Category Theory 101 Graph Transformations Discrete Structures Day

F. Prost

PLUME team, LIP - ENS-Lyon

17th of December 2015

Introduction

- High level approach to programming: graph rewriting based on category theory.
- Much more difficult than term rewriting (which are just trees).

Introduction

- High level approach to programming: graph rewriting based on category theory.
- Much more difficult than term rewriting (which are just trees).
- Simulation of biological phenomenons.
- Simulation of chemical reactions.
- Study of cloning:
 - \implies Typically to produce a web site one starts to copy an existing one, then one modifies it accordingly to its will.
 - ⇒ Social Data Anonymization techniques rely on finely tuned cloning operations.

Plan

2 Graph transformation and Categories

3 AGREEand Graph Generation

- AGREE and Data Anonymization
- Self-similar Graphs

Plan

Category Theory 101

Graph transformation and Categories

3 AGREEand Graph Generation

- AGREE and Data Anonymization
- Self-similar Graphs

4 Conclusion

★ 3 > < 3 >

- Early 40's by MacLane and Eilenberg with a unifying aim: topology and algebra.
- \Rightarrow What are the fundamental structures of those two fields ?

b) 4 T = b

- Early 40's by MacLane and Eilenberg with a unifying aim: topology and algebra.
- \Rightarrow What are the fundamental structures of those two fields ?
 - Results much more general than thought at first.
 - Set theory is just a special case of category (Lawvere).
 - In computer science E. Moggi was able to capture ideas previously thought to be outside of reach with the monads.
 - In logic J.-Y. Girard and the linear logic.
 - etc.

A B K A B K

- 31

Definition

A category $\ensuremath{\mathcal{C}}$ is made of

- A collection of object : $Obj(\mathcal{C})$
- $\forall x, y \in Obj(\mathcal{C})$ a set $Hom_{\mathcal{C}}(x, y)$
- $\forall x \in Obj(\mathcal{C})$ there is $id_x \in Hom_{\mathcal{C}}(x,x)$
- $\forall x, y, z \in Obj(C)$ a function $\circ : Hom_{\mathcal{C}}(x, y) \times Hom_{\mathcal{C}}(y, z) \rightarrow Hom_{\mathcal{C}}(y, z)$

4 E b

A D > A A P >

3

5 / 33

Definition

A category C is made of

- A collection of object : Obj(C)
- $\forall x, y \in Ob_{\mathcal{C}}(\mathcal{C})$ a set $Hom_{\mathcal{C}}(x, y)$
- $\forall x \in Obj(\mathcal{C})$ there is $id_x \in Hom_{\mathcal{C}}(x, x)$
- $\forall x, y, z \in Obj(\mathcal{C})$ a function \circ : Hom_C(x, y) × Hom_C(y, z) \rightarrow Hom_C(y, z)

such that

$$Identity: f \circ id = id \circ f = f$$

Associativity:
$$(h \circ g) \circ f = h \circ (g \circ f)$$

A D > A A P >

3

Example: Category of graphs

- Objects: G = (V, E, s, t) with $s, t : E \rightarrow V$
- Morphisms: $f : G \rightarrow H$ must respect source and target functions, ie:

$$\forall e \in E.f(s(e)) = s(f(e))$$

 $\forall e \in E.f(t(e)) = t(f(e))$

A B F A B F

Example: Category of graphs

- Objects: G = (V, E, s, t) with $s, t : E \to V$
- Morphisms: $f : G \rightarrow H$ must respect source and target functions, ie:

$$\forall e \in E.f(s(e)) = s(f(e))$$

 $\forall e \in E.f(t(e)) = t(f(e))$

Pullback

- Lets have : $f : X \to Z$ and $g : Y \to Z$
- Fiber product: $X \times_Z Y := \{(x, w, y) \mid f(x) = w = g(y)\}$

- 31

Pushout

- Co-construction of the pullback.
- Lets have : $f: X \to Z$ and $g: Y \to Z$
- disjoint sum with gluing: X + _ Z Y := X + Y + Z / \sim
- With \sim generated by $f(z) \sim z \sim g(z)$

E 5 4 E 5

3

Plan

2 Graph transformation and Categories

3 AGREEand Graph Generation

- AGREE and Data Anonymization
- Self-similar Graphs

4 Conclusion

4 E b

Rule based transformations

- Rule-based term rewriting is easy: replace a tree by another one.
- Much more difficult with graphs (multiple incident edges).
- Categorical frameworks make it clean to express graph transformations systematically.

PB	PO
clone	merge
delete	add
comatch	match
global	local

AGREE extended rule

Extension of a framework proposed by A. Corradini, D. Duval, R. Echahed, F. Prost and L. Ribeiro [ICGT15].

Definition (AGREE rules and matches)

A match of such a rule is composed of a mono L → G and a typing morphism G → T_L and is such that l' ∘ t = (m̄ ∘ m) ∘ l.

AGREE rewrite step

Definition (AGREE rewriting)

Given
$$\rho = (K \xrightarrow{l} L, K \xrightarrow{r} R, K \xrightarrow{t} T_K, T_K \xrightarrow{l'} T_L)$$
 and a match $L \xrightarrow{m} G, G \xrightarrow{\overline{m}} T_L : G \Rightarrow_{\rho,m} H$ is computed as follows:

- Span $G \stackrel{g}{\leftarrow} D \stackrel{n'}{\rightarrow} T_K$ is the pullback of $G \stackrel{\overline{m}}{\rightarrow} T(L) \stackrel{l'}{\leftarrow} T_K$. Since $l' \circ t = \eta_L \circ l$ there is a unique $K \stackrel{n}{\rightarrow} D$.

AGREE rewrite step

Definition (AGREE rewriting)

Given
$$\rho = (K \xrightarrow{l} L, K \xrightarrow{r} R, K \xrightarrow{t} T_K, T_K \xrightarrow{l'} T_L)$$
 and a match $L \xrightarrow{m} G, G \xrightarrow{\overline{m}} T_L : G \Rightarrow_{\rho,m} H$ is computed as follows:

- Span $G \stackrel{g}{\leftarrow} D \stackrel{n'}{\rightarrow} T_K$ is the pullback of $G \stackrel{\overline{m}}{\rightarrow} T(L) \stackrel{l'}{\leftarrow} T_K$. Since $l' \circ t = \eta_L \circ l$ there is a unique $K \stackrel{n}{\rightarrow} D$.

Example : copy of web pages

- The structure of a web site typically as two kind of links :
 - Internal links: file hierarchy (indirect link)
 - External links: references pointing outside of the site.

Example : copy of web pages

- The structure of a web site typically as two kind of links :
 - Internal links: file hierarchy (indirect link)
 - External links: references pointing outside of the site.
- The cloning of a web site consists in duplicating all local files and keeping external links shared between the two copies.

should be cloned as follows

F. Prost (PLUME team, LIP - ENS-Lyon) Category Theory 101 Graph Transformations 17th of December 2015 15 / 33

-

3

F. Prost (PLUME team, LIP - ENS-Lyon) Category Theory 101 Graph Transformations 17th of December 2015 17 / 33

3

-

3

-

-

- ×

- < A

3

Plan

3 AGREEand Graph Generation

- AGREE and Data Anonymization
- Self-similar Graphs

4 Conclusion

- A - E - N

Social Data Anonymization: concepts and challenges

- Big economical issue: more or less the backbone of the business models of internet giants (Google, Facebook, Yahoo etc.).
- Big political issue: Open Data Policy.

Social Data Anonymization: concepts and challenges

- Big economical issue: more or less the backbone of the business models of internet giants (Google, Facebook, Yahoo etc.).
- Big political issue: Open Data Policy.
- Raw problem: given a graph G we would like to produce G' such that
 - Stat(G) \simeq Stat(G')
 - It is not possible to reidentify nodes (or edges) of G from knowing G' (and some extra informations...).

Social Data Anonymization: concepts and challenges

- Big economical issue: more or less the backbone of the business models of internet giants (Google, Facebook, Yahoo etc.).
- Big political issue: Open Data Policy.
- Raw problem: given a graph G we would like to produce G' such that
 - Stat(G) \simeq Stat(G')
 - It is not possible to reidentify nodes (or edges) of G from knowing G' (and some extra informations...).
- Naïve approach doesn't work : Netflix [NarayanShmatikov06].
- Anonymization is an active research field ... rather artistic at the time: approaches validated through experiments.

(4) (E) (A) (E) (A)

Social Data Anonymization: Dimensions and Principles

- Problem more down to the earth than non-interference:
 - Partial knowledge of the graph by the opponent.
 - Active attacker (embedding fake sub graphs to re-identify them).
 - Object of interests vary from one data set to another.

Social Data Anonymization: Dimensions and Principles

- Problem more down to the earth than non-interference:
 - Partial knowledge of the graph by the opponent.
 - Active attacker (embedding fake sub graphs to re-identify them).
 - Object of interests vary from one data set to another.
- Hence three important points to consider:
 - Background Knowledge: What does the opponent know ? Model of the opponent.
 - Privacity: what is attacked ?
 - Usage: How the data is going to be analyzed ?

⇒ Anonymizing techniques

- Two families:
 - Clustering: group together edges and nodes.
 - k-anonymity (and l-diversity): there should be at least k-1 other candidates with similar features.

- Two families:
 - Clustering: group together edges and nodes.
 - k-anonymity (and l-diversity): there should be at least k-1 other candidates with similar features.
- We focus on the k-anonymity approach: the problem amounts to create G' such that G' = G1 ⊕ G2 ⊕ ... ⊕ G_k such that G_is are isomorphic graphs.

- Two families:
 - Clustering: group together edges and nodes.
 - k-anonymity (and l-diversity): there should be at least k-1 other candidates with similar features.
- We focus on the k-anonymity approach: the problem amounts to create G' such that G' = G1 ⊕ G2 ⊕ ... ⊕ G_k such that G_is are isomorphic graphs.
- It is NP-hard to find graph transformations minimizing the editing distance between a graph and a *k*-isomorphic graph.

- Two families:
 - Clustering: group together edges and nodes.
 - k-anonymity (and l-diversity): there should be at least k-1 other candidates with similar features.
- We focus on the k-anonymity approach: the problem amounts to create G' such that G' = G1 ⊕ G2 ⊕ ... ⊕ G_k such that G_is are isomorphic graphs.
- It is NP-hard to find graph transformations minimizing the editing distance between a graph and a *k*-isomorphic graph.
- One solution: select 1/k nodes randomly, create k clones, link the clones together easy to program with AGREE approach.

ロト 不同下 不当下 不当下

- 31

Using AGREE for k-anonymity

- Progaming with types !
- L is just a cloud of nodes, and K is made of k clones of L.
- Standard T_L is :

• Simplest T_K is :

• The simplest k-clones are not connected to each others.

- The simplest k-clones are not connected to each others.
- AGREE allows the use of the graph structure to reconnect them:

- The simplest k-clones are not connected to each others.
- AGREE allows the use of the graph structure to reconnect them:

• Degree problems (nodes of degree 1).

- The simplest k-clones are not connected to each others.
- AGREE allows the use of the graph structure to reconnect them:

• Degree problems (nodes of degree 1). One possibility is to type differently the edges, eg:

Self-similar graphs

- Every vertex is replaced by a copy of the graph.
- Interconnections between copies of the original "mimic" the ones in the target graph.

F. Prost (PLUME team, LIP - ENS-Lyon) Category Theory 101 Graph Transformations 17th of December 2015 28 / 33

Plan

Graph transformation and Categories

3 AGREEand Graph Generation

- AGREE and Data Anonymization
- Self-similar Graphs

< 回 > < 三 > < 三 >

3

Conclusion

- Categorical frameworks allow simple and mathematically workable definition of complex transformations.
- Only basic constructs are needed: pushouts, pullbacks.
- An very generic implementation is scheduled.
- Open questions:
 - matching ? (random match does not lead to scale-free networks)
 - What statistics can be interesting (Ramsey-like theory) ?
 - What kind of certificate can be produced ?

A 12 N A 12 N