
The Algebra of
Signal Flow Graphs

Filippo Bonchi, Paweł Sobociński, Fabio Zanasi

Journées Structures Discrètes 2015

1 / 18

Interacting Hopf Algebras

We show

• an algebraic theory of matrices over a PID k (Hopf Algebras);

• an algebraic theory of subspaces over the field of fractions of k
(Interacting Hopf Algebras).

2 / 18

Interacting Hopf Algebras

We show

• an algebraic theory of matrices over a PID k (Hopf Algebras);

• an algebraic theory of subspaces over the field of fractions of k
(Interacting Hopf Algebras).

Interacting Hopf Algebras provide a (graphical) syntax and a sound
and complete axiomatization for subspaces.

For instance, we can express both systems of equations and bases as
term of our syntax; we can check that they denote the same subspace

via the axiomatization.

3 / 18

Interacting Hopf Algebras

We show

• an algebraic theory of matrices over a PID k (Hopf Algebras);

• an algebraic theory of subspaces over the field of fractions of k
(Interacting Hopf Algebras).

In this talk, we fix the PID to be the ring of polynomials k[x].

The terms of the corresponding syntax are well-known structures
called signal flow graphs.

4 / 18

Interacting Hopf Algebras

If you are interested in, you can

• have a look to the Ph.D thesis of Fabio Zanasi (ENS-Lyon),

• follow Pawel’s blog http://graphicallinearalgebra.net,

• knock to my door.

In this talk, we fix the PID to be the ring of polynomials k[x].

The terms of the corresponding syntax are well-known structures
called signal flow graphs.

5 / 18

Signal Flow Graphs

• Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

• Constructed combining four kinds of gate

k

register

amplifier

adder

copier

x
k ∈ k

6 / 18

Signal Flow Graphs

• Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

• Constructed combining four kinds of gate

k

register

amplifier

adder

copier

x
k ∈ k

x

6 / 18

Signal Flow Graphs

• Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

• Constructed combining four kinds of gate

k

register

amplifier

adder

copier

x
k ∈ k

l

6 / 18

Signal Flow Graphs

• Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

• Constructed combining four kinds of gate

k

register

amplifier

adder

copier

x
k ∈ k

k l

6 / 18

Signal Flow Graphs

• Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

• Constructed combining four kinds of gate

k

register

amplifier

adder

copier

x
k ∈ k

k l

6 / 18

Signal Flow Graphs

• Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

• Constructed combining four kinds of gate

k

register

amplifier

adder

copier

x
k ∈ k

k1
k2
k3
...

x

0
k1
k2
...

6 / 18

Signal Flow Graphs
Two examples:

xx

x
2

x -1

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0 0 0

x
2

x -1

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

0 0

1 1
1

x
2

x -1

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

1 1

1 2
1
2

x
2

x -1

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

1 2

1 3
1
2
3

x
2

x -1

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

1 2

1 3
1
2
3

2

-10 0
1
0
0

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

1 2

1 3
1
2
3

2

-1
01

0
0

1
2

1

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

1 2

1 3
1
2
3

2

-1
21

0
0

2
3

1
2

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

1 2

1 3
1
2
3

2

-1
31

0
0

3
4

1
2
3

Both circuits implement the generating function

1
(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

1 2

1 3
1
2
3

2

-1
31

0
0

3
4

1
2
3

Both circuits implement the generating function

1
(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?

7 / 18

Signal Flow Graphs
Two examples:

1
0
0

1 2

1 3
1
2
3

2

-1
31

0
0

3
4

1
2
3

Both circuits implement the generating function

1
(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?
7 / 18

Signal Flow Graphs

◦ In traditional approaches, SFGs are not treated as interesting
mathematical structures per se.
⇒ formal analysis typically mean translation into systems of

linear equations.

◦ We study SFGs directly as graphical structures.

In this work
A graphical theory of Signal Flow Graphs

• String diagrammatic syntax for circuits.

• Compositional semantics.

• Sound and complete axiomatisation for semantic equivalence.
⇒ Two circuits implement the same specification if they can be

transformed one into the other using the equational theory.

8 / 18

Outline
• Functional circuits
⇒ the signal flows from left to right

x

2

3

• Reverse functional circuits
⇒ the signal flows from right to left

x

3

2

• Generalised circuits
⇒ the signal can flow in both directions
⇒ environment for modeling signal flow graphs

x

x
x

9 / 18

The theory HA of functional circuits
Functional circuits are the string diagrams generated by the grammar

c,d ::= | | k | x | | | | | c d | c
d

subject to the following equations:

=

= =
=

= =
p1 p2 p1p2

1

=

=

p p
p

p
p

p

p

p

= =

=

=
p2

p1

+p1 p2

0 =

==

=Id0=
=

where, for a polynomial p=k0+k1x+···+knxn, p is

x
xx

x . . .x

k0

k1

k2

xkn

.

10 / 18

The theory HA of functional circuits
Functional circuits are the string diagrams generated by the grammar

c,d ::= | | k | x | | | | | c d | c
d

subject to the following equations:

=

= =
=

= =
p1 p2 p1p2

1

=

=

p p
p

p
p

p

p

p

= =

=

=
p2

p1

+p1 p2

0 =

==

=Id0=
=

where, for a polynomial p=k0+k1x+···+knxn, p is

x
xx

x . . .x

k0

k1

k2

xkn

.

10 / 18

The theory HA of functional circuits
Functional circuits are the string diagrams generated by the grammar

c,d ::= | | k | x | | | | | c d | c
d

subject to the following equations:

=

= =
=

= =
p1 p2 p1p2

1

=

=

p p
p

p
p

p

p

p

= =

=

=
p2

p1

+p1 p2

0 =

==

=Id0=
=

where, for a polynomial p=k0+k1x+···+knxn, p is

x
xx

x . . .x

k0

k1

k2

xkn

.

10 / 18

The theory HA of functional circuits
Functional circuits are the string diagrams generated by the grammar

c,d ::= | | k | x | | | | | c d | c
d

subject to the following equations:

=

= =
=

= =
p1 p2 p1p2

1

=

=

p p
p

p
p

p

p

p

= =

=

=
p2

p1

+p1 p2

0 =

==

=Id0=
=

where, for a polynomial p=k0+k1x+···+knxn, p is

x
xx

x . . .x

k0

k1

k2

xkn

.

10 / 18

Semantics of functional circuits
• Functional circuits modulo the equations are in 1-1

correspondence with matrices over the polynomial ring k[x].

• Example: check the semantics of
x

2

3
using the

equational theory HA.

x

2

3

2

3x

2

x

3

3x

3

3

x

2

2

x

2

6

x 3

Its semantics is the matrix
(

3x 6
x 2

)
.

11 / 18

Semantics of functional circuits
• Functional circuits modulo the equations are in 1-1

correspondence with matrices over the polynomial ring k[x].

• Example: check the semantics of
x

2

3
using the

equational theory HA.

x

2

3

2

3x

2

x

3

3x

3

3

x

2

2

x

2

6

x 3

=

Its semantics is the matrix
(

3x 6
x 2

)
.

11 / 18

Semantics of functional circuits
• Functional circuits modulo the equations are in 1-1

correspondence with matrices over the polynomial ring k[x].

• Example: check the semantics of
x

2

3
using the

equational theory HA.

x

2

3

2

3x

2

x

3

3x

3

3

x

2

2

x

2

6

x 3 p p
p

=

Its semantics is the matrix
(

3x 6
x 2

)
.

11 / 18

Semantics of functional circuits
• Functional circuits modulo the equations are in 1-1

correspondence with matrices over the polynomial ring k[x].

• Example: check the semantics of
x

2

3
using the

equational theory HA.

x

2

3

2

3x

2

x

3

3x

3

3

x

2

2

x

2

6

x 3

p
p

p =

Its semantics is the matrix
(

3x 6
x 2

)
.

11 / 18

Semantics of functional circuits
• Functional circuits modulo the equations are in 1-1

correspondence with matrices over the polynomial ring k[x].

• Example: check the semantics of
x

2

3
using the

equational theory HA.

x

2

3

2

3x

2

x

3

3x

3

3

x

2

2

x

2

6

x 3

p1 p2 p1p2=

Its semantics is the matrix
(

3x 6
x 2

)
.

11 / 18

Semantics of functional circuits
• Functional circuits modulo the equations are in 1-1

correspondence with matrices over the polynomial ring k[x].

• Example: check the semantics of
x

2

3
using the

equational theory HA.

x

2

3

2

3x

2

x

3

3x

3

3

x

2

2

x

2

6

x 3

Its semantics is the matrix
(

3x 6
x 2

)
.

11 / 18

Semantics of functional circuits
• Functional circuits modulo the equations are in 1-1

correspondence with matrices over the polynomial ring k[x].

• Example: check the semantics of
x

2

3
using the

equational theory HA.

x

2

3

2

3x

2

x

3

3x

3

3

x

2

2

x

2

6

columns rows

x 3

Its semantics is the matrix
(

3x 6
x 2

)
.

11 / 18

Reverse functional circuits

Reverse functional circuits are functional circuits “reflected about the
y-axis”. They are the diagrams generated by the grammar

c,d ::= | | k | x | | | | | c d | c
d

subject to equations dual to those of HA:

=

= =

=

= =

p1 p2 p1p2

1

=

=

p p
p

p
p

p

p

p

= =

= =
p2

p1

+p1 p2

0 =

==

=Id0=

=

12 / 18

The theory IH of generalised circuits

Generalised circuits are string diagrams generated by the grammar

c,d ::= | | k | x | | |

| | k | x | | | | | c d | c
d

subject to the equations of the theories of functional and reverse
functional circuits, plus the following:

= = =

W Separable Frobenius Algebra

= = =

B Separable Frobenius Algebra

p pp p pp p= =

=

= = == p

=
-1

-1

13 / 18

Semantics of Generalised Circuits

Circuits do not generally have a univocal flow direction — a
relational model is required.

For instance, �
�; expresses the diagonal relation.

14 / 18

Semantics of Generalised Circuits
The semantics [[·]] maps a circuit into a linear relation (subspace):

�
⌧k ·� x·� �+⌧ 0� �

�
�

� �x

k

xk k ·� x·�� � �
�

� �
�
⌧

�+⌧ 0

�
�⌧
⌧� �

c d�!� �!�1
�!�2

�!⌧1 �!⌧2�!⇢ �!⇢ �!⌧

�!� �!⌧

c d
�!�1

�!⌧1�!⌧2�!�2

c d c
d

The axiomatisation of IH is sound and complete

[[c]] = [[d]] ⇔ c IH
= d

The key technical step in the proof consists in reducing a circuit in its
Hermite Normal Form

15 / 18

Graphical reasoning in IH
Check: xx and x

2

x -1 implement 1
(1−x)2 .

Proof strategy:

• Represent the two SFGs as generalised circuits

x
2

x
x

2

x -1

xx x x

 -1

• Represent the specification as a generalised circuit:

(1�x)2� � · 1

(1 � x)2

• Prove the three of them equal using the axioms of IH:

x
2

x
x x

-1
(1�x)2= =

16 / 18

Conclusions
We proposed an algebraic environment for signal flow graphs
• compositional semantics in terms of linear relations
• sound and complete axiomatisation
◦ graphical proof system

implementation

specification

implementation

implementation

=

◦ rich mathematical playground

Hopf Algebra of
functional circuit

Hopf Algebra of
reverse functional

circuits

Interaction yields two
Frobenius Algebras

17 / 18

Future Work

What are the fundamental structures of concurrency?
We still don’t know! - Samson Abramsky 2014

• functional computations have a paradigmatic model: λ-calculus;

• concurrent computations do not: there are many different models
like Petri nets, Process Calculi, Event Structures ...

A path toward an answer...

Systems of linear difference equations IH
Diophantine Systems of linear difference equations ?

18 / 18

