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Parallel languages, runtime execution, and static analysis

Solution(s) for high-level parallel programming?

Static or dynamic?
Language constructs or libraries?
Expressiveness: deterministic (no data races) or deadlock-free?

How to represent communications and memories? Concurrency?

Can static optimization help runtime optimizations?
Worst-case, buffer sizes, granularity opt., mapping, locality, ...
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Parallel languages, runtime execution, and static analysis

Solution(s) for high-level parallel programming?

e Static or dynamic?
@ Language constructs or libraries?

@ Expressiveness: deterministic (no data races) or deadlock-free?
@ How to represent communications and memories? Concurrency?
o Can static optimization help runtime optimizations?
Worst-case, buffer sizes, granularity opt., mapping, locality, ...

Many approaches:
@ “Lower’-level: MPI, OpenCL, Lime, ...
@ Runtime-based: Kaapi, StarPU (with task dep. as in OpenMP 4.0).
@ (A)PGAS languages: Co-Array Fortran, UPC, Chapel, X10, ...
@ "Dataflow” languages: KPN, SDF, CSDF, SigmaC, OpenStream, ...
@ Automatic compilation schemes.
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Discrete structures

Polyhedral representations, Presburger formulas, integer sets.

Linear programming, Farkas lemma, polynomial generalizations.

Graph structures: chordal graphs, interval graphs, comparability
graphs, serie-parallel graphs.

Integer lattices, basis reduction, Hermite/Smith forms.

NP-completeness, undecidability, Hilbert's 10th problem.

@ Dependence analysis, liveness analysis, deadlock detection, while loop
termination, upper/lower bounds for time & memory, scheduling, etc.
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@ Polyhedral representation examples
e Compilation for GPU, with shared-memory optimization
o Tiling with automatic double-buffering, transfers and buffer sizes

@ Exploring different forms of parallelism
@ Analysis of a X10 subset
@ Analysis of an OpenStream subset

© Liveness analysis
@ Chordal and interval graphs for SSA and SSI
e Comparability graphs for partial orders

@ Lattice-based memory allocation
@ Polyhedral conflicts
@ Conflicts as union of polyhedra
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Multi-dimensional affine representation of loops and arrays

Matrix Multiply

q q q iteratjon k Array B
int i,j,k; Array A
for(i = 0; i < n; i++) {
for(j = 0; j < mn; j++) {
S: Clil[jl = 0;
for(k = 0; k < n; k++) { e
g C[il[j1 += A[il[k] = B[k]1[jl; —
} T llerallonj
T
} iteration i ’ ay €
Polyhedral Description Omega/ISCC syntax
Domain := [n]->{S[il[jl: 0<=i,j<n; T[il[jI[k]: 0<=i,j,k<n};
Read := [n]->{T[il[jI[kI->A[il[k]; TL[il[jl[k1->BL[k1[jl;
TLil[j]1[k]1->CLil[j1};
Write := [n]->{S[il[j1->C[il[j]; TLil[jl[k1I->CLil[jl1};
Order := [n]->{S[il[jl->[i1[j100]; TLilCjl0[k]I->[ilJ[j1011[k]};

5/23



PPCG code for CPU4+GPU: GPU par

__global__ void kernelO(float *A, float *B, float *C, int n) /* n=12288 */

{
int b0 = blockIdx.y, bl = blockIdx.x; /* Grid: 192x192 blocks, each with 32x32 threads */
int t0 = threadIdx.y, tl = threadIdx.x; /* Loops: 384x384x768 tiles, each with 32x32x16 points */
__shared__ float shared_A[32][16]; /* Thus 1 block = 2x2x768 tiles, 1 thread = 1x1x16 points */
__shared__ float shared_B[16][32];
float private_C[1][1];
for (int gl = 32 * b0; gl <= 12266; gl += 6144) /* 6144 = 32 (tile size) x 192 (number of blocks) */
for (int g3 = 32 * bl; g3 <= 12256; g3 += 6144) { /* 32 is the tile size */
private_C[0][0] = C[(t0 + gl) * 12288 + (t1 + g3)1;
for (int g9 = 0; g9 <= 12272; g9 += 16) { /* 16 consecutive points along k in a thread */
if (£t0 <= 15) /* 32x32 threads, only 16x32 do the transfer */
shared_B[t0] [t1] = B[(t0 + g9) * 12288 + (t1 + g3)];
if (t1 <= 15) /* 32 threads, only 32x16 do the transfer */
shared_A[t0][t1] = A[(t0 + gl1) * 12288 + (t1 + g9)];
__syncthreads();
for (int c4 = 0; c4 <= 15; c4 += 1) /* compute the 16 consecutive points along k */
private_C[0]1[0] += (shared_A[t0][c4] * shared_B[c4][t1]);
__syncthreads();
}
C[(t0 + g1) * 12288 + (t1 + g3)] = private_C[0][0];
__syncthreads();
}
}

PPCG code for CPU+GPU:
Verdoolaege, Cohen, etc.
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PPCG code for CPU+GPU: GPU part (Volkov-like)

__global_

{

_ void kernelO(float *A, float *B, float *C, int n) /* n=12288 */

int b0 = blockIdx.y, bl = blockIdx.x; /* Grid: 192x192 blocks, each with 16x16 threads */

int t0 = threadIdx.y, t1 = threadIdx.x; /* Loops: 384x384x768 tiles, each with 32x32x16 points */
__shared__ float shared_A[32][16]; /* Thus 1 block = 2x2x768 tiles, 1 thread = 2x2x16 points */
__shared__ float shared_B[16][32];

float private_C[2][2];

for (int gl = 32 * b0; gl <= 12256; gl += 6144) /* 6144 = 32 (tile size) x 192 (number of blocks) */
for (int g3 = 32 * bl; g3 <= 12256; g3 += 6144) { /* 32 is the tile size */
private_C[0] [0] = C[(t0 + gi) * 12288 + (t1 + g3)]; /* 2x2 points unrolled for register usage */
private_C[0][1] = C[(t0 + gl) * 12288 + (t1 + g3 + 16)];
private_C[1]1[0] = C[(t0 + gl + 16) * 12288 + (t1 + g3)];
private_C[1]1[1] = C[(t0 + gl + 16) * 12288 + (t1 + g3 + 16)];
for (int g9 = 0; g9 <= 12272; g9 += 16) { /* 16 consecutive points along k in a thread */

for (int cl = tl; cl <= 31; cl += 16) /* 16x32 to bring with 16x16 threads */
shared_B[t0] [c1] = B[(t0 + g9) * 12288 + (g3 + c1)];

for (int cO = t0; cO <= 31; cO += 16) /* 32x16 to bring with 16x16 threads */
shared_A[cO0] [t1] = A[(gl + cO) * 12288 + (t1 + g9)];

__syncthreads();

for (int c2 = 0; c2 <= 15; c2 += 1) { /* unrolled for register usage */
private_C[0][0] += (shared_A[t0][c2] * shared B[c2][t1]);
private_C[0][1] += (shared_A[t0][c2] * shared_B[c2][t1 + 161);
private_C[11[0] += (shared_A[tO + 16][c2] * shared_B[c2][t1]);
private_C[1][1] += (shared_A[tO + 16][c2] * shared_B[c2][t1 + 16]);

¥
th: d: H
3 --syncthreads() PPCG code for CPU+GPU:
CL(t0 + g1) * 12288 + (t1 + g3)] = private_C[0][0]; GPU part with ILP (Volkov)
CL(t0 + gl1) * 12288 + (t1 + g3 + 16)] = private_C[0][1];
CL[(t0 + g1 + 16) * 12288 + (t1 + g3)] = private_C[1][0];

C[(t0 + g1 + 16) * 12288 + (t1 + g3 + 16)] = private_C[1]1[1];
__syncthreads () ;
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Parametric tiling with double buffering

int 1i,j;

Parameter n, tiles of size b x b. : ] )
for(i = 0; i < n; i++) {
g for(j = 0; j < mn; j++) {
] ! Cli+j] = cli+j] + A[i]*B[j];
INNEE . )
INNNSSN '
\\ ”””” ‘ Sets Load s, Loadg, Load¢, Storec?
I ‘ NN ‘
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Parametric tiling with double buffering

int 1i,j;

for(i = 0; i < n; i++) {

for(j = 0; j < mn; j++) {
Cli+j] = C[i+j] + A[iI*B[j];

}

Parameter n, tiles of size b x b.
J

: : : : ¥
NS
\\ ”””” - Sets Load, Loadg, Loadc, Storec?

I

Loada={m|0<m<n-1,J<m<J+b-1}
@ size 2b, when n > 2b + 1: at least 2 tiles available.
@ size n when n < 2b: less than 2 tiles.
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Parametric tiling with double buffering

int 1i,j;

Parameter n, tiles of size b x b. i ] )
for(i = 0; i < n; i++) {
; for(j = 0; j < mn; j++) {
B U R T B Cli+j] = Cli+j] + A[i1*B[j];
3 : : : 3 }
NN )
! ! :\\ :\\ !
1 \\ ”””” [ " Sets Load s, Loadg, Loadc, Storec?
i ‘ ‘ ‘ ‘

Loada={m|0<m<n-1,J<m<J+b—-1}
@ size 2b, when n > 2b + 1: at least 2 tiles available.
@ size n when n < 2b: less than 2 tiles.
Loadg={m|J=0,0<m<n—-1n—I1—-b<m<n-—1-1}
@ size b when n > b: 1 full tile.
@ size n when n < b — 1: 1 partial tile.
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Parametric tiling with double buffering

int 1i,j;
for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {
Cli+j1 = C[i+j1 + A[i1*B[j]1;
}

Parameter n, tiles of size b x b.

N ‘ ‘ Ll

}

Sets Load s, Loadg, Loadc, Storec?

I
y

Loada={m|0<m<n-1,J<m<J+b—-1}
@ size 2b, when n > 2b + 1: at least 2 tiles available.
@ size n when n < 2b: less than 2 tiles.
Loadg={m|J=0,0<m<n—-1n—I1—-b<m<n-—1-1}
@ size b when n > b: 1 full tile.
@ size n when n < b — 1: 1 partial tile.
Loade ={m|0<m,n—I-b<m<n-1-1/,J=0}
U{m| max(1,))<m+/—-n+1<min(n—1,J+b—-1)}
@ size3b—1=(2b—1)+ bwhen n>2b+1: 2 full tiles.
@ size b+ n—1=(2b—1)+ (n— b) when b < n < 2b: 1 full tile, 1 partial tile.
@ size 2n — 1 when n < b — 1: 1 partial tile.
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@ Exploring different forms of parallelism
@ Analysis of a X10 subset
@ Analysis of an OpenStream subset

8/23



Sequential and parallel loops

for(i=0; i<n; i++) {

S:

for(j=0; j<n; j++) {

T:

}

@ Total order < defined by a sequential schedule o
and lexicographic order.

® o(5(i,)) = (1,4, 0), o(T(i,J)) = (i,J,1).
@ 0 <0 iff 7(0) <}y o(O").
® S(i,j) < T(I",j)iffi < i or(i=iandj<j).
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Sequential and parallel loops

for(i=0; i<n; i++) { @ Total order < defined by a sequential schedule o
for(j=0; j<n; j++) { and lexicographic order.
SO ® o(5(i,))) = (i.4,0), o(T(i,J)) = (i,4,1).
’ } @ 0 <0 iff 7(0) <}y o(O").
} @ S(i,j)<T(/,j)iffi<i or(i=iandj<Jj).

for(i=0; i<n; i++) {
forpar(j=0; j<n; j++) {

S: @ Partial order <, some form of lexicographic order.
T ) ® S(ij) < T(i",j)iff i< i or(i=4iandj=j).
}
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Sequential and parallel loops

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {

S:

T:

}

for(i=0; i<n; i++) {
forpar(j=0; j<n; j++) {
S:
T:
}
}

forpar(i = 0; i < mn; i++) {
for(j = 0; j < m; j++) {

S:

T:

}

@ Total order < defined by a sequential schedule o
and lexicographic order.

® o(5(i,)) = (1,4, 0), o(T(i,J)) = (i,J,1).
@ 0 <0 iff 7(0) <}y o(O").
® S(i,j) < T(I",j)iffi < i or(i=iandj<j).

Partial order <, some form of lexicographic order.
S(i,j) < T(i',j) iff i < " or (i =i and j = J').

Partial order <, some form of lexicographic order.
S(i,j) < T(i',j') iff (i= i and j < j).

9/23



Analyzing X10 through a polyhedral fragment

X10 language developed at IBM, variant at Rice (V. Sarkar)
@ PGAS (partitioned global address space) memory principle.
@ Parallelism of threads: in particular keywords finish, async, clock.
@ No deadlocks by construction but non-determinism.

Polyhedral X10 Yuki, Feautrier, Rajopadhye, Saraswat (PPoPP 2013)
Can we analyze the code for data races?

finish { clocked finish {
for(i in 0..n-1) { for(i in 0..n-1) {
S1; S1; advance();
async { clocked async {
S2; S2; advance();
} }
} }
} }
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Analyzing X10 through a polyhedral fragment

X10 language developed at IBM, variant at Rice (V. Sarkar)
@ PGAS (partitioned global address space) memory principle.
@ Parallelism of threads: in particular keywords finish, async, clock.
@ No deadlocks by construction but non-determinism.

Polyhedral X10 Yuki, Feautrier, Rajopadhye, Saraswat (PPoPP 2013)
Can we analyze the code for data races?

finish { clocked finish {
for(i in 0..n-1) { for(i in 0..n-1) {
S1; S1; advance();
async { clocked async {
S2; S2; advance();
} }
} }
} }

Yes. Similar to data-flow analysis.  Undecidable. Partial order <. defined
Partial order <: incomplete lexi- by X <. ¥ iff X < ¥ or ¢(X) < o(¥).
cographic order. ¢(X) = # advances before (for <) X.
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Analyzing OpenStream through a polyhedral fragment

#pragma omp task output (x) // Task T1
; (Pop, Cohen, 2011)

X = ...
for (i = 0; i < N; ++i) {
int window_a[2], window_b[3];

#pragma omp task output (x « window_a[2]) // Task T2
window_a[0] = ...; window_a[1] = ...;

if 3% 2) {

#pragma omp task input (x » window_b[2]) // Task T3
use (window_b[0], window_b[1]);

}

#pragma omp task input (x) // Task T4

use (x);

Stream "x"

@ Sequential control program for task activations.

@ Reservation for reads/writes in streams with burst and horizon.

@ Single assignment in streams (by construction) + dataflow semantics.

11/23



Analyzing OpenStream through a polyhedral fragment

#pragma omp task output (x) // Task T1
x= .. (Pop, Cohen, 2011)
for (i = 0; i < N; ++i) {

int window_a[2], window_b[3];

producers
#pragma omp task output (x « window_a[2]) // Task T2
window_a[0] = ...; window_a[1] = ...;
if (1% 2) { /{(

#pragma omp task input (x » window_b[2]) // Task T3 _—
use (window_b[0], window_b[1]); Stream "x
¥
#pragma omp task input (x) // Task T4
use (x);

Sequential control program for task activations.

Reservation for reads/writes in streams with burst and horizon.

Single assignment in streams (by construction) + dataflow semantics.

Unlike KPN, streams with multiple inputs/outputs (but deterministic).

If a schedule exists with bounded streams, such sizes can be enforced
by blocking R/W, without creating deadlocks at runtime.

Deadlock detection is undecidable (encoding of polynomials again).
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© Liveness analysis
@ Chordal and interval graphs for SSA and SSI
e Comparability graphs for partial orders
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Liveness analysis

Uses of liveness analysis:

@ Necessary for memory reuse:
o Register allocation: interference graph.
e Array contraction: conflicting relations.
e Even wire usage: bitwidth analysis.

@ Important information for:
o Communication: live-in/live-out sets (inlining, offloading)
e Memory footprint (e.g., for cache prediction)
o Lower/upper bounds on memory usage.
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Liveness analysis

Uses of liveness analysis:
@ Necessary for memory reuse:

o Register allocation: interference graph.
e Array contraction: conflicting relations.
e Even wire usage: bitwidth analysis.

@ Important information for:

o Communication: live-in/live-out sets (inlining, offloading)
e Memory footprint (e.g., for cache prediction)
o Lower/upper bounds on memory usage.

Several variants:
@ Value-based or memory-based analysis.
@ Liveness sets or interference graphs.
e Control flow graphs (CFG): basic blocks, SSA, SSI, etc.

@ Task graphs, parallel specifications: not really explored so far.
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Array contraction: symbolic unrolling, analysis, mapping

y=x
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Array contraction: symbolic unrolling, analysis, mapping

cfo]l = 0; c = 0;
for(i=0; i<n; i++) { for(i=0; i<m; i++) {
c[i+1] = c[i] + ...; = c=c+ ...;
}

}
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Array contraction: symbolic unrolling, analysis, mapping

c[o] = 0; c =0;

for(i=0; i<n; i++) { for(i=0; i<m; i++) {
c[i+1] = c[i] + ...; = c=c+ ...;

} }

o

for(i=0; i<n; ++i) {
for(j=0; j<n; ++j) {
A[i1 03] = Ali-11[j-1] +
A[i-l,j] + A[i-l,j+1];
}
}  Mapping: alil[j] — al(j-1)%(a+1)]
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Array contraction: symbolic unrolling, analysis, mapping

c[0] = 0; c =0;

for(i=0; i<n; i++) { for(i=0; i<m; i++) {
c[i+1] = c[i] + ...; = c=c+ ...;

} }

for(i=0; i<m; ++i) {
for(j=0; j<m; ++j) {
Alil1[j] = A[i-11[j-11 +
Ali-1,j] + Ali-1,j+1];
}
}  Mapping: alil[j] + al(j-i)%(@n+1)]

for(i=0; i<n; ++i) {
forpar(j=0; j<n; ++j) {
A[i1[j1 = A[i-11[j-11 +
Ali-1,31 + A[i-1,j+1];

¥ Mapping: ali] [j] — ali%2] [j]
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Control-flow graphs and interferences

Basic blocks, no hole or single write

@ Interference graph = interval graph.
@ Linear cliques = live sets at a program point, maxlive.

@ Linear-time allocation.
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@ Linear-time allocation.

General control-flow graph
@ Chaitin coloring NP-completeness.
@ Fixed-point computations for liveness sets.
@ Special cases for reducible graphs (backwards).
@ Bounded tree-width for some languages.
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Control-flow graphs and interferences

Basic blocks, no hole or single write
@ Interference graph = interval graph.
@ Linear cliques = live sets at a program point, maxlive.
@ Linear-time allocation.

General control-flow graph
@ Chaitin coloring NP-completeness.
@ Fixed-point computations for liveness sets.
@ Special cases for reducible graphs (backwards).
@ Bounded tree-width for some languages.

Static single assignment (SSA) with dominance

@ Interference graph = chordal graph.

@ Clique max = live set at a control point.

@ Liveness sets computation without fix-point (2 passes).
@ Linear-time algorithms for coloring.

Static single information (SSI) with dominance

@ Interference graph = interval graph, proof is not obvious.
@ Liveness sets computation = one linear-time pass.

15/23



Liveness at a given “step” with iscc

# Inputs
Params := [n] -> { : n >= 0 };
Domain := [n] -> { S[i,j] : 0 <=i, j <n };

Read := [n] -> { S[i,j] -> A[i-1,j-11; S[i,jl -> A[i-1,j];
S[i,j] -> A[i-1,j+1] } * Domain;

Write := [n] -> { S[i,j] -> A[i,j] } * Domain;

Sched := [n] -> { S[i,j] -> [i,j] };

# Operators

Prev := { [i,j]->[k,1]: i<k or (i=k and j<1) };
Preveq := { [i,j]1->[k,1]: i<k or (i=k and j<=1) };
WriteBeforeTStep := (Prev~-1).(Sched~-1).Write;
ReadAfterTStep := Preveq.(Sched~-1).Read;

# Liveness and conflicts
Live := WriteBeforeTStep * ReadAfterTStep;
Conflict := (Live~-1).Live;
Delta := deltas Conflict;
Delta(n) = {(1,4) |2 <0,n>3, i1 >1—n}u
- {0,i)) |h>1—n,n>2ih <—-1+4+n}U
{(—1,1.1) | i1 ZO, n23, i1 S —1+n}
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Generalizations? Liveness sets not the right concept

Inner parallelism Almost the same.
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Seq/Par nested loops Can use a careful hierarchical approach.
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Generalizations? Liveness sets not the right concept

Inner parallelism Almost the same.
Seq/Par nested loops Can use a careful hierarchical approach.

Software pipelining Harder to get a concept of “time".

On the right, values computed in S(i — 1) and L(i + 1) both conflict with
those in (C, i), but not with each other. Not a clique.
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Reasoning at the level of traces

Define:
@ actiff ais executed in a trace t;
@ a<:biffaet, bet and ais executed before b in t;
@ S5(a, b) iff there is a trace t such that a <; b.
@ Ry(a, b) = —53(b, a) iff, for all traces t, a, b € t implies a <; b.

Then, a and b conflict (a < b) if, for some trace t, W, <; W), <; R,.
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Reasoning at the level of traces

Define:
@ actiff ais executed in a trace t;
@ a<:biffaet, bet and ais executed before b in t;
@ S5(a, b) iff there is a trace t such that a <; b.

Ry(a, b) = —=S5(b, a) iff, for all traces t, a, b € t implies a <; b.
Then, a and b conflict (a < b) if, for some trace t, W, <; W), <; R,.

Conservative approximations for a < b:

@ iff Sa(Wa, Ra), Sg(Wa, Wb), Sg(Wb, Ra) iff
_‘RV(R37 Wa)a _'RV(WIJH Wa)a _‘RV(Rav Wb)

@ with an under-approximation R, C Ry.
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Reasoning at the level of traces

Define:
@ actiff ais executed in a trace t;
@ a<:biffaet, bet and ais executed before b in t;
@ S5(a, b) iff there is a trace t such that a <; b.
@ Ry(a, b) = —53(b, a) iff, for all traces t, a, b € t implies a <; b.

Then, a and b conflict (a < b) if, for some trace t, W, <; W), <; R,.

Conservative approximations for a < b: — 7~
® iff S3(Wa, Ra), Ss(Wa, Wp), S3(Ws, Ra) iff Wa I
Ro(Ray Wa), ~Ro(Wa, Wa), ~Ro(Ray W). N X
@ with an under-approximation R, C Ry. Ws

When Ry, is a partial order <, axx b iff Ry £ WL, Wy, A W, Ry A Wp.

@ Covers sequential code, OpenMP-like loop parallelism, OpenMP-4.0
task parallelism, X10, OpenStream, even some form of if conditions, etc.
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Partial orders, user-defined data races, comparability graphs

Mapping: if allocation respects i<, it is valid for any execution expressed by
the parallel specification @ form of schedule-independent mapping.
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Partial orders, user-defined data races, comparability graphs

Mapping: if allocation respects i<, it is valid for any execution expressed by
the parallel specification @ form of schedule-independent mapping.

Partial order: quite general, but cannot take critical sections into account.
Theory can handle if conditions, but not a partial order anymore.

Interference graph: if no dead code, no undefined read, but possibly races,
it is the complement of a comparability graph.

Optimality: size = max clique, polynomially computable (Dilworth) if
graph is given in extension (unlike polyhedral optimization). Note:
different than finding the minimum size for any execution (NP-complete).

Source-to-source transformation: contraction can be expressed in the same
specification model, without constraining parallelism further.

Still many open questions on how to exploit these properties further.
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@ Lattice-based memory allocation
@ Polyhedral conflicts
@ Conflicts as union of polyhedra
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Modular mappings and lattices

Modulo mapping i — o(i) = Mi mod b (modulo componentwise).

Validity iff ij,jﬁ: o(7) # o(j) iff, with DS = {i —j | i},
DS Nkero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible

(integer) lattice for DS of minimal determinant (critical lattice).

[ Integer points ]

@ Successive modulo approach.

@ Exhaustive search possible.

@ Upper/lower bounds linked to
Minkowski's theorems, basis
reduction, gauge functions.
@ good order of magnitude if
DS is a polyhedron.
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DS Nkero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible

(integer) lattice for DS of minimal determinant (critical lattice).

[ 0-Symmetric Polytope: vertices (8.1), (=8,~1), (=1,5), and (1,-5) ]
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Ny @ Exhaustive search possible.
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Minkowski's theorems, basis
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Modulo mapping i — o(i) = Mi mod b (modulo componentwise).

Validity iff ij,jﬁ: o(7) # o(j) iff, with DS = {i —j | i},
DS Nkero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible

(integer) lattice for DS of minimal determinant (critical lattice).

[ Lattice: Basis (9.0), (0.6) Determinant: 54 (imod 9, j mod 6) ]

\ @ Successive modulo approach.

Ny @ Exhaustive search possible.

@ Upper/lower bounds linked to
Minkowski's theorems, basis

1 reduction, gauge functions.

N @ good order of magnitude if

DS is a polyhedron.
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Modulo mapping i — o(i) = Mi mod b (modulo componentwise).

Validity iff ij,jﬁ: o(7) # o(j) iff, with DS = {i —j | i},
DS Nkero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible

(integer) lattice for DS of minimal determinant (critical lattice).

[ Lattice: Basis (9.0), (0.5) Determinant: 43 (imod 9, j mod 5) ]

@ Successive modulo approach.

Ny @ Exhaustive search possible.

@ Upper/lower bounds linked to
Minkowski's theorems, basis

1 reduction, gauge functions.

N @ good order of magnitude if

DS is a polyhedron.
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Modular mappings and lattices

Modulo mapping i — o(i) = Mi mod b (modulo componentwise).

Validity iff ij,jﬁ: o(7) # o(j) iff, with DS = {i —j | i},
DS Nkero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible

(integer) lattice for DS of minimal determinant (critical lattice).

[ Lattice: Basis (8.0), (6.6) Determinant: 48 (i~j mod 8, j mod e)]

g @ Successive modulo approach.

Ny @ Exhaustive search possible.

@ Upper/lower bounds linked to
Minkowski's theorems, basis

1 reduction, gauge functions.

N @ good order of magnitude if

DS is a polyhedron.
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Modular mappings and lattices

Modulo mapping i — o(i) = Mi mod b (modulo componentwise).

Validity iff ij,jﬁ: o(7) # o(j) iff, with DS = {i —j | i},
DS Nkero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible

(integer) lattice for DS of minimal determinant (critical lattice).

[ Lattice: Basis (8.0), (4.4) Determinant: 32 (i~j mod 8, j mod 4)]

g @ Successive modulo approach.

S @ Exhaustive search possible.

@ Upper/lower bounds linked to

Minkowski's theorems, basis
1 reduction, gauge functions.
@ good order of magnitude if
DS is a polyhedron.
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Modular mappings and lattices

Modulo mapping i — o(i) = Mi mod b (modulo componentwise).

Validity iff ij,jﬁ: o(7) # o(j) iff, with DS = {i —j | i},
DS Nkero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible

(integer) lattice for DS of minimal determinant (critical lattice).

[ Lattice: Basis (8,0), (3.4) Determinant: 32 4i-3j mod 32 ]

g @ Successive modulo approach.

S @ Exhaustive search possible.

@ Upper/lower bounds linked to

Minkowski's theorems, basis
1 reduction, gauge functions.
@ good order of magnitude if
DS is a polyhedron.
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Modular mappings and lattices

-

Modulo mapping 7+ o (i) = Mi mod b (modulo componentwise).

Validity iff /oaj, 7 # j = o(i) # o(j) iff, with DS = {i — | i>a},
DS N kero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

[ Lattice: Basis (7.,0), (4.4) Determinant: 28 (i~j mod 7, j mod 4)]

@ Successive modulo approach.

@ Exhaustive search possible.

@ Upper/lower bounds linked to
Minkowski's theorems, basis
reduction, gauge functions.

N @ good order of magnitude if

S DS is a polyhedron.
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Modular mappings and lattices

-

Modulo mapping 7+ o (i) = Mi mod b (modulo componentwise).

Validity iff /oaj, 7 # j = o(i) # o(j) iff, with DS = {i — | i>a},
DS N kero = {0}.

Lattice An allocation is optimal iff its kernel is a strictly admissible
(integer) lattice for DS of minimal determinant (critical lattice).

[ Critical Lattice: Basis (4,3), (8,0) Determinant: 24 3i—4j mod 24 ]

@ Successive modulo approach.

\ @ Exhaustive search possible.

@ Upper/lower bounds linked to
Minkowski's theorems, basis
reduction, gauge functions.

HEEEEy4ENEEENE @ good order of magnitude if

DS is a polyhedron.

/

/|

/
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Dealing with union of polyhedra: new theory

Live-out set of a tiled code:

V7 A s
/ o Skewed mapping:

% (x,y) — (x—y mod (2N—1),y mod 2).

@ How to find the second one?
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Conclusion: many pieces of the puzzle get together

New generalizations and links with previous approaches.

@ Liveness analysis for parallel specifications.
@ Interference graph structure analysis and exploitation.
@ Lattice-based memory allocation extensions.

@ Towards a better understanding of parallel languages: semantics, static
analysis, and links with the runtime.

Still some problems or applications to explore, possibly with MC2 (graph
structures), Avalon (OpenMP 4.0/StarPU dependent tasks), Roma
(memory optimization), Aric (lattice theory).
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