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The Newton polygon

Let f (X ,Y ) =
∑t

i=1 aiX
αiY βi , ai 6= 0.

I The monomial set of f is:

Mon(f ) = {(αi , βi ); 1 ≤ i ≤ t} ⊆ R2.

I Its convex hull is the Newton polygon of f .

Abbreviated Notation:
f (X) =

∑
i aiXfi , where X = (X ,Y ), fi = (αi , βi ).

Thus Newt(f ) = conv(Mon(f )) = conv(fi ).



A Newton Polygon

f (X ,Y ) = 1 + X 2Y + XY 2 + X 4Y + XY 4.

Points of Mon(f )



The Newton polygon of fg + 1: a little puzzle

Problem: Let f , g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: t2 + 1.

For Newt(fg):

2t is a tight upper bound.

I Newt(fg) is the Minkowski sum of Newt(f ) and Newt(g).

I For convex polygons P,Q with p and q vertices,
the Minkowski sum P + Q has at most p + q vertices.
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Problem: Let f , g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: t2 + 1.

For Newt(fg): 2t is a tight upper bound.

I Newt(fg) is the Minkowski sum of Newt(f ) and Newt(g).

I For convex polygons P,Q with p and q vertices,
the Minkowski sum P + Q has at most p + q vertices.



The Newton polygon of fg : an example

f (X ,Y ) = 1 + X 2Y + XY 2 (blue triangle)
g(X ,Y ) = 1 + X 4Y + XY 4 (green triangle)

Points of Mon(fg)



The Minkowski sum of convex polygons

Definition: P + Q = {x + y ; x ∈ P, y ∈ Q}.
P + Q is convex if the sets P and Q are convex.

Proposition: For convex polygons, P + Q = conv(Pi + Qj)
where the Pi , Qj are the vertices of P and Q.

Incremental construction of P + Q:

1. Order the Pi in counterclockwise direction;
let P1 = leftmost point of P.

2. Order the Qj in counterclockwise direction;
let Q1 = leftmost point of Q.

3. Leftmost point of P + Q is P1 + Q1.

4. If current point is Pi + Qj :
Next point is Pi+1 + Qj or Pi + Qj+1,
depending on slopes of PiPi+1 and QjQj+1.
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Construction of a Minkowski sum: an example (1/7)

Initial point for P and Q

Initial point for P + Q



Construction of a Minkowski sum: an example (2/7)

Potential next points for P and Q

Potential next point for P + Q

Current point
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Construction of a Minkowski sum: an example (7/7)

Potential next points for P and Q

Potential next point for P + Q

Current point



Construction of a Minkowski sum: the analysis

Incremental construction of P + Q:

1. Order the Pi in counterclockwise direction;
let P1 = leftmost point of P.

2. Order the Qj in counterclockwise direction;
let Q1 = leftmost point of Q.

3. Leftmost point of P + Q is P1 + Q1.

4. If current point is Pi + Qj :
Next point is Pi+1 + Qj or Pi + Qj+1,
depending on slopes of PiPi+1 and QjQj+1.

Analysis. we have constructed p + q points because:

I Pointer Pi may move p times.

I Pointer Qj may move q times.



Newt(fg) = Newt(f ) + Newt(g)

I f =
∑

i aiXfi , g =
∑

j bjXgj ; ai , bj 6= 0.

I Newt(f ) + Newt(g) = conv(fi ) + conv(gj) = conv(fi + gj).

I Newt(fg) ⊆ Newt(f ) + Newt(g):
All monomials of fg are of the form Xfi+gj .

I Newt(f ) + Newt(g) ⊆ Newt(fg):
Each monomial Xfi+gj appears by expansion of the product fg .

Are we done?
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Newt(f ) + Newt(g) ⊆ Newt(fg): a closer look

Recall Newt(f ) + Newt(g) = conv(fi + gj).
Each monomial Xfi+gj appears by expansion of the product fg ,
but it may appear several times.

Univariate example: (1−X )(1 +X +X 2 + · · ·+X n) = 1−X n+1.

Some observations:

1. conv(fi + gj) is the convex hull of its extremal points.

2. fi + gj extremal ⇒ Xfi+gj appears uniquely in expansion of fg :
If p = fi + gj = fk + gl , then p = 1

2 [(fi + gl) + (fk + gj)].

3. If Xfi+gj appears uniquely, its coefficient in fg is nonzero.

Property 2 fails for fg + 1.
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Back to the Newton polygon of fg + 1

Let’s compare the monomials of fg + 1 and fg .

1. If fg has no constant term, Mon(fg + 1) = Mon(fg) ∪ {0}.
Thus Newt(fg + 1) is the convex hull of Newt(fg) ∪ {0}:
at most 2t + 1 vertices.

2. If fg and fg + 1 both have a constant term:
Newt(fg + 1) = Newt(fg).

3. If fg has −1 as constant term:
Mon(fg + 1) = Mon(fg) \ {0}.
The cancellation may expose new points of Mon(fg)!

Understanding cancellations seems to be the main difficulty.
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The Newton polygon of fg − 1: an example

f (X ,Y ) = 1 + X 2Y + XY 2, g(X ,Y ) = 1 + X 4Y + XY 4.

Points of Mon(fg)

The 2 blue points lie on the convex hull of Mon(fg − 1),
but do not lie on the convex hull of Mon(fg).



The Newton polygon of fg + 1:
A convexity argument

Consider again case 3: fg has constant term −1.

Observation: The vertices of Newt(fg + 1) form
a convexly independent subset of Mon(f ) + Mon(g).

Theorem [Eisenbrand-Pach-Rothvoß-Sopher’08]:
Let A and B be sets of at most t points each.
Any convexly independent subset of A + B has cardinality O(t4/3).

Remark: This bound was shown to be optimal (2010).

Corollary: Newt(fg + 1) has O(t4/3) vertices.

Open problem: Is there a linear upper bound for fg + 1?
Remark: this problem looks very combinatorial if f , g ∈ F2[X ,Y ].
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A τ -conjecture for Newton polygons

Conjecture: Consider f ∈ C[X ,Y ] of the form

f (X ,Y ) =
k∑

i=1

m∏
j=1

fij(X ,Y )

where the fij have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:

I f is a “sum of products of sparse polynomials.”

I k = 1: Newt(f1 . . . fm) is the Minkowski sum
∑m

i=1Newt(fi ).

I k = 2 is open. What about Newt(f1 . . . fm + 1)?

I Naive upper bound: at most ktm vertices.

I Improved upper bound: O(kt2m/3) by the convexity argument.
This argument cannot take us below tm/3.
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The curse of fg + 1

Three “toy problems:”

1. Number of vertices for Newton polygon of fg + 1:
trivial bound is O(t2), best current bound is O(t4/3).

2. For real univariate polynomials:
t monomials ⇒ at most t − 1 positive real roots (Descartes).
Number of real roots of fg + 1: trivial bound is O(t2).

3. Any non-zero (complex) root has multiplicity at most t − 1
(Hajós lemma).
Multiplicity of non-zero root of fg + 1: trivial bound is O(t2).

Optimal bound might be O(t) for these 3 problems.
For fg rather than fg + 1, an O(t) bound holds true.
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2. For real univariate polynomials:
t monomials ⇒ at most t − 1 positive real roots (Descartes).
Number of real roots of fg + 1: trivial bound is O(t2).

3. Any non-zero (complex) root has multiplicity at most t − 1
(Hajós lemma).
Multiplicity of non-zero root of fg + 1: trivial bound is O(t2).

Optimal bound might be O(t) for these 3 problems.
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Peeling a Minkowski sum
(A problem of combinatorial geometry)

Onion peeling of a finite set A ⊆ R2:

1. First layer: compute conv(A), remove the extremal points.

2. Repeat until A = ∅.

Onion peeling of a Minkowski sum:
Let A = F + G , where F and G have t points.
How many points on i-th layer of A ?
There are at most 2t points on first layer.

Remark: This is relevant to Newt(fg − h).
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Appendix



Lower bounds from Newton polygons

Theorem:
τ -conjecture ⇒ no polynomial-size arithmetic circuits
for Newton polygons for the permanent (VP 6= VNP).

Remark: Recall f =
k∑

i=1

m∏
j=1

fij .

Upper bounds of the form 2O(m)(kt)O(1),
or even 2(m+log kt)c for some c < 2 are enough.



A Newton polygon with 2n edges

For fn(X ,Y ) =
2n∑
i=1

X iY i2 :

2n − 1 edges on lower hull, 1 edge on upper hull,
since all vertices lie on graph of i 7→ i2.

Remarks:

I Our preprint’s first version uses gn(X ,Y ) =
2n∏
i=1

(X + Y i ):

2n edges on lower hull, 2n edges on upper hull.

I fn is very “explicit:” it has 0/1 coefficients
and they are computable in polynomial time.



Lower bounds from Newton polygons:
A proof sketch

1. Assume that the permanent is easy to compute.

2. Express fn as
∑k

i=1

∏m
j=1 fij

with k = nO(
√
n), t = nO(

√
n), m = O(

√
n).

3. Contradiction with τ -conjecture for Newton polygons:
Newt(fn) has 2n vertices.

Main ingredient: Reduction to depth 4 for arithmetic circuits.

No need for results on counting hierarchy by:
[Allender, Bürgisser, Kjeldgaard-Pedersen,Miltersen’06,
Bürgisser’07].
They are still relevant for the τ -conjecture for multiplicities
(Hrubes).
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Reduction to depth 4 [Agrawal-Vinay’08]

Theorem [Tavenas’13]:
Let C be a circuit of size s, degree d , in n variables.
We assume d , s = nO(1).

There is an equivalent depth 4 (
∑∏∑∏

) circuit of size sO(
√
d),

with multiplication gates of fan-in O(
√
d).

Depth-4 circuit with inputs of the form X 2i , Y 2j , or constants

(Shallow circuit with high-powered inputs)

m
Sum of Products of Sparse Polynomials

The
∑∏

gates compute sparse polynomials.
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Reduction to depth 4 and Newton polygons:
Completing the argument.

Recall fn(X ,Y ) =
∑2n

i=1 X
iY i2 .

1. Write fn(X ,Y ) = hn(X ,Y ) where hn is multilinear

in the new variables Xj = X 2j , Yj = Y 2j

(consider radix 2 representation of i and i2).

2. hn is in VNP by Valiant’s criterion, and in VP if VP = VNP.

3. Reduce corresponding circuit for hn to a depth 4 circuits Cn.

4. Substitute Xj 7→ X 2j , Yj 7→ Y 2j in Cn to express fn
as a “small” sum of products of sparse polynomials.
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Another Newton polygon, with 2n+1 edges

For fn(X ,Y ) =
2n∏
i=1

(X + Y i ):

2n edges on lower hull, 2n edges on upper hull.

The Newton polygon of f1:
f1(X ,Y ) = (X + Y )(X + Y 2) = X 2 + XY + XY 2 + Y 3:

Points of Mon(f1)



The real τ -conjecture

Conjecture: Consider a polynomial f ∈ R[X ] of the form

f (X ) =
k∑

i=1

m∏
j=1

fij(X );

where the fij have at most monomials.
If f is nonzero, its number of real roots is polynomial in kmt.
Remarks:

I Case k = 1 of the conjecture follows from Descartes’ rule
(t monomials ⇒ at most 2t − 1 real roots).

I By expanding the products, f has at most 2ktm − 1 zeros.

I How many real solutions to f1 . . . fm = 1 ?
How many real solutions to fg = 1 ?
Descartes’ bound is O(t2) but true bound could be O(t).
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Arithmetic circuits:
A model of computation for multivariate polynomials

Circuit

×+

+ ×

+

x1 x2 x4k

Size : 9

Depth : 3



Shub and Smale’s τ -conjecture

τ(f ) = size of smallest arithmetic circuit for f ∈ Z[X ]
= number of +,× needed to build f from −1,X .

Conjecture:
The number of integer zeros of f is polynomially bounded in τ(f ).

Theorem [Shub-Smale’95]: τ -conjecture ⇒ PC 6= NPC.

Theorem [Bürgisser’07]:
τ -conjecture ⇒ no polynomial-size arithmetic circuits

for the permanent
(Valiant’s algebraic version of P versus NP).

Reminder: per(X ) =
∑
σ∈Sn

n∏
i=1

Xiσ(i)
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