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Combinatorics, Randomness 
and Analysis

From simple local rules, a 
global structure arises. 

A quest for universality in 
random discrete structures: 
➡ probabilistic complexity of 
structures and algorithms. 

Quantitative results using 
complex analysis.
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Overview (1/2)

•Equations over combinatorial structures

•Generating functions  
 
 

•Complex analysis

3

Ex.: binary trees

B = Z [ B ⇥ B
F (z) =

1X

n=0

fnz
n

fn ⇠ · · · , n ! 1 B(z) = z +B(z)2

Bn ⇠ 4n�1n�3/2

p
⇡
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Overview (2/2)

• Equations over combinatorial 
structures + parameters

• Multivariate generating series 
 
 

Ex.: path length in 
binary trees

F (z, u) =
X

n,k

fn,ku
kzn

B(z, u) =
X

t2T

upl(t)z|t|

= z +B2(zu, u)

P (z) :=
@

@u
B(z, u)

����
u=1



Overview (2/2)

• Equations over combinatorial 
structures + parameters

• Multivariate generating series 
 
 

• Complex analysis 
 

Ex.: path length in 
binary trees

F (z, u) =
X

n,k

fn,ku
kzn

fn,k ⇠ · · · , n ! 1

B(z, u) =
X

t2T

upl(t)z|t|

= z +B2(zu, u)

P (z) :=
@

@u
B(z, u)

����
u=1

Bn ⇠ 4n�1n�3/2

p
⇡

Pn ⇠ 4n�1

Pn

nBn
⇠

p
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Overview (2/2)

• Equations over combinatorial 
structures + parameters

• Multivariate generating series 
 
 

• Complex analysis 
 

• Limiting distribution

Ex.: path length in 
binary trees

F (z, u) =
X

n,k

fn,ku
kzn

fn,k ⇠ · · · , n ! 1
Bn ⇠ 4n�1n�3/2

p
⇡

Pn ⇠ 4n�1

Pn

nBn
⇠

p
⇡n



I. From Combinatorics 
to Generating 

Functions

5



/ 26

Combinatorial specifications
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Language: 1,𝒵, +, ⨉, SEQ, 
SET, CYC  and recursion.  
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Combinatorial specifications

Binary trees: 𝓑=𝒵+𝒵⨉𝓑⨉𝓑

Permutations: Perm=SET(CYC(𝒵));

Trees: 𝓣=𝒵⨉SET(𝓣(𝒵));

Functional graphs: 𝓕=SET(CYC(𝓣(𝒵)));

Series-parallel graphs:  
𝒢=𝒵+𝒮+𝒫, 𝒮=SEQ>0(𝒵+𝒫),𝒫=SET>0(𝒵+𝒮);

...hundreds of examples in “the purple book”. 6

Language: 1,𝒵, +, ⨉, SEQ, 
SET, CYC  and recursion.  
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Two kinds of Generating Functions

7

Inv[{1, 2, 3}] = 1 2

3

1 2

3

1 2

3

1 2

3

, , ,{ }
4 involutions; 

3 of them permuted by 𝔖3→ 2 unlabelled structures.  

Exponential generating function:

Inv3(z) =
2

3
z3

Ordinary generating function:

˜

F(z) =
1X

n=0

˜

fnz
n, ˜

fn = nb. unlabelled of size n. fInv3(z) = 2z3

F(z) =
1X

n=0

fn
z

n

n!
, fn = nb. labelled structs of size n.
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A Dictionary for Generating Functions

8

A(z) + B(z) Ã(z) + B̃(z)

A(z)⇥ B(z) Ã(z)⇥ B̃(z)
1

1� A(z)

1

1� Ã(z)

exp(A(z)) exp(

X
Ã(zi)/i)

log

1

1� A(z)

X �(i)

i
log

1

1� Ã(zi)

Structure EGF OGF

𝓐+𝓑

𝓐x𝓑

Seq(𝓐)

Set(𝓐)

Cyc(𝓐)

Language: 1,𝒵, +, ⨉, SEQ, 
SET, CYC  and recursion.  
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A Dictionary for Generating Functions

8

A(z) + B(z) Ã(z) + B̃(z)

A(z)⇥ B(z) Ã(z)⇥ B̃(z)
1

1� A(z)

1

1� Ã(z)

exp(A(z)) exp(

X
Ã(zi)/i)

log

1

1� A(z)

X �(i)

i
log

1

1� Ã(zi)

Structure EGF OGF

𝓐+𝓑

𝓐x𝓑

Seq(𝓐)

Set(𝓐)

Cyc(𝓐)

Language: 1,𝒵, +, ⨉, SEQ, 
SET, CYC  and recursion.  

Regular and context-free languages.
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Examples

9

Binary trees: 

Cayley trees:

Series-parallel graphs: 

B = Z + Z ⇥ B ⇥ B

�! T (z) = z exp(T (z));

�! ˜T (z) = z exp

✓
˜T (z) +

1

2

˜T (z2) +
1

3

˜T (z3) + · · ·
◆

G = Z + S + P,S = Seq>0(Z + P),P = Set>0(Z + S)

�!
⇢
G(z) = z + S(z) + P (z), S(z) =

1

1� z � P (z)
� 1, P (z) = ez+S(z) � 1

�

�! B(z) = z + zB(z)2 = B̃(z)

T = Z ⇥ Set(T )
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Examples

9

Binary trees: 

Cayley trees:

Series-parallel graphs: 

B = Z + Z ⇥ B ⇥ B

�! T (z) = z exp(T (z));

�! ˜T (z) = z exp

✓
˜T (z) +

1

2

˜T (z2) +
1

3

˜T (z3) + · · ·
◆

G = Z + S + P,S = Seq>0(Z + P),P = Set>0(Z + S)

�!
⇢
G(z) = z + S(z) + P (z), S(z) =

1

1� z � P (z)
� 1, P (z) = ez+S(z) � 1

�

�! B(z) = z + zB(z)2 = B̃(z)

T = Z ⇥ Set(T )



II. Mini-introduction 
to complex analysis
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Basic Definitions and Properties

• Def. f: D⊂ℂ→ℂ is analytic at a if it is the sum of a 
power series in a disk around a. 

• Prop. f,g analytic at a, then so are f+g, fxg, f’. 

• g analytic at a, f analytic at g(a), then f○g analytic at a. 

• Same def and prop in several variables.

11
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Examples

12

f analytic at 0? why

polynomial Yes

exp(x) Yes 1 + x+ x

2
/2! + · · ·

1
1�x

Yes 1 + x+ x

2
+ · · · (|x| < 1)

log

1
1�x

Yes x+ x

2
/2 + x

3
/3 · · · (|x| < 1)

1�
p
1�4x
2x Yes 1 + · · ·+ 1

k+1

�2k
k

�
x

k

+ · · · (|x| < 1/4);

1
x

No infinite at 0

log x No derivative not analytic at 0p
x No derivative infinite at 0
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Analytic Continuation and Singularities

• Def.  Analytic in a region (= connected, open, ≠ø): 
at each point. 

• Prop. f analytic in R⊂S. There is at most one 
analytic function in S equal to f on R (the analytic 
continuation of f to S.)

13
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Analytic Continuation and Singularities

• Def.  Analytic in a region (= connected, open, ≠ø): 
at each point. 

• Prop. f analytic in R⊂S. There is at most one 
analytic function in S equal to f on R (the analytic 
continuation of f to S.)

13

More Defs.
Singularity: a point that cannot be reached by 
analytic continuation;
Pole: isolated singularity a and (z-a)mf 
analytic for some m∈ℕ;
Residue at a pole a: coeff of (z-a)-1;
f meromorphic in R: only polar singularities.
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Example
Fibonacci numbers: 

14

1

1� z � z2
= 1 + z + 2z2 + 3z3 + 5z4 + · · ·
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Examples

Binary trees: 

15

1�
p
1� 4z

2
= 1 + z + 2z2 + 3z3 + 5z4 + · · ·Binary trees: 
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Examples

Binary trees: 

15

1�
p
1� 4z

2
= 1 + z + 2z2 + 3z3 + 5z4 + · · ·

Bn ⇠ 4n�1n�3/2

p
⇡

Binary trees: 



/ 26

Examples

Cayley trees: 
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2!
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Integration

17

=Z

�
f(z) dz = 2⇡i

X

j

Res(f; aj).

Prop. f meromorphic in a region R, 𝛾 a closed path 
in ℂ encircling the poles a1,…,am of f once in the 
positive sense. Then 
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Integration

17

=Z

�
f(z) dz = 2⇡i

X

j

Res(f; aj).

Prop. f meromorphic in a region R, 𝛾 a closed path 
in ℂ encircling the poles a1,…,am of f once in the 
positive sense. Then 

Cor. If                                 is analytic in R∋0, then 

for any closed 𝛾 encircling 0 once in the positive sense.

f = a0 + a1z+ · · ·

an =
1

2⇡i

Z

�

f(z)

zn+1
dz



III. From Generating 
Functions to 

Asymptotic Behaviour

18

Philosophy:

Smallest singularity ⟷ exponential behaviour 
     local behaviour ⟷ subexponential terms

3 families cover most applications
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Coefficients of Rational Functions

19

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

F1 = 1 =
1

2⇡i

I
1

1� z� z2
dz

z2
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19

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

F1 = 1 =
1

2⇡i

I
1

1� z� z2
dz

z2

As n increases, the smallest 
singularities dominate.
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Coefficients of Rational Functions

19

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

F1 = 1 =
1

2⇡i

I
1

1� z� z2
dz

z2

= =

As n increases, the smallest 
singularities dominate.
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Coefficients of Rational Functions

19

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

F1 = 1 =
1

2⇡i

I
1

1� z� z2
dz

z2

= =

Fn =
��n�1

1+ 2�
+

�
�n�1

1+ 2�As n increases, the smallest 
singularities dominate.
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Conway’s sequence

20

Generating function for lengths:
f(z)=P(z)/Q(z)
with deg Q=72.

Smallest singularity: 
δ(f)≃0.7671198507

ρ=1/δ(f)≃1.30357727

ℓn≃2.04216 ρn

ρ Res(f,δ(f)) remainder exponentially small

1,11,21,1211,111221,…
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Algebraic Singularities

21

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

C1 = 1 =
1

2⇡i

I
1�

p
1� 4z

2

dz

z2
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Algebraic Singularities

21

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

C1 = 1 =
1

2⇡i

I
1�

p
1� 4z

2

dz

z2

Hankel:
1

�(a)
=

1

2⇡i

Z +1

(0)
(�t)�ae�t dt



/ 26

Algebraic Singularities

21

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

C1 = 1 =
1

2⇡i

I
1�

p
1� 4z

2

dz

z2

O

R

1

Thm. [Flajolet-Odlyzko] 
If f is analytic in ∆(φ,R) and  
f=O((1-z)a) when z→1, then 
[zn]f=O(n-a-1) when n→∞.

∆(φ,R)

Method: expand, translate termwise, truncate.

Hankel:
1

�(a)
=

1

2⇡i

Z +1

(0)
(�t)�ae�t dt
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Example

22

Cayley trees y � z exp(y) = 0

Obstruction to Implicit Function Theorem: 1� z exp(y) = 0

Consequences:

Local behaviour by inverting

z = y exp(�y) = e�1

✓
1� 1

2
(y � 1)2 + O((y � 1)3)

◆

) y = 1�
p
2
p
1� ez+

2

3
(1� ez) + O((1� ez)3/2)

Singularity at y=1, z=exp(-1);
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Example

22

Cayley trees y � z exp(y) = 0

Obstruction to Implicit Function Theorem: 1� z exp(y) = 0

Consequences:

Local behaviour by inverting

z = y exp(�y) = e�1

✓
1� 1

2
(y � 1)2 + O((y � 1)3)

◆

) y = 1�
p
2
p
1� ez+

2

3
(1� ez) + O((1� ez)3/2)

Coefficients:
Tn

n!
=

enp
2⇡n�3/2

(1+ O(1/n)).

Singularity at y=1, z=exp(-1);
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Functions with fast singular growth
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an =
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Functions with fast singular growth
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an =
1

2⇡i

Z

�

f(z)

zn+1
dz

Saddle-point equation: Rn
f 0

f
(Rn) = n+ 1
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Functions with fast singular growth

23

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

Saddle-point equation: Rn
f 0

f
(Rn) = n+ 1

Local behaviour: ⇡ f(Rn)

Rn+1
n

exp(cn
(z� Rn)

2

2
)
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Functions with fast singular growth

23

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

Saddle-point equation: Rn
f 0

f
(Rn) = n+ 1

Local behaviour: ⇡ f(Rn)

Rn+1
n

exp(cn
(z� Rn)

2

2
)

Approximate by a Gaussian integral:

an ⇠
1

2

f(Rn)

Rn+1
n

p
2⇡cn
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Functions with fast singular growth

23

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

Saddle-point equation: Rn
f 0

f
(Rn) = n+ 1

Local behaviour: ⇡ f(Rn)

Rn+1
n

exp(cn
(z� Rn)

2

2
)

Approximate by a Gaussian integral:

an ⇠
1

2

f(Rn)

Rn+1
n

p
2⇡cn Exercise: Stirling’s 

formula (f=exp).
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Other Example

24

exp(ez � 1) = 1 + 1

z

1!

+ 2

z2

2!

+ 5

z3

3!

+ 15

z4

4!

+ · · ·Set partitions:
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These 3 cases cover 
most applications

25

Demo?



/ 26

Concluding Remarks
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More is possible:

Full asymptotic expansions; 
Limiting distributions; 
Fast enumeration; 
Random generation.
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26

More is possible:

Full asymptotic expansions; 
Limiting distributions; 
Fast enumeration; 
Random generation.

Next step: automate the 
multivariate case

Questions? 
Office #317 


