), T(L) — U(L)).

Elements of B(T — U) can be represented by simplified 1-cocycles [K12,
12.1] (t,u), where t € T(L), u € U(L) satisfy the cocycle condition f(t) =
u~to(u). Simplified 1-coboundaries are pairs (t~to(t), f(t)) with t € T(L).

In [K12, 11.2] a canonical isomorphism

Homeont (B(T — U),C*) ~ HY(Wg, U — T)
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is constructed; here we implicitly used the canonical isomorphism [K12, 12.2]
between B(T — U) and B(T — U), but as we have no further use for
B(T — U), we will not review its definition. In particular we have a C*-
valued pairing between B(T — U) and H'(Wg,U — T). Moreover there is
a natural injection [K12, 9.4]

HYF,T - U) — B(T — U). (A.2.1.1)

Our pairing restricts to one between H*(F,T — U) and H*(Wg,U — T),
and this restricted pairing agrees [K12, 11.1] with the one in Appendix A of
[KS].

Now we come to the material in [K12, §13], which concerns the case in

which our homomorphism of tori is of the very special form Rp 18, Ry
for some F-torus T. In this case it is shown that the exact sequence [K12,
(13.3.2)]

1— B(T) — B(Ry =% Ry) —» T(F) — 1

has a canonical splitting, so that there is a canonical direct product decom-
position

B(Rr =% Ry) = B(T) x T(F). (A.2.1.2)
Similarly it is shown that the exact sequence [K12, (13.3.8)]
1— Hl(WF,T) — Hl(WF,f%T i RT) - TP — 1

has a canonical splitting, so that there is a canonical direct product decom-
position

H'(Wp, Ry =% Ry) = TC x HY(Wp, T). (A.2.1.3)

Let # € B(Rr ~~% Ry) and & € HY(Wp, Ry =% Ry). As we have
seen, we may then pair « with &, obtaining (x,Z) € C*. Using (A.2.1.2) and
(A.2.1.3), we decompose z as (x1,x2) € B(T) x T(F), and & as (I1,22) €
1T x H'(Wg, T) We also have the pairing (z1,21) coming from the canon-
ical isomorphisms B(T) = X.(T)r = X*(TT) of [K5, K12], as well as the
Langlands pairing (3, Z2).

Lemma A.2.2 There is an equality

(2, &) = (z1,81) (22, 22) 7.

Proof. This follows from [K12, Prop. 13.4] together with the obvious analog
of Lemma A.1.12 with HY(F, T — U) replaced by B(T — U). a
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A.2.3 Review of a(v,9)

Our assumptions on v, § are the same as in A.1.6. However the group Rg
will play no role in the definition of «a(v,d), so we prefer to view ¢ as an
element of G(E) such that N6 = §o(0)---0971(0) is conjugate in G(F) to
our strongly regular element v € T(F). Then, since H'(F",T) is trivial,
there exists ¢ € G(F"™) C G(L) such that

cye™t = Noé. (A.2.3.1)

Now define b € G(F") by b := ¢ 1do(c). Applying o to (A.2.3.1), we find
that b centralizes «, hence lies in T'(F"*) C T(L). Making a different choice
of ¢ replaces b by a o-conjugate under T'(F"™). Thus it makes sense to define
a(v,9) € B(T) as the o-conjugacy class of b.

A.2.4 Precise relation between inv(v,d) and a(v,?)

Now that we have reviewed a(7,d), we can prove one of the main results
of this appendix. We denote by inv? (v, §) the image of inv(y,d) under the
canonical injection (A.2.1.1)

HY(F, Ry =% Ry) — B(Rr =% Ry).

Theorem A.2.5 Under the canonical isomorphism

B(Rr =% Ry) = B(T) x T(F),

5(

the element inv" (v, §) goes over to the pair (a(7, )1, 7).

Proof. Asusual when working with cocycles, one has to make various choices.
In this proof, unless the choices are made carefully, inv? (v, 9) will differ from

(a(v,8)71, ) by a complicated 1-cocycle in Ry 1%, Ry that one would then
have to recognize as a 1-coboundary. We will take care that this does not
happen.

We have already discussed Rg, inv(vy,d), and «a(v,d). In particular we
have chosen ¢ € G(F") such that cyc™! = N§ and used it to form the
element b = ¢~ 160 (c) € T(L) representing «(vy,d) € B(T). In order to define
inv (v, d) we need to choose an element g € Rg(F) such that g(N§)g~—! = .
The best choice for g is by no means the most obvious one. The one we
choose lies in Rg(F"") and is given by a certain function J — G(F"™).

Recall that .J is the set of F-embeddings of E in F, and that j, € J
is the inclusion E C F. We now identify J with Z/dZ, with i € Z/dZ
corresponding to the embedding e — o'e of E in F. Thus Rg(F"") becomes
identified with the set of functions i +— x; from Z/dZ to G(F"™), and the
same is true with L in place of F"™. The Galois action of ¢ on x € Rg(F™™)

is then given by

(ox); = o(xzi—1),
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while the effect on x of the automorphism 6 of R¢ is given by
(QI)Z = Tj+1-

Fori=0,1,...,d—1weput g; := ¢ 165(8)c?(5) - --o*~1(d). In particular
go = ¢ t. Then i — g; is the desired element g € Rg(F"") satisfying
g(N&)g=t = ~v. We leave this computation to the reader, remarking only
that v corresponds to the element i — v in Rg(F"™), while ¢ corresponds
to i+ 0(8), so that N4 corresponds to i — o(8)oT1(8) - - - o?H4=1(6).

Since our chosen g lies in Rg(F""), the 1-cocycle t, = g7(g)~* € Ryp(F1)
is unramified, which is to say that ¢, depends only on the restriction of
T to F"™. Thus we get a well-defined element « € Rp(F"™) by putting
w:=t;! for any 7 € T such that 7 restricts to o on F"". It is then clear
from the definitions that inv? (v, §) is represented by the simplified 1-cocycle
(u,8") € Rr(L) x Ry(L). Here, as before, §' = gé6(g)~".

The element (u,d’) can be written as the product of two simplified 1-
cocycles (u',t'), (u”,t") in Rr(L) x Rp(L). Of course elements in Rr(L)
are given by functions Z/dZ — T(L). We take u’ to be the constant function
with value b~!. We take ¢’ to be the identity. We take v” to be the function
given by

o v ifi=0inZ/dZ,
1 otherwise.

Finally, we take t” to be the function given by

g ifi=—-1inZ/dZ,
)11 otherwise.

It is straightforward to verify that u = v'v” and §’ = ¢'t”. Since t’ = 1 and
u’ is fixed by 6, it is clear that (u’,t") is a 1-cocycle. So too is (u”,t"), since
its product with (v/,t') is a 1-cocycle.

Since b represents a(v,d) € B(T), and since the image of b~! under T' =
RY — Rp is o/, it is clear that (v/,#) = (b~1,1) represents the image of
a(v,0)~! under the canonical injection B(T) < B(Rr =9, Rr).

It remains only to verify that (u”,t”) represents the image of v under the
canonical splitting of the natural surjection

B(Rr =% Ry) —» T(F).

Since this surjection sends (u”,t”) to tGt}---t}j_, = 7, we just need to

check that the class of (u”,t”) lies in the subgroup of B(Rr 19, Rr)

complementary to B(T) that is described in [K12, p. 326]. This is clear,
since (u”,t”) has the form (o(z),z) for x = ¢, and every value of i — ¢/
lies in T(L)'7) = T(F). O

A.2.6 More about allowed embeddings

As mentioned before, now that we are taking E/F to be an unramified
extension of p-adic fields, and o to be the Frobenius automorphism of E/F,
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there is a canonical choice of allowed embedding 7 : “H — R determined
by §. As we have seen, giving 7 is the same as giving a 1-cocycle a of Wr in

Z such that (a~!, ) is a 1-cocycle of Wp in 2 2=% 2.
Before describing the canonical choice for the 1-cocycle a, we need to recall
the exact sequence

1—=1—-Wp—{o)—1,

where I denotes the inertia subgroup of I'. By an unramified 1-cocycle of
W in Z we mean one which is inflated from a 1-cocycle of (o) in Z!. Note
that giving a 1-cocycle of (o) in Z7 is the same as giving an element in Z!,
namely the value of the 1-cocycle on the canonical generator o of (o).

Lemma A.2.7 The element § satisfies the following properties.

1. 5;€ Z(H)T forall j € J.

Proof. (1) Recall that 3;, = s and that 5; = 1 for j # jo. Since s € Z(H)",
we conclude that (1) is true.

(2) Since E/F is unramified, the inertia group I acts trivially on J. There-
fore for 7 € I we have

(78); = 7(5;) = 5,
showing that 7 fixes 3.
(3) Again using that all values of § are fixed by T', we compute that

(0(3)); = 0(35-1) = 3515 = 301 = (0(3));,

showing that o(3) = 6(3). O

Corollary A.2.8 Let a be the unramified 1-cocycle of Wy in Z sending o

to 3. Then (a™',5) is a 1-cocycle of Wp in Z Ry

Proof. It follows from the second part of the lemma that a is a valid unram-
ified 1-cocycle, and it follows from the third part of the lemma that (a1, 3)
satisfies the 1-cocycle condition. a

Combining this Corollary with Theorem A.2.5, we obtain

Theorem A.2.9 There is an equality

(inv(v, ), (a™",3)) = (aly,6), )",
the pairing on the right being the usual one between B(T) and TT.
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Proof. Using simplified 1-cocycles of Wg in Z 170, 2 , the 1-cocycle (a~ 1, 3)
becomes (571, 5), which is of the form (d7',d) for d = 3. Moreover, §; €
Z(H)' = (Z(H)"){) for all j € J. Tt follows from the discussion on pages
327, 328, 331 of [K12] that (571, 5) represents a class lying in the canonical

subgroup of H'(Wp, Ry 1= Rr) complementary to H(Wg,T). It then
follows from Theorem A.2.5, Lemma A.2.2 and the previous corollary that

<inv(77 6)7 (a_17 §)> = <a('77 5)_1, 8> <% 1>_1 = <a(% 5)7 S>_1'

We used that the image of (a1, ) under H*(Wp, 2 =% 2) — Z(H)' is
s, which boils down to the fact that the product of the d values of s is equal
to s. g

Corollary A.2.10 When we use the allowed embedding 1 determined by
the special 1-cocycle (a=!,3) described above, the twisted transfer factor
Ao(vH, 9) is related to the standard transfer factor Ao(vw, ) by the equality

Ao(vr,6) = Ao(vm, ) {a(y,d),s) .

Proof. Use the previous theorem together with Proposition A.1.10. 0

Corollary A.2.10 justifies the use of (a(70; ), $) Ap(var,Y0) as twisted trans-
fer factors in [K9, (7.2)], at least for strongly G-regular vg. Under the ad-
ditional assumption that the derived group of G is simply connected, the
next section will treat all (G, H)-regular vg. That (a(v0;9), s) (rather than
its inverse) appears in [K9] is not a mistake; it is due to the fact that the
normalization of transfer factors, both standard and twisted, used in [K9]
is opposite (see [K9, p. 178]) to the one used in [LS1, KS]. However there
are some minor mistakes in the last two lines of page 179 of [K9]: each of
the five times that 7 appears it should be replaced by 7, and the symbols
=t x o near the end of the next to last line should all be deleted.

A.3 MATCHING FOR (G, H)-REGULAR ELEMENTS

In this section G, FF C E C L, o, H are as in section A.2. However we
will now consider transfer factors and matching of orbital integrals for all
(G, H)-regular semisimple vy € H(F'). For simplicity we assume that the
derived group of G is simply connected, as this ensures the connectedness of
the centralizer G, of any semisimple v in G.

A.3.1 Image of the stable norm map

We begin by recalling two facts about the stable norm map, which we will
use to prove a lemma needed later when we prove vanishing of certain stable
orbital integrals for non-norms.
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Let D denote the quotient of G by its derived group (which we have
assumed to be simply connected).

Proposition A.3.2 (Labesse) Let v be an elliptic semisimple element in
G(F). Then « is a stable norm from G(E) if and only if the image of y in
D(F) is a norm from D(E).

Proof. This is a special case of Proposition 2.5.3 in [La3]. Of course the
implication = is obvious and is true even when + is not elliptic. (Il

Proposition A.3.3 (Haines) Let M be a Levi subgroup of G and let «y be
a semisimple element in M (F) such that G., C M. Then vy is a stable norm
from G(FE) if and only if it is a stable norm from M (E).

Proof. This is part of Lemma 4.2.1 in [Ha]. O

These two results have the following easy consequence.

Lemma A.3.4 Let v be a semisimple element in G(F') that is not a stable
norm from G(FE). Then there exists a neighborhood V of v in G(F) such
that no semisimple element in V' is a stable norm from G(E).

Proof. Let A be the split component of the center of G,. The centralizer
M of A in G is then a Levi subgroup of G containing G,. Note that v is
elliptic in M (F'). The property of having a simply connected derived group
is inherited by M, and we write Dj; for the quotient of M by its derived
group.

Since ~v is not a stable norm from G(FE), it is certainly not a stable
norm from M(FE). By Labesse’s result the image 7 of v in Dy (F) is
not a norm from Djs(F). Since the image of the norm homomorphism
Dy (E) — Dy (F) is an open subgroup of Dy (F'), there is an open neigh-
borhood of 7 in Dj/(F) consisting entirely of non-norms. Certainly any
semisimple element of M (F') in the preimage V; of this neighborhood is not
a stable norm from M (FE).

Consider the regular function m — det(l — Ad(m); Lie(G)/ Lie(M)) on
M. Let M’ be the Zariski open subset of M where this regular function
does not vanish. Equivalently M’ is the set of points m € M whose central-
izer in Lie(G) is contained in Lie(M), or, in other words, whose connected
centralizer in G is contained in M. In particular v belongs to M'(F), so
that M’(F') is another open neighborhood of 4. Applying Haines’ result, we
see that no semisimple element in the open neighborhood V5 := V; N M/ (F)
of v in M(F') is a stable norm from G(E).

Finally, consider the morphism G x M’ — G sending (g, m’) to gm’g~*.
It is a submersion, so the image V' of G(F) x V4 provides the desired open
neighborhood V of v in G(F). O
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A.3.5 Review of a(v,0) in the general case

Let v be a semisimple element in G(F) and put I := G, a connected
reductive F-group. Suppose that v is the stable norm of some #-semisimple
§ € G(E), and let J denote the f-centralizer {x € Rg : x7160(x) = 6} of 4,
another connected reductive F-group.

There exists ¢ € G(L) such that

cyet = Ny, (A.3.5.1)

where, as before, N§ = 60(8)---0%71(§) € G(E). Now define b € G(L) by
b := c 0(c). Applying o to (A.3.5.1), we find that b centralizes ~y, hence
lies in I(L). Making a different choice of ¢ replaces b by a o-conjugate under
I(L). Thus it makes sense to define a(7,d) € B(I) as the o-conjugacy class
of b.

Lemma A.3.6 The element a(v,d) is basic in B(I).

Proof. We are free to compute «(v,d) using any ¢ satisfying (A.3.5.1), and
therefore we may assume that ¢ € G(F"). Thus there exists a positive
integer 7 such that c is fixed by ¢%". Inside the semidirect product I(L) x (o)
we then have (bo)™ = 4"¢% and since 7 is central in I, it follows that b is

basic [K5] in I(L). O

Since b is basic, we may use it [K5, K12] to twist the Frobenius action
on I(L), obtaining an inner twist I’ of I such that I'(L) = I(L) and with
the Frobenius actions oy, oy on I'(L), I(L) respectively being related by
op(z) =bor(z)b~! for all z € I'(L) = I(L).

Recall that we are writing elements x € Rg as functions ¢ — x; from
Z/dZ to G. There is a homomorphism p : Rz — G given by p(z) := x¢, but
it is only defined over E (not over F'). The centralizer Gys of N6 € G(E)
is also defined over F, and p restricts to an F-isomorphism p; : J — Gps.
Since cye™! = N4, the inner automorphism Int(c) induces an L-isomorphism
I — Gns. Therefore z — ¢ 1p;(z)c induces an L-isomorphism v : J — I.

Lemma A.3.7 The L-isomorphism 1 : J — I is an F-isomorphism J — I'.
In other words, when we use b to twist the Frobenius action of ¢ on I, we
obtain J.

Proof. Let x € J(L). We must show that ¢(c(x)) = bo(¢(x))b~t. The
left side works out to ¢ lo(x)oc = ¢ to(x_1)c, while the right side works
out to (¢~ 1o (c))a(c tzoc)(c o (c)) ™t = ¢ 1o (xg)d~te, so we just need
to observe that do(z0)d~! = o(x_1), a consequence of the fact that o(x)
f-centralizes & (apply p to the equality 60(c(z))d~! = o(z)). O
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A.3.8 Comparison of a(v,d) with a(y,d:)

Our next task is to compare «(y,d) with a(y’,4’) for suitable (7', ') near
(7, 6) with 4" regular in G. This will be needed in order to understand the
behavior of twisted transfer factors near (v, d). As usual in Harish-Chandra’s
method of semisimple descent, we obtain suitable (7, ") in the following way.

We retain all the notation of the previous subsection. Choose an elliptic
maximal torus 7" in I. Since T is elliptic, it automatically transfers to the
inner form J of I. Let us now see more concretely how this comes about.

From Lemma A.3.7 we know that the L-isomorphism % : J — I is an F-
isomorphism J — I’. Let i € I(L). Then the L-isomorphism 1~ o Int(i) :
I — J serves to transfer T from I to J if and only if its restriction to T is
defined over F. This happens if and only if bo(iti~1)b~! = io(t)i~! for all
t € T(L), or, equivalently, if and only if i ~1bo (i) € T(L). Here we used that
T(L) is Zariski dense in T(L).

Since T is elliptic in I, the image of the map B(T) — B(I) is the set
B(I), of basic elements in B(I) [K5, Proposition 5.3]. Therefore the fiber
over «(v,0) is non-empty, which means we may choose i € I(L) such that
br :=i"1bo(i) € T(L). As above we then obtain an F-embedding k : T < J
(given by the restriction to T of 9y~ o Int(i) : I — J). A standard twisting
argument identifies the fiber over a(y,d) with ker[H(F,T) — H(F,J)],
the set that indexes the J(F)-conjugacy classes of embeddings k' : T' — J
that are stably conjugate to k. Therefore by varying the choice of i, we
obtain all the different ways k' : T < J of transferring T to J. We will work
with our particular ¢, by, k, but of course everything we do will also apply to
the other choices we could have made.

Now we are in a position to compute a(y’,d’) for certain suitably regular
(+',4") near (v,6). Let t € T(F) and put 0; := k(t)d € Rg(F) = G(FE). Us-
ing that k(t) 6-centralizes 0, we see that the stable norm of d; is represented
by v := t?y € T(F). Let U denote the Zariski open subset of T' consisting
of those t € T such that ; is G-regular. For t € U(F') the centralizer of
in G is T, and therefore a(v,d;) lies in B(T).

Proposition A.3.9 For t € U(F) the element a(vy:,d;) € B(T) is repre-
sented by tby € T(L).

Proof. Recall that ¢ : J — I is given by Int(c™!) o py. Therefore k=1 :
k(T) — T is given by Int(i~'c™1) o p;. Now N& = p(k(t?))N§. Apply-
ing Int(i~tc™1) to both sides of this equality (and bearing in mind that
i centralizes 7), we find that Int(i"1c™1)(N§;) = t?y. Therefore a(7y:,d;)
is represented by i~'c716,0(c)o(i). The identification Rg(F) = G(E) is
induced by p : Rg — G, so that in G(F) we have the equality d; =
py(k(t))d. Therefore our representative for a(v,0:) can be rewritten as
(Int(i~te ") (ps(k(t))))i~tc™ o0 (c)o (i), which simplifies to tbr, as desired.
O
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Let K denote the kernel of the homomorphism 7'(F) — B(T) that sends
t € T(F) to the o-conjugacy class of ¢ in T'(L). It follows easily from [K12,
§7] that K is an open subgroup of T'(F'). The previous proposition then has
the immediate

Corollary A.3.10 For allt € U(F)NK the element «(v:,0:) € B(T) maps
to a(v,d) under the map B(T) — B(I) induced by T C I.

This corollary is exactly what will be needed in the descent argument to
come, through the intermediary of Proposition A.3.12.

A.3.11 Twisted transfer factors for (G, H)-regular vy

Consider a (G, H)-regular semisimple element vy in H(F'). The centralizer
Iy of vy in H is connected [K7, Lemma 3.2]. Choose an elliptic maximal
torus Ty in Ip. In particular Ty is a maximal torus in H containing vg.
Choose an admissible embedding Ty — G. We write «y, T for the images
under this embedding of vy, Ty respectively. Then [K7] the centralizer I of
v in G is an inner twist of Iy. Of course T is an elliptic maximal torus in
I, and our chosen isomorphism Ty = T exhibits T" as the transfer of Ty to
the inner twist I of Ig.

We need a twisted transfer factor Ag(vm, d) for any §-semisimple 6 € G(E)
whose stable norm is y. These were not defined in [KS], but in the current
context, that of cyclic base change for unramified F/F, with o being the
Frobenius automorphism and the derived group of G being simply connected,
they were defined in [K9] by the formula

Aoy, 6) = Doy, ) (v, 6),8) 1, (A.3.11.1)

with Ag(yg,7) defined as in [LS2, 2.4]. (See the comment following Corol-
lary A.2.10 concerning the opposite normalization of transfer factors used in
[K9].) The pairing occurring in this formula is between B(I), and Z(I)",

and comes from the canonical isomorphism [K5, K12] B(I), ~ X*(Z(I)").
In forming this pairing, we view s € Z(H)" as an element of Z(I)! via

Z(HY < z(Ig)' =z,

By Corollary A.2.10 this definition of Ag(vx,d) agrees with the one in [KS]
when g is G-regular.

We now apply the work we did in the previous subsection to (v, d). With
notation as in that subsection we can now formulate

Proposition A.3.12 There is an open neighborhood of 1 in T'(F') such that
Ao(tye, k(1)8) = Ao (v, 8)

for all t in this neighborhood for which t%yy is G-regular. In writing t%yy we
are viewing t as an element in Ty (F') via our chosen isomorphism Ty ~ T.
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Proof. This follows from Corollary A.3.10 and the fact that ¢ — Ag(t%yg, t%)
is defined and constant near t = 1 (see [LS2, 2.4], where g, v are said to
be equisingular). O

A.3.13 Matching of orbital integrals for (G, H)-regular vy

We continue with g, v, Iy, I as in the previous subsection. For fH ¢
CS°(H(F)) we consider the stable orbital integral

SO, (1) = eIy, )0, (£7),

where the sum is taken over conjugacy classes of v}, € H(F) that are stably
conjugate to ym, and I, denotes the (connected) centralizer of v in H.
For f € C°(G(E)) we consider the endoscopic linear combination of twisted
orbital integrals

TOy, (f) =Y e(Js)Do(yu,0)TOs(f)

)

determined by ~yg. Thus the sum is taken over twisted conjugacy classes
of § € G(E) whose stable norm is v, and Js is the twisted centralizer of ¢.
When v is not a stable norm from G(E), we have TO,, (f) = 0, since the
sum occurring in its definition is then empty.

Proposition A.3.14 Suppose that

SO’YH (fH) = TO')’H (f)

for all G-regular semisimple vy in H(F'). Then the same equality holds for
all (G, H)-regular semisimple vy in H(F).

Proof. We will just sketch the proof since it is essentially the same as that
of Proposition 2 in [K8, p. 640], as well as those of Lemma 2.4.A in [LS2]
and Proposition 7.2 in [CI3].

Fix (G, H)-regular semisimple vy € H(F). Introduce Ty, T as in the pre-
vious subsection. Assume for the moment that ~ is a stable norm. Looking
at the degree 0 part of the germs about 1 of the functions ¢ — SOya.,,, (f)
and ¢ — TOya.,, (f) on T(F) we conclude from Proposition A.3.12 that

mZ(— 4l )O Z 1)) Ay (s, 6)TO5(f),

where ¢ assigns to a connected reductive F-group the F-rank of its de-
rived group, and m is the common value of the cardinalities of all the sets
ker[H'(F,Ty) — H'(F, L )] and ker[H' (F, T) — H'(F, J5)]. Of course we
used sensible Haar measures and Rogawski’s formula for the Shalika germ
corresponding to the identity element, just as in the previously cited proofs.
We also used that, when t%y is G-regular, the 6-conjugacy classes having
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stable norm t%y are represented by elements of the form &'(¢)d, with & again
varying through twisted conjugacy classes of § € G(E) whose stable norm
is v, and (for fixed ¢ with stable norm ) &’ varying through a set of repre-
sentatives for the stable conjugacy classes of embeddings k' : T < Js of the
kind appearing in the discussion leading up to Proposition A.3.9. Dividing
both sides of our equality by m(—l)quo)7 where Iy is a common quasisplit
inner form of all the groups I, and J;, we obtain SO, (f) = TO,,(f),
as desired.

When 7 is not a stable norm from G(FE), we must show that SO.,,, (f) =
0. Looking at the degree 0 part of the stable Shalika germ expansion for
the maximal torus Ty in H (see the sentence just before Proposition 1 in
[K8, p. 639]), we see that it is enough to show that SOy, (ff) = 0 for all
G-regular ty € Ty (F) near vg. For this it is enough to show that elements
ty near vy, when viewed in T'(F), are not stable norms from G(E), and this
follows from Lemma A.3.4. g

A.3.15 A correction to [K8§]

In the course of looking through section 2 of [K8] I noticed an error in
the definition of the Euler-Poincaré function fgp. The sign character sgn,
occurring in the definition of fgp should be defined as follows: sgn,(g)
is 1 if g preserves the orientation of the polysimplex o, and it is —1 if g
reverses that orientation. When o is a simplex, sgn_(g) is just the sign of
the permutation induced by g on the vertices of 0. When writing [K8] I
carelessly assumed that the same is true for polysimplices, but this is in fact
not the case even for the product of two copies of a 1-simplex. Then there
is a reflection (obviously orientation reversing) that induces a permutation
with cycle structure (12)(34) (obviously an even permutation) on the four
vertices of the square. This situation actually arises for the Euler-Poincaré
function on the group PGLs x PGLs.

With this corrected definition of the sign character, the formula sgn_(y) =
(—1)dim(1)=dim(7(7)) ysed in the proof of Theorem 2 of [K8] becomes correct
and so no change is needed in that proof.
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