
Liveness Analysis in Explicitly-Parallel Programs

Alain Darte

With Alexandre Isoard, Paul Feautrier, Tomofumi Yuki

Lattice-Based Memory Allocation. * Polyhedral interferences, admissible lattices

Register Allocation: What Does the NP-Completeness of Chaitin et al. Really Prove? * Chordal interf.

SSI Properties revisited. * From SSA to SSI: intervals

Exact & Approximated Data-Reuse Opt. for Tiling with Parametric Sizes. * Pipelining, complex interf.

Static Analysis of OpenStream Programs. * More parallel specifications, deadlocks, polynomials

Liveness Analysis in Explicitly-Parallel Programs. * Generalization of interferences

Extended Lattice-Based Memory Allocation. * Generalization of memory mapping, union of polyhedra

Meeting in Discrete Structures 1, LIP
Villemanzy, December 17, 2015.

1 / 23

Parallel languages, runtime execution, and static analysis

Solution(s) for high-level parallel programming?

Static or dynamic?
Language constructs or libraries?
Expressiveness: deterministic (no data races) or deadlock-free?
How to represent communications and memories? Concurrency?
Can static optimization help runtime optimizations?
Worst-case, buffer sizes, granularity opt., mapping, locality, . . .

Many approaches:

“Lower”-level: MPI, OpenCL, Lime, . . .

Runtime-based: Kaapi, StarPU (with task dep. as in OpenMP 4.0).

(A)PGAS languages: Co-Array Fortran, UPC, Chapel, X10, . . .

”Dataflow” languages: KPN, SDF, CSDF, SigmaC, OpenStream, . . .

Automatic compilation schemes.

2 / 23

Parallel languages, runtime execution, and static analysis

Solution(s) for high-level parallel programming?

Static or dynamic?
Language constructs or libraries?
Expressiveness: deterministic (no data races) or deadlock-free?
How to represent communications and memories? Concurrency?
Can static optimization help runtime optimizations?
Worst-case, buffer sizes, granularity opt., mapping, locality, . . .

Many approaches:

“Lower”-level: MPI, OpenCL, Lime, . . .

Runtime-based: Kaapi, StarPU (with task dep. as in OpenMP 4.0).

(A)PGAS languages: Co-Array Fortran, UPC, Chapel, X10, . . .

”Dataflow” languages: KPN, SDF, CSDF, SigmaC, OpenStream, . . .

Automatic compilation schemes.

2 / 23

Discrete structures

Polyhedral representations, Presburger formulas, integer sets.
Linear programming, Farkas lemma, polynomial generalizations.
Graph structures: chordal graphs, interval graphs, comparability
graphs, serie-parallel graphs.
Integer lattices, basis reduction, Hermite/Smith forms.
NP-completeness, undecidability, Hilbert’s 10th problem.

* Dependence analysis, liveness analysis, deadlock detection, while loop
termination, upper/lower bounds for time & memory, scheduling, etc.

3 / 23

Outline

1 Polyhedral representation examples
Compilation for GPU, with shared-memory optimization
Tiling with automatic double-buffering, transfers and buffer sizes

2 Exploring different forms of parallelism
Analysis of a X10 subset
Analysis of an OpenStream subset

3 Liveness analysis
Chordal and interval graphs for SSA and SSI
Comparability graphs for partial orders

4 Lattice-based memory allocation
Polyhedral conflicts
Conflicts as union of polyhedra

4 / 23

Multi-dimensional affine representation of loops and arrays

Matrix Multiply
int i,j,k;
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
S: C[i][j] = 0;

for(k = 0; k < n; k++) {
T: C[i][j] += A[i][k] * B[k][j];

}
}

}
iteration i

iteration j

Array C

Array B

Array A

iteration k

Polyhedral Description Omega/ISCC syntax
Domain := [n]->{S[i][j]: 0<=i,j<n; T[i][j][k]: 0<=i,j,k<n};

Read := [n]->{T[i][j][k]->A[i][k]; T[i][j][k]->B[k][j];
T[i][j][k]->C[i][j]};

Write := [n]->{S[i][j]->C[i][j]; T[i][j][k]->C[i][j]};

Order := [n]->{S[i][j]->[i][j][0]; T[i][j][k]->[i][j][1][k]};

5 / 23

PPCG code for CPU+GPU: GPU part

__global__ void kernel0(float *A, float *B, float *C, int n) /* n=12288 */
{

int b0 = blockIdx.y, b1 = blockIdx.x; /* Grid: 192x192 blocks, each with 32x32 threads */
int t0 = threadIdx.y, t1 = threadIdx.x; /* Loops: 384x384x768 tiles, each with 32x32x16 points */
__shared__ float shared_A[32][16]; /* Thus 1 block = 2x2x768 tiles, 1 thread = 1x1x16 points */
__shared__ float shared_B[16][32];
float private_C[1][1];

for (int g1 = 32 * b0; g1 <= 12256; g1 += 6144) /* 6144 = 32 (tile size) x 192 (number of blocks) */
for (int g3 = 32 * b1; g3 <= 12256; g3 += 6144) { /* 32 is the tile size */
private_C[0][0] = C[(t0 + g1) * 12288 + (t1 + g3)];
for (int g9 = 0; g9 <= 12272; g9 += 16) { /* 16 consecutive points along k in a thread */
if (t0 <= 15) /* 32x32 threads, only 16x32 do the transfer */
shared_B[t0][t1] = B[(t0 + g9) * 12288 + (t1 + g3)];

if (t1 <= 15) /* 32 threads, only 32x16 do the transfer */
shared_A[t0][t1] = A[(t0 + g1) * 12288 + (t1 + g9)];

__syncthreads();
for (int c4 = 0; c4 <= 15; c4 += 1) /* compute the 16 consecutive points along k */
private_C[0][0] += (shared_A[t0][c4] * shared_B[c4][t1]);

__syncthreads();
}
C[(t0 + g1) * 12288 + (t1 + g3)] = private_C[0][0];
__syncthreads();

}
}

PPCG code for CPU+GPU:
Verdoolaege, Cohen, etc.

6 / 23

PPCG code for CPU+GPU: GPU part (Volkov-like)
__global__ void kernel0(float *A, float *B, float *C, int n) /* n=12288 */
{

int b0 = blockIdx.y, b1 = blockIdx.x; /* Grid: 192x192 blocks, each with 16x16 threads */
int t0 = threadIdx.y, t1 = threadIdx.x; /* Loops: 384x384x768 tiles, each with 32x32x16 points */
__shared__ float shared_A[32][16]; /* Thus 1 block = 2x2x768 tiles, 1 thread = 2x2x16 points */
__shared__ float shared_B[16][32];
float private_C[2][2];

for (int g1 = 32 * b0; g1 <= 12256; g1 += 6144) /* 6144 = 32 (tile size) x 192 (number of blocks) */
for (int g3 = 32 * b1; g3 <= 12256; g3 += 6144) { /* 32 is the tile size */
private_C[0][0] = C[(t0 + g1) * 12288 + (t1 + g3)]; /* 2x2 points unrolled for register usage */
private_C[0][1] = C[(t0 + g1) * 12288 + (t1 + g3 + 16)];
private_C[1][0] = C[(t0 + g1 + 16) * 12288 + (t1 + g3)];
private_C[1][1] = C[(t0 + g1 + 16) * 12288 + (t1 + g3 + 16)];
for (int g9 = 0; g9 <= 12272; g9 += 16) { /* 16 consecutive points along k in a thread */
for (int c1 = t1; c1 <= 31; c1 += 16) /* 16x32 to bring with 16x16 threads */
shared_B[t0][c1] = B[(t0 + g9) * 12288 + (g3 + c1)];

for (int c0 = t0; c0 <= 31; c0 += 16) /* 32x16 to bring with 16x16 threads */
shared_A[c0][t1] = A[(g1 + c0) * 12288 + (t1 + g9)];

__syncthreads();
for (int c2 = 0; c2 <= 15; c2 += 1) { /* unrolled for register usage */
private_C[0][0] += (shared_A[t0][c2] * shared_B[c2][t1]);
private_C[0][1] += (shared_A[t0][c2] * shared_B[c2][t1 + 16]);
private_C[1][0] += (shared_A[t0 + 16][c2] * shared_B[c2][t1]);
private_C[1][1] += (shared_A[t0 + 16][c2] * shared_B[c2][t1 + 16]);

}
__syncthreads();

}
C[(t0 + g1) * 12288 + (t1 + g3)] = private_C[0][0];
C[(t0 + g1) * 12288 + (t1 + g3 + 16)] = private_C[0][1];
C[(t0 + g1 + 16) * 12288 + (t1 + g3)] = private_C[1][0];
C[(t0 + g1 + 16) * 12288 + (t1 + g3 + 16)] = private_C[1][1];
__syncthreads();

}
}

PPCG code for CPU+GPU:
GPU part with ILP (Volkov)

6 / 23

Parametric tiling with double buffering

Parameter n, tiles of size b × b.

J

I

j

i

int i,j;
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
C[i+j] = C[i+j] + A[i]*B[j];

}
}

Sets LoadA, LoadB , LoadC , StoreC?

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}
size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I , J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b when n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) when b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 when n ≤ b − 1: 1 partial tile.

7 / 23

Parametric tiling with double buffering

Parameter n, tiles of size b × b.

J

I

j

i

int i,j;
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
C[i+j] = C[i+j] + A[i]*B[j];

}
}

Sets LoadA, LoadB , LoadC , StoreC?

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}
size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I , J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b when n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) when b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 when n ≤ b − 1: 1 partial tile.

7 / 23

Parametric tiling with double buffering

Parameter n, tiles of size b × b.

J

I

j

i

int i,j;
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
C[i+j] = C[i+j] + A[i]*B[j];

}
}

Sets LoadA, LoadB , LoadC , StoreC?

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}
size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I , J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b when n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) when b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 when n ≤ b − 1: 1 partial tile.

7 / 23

Parametric tiling with double buffering

Parameter n, tiles of size b × b.

J

I

j

i

int i,j;
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
C[i+j] = C[i+j] + A[i]*B[j];

}
}

Sets LoadA, LoadB , LoadC , StoreC?

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}
size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I , J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b when n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) when b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 when n ≤ b − 1: 1 partial tile.

7 / 23

Outline

1 Polyhedral representation examples
Compilation for GPU, with shared-memory optimization
Tiling with automatic double-buffering, transfers and buffer sizes

2 Exploring different forms of parallelism
Analysis of a X10 subset
Analysis of an OpenStream subset

3 Liveness analysis
Chordal and interval graphs for SSA and SSI
Comparability graphs for partial orders

4 Lattice-based memory allocation
Polyhedral conflicts
Conflicts as union of polyhedra

8 / 23

Sequential and parallel loops

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {

S: ...
T: ...

}
}

Total order ≺ defined by a sequential schedule σ
and lexicographic order.

σ(S(i , j)) = (i , j , 0), σ(T (i , j)) = (i , j , 1).

O ≺ O ′ iff σ(O) <lex σ(O
′).

S(i , j) ≺ T (i ′, j ′) iff i < i ′ or (i = i ′ and j ≤ j ′).

for(i=0; i<n; i++) {
forpar(j=0; j<n; j++) {

S: ...
T: ...

}
}

Partial order ≺, some form of lexicographic order.

S(i , j) ≺ T (i ′, j ′) iff i < i ′ or (i = i ′ and j = j ′).

forpar(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {

S: ...
T: ...

}
}

Partial order ≺, some form of lexicographic order.

S(i , j) ≺ T (i ′, j ′) iff (i = i ′ and j ≤ j ′).

9 / 23

Sequential and parallel loops

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {

S: ...
T: ...

}
}

Total order ≺ defined by a sequential schedule σ
and lexicographic order.

σ(S(i , j)) = (i , j , 0), σ(T (i , j)) = (i , j , 1).

O ≺ O ′ iff σ(O) <lex σ(O
′).

S(i , j) ≺ T (i ′, j ′) iff i < i ′ or (i = i ′ and j ≤ j ′).

for(i=0; i<n; i++) {
forpar(j=0; j<n; j++) {

S: ...
T: ...

}
}

Partial order ≺, some form of lexicographic order.

S(i , j) ≺ T (i ′, j ′) iff i < i ′ or (i = i ′ and j = j ′).

forpar(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {

S: ...
T: ...

}
}

Partial order ≺, some form of lexicographic order.

S(i , j) ≺ T (i ′, j ′) iff (i = i ′ and j ≤ j ′).

9 / 23

Sequential and parallel loops

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {

S: ...
T: ...

}
}

Total order ≺ defined by a sequential schedule σ
and lexicographic order.

σ(S(i , j)) = (i , j , 0), σ(T (i , j)) = (i , j , 1).

O ≺ O ′ iff σ(O) <lex σ(O
′).

S(i , j) ≺ T (i ′, j ′) iff i < i ′ or (i = i ′ and j ≤ j ′).

for(i=0; i<n; i++) {
forpar(j=0; j<n; j++) {

S: ...
T: ...

}
}

Partial order ≺, some form of lexicographic order.

S(i , j) ≺ T (i ′, j ′) iff i < i ′ or (i = i ′ and j = j ′).

forpar(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {

S: ...
T: ...

}
}

Partial order ≺, some form of lexicographic order.

S(i , j) ≺ T (i ′, j ′) iff (i = i ′ and j ≤ j ′).

9 / 23

Analyzing X10 through a polyhedral fragment

X10 language developed at IBM, variant at Rice (V. Sarkar)
PGAS (partitioned global address space) memory principle.
Parallelism of threads: in particular keywords finish, async, clock.
No deadlocks by construction but non-determinism.

Polyhedral X10 Yuki, Feautrier, Rajopadhye, Saraswat (PPoPP 2013)
Can we analyze the code for data races?
finish {

for(i in 0..n-1) {
S1;
async {

S2;
}

}
}

Yes. Similar to data-flow analysis.
Partial order ≺: incomplete lexi-
cographic order.

clocked finish {
for(i in 0..n-1) {

S1; advance();
clocked async {

S2; advance();
}

}
}

Undecidable. Partial order≺c defined
by ~x ≺c ~y iff ~x ≺ ~y or φ(~x) < φ(~y).
φ(~x) =# advances before (for ≺) ~x .

10 / 23

Analyzing X10 through a polyhedral fragment

X10 language developed at IBM, variant at Rice (V. Sarkar)
PGAS (partitioned global address space) memory principle.
Parallelism of threads: in particular keywords finish, async, clock.
No deadlocks by construction but non-determinism.

Polyhedral X10 Yuki, Feautrier, Rajopadhye, Saraswat (PPoPP 2013)
Can we analyze the code for data races?
finish {

for(i in 0..n-1) {
S1;
async {

S2;
}

}
}

Yes. Similar to data-flow analysis.
Partial order ≺: incomplete lexi-
cographic order.

clocked finish {
for(i in 0..n-1) {

S1; advance();
clocked async {

S2; advance();
}

}
}

Undecidable. Partial order≺c defined
by ~x ≺c ~y iff ~x ≺ ~y or φ(~x) < φ(~y).
φ(~x) =# advances before (for ≺) ~x .

10 / 23

Analyzing X10 through a polyhedral fragment

X10 language developed at IBM, variant at Rice (V. Sarkar)
PGAS (partitioned global address space) memory principle.
Parallelism of threads: in particular keywords finish, async, clock.
No deadlocks by construction but non-determinism.

Polyhedral X10 Yuki, Feautrier, Rajopadhye, Saraswat (PPoPP 2013)
Can we analyze the code for data races?
finish {

for(i in 0..n-1) {
S1;
async {

S2;
}

}
}

Yes. Similar to data-flow analysis.
Partial order ≺: incomplete lexi-
cographic order.

clocked finish {
for(i in 0..n-1) {

S1; advance();
clocked async {

S2; advance();
}

}
}

Undecidable. Partial order≺c defined
by ~x ≺c ~y iff ~x ≺ ~y or φ(~x) < φ(~y).
φ(~x) =# advances before (for ≺) ~x .

10 / 23

Analyzing OpenStream through a polyhedral fragment
#pragma omp task output (x) // Task T1
x = ...;
for (i = 0; i < N; ++i) {
int window_a[2], window_b[3];

#pragma omp task output (x « window_a[2]) // Task T2
window_a[0] = ...; window_a[1] = ...;
if (i % 2) {
#pragma omp task input (x » window_b[2]) // Task T3
use (window_b[0], window_b[1]);

}
#pragma omp task input (x) // Task T4
use (x);

}

(Pop, Cohen, 2011)

T1 T2

T3 T4

Stream "x"

producers

consumers

Sequential control program for task activations.
Reservation for reads/writes in streams with burst and horizon.
Single assignment in streams (by construction) + dataflow semantics.

Unlike KPN, streams with multiple inputs/outputs (but deterministic).
If a schedule exists with bounded streams, such sizes can be enforced
by blocking R/W, without creating deadlocks at runtime.
Deadlock detection is undecidable (encoding of polynomials again).

11 / 23

Analyzing OpenStream through a polyhedral fragment
#pragma omp task output (x) // Task T1
x = ...;
for (i = 0; i < N; ++i) {
int window_a[2], window_b[3];

#pragma omp task output (x « window_a[2]) // Task T2
window_a[0] = ...; window_a[1] = ...;
if (i % 2) {
#pragma omp task input (x » window_b[2]) // Task T3
use (window_b[0], window_b[1]);

}
#pragma omp task input (x) // Task T4
use (x);

}

(Pop, Cohen, 2011)

T1 T2

T3 T4

Stream "x"

producers

consumers

Sequential control program for task activations.
Reservation for reads/writes in streams with burst and horizon.
Single assignment in streams (by construction) + dataflow semantics.

Unlike KPN, streams with multiple inputs/outputs (but deterministic).
If a schedule exists with bounded streams, such sizes can be enforced
by blocking R/W, without creating deadlocks at runtime.
Deadlock detection is undecidable (encoding of polynomials again).

11 / 23

Outline

1 Polyhedral representation examples
Compilation for GPU, with shared-memory optimization
Tiling with automatic double-buffering, transfers and buffer sizes

2 Exploring different forms of parallelism
Analysis of a X10 subset
Analysis of an OpenStream subset

3 Liveness analysis
Chordal and interval graphs for SSA and SSI
Comparability graphs for partial orders

4 Lattice-based memory allocation
Polyhedral conflicts
Conflicts as union of polyhedra

12 / 23

Liveness analysis

Uses of liveness analysis:
Necessary for memory reuse:

Register allocation: interference graph.
Array contraction: conflicting relations.
Even wire usage: bitwidth analysis.

Important information for:
Communication: live-in/live-out sets (inlining, offloading)
Memory footprint (e.g., for cache prediction)
Lower/upper bounds on memory usage.

Several variants:
Value-based or memory-based analysis.
Liveness sets or interference graphs.
Control flow graphs (CFG): basic blocks, SSA, SSI, etc.
Task graphs, parallel specifications: not really explored so far.

13 / 23

Liveness analysis

Uses of liveness analysis:
Necessary for memory reuse:

Register allocation: interference graph.
Array contraction: conflicting relations.
Even wire usage: bitwidth analysis.

Important information for:
Communication: live-in/live-out sets (inlining, offloading)
Memory footprint (e.g., for cache prediction)
Lower/upper bounds on memory usage.

Several variants:
Value-based or memory-based analysis.
Liveness sets or interference graphs.
Control flow graphs (CFG): basic blocks, SSA, SSI, etc.
Task graphs, parallel specifications: not really explored so far.

13 / 23

Array contraction: symbolic unrolling, analysis, mapping

x = ...;
y = x + ...;
... = y;

⇒
x = ...;
x = x + ...;
... = x;

for(i=0; i<n; ++i) {
for(j=0; j<n; ++j) {

A[i][j] = A[i-1][j-1] +
A[i-1,j] + A[i-1,j+1];

}
} Mapping: a[i][j] 7→ a[(j-i)%(n+1)]

j

i

for(i=0; i<n; ++i) {
forpar(j=0; j<n; ++j) {

A[i][j] = A[i-1][j-1] +
A[i-1,j] + A[i-1,j+1];

}
} Mapping: a[i][j] 7→ a[i%2][j]

j

i

14 / 23

Array contraction: symbolic unrolling, analysis, mapping

c[0] = 0;
for(i=0; i<n; i++) {
c[i+1] = c[i] + ...;

}
⇒

c = 0;
for(i=0; i<n; i++) {
c = c + ...;

}

for(i=0; i<n; ++i) {
for(j=0; j<n; ++j) {

A[i][j] = A[i-1][j-1] +
A[i-1,j] + A[i-1,j+1];

}
} Mapping: a[i][j] 7→ a[(j-i)%(n+1)]

j

i

for(i=0; i<n; ++i) {
forpar(j=0; j<n; ++j) {

A[i][j] = A[i-1][j-1] +
A[i-1,j] + A[i-1,j+1];

}
} Mapping: a[i][j] 7→ a[i%2][j]

j

i

14 / 23

Array contraction: symbolic unrolling, analysis, mapping

c[0] = 0;
for(i=0; i<n; i++) {
c[i+1] = c[i] + ...;

}
⇒

c = 0;
for(i=0; i<n; i++) {
c = c + ...;

}

for(i=0; i<n; ++i) {
for(j=0; j<n; ++j) {

A[i][j] = A[i-1][j-1] +
A[i-1,j] + A[i-1,j+1];

}
} Mapping: a[i][j] 7→ a[(j-i)%(n+1)]

j

i

for(i=0; i<n; ++i) {
forpar(j=0; j<n; ++j) {

A[i][j] = A[i-1][j-1] +
A[i-1,j] + A[i-1,j+1];

}
} Mapping: a[i][j] 7→ a[i%2][j]

j

i

14 / 23

Array contraction: symbolic unrolling, analysis, mapping

c[0] = 0;
for(i=0; i<n; i++) {
c[i+1] = c[i] + ...;

}
⇒

c = 0;
for(i=0; i<n; i++) {
c = c + ...;

}

for(i=0; i<n; ++i) {
for(j=0; j<n; ++j) {

A[i][j] = A[i-1][j-1] +
A[i-1,j] + A[i-1,j+1];

}
} Mapping: a[i][j] 7→ a[(j-i)%(n+1)]

j

i

for(i=0; i<n; ++i) {
forpar(j=0; j<n; ++j) {

A[i][j] = A[i-1][j-1] +
A[i-1,j] + A[i-1,j+1];

}
} Mapping: a[i][j] 7→ a[i%2][j]

j

i

14 / 23

Control-flow graphs and interferences

Basic blocks, no hole or single write
Interference graph = interval graph.
Linear cliques = live sets at a program point, maxlive.
Linear-time allocation.

General control-flow graph
Chaitin coloring NP-completeness.
Fixed-point computations for liveness sets.
Special cases for reducible graphs (backwards).
Bounded tree-width for some languages.

Static single assignment (SSA) with dominance
Interference graph = chordal graph.
Clique max = live set at a control point.
Liveness sets computation without fix-point (2 passes).
Linear-time algorithms for coloring.

Static single information (SSI) with dominance
Interference graph = interval graph, proof is not obvious.
Liveness sets computation = one linear-time pass.

15 / 23

Control-flow graphs and interferences

Basic blocks, no hole or single write
Interference graph = interval graph.
Linear cliques = live sets at a program point, maxlive.
Linear-time allocation.

General control-flow graph
Chaitin coloring NP-completeness.
Fixed-point computations for liveness sets.
Special cases for reducible graphs (backwards).
Bounded tree-width for some languages.

Static single assignment (SSA) with dominance
Interference graph = chordal graph.
Clique max = live set at a control point.
Liveness sets computation without fix-point (2 passes).
Linear-time algorithms for coloring.

Static single information (SSI) with dominance
Interference graph = interval graph, proof is not obvious.
Liveness sets computation = one linear-time pass.

15 / 23

Control-flow graphs and interferences

Basic blocks, no hole or single write
Interference graph = interval graph.
Linear cliques = live sets at a program point, maxlive.
Linear-time allocation.

General control-flow graph
Chaitin coloring NP-completeness.
Fixed-point computations for liveness sets.
Special cases for reducible graphs (backwards).
Bounded tree-width for some languages.

Static single assignment (SSA) with dominance
Interference graph = chordal graph.
Clique max = live set at a control point.
Liveness sets computation without fix-point (2 passes).
Linear-time algorithms for coloring.

Static single information (SSI) with dominance
Interference graph = interval graph, proof is not obvious.
Liveness sets computation = one linear-time pass.

15 / 23

Control-flow graphs and interferences

Basic blocks, no hole or single write
Interference graph = interval graph.
Linear cliques = live sets at a program point, maxlive.
Linear-time allocation.

General control-flow graph
Chaitin coloring NP-completeness.
Fixed-point computations for liveness sets.
Special cases for reducible graphs (backwards).
Bounded tree-width for some languages.

Static single assignment (SSA) with dominance
Interference graph = chordal graph.
Clique max = live set at a control point.
Liveness sets computation without fix-point (2 passes).
Linear-time algorithms for coloring.

Static single information (SSI) with dominance
Interference graph = interval graph, proof is not obvious.
Liveness sets computation = one linear-time pass.

15 / 23

Liveness at a given “step” with iscc

Inputs
Params := [n] -> { : n >= 0 };
Domain := [n] -> { S[i,j] : 0 <= i, j < n };
Read := [n] -> { S[i,j] -> A[i-1,j-1]; S[i,j] -> A[i-1,j];

S[i,j] -> A[i-1,j+1] } * Domain;
Write := [n] -> { S[i,j] -> A[i,j] } * Domain;
Sched := [n] -> { S[i,j] -> [i,j] };

Operators
Prev := { [i,j]->[k,l]: i<k or (i=k and j<l) };
Preveq := { [i,j]->[k,l]: i<k or (i=k and j<=l) };
WriteBeforeTStep := (Prev^-1).(Sched^-1).Write;
ReadAfterTStep := Preveq.(Sched^-1).Read;

Liveness and conflicts
Live := WriteBeforeTStep * ReadAfterTStep;
Conflict := (Live^-1).Live;
Delta := deltas Conflict;

*
Delta(n) = {(1, i1) | i1 ≤ 0, n ≥ 3, i1 ≥ 1− n}∪

{(0, i1) | i1 ≥ 1− n, n ≥ 2, i1 ≤ −1+ n}∪
{(−1, i1) | i1 ≥ 0, n ≥ 3, i1 ≤ −1+ n}

16 / 23

Generalizations? Liveness sets not the right concept

Inner parallelism Almost the same.

Seq/Par nested loops Can use a careful hierarchical approach.
Software pipelining Harder to get a concept of “time”.

time step

(L, 2i)

(C , 2i) (L, 2i + 1)

(C , 2i + 1)

(S , 2i + 1)

(S , 2i)

(L, 2i + 3)

(L, 2i + 2)

(C , 2i + 2)

iteration i

time step

(C , i − 1)
(L, i)

(S , i − 1)

(C , i)

(L, i + 1)

(S , i)
(C , i + 1)

iteration i

On the right, values computed in S(i − 1) and L(i + 1) both conflict with
those in (C , i), but not with each other. Not a clique.

17 / 23

Generalizations? Liveness sets not the right concept

Inner parallelism Almost the same.
Seq/Par nested loops Can use a careful hierarchical approach.

Software pipelining Harder to get a concept of “time”.

time step

(L, 2i)

(C , 2i) (L, 2i + 1)

(C , 2i + 1)

(S , 2i + 1)

(S , 2i)

(L, 2i + 3)

(L, 2i + 2)

(C , 2i + 2)

iteration i

time step

(C , i − 1)
(L, i)

(S , i − 1)

(C , i)

(L, i + 1)

(S , i)
(C , i + 1)

iteration i

On the right, values computed in S(i − 1) and L(i + 1) both conflict with
those in (C , i), but not with each other. Not a clique.

17 / 23

Generalizations? Liveness sets not the right concept

Inner parallelism Almost the same.
Seq/Par nested loops Can use a careful hierarchical approach.
Software pipelining Harder to get a concept of “time”.

time step

(L, 2i)

(C , 2i) (L, 2i + 1)

(C , 2i + 1)

(S , 2i + 1)

(S , 2i)

(L, 2i + 3)

(L, 2i + 2)

(C , 2i + 2)

iteration i

time step

(C , i − 1)
(L, i)

(S , i − 1)

(C , i)

(L, i + 1)

(S , i)
(C , i + 1)

iteration i

On the right, values computed in S(i − 1) and L(i + 1) both conflict with
those in (C , i), but not with each other. Not a clique.

17 / 23

Reasoning at the level of traces

Define:
a∈ t iff a is executed in a trace t;

a≺t b iff a∈ t, b∈ t and a is executed before b in t;

S∃(a, b) iff there is a trace t such that a ≺t b.

R∀(a, b) = ¬S∃(b, a) iff, for all traces t, a, b ∈ t implies a ≺t b.

Then, a and b conflict (a ./ b) if, for some trace t, Wa ≺t Wb ≺t Ra.

Conservative approximations for a ./ b:
iff S∃(Wa,Ra), S∃(Wa,Wb), S∃(Wb,Ra) iff
¬R∀(Ra,Wa), ¬R∀(Wb,Wa), ¬R∀(Ra,Wb).

with an under-approximation R∀ ⊆ R∀.

When R∀ is a partial order �, a ./ b iff Ra 6≺Wa, Wb 6≺Wa, Ra 6≺Wb.

Wa Ra

Wb

6

6 6

* Covers sequential code, OpenMP-like loop parallelism, OpenMP-4.0
task parallelism, X10, OpenStream, even some form of if conditions, etc.

18 / 23

Reasoning at the level of traces

Define:
a∈ t iff a is executed in a trace t;

a≺t b iff a∈ t, b∈ t and a is executed before b in t;

S∃(a, b) iff there is a trace t such that a ≺t b.

R∀(a, b) = ¬S∃(b, a) iff, for all traces t, a, b ∈ t implies a ≺t b.

Then, a and b conflict (a ./ b) if, for some trace t, Wa ≺t Wb ≺t Ra.

Conservative approximations for a ./ b:
iff S∃(Wa,Ra), S∃(Wa,Wb), S∃(Wb,Ra) iff
¬R∀(Ra,Wa), ¬R∀(Wb,Wa), ¬R∀(Ra,Wb).

with an under-approximation R∀ ⊆ R∀.

When R∀ is a partial order �, a ./ b iff Ra 6≺Wa, Wb 6≺Wa, Ra 6≺Wb.

Wa Ra

Wb

6

6 6

* Covers sequential code, OpenMP-like loop parallelism, OpenMP-4.0
task parallelism, X10, OpenStream, even some form of if conditions, etc.

18 / 23

Reasoning at the level of traces

Define:
a∈ t iff a is executed in a trace t;

a≺t b iff a∈ t, b∈ t and a is executed before b in t;

S∃(a, b) iff there is a trace t such that a ≺t b.

R∀(a, b) = ¬S∃(b, a) iff, for all traces t, a, b ∈ t implies a ≺t b.

Then, a and b conflict (a ./ b) if, for some trace t, Wa ≺t Wb ≺t Ra.

Conservative approximations for a ./ b:
iff S∃(Wa,Ra), S∃(Wa,Wb), S∃(Wb,Ra) iff
¬R∀(Ra,Wa), ¬R∀(Wb,Wa), ¬R∀(Ra,Wb).

with an under-approximation R∀ ⊆ R∀.

When R∀ is a partial order �, a ./ b iff Ra 6≺Wa, Wb 6≺Wa, Ra 6≺Wb.

Wa Ra

Wb

6

6 6

* Covers sequential code, OpenMP-like loop parallelism, OpenMP-4.0
task parallelism, X10, OpenStream, even some form of if conditions, etc.

18 / 23

Partial orders, user-defined data races, comparability graphs

Mapping: if allocation respects ./, it is valid for any execution expressed by
the parallel specification * form of schedule-independent mapping.

Partial order: quite general, but cannot take critical sections into account.
Theory can handle if conditions, but not a partial order anymore.

Interference graph: if no dead code, no undefined read, but possibly races,
it is the complement of a comparability graph.

Optimality: size = max clique, polynomially computable (Dilworth) if
graph is given in extension (unlike polyhedral optimization). Note:
different than finding the minimum size for any execution (NP-complete).

Source-to-source transformation: contraction can be expressed in the same
specification model, without constraining parallelism further.

Still many open questions on how to exploit these properties further.

19 / 23

Partial orders, user-defined data races, comparability graphs

Mapping: if allocation respects ./, it is valid for any execution expressed by
the parallel specification * form of schedule-independent mapping.

Partial order: quite general, but cannot take critical sections into account.
Theory can handle if conditions, but not a partial order anymore.

Interference graph: if no dead code, no undefined read, but possibly races,
it is the complement of a comparability graph.

Optimality: size = max clique, polynomially computable (Dilworth) if
graph is given in extension (unlike polyhedral optimization). Note:
different than finding the minimum size for any execution (NP-complete).

Source-to-source transformation: contraction can be expressed in the same
specification model, without constraining parallelism further.

Still many open questions on how to exploit these properties further.

19 / 23

Partial orders, user-defined data races, comparability graphs

Mapping: if allocation respects ./, it is valid for any execution expressed by
the parallel specification * form of schedule-independent mapping.

Partial order: quite general, but cannot take critical sections into account.
Theory can handle if conditions, but not a partial order anymore.

Interference graph: if no dead code, no undefined read, but possibly races,
it is the complement of a comparability graph.

Optimality: size = max clique, polynomially computable (Dilworth) if
graph is given in extension (unlike polyhedral optimization). Note:
different than finding the minimum size for any execution (NP-complete).

Source-to-source transformation: contraction can be expressed in the same
specification model, without constraining parallelism further.

Still many open questions on how to exploit these properties further.

19 / 23

Partial orders, user-defined data races, comparability graphs

Mapping: if allocation respects ./, it is valid for any execution expressed by
the parallel specification * form of schedule-independent mapping.

Partial order: quite general, but cannot take critical sections into account.
Theory can handle if conditions, but not a partial order anymore.

Interference graph: if no dead code, no undefined read, but possibly races,
it is the complement of a comparability graph.

Optimality: size = max clique, polynomially computable (Dilworth) if
graph is given in extension (unlike polyhedral optimization). Note:
different than finding the minimum size for any execution (NP-complete).

Source-to-source transformation: contraction can be expressed in the same
specification model, without constraining parallelism further.

Still many open questions on how to exploit these properties further.

19 / 23

Outline

1 Polyhedral representation examples
Compilation for GPU, with shared-memory optimization
Tiling with automatic double-buffering, transfers and buffer sizes

2 Exploring different forms of parallelism
Analysis of a X10 subset
Analysis of an OpenStream subset

3 Liveness analysis
Chordal and interval graphs for SSA and SSI
Comparability graphs for partial orders

4 Lattice-based memory allocation
Polyhedral conflicts
Conflicts as union of polyhedra

20 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

Integer points

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

0−Symmetric Polytope: vertices (8,1), (−8,−1), (−1,5), and (1,−5)

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

Lattice: Basis (9,0), (0,6) Determinant: 54 (i mod 9, j mod 6)

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

Lattice: Basis (9,0), (0,5) (i mod 9, j mod 5)Determinant: 45

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

(i−j mod 8, j mod 6)Lattice: Basis (8,0), (6,6) Determinant: 48

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

Lattice: Basis (8,0), (4,4) Determinant: 32 (i−j mod 8, j mod 4)

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

Determinant: 32Lattice: Basis (8,0), (3,4) 4i−3j mod 32

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

Lattice: Basis (7,0), (4,4) (i−j mod 7, j mod 4)Determinant: 28

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Modular mappings and lattices

Modulo mapping ~i 7→ σ(~i) = M~i mod ~b (modulo componentwise).
Validity iff ~i ./~j , ~i 6=~j ⇒ σ(~i) 6= σ(~j) iff, with DS = {~i −~j | ~i ./~j},
DS ∩ ker σ = {~0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

Critical Lattice: Basis (4,3), (8,0) 3i−4j mod 24Determinant: 24

Successive modulo approach.

Exhaustive search possible.

Upper/lower bounds linked to
Minkowski’s theorems, basis
reduction, gauge functions.
* good order of magnitude if
DS is a polyhedron.

21 / 23

Dealing with union of polyhedra: new theory

Live-out set of a tiled code:

x

y Successive modulo:
(x , y) 7→ (x mod N, y mod N).
Skewed mapping:
(x , y) 7→ (x−y mod (2N−1), y mod 2).

* How to find the second one?

δx

δy

δx

δy

22 / 23

Dealing with union of polyhedra: new theory

Live-out set of a tiled code:

x

y Successive modulo:
(x , y) 7→ (x mod N, y mod N).
Skewed mapping:
(x , y) 7→ (x−y mod (2N−1), y mod 2).

* How to find the second one?

δx

δy

δx

δy

22 / 23

Conclusion: many pieces of the puzzle get together

New generalizations and links with previous approaches.

Liveness analysis for parallel specifications.
Interference graph structure analysis and exploitation.
Lattice-based memory allocation extensions.

* Towards a better understanding of parallel languages: semantics, static
analysis, and links with the runtime.

Still some problems or applications to explore, possibly with MC2 (graph
structures), Avalon (OpenMP 4.0/StarPU dependent tasks), Roma
(memory optimization), Aric (lattice theory).

23 / 23

	Polyhedral representation examples
	Compilation for GPU, with shared-memory optimization
	Tiling with automatic double-buffering, transfers and buffer sizes

	Exploring different forms of parallelism
	Analysis of a X10 subset
	Analysis of an OpenStream subset

	Liveness analysis
	Chordal and interval graphs for SSA and SSI
	Comparability graphs for partial orders

	Lattice-based memory allocation
	Polyhedral conflicts
	Conflicts as union of polyhedra

