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The Newton polygon

Let f(X,Y) =3t a X% Y a; £0.
» The monomial set of f is:
Mon(f) = {(;, 5;); 1 < i<t} CR2

> Its convex hull is the Newton polygon of f.
Abbreviated Notation:
F(X) = >, a X7, where X = (X, Y), fi = (ai, 5i)-
Thus Newt(f) = conv(Mon(f)) = conv(f).



A Newton Polygon

FIX,Y) =1+ X2Y + XY2 + X4Y + XY*.

e Points of Mon(f)




The Newton polygon of fg + 1: a little puzzle

Problem: Let f, g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?



The Newton polygon of fg + 1: a little puzzle

Problem: Let f, g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: t2 + 1.



The Newton polygon of fg + 1: a little puzzle

Problem: Let f, g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: t2 + 1.

For Newt(fg):



The Newton polygon of fg + 1: a little puzzle

Problem: Let f, g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: t2 + 1.

For Newt(fg): 2t is a tight upper bound.



The Newton polygon of fg + 1: a little puzzle

Problem: Let f, g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: t2 + 1.

For Newt(fg): 2t is a tight upper bound.
» Newt(fg) is the Minkowski sum of Newt(f) and Newt(g).



The Newton polygon of fg + 1: a little puzzle

Problem: Let f, g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: t2 + 1.

For Newt(fg): 2t is a tight upper bound.
» Newt(fg) is the Minkowski sum of Newt(f) and Newt(g).

» For convex polygons P, @ with p and g vertices,
the Minkowski sum P + @ has at most p + g vertices.



The Newton polygon of fg: an example

F(X,Y) =1+ X2Y + XY?2 (blue triangle)
g(X,Y) =1+ X*Y + XY* (green triangle)

e Points of Mon(fg)




The Minkowski sum of convex polygons

Definition: P+ Q ={x+y; x€ P,y € Q}.
P + @ is convex if the sets P and @ are convex.

Proposition: For convex polygons, P+ Q = conv(P; + Q)
where the P;, Q; are the vertices of P and Q.
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The Minkowski sum of convex polygons

Definition: P+ Q ={x+y; x€ P,y € Q}.
P + @ is convex if the sets P and @ are convex.

Proposition: For convex polygons, P+ Q = conv(P; + Q)
where the P;, Q; are the vertices of P and Q.

Incremental construction of P + Q:

1. Order the P; in counterclockwise direction;
let P; = leftmost point of P.

2. Order the Q; in counterclockwise direction;
let Q1 = leftmost point of Q.

3. Leftmost point of P+ Q is P; + Q1.

4. If current point is P; 4 Q;:
Next point is Piy1 + Q; or P; + Qjy1,
depending on slopes of P;P;i1 and Q;Qj1.



Construction of a Minkowski sum: an example (1/7)

e nitial point for P and Q

e Initial point for P + @
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Construction of a Minkowski sum: an example (7/7)

e Potential next points for P and @

e Potential next point for P + Q

e Current point




Construction of a Minkowski sum: the analysis

Incremental construction of P + Q:
1. Order the P; in counterclockwise direction;
let P; = leftmost point of P.

2. Order the Q; in counterclockwise direction;
let Q1 = leftmost point of Q.

3. Leftmost point of P+ Q is P; + Q1.
4. If current point is P; 4 Q;:

Next point is Piy1 + Qj or P; + Qj41,
depending on slopes of P;P;1 and Q;Qj1.
Analysis. we have constructed p + g points because:

> Pointer P; may move p times.

» Pointer (; may move g times.
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f= Zi a,-Xff, 8 = Ej ijgf; aj, bj 7£ 0.

Newt(f) 4+ Newt(g) = conv(f;) + conv(gj) = conv(f; + gj).
Newt(fg) C Newt(f) + Newt(g):

All monomials of fg are of the form X8,

Newt(f) + Newt(g) C Newt(fg):
Each monomial Xi*& appears by expansion of the product fg.

v

v

v

Are we done?



Newt(f) + Newt(g) C Newt(fg): a closer look

Recall Newt(f) + Newt(g) = conv(f; + gj).
Each monomial Xfit& appears by expansion of the product fg,
but it may appear several times.

Univariate example: (1 —X)(1+X+ X2+ 4+ X") =1— X",
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Newt(f) + Newt(g) C Newt(fg): a closer look

Recall Newt(f) + Newt(g) = conv(f; + gj).
Each monomial Xfit& appears by expansion of the product fg,
but it may appear several times.

Univariate example: (1 —X)(1+X+ X2+ 4+ X") =1— X",

Some observations:
1. conv(fj + gj) is the convex hull of its extremal points.
2. f; + gj extremal = Xfi+8 appears uniquely in expansion of fg:
If p=fi+gj = f + &, then p = 3[(fi + &) + (& + &)]-
3. If Xfit& appears uniquely, its coefficient in fg is nonzero.

Property 2 fails for fg + 1.
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Back to the Newton polygon of fg + 1

Let's compare the monomials of fg 4+ 1 and fg.

1. If fg has no constant term, Mon(fg + 1) = Mon(fg) U {0}.
Thus Newt(fg + 1) is the convex hull of Newt(fg) U {0}:
at most 2t + 1 vertices.

2. If fg and fg + 1 both have a constant term:

Newt(fg + 1) = Newt(fg).
3. If fg has —1 as constant term:
Mon(fg + 1) = Mon(fg) \ {0}.
The cancellation may expose new points of Mon(fg)!

Understanding cancellations seems to be the main difficulty.



The Newton polygon of fg — 1: an example

FX,Y)=14+X2Y +XY2? g(X,Y)=1+X*Y + XY*%

|

o me Points of Mon(fg)

R - > —

The 2 blue points lie on the convex hull of Mon(fg — 1),
but do not lie on the convex hull of Mon(fg).



The Newton polygon of fg + 1:
A convexity argument

Consider again case 3: fg has constant term —1.

Observation: The vertices of Newt(fg + 1) form
a convexly independent subset of Mon(f) + Mon(g).
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The Newton polygon of fg + 1:
A convexity argument

Consider again case 3: fg has constant term —1.

Observation: The vertices of Newt(fg + 1) form
a convexly independent subset of Mon(f) + Mon(g).

Theorem [Eisenbrand-Pach-RothvoB-Sopher’'08]:

Let A and B be sets of at most t points each.

Any convexly independent subset of A+ B has cardinality O(t*/3).
Remark: This bound was shown to be optimal (2010).

Corollary: Newt(fg + 1) has O(t*/3) vertices.

Open problem: Is there a linear upper bound for fg + 17
Remark: this problem looks very combinatorial if f, g € F,[X, Y].



A T-conjecture for Newton polygons

Conjecture: Consider f € C[X, Y] of the form

k m
FX,Y)=> T[fi(X,Y)

i=1 j=1

where the f; have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:

» fis a “sum of products of sparse polynomials.”
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A T-conjecture for Newton polygons

Conjecture: Consider f € C[X, Y] of the form

k m
FX,Y)=> T[fi(X,Y)

i=1 j=1

where the f; have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:

» fis a “sum of products of sparse polynomials.”
» k=1: Newt(fi...fn) is the Minkowski sum > ; Newt(f;).
» k =2 is open. What about Newt(f; ... fn+1)7?

Naive upper bound: at most kt™ vertices.

v

Improved upper bound: O(kt>™/3) by the convexity argument.
This argument cannot take us below t™/3.

v
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The curse of fg + 1

Three "“toy problems:”

1. Number of vertices for Newton polygon of fg + 1:
trivial bound is O(t?), best current bound is O(t*/3).

2. For real univariate polynomials:
t monomials = at most t — 1 positive real roots (Descartes).
Number of real roots of fg + 1: trivial bound is O(t?).

3. Any non-zero (complex) root has multiplicity at most t — 1
(Hajés lemma).
Multiplicity of non-zero root of fg + 1: trivial bound is O(t?).

Optimal bound might be O(t) for these 3 problems.
For fg rather than fg 4+ 1, an O(t) bound holds true.
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Peeling a Minkowski sum
(A problem of combinatorial geometry)

Onion peeling of a finite set A C R?:

1. First layer: compute conv(A), remove the extremal points.
2. Repeat until A= (.

Onion peeling of a Minkowski sum:

Let A= F + G, where F and G have t points.
How many points on i-th layer of A ?

There are at most 2t points on first layer.

Remark: This is relevant to Newt(fg — h).



Appendix



Lower bounds from Newton polygons

Theorem:
T-conjecture = no polynomial-size arithmetic circuits
for Newton polygons for the permanent (VP # VNP).

k m
Remark: Recall f =Y [ #;.
i=1 j=1

Upper bounds of the form 2O(m)(kt)o(1),
or even 2(mtlogkt) for some ¢ < 2 are enough.



A Newton polygon with 2" edges

For f,(X,Y) ZXY’

2" — 1 edges on Iower hull, 1 edge on upper hull,
since all vertices lie on graph of i — i2.

Remarks:
2”
» Our preprint’s first version uses g,(X,Y) = H(X +Y'):
i=1
2" edges on lower hull, 2" edges on upper hull.
> f,is very “explicit:” it has 0/1 coefficients
and they are computable in polynomial time.



Lower bounds from Newton polygons:
A proof sketch

1. Assume that the permanent is easy to compute.

2. Express f, as S oy
with k = nOWn) + — pO(Vn) m — O(+v/n).

3. Contradiction with T-conjecture for Newton polygons:
Newt(f,) has 2" vertices.



Lower bounds from Newton polygons:
A proof sketch

1. Assume that the permanent is easy to compute.

2. Express f, as S oy
with k = nVn + = nOV") ' m = O(y/n).

3. Contradiction with T-conjecture for Newton polygons:
Newt(f,) has 2" vertices.

Main ingredient: Reduction to depth 4 for arithmetic circuits.

No need for results on counting hierarchy by:

[Allender, Biirgisser, Kjeldgaard-Pedersen,Miltersen'06,
Biirgisser'07].

They are still relevant for the 7-conjecture for multiplicities
(Hrubes).



Reduction to depth 4 [Agrawal-Vinay'08]

Theorem [Tavenas’13]:
Let C be a circuit of size s, degree d, in n variables.
We assume d, s = n°(1),

There is an equivalent depth 4 (> ][ >_]]) circuit of size sO(Vd),
with multiplication gates of fan-in O(v/d).



Reduction to depth 4 [Agrawal-Vinay'08]

Theorem [Tavenas’13]:
Let C be a circuit of size s, degree d, in n variables.
We assume d, s = n°(1),

There is an equivalent depth 4 (> ][ >_]]) circuit of size sO(Vd),
with multiplication gates of fan-in O(v/d).

Depth-4 circuit with inputs of the form X2, Y? or constants

(Shallow circuit with high-powered inputs)

0

‘Sum of Products of Sparse PonnomiaIs‘

The > [] gates compute sparse polynomials.



Reduction to depth 4 and Newton polygons:
Completing the argument.

Recall f,(X,Y) =%, X'Y?”.

1. Write f,(X,Y) = hay(X,Y) where h,, is multilinear
in the new variables X; = X?, Y, = y?
(consider radix 2 representation of i and i?).
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Reduction to depth 4 and Newton polygons:
Completing the argument.

Recall f,(X,Y) =%, X'Y?”.

1.

Write £,(X, Y) = ha(X,Y) where h,, is multilinear
in the new variables X; = X?, Y, = y?
(consider radix 2 representation of i and i?).

2. h,is in VNP by Valiant's criterion, and in VP if VP = VNP.
3. Reduce corresponding circuit for h, to a depth 4 circuits C,.
4. Substitute X; — X2j, Y — Y? in C, to express f,

as a “small” sum of products of sparse polynomials.



Another Newton polygon, with 2"*! edges

For f,(X,Y) = lz'[(x + Yy

2" edges on lower hull, 2" edges on upper hull.

The Newton polygon of fi:
AX,Y)=(X+Y)X+Y?) =X+ XY +XY2+ V3

e Points of Mon(f;)




The real 7-conjecture

Conjecture: Consider a polynomial f € R[X] of the form
k m
Fx)= S TLH:
i=1 j=1

where the f;; have at most monomials.
If f is nonzero, its number of real roots is polynomial in kmt.
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The real 7-conjecture

Conjecture: Consider a polynomial f € R[X] of the form

k m
Fx)= S TLH:

i=1 j=1

where the f;; have at most monomials.
If f is nonzero, its number of real roots is polynomial in kmt.
Remarks:

» Case k =1 of the conjecture follows from Descartes’ rule
(t monomials = at most 2t — 1 real roots).
» By expanding the products, f has at most 2kt™ — 1 zeros.

» How many real solutionsto f;...fp, =17
How many real solutions to fg =17
Descartes’ bound is O(t?) but true bound could be O(t).



Arithmetic circuits:
A model of computation for multivariate polynomials

‘.

Circuit
Size : 9
Depth : 3
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The number of integer zeros of f is polynomially bounded in 7(f).
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Shub and Smale’s 7-conjecture

7(f) = size of smallest arithmetic circuit for f € Z[X]
= number of +, X needed to build f from —1, X.
Conjecture:
The number of integer zeros of f is polynomially bounded in 7(f).

Theorem [Shub-Smale’95]: 7-conjecture = P¢ # NPc.

Theorem [Biirgisser’07]:
T-conjecture  =- no polynomial-size arithmetic circuits
for the permanent
(Valiant's algebraic version of P versus NP).

Reminder: per(X) = Z HXio(i)
o€S, i=1



