A τ -Conjecture for Newton Polygons

Pascal Koiran

Based on joint work with: Natacha Portier, Sébastien Tavenas and Stéphan Thomassé

December 17, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Newton polygon

Let
$$f(X, Y) = \sum_{i=1}^{t} a_i X^{\alpha_i} Y^{\beta_i}$$
, $a_i \neq 0$.

The monomial set of f is:

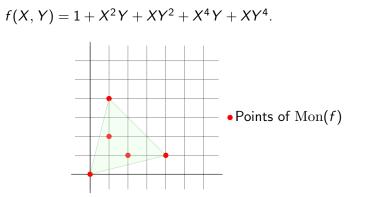
$$\operatorname{Mon}(f) = \{(\alpha_i, \beta_i); \ 1 \le i \le t\} \subseteq \mathbb{R}^2.$$

Its convex hull is the Newton polygon of f.

Abbreviated Notation:

 $f(\mathbb{X}) = \sum_{i} a_i \mathbb{X}^{f_i}$, where $\mathbb{X} = (X, Y)$, $f_i = (\alpha_i, \beta_i)$. Thus Newt $(f) = \operatorname{conv}(\operatorname{Mon}(f)) = \operatorname{conv}(f_i)$.

A Newton Polygon



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1)?

An obvious upper bound: $t^2 + 1$.

For Newt(*fg*):

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1)?

An obvious upper bound: $t^2 + 1$.

For Newt(*fg*):

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1)?

An obvious upper bound: $t^2 + 1$.

For Newt(*fg*):

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1)?

An obvious upper bound: $t^2 + 1$.

For Newt(fg): 2t is a tight upper bound.

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1)?

An obvious upper bound: $t^2 + 1$.

For Newt(fg): 2t is a tight upper bound.

▶ Newt(fg) is the Minkowski sum of Newt(f) and Newt(g).

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1)?

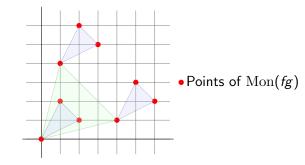
An obvious upper bound: $t^2 + 1$.

For Newt(fg): 2t is a tight upper bound.

▶ Newt(fg) is the Minkowski sum of Newt(f) and Newt(g).

For convex polygons P, Q with p and q vertices, the Minkowski sum P + Q has at most p + q vertices. The Newton polygon of *fg*: an example

$$f(X, Y) = 1 + X^2Y + XY^2$$
 (blue triangle)
 $g(X, Y) = 1 + X^4Y + XY^4$ (green triangle)



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Definition: $P + Q = \{x + y; x \in P, y \in Q\}.$ P + Q is convex if the sets P and Q are convex.

Proposition: For convex polygons, $P + Q = \text{conv}(P_i + Q_j)$ where the P_i , Q_j are the vertices of P and Q.

- Order the P_i in counterclockwise direction; let P₁ = leftmost point of P.
- Order the Q_j in counterclockwise direction; let Q₁ = leftmost point of Q.
- 3. Leftmost point of P + Q is $P_1 + Q_1$.
- If current point is P_i + Q_j: Next point is P_{i+1} + Q_j or P_i + Q_{j+1}, depending on slopes of P_iP_{i+1} and Q_jQ_{j+1}.

Definition: $P + Q = \{x + y; x \in P, y \in Q\}.$ P + Q is convex if the sets P and Q are convex.

Proposition: For convex polygons, $P + Q = \text{conv}(P_i + Q_j)$ where the P_i , Q_j are the vertices of P and Q.

- Order the P_i in counterclockwise direction; let P₁ = leftmost point of P.
- Order the Q_j in counterclockwise direction; let Q₁ = leftmost point of Q.
- 3. Leftmost point of P + Q is $P_1 + Q_1$.
- If current point is P_i + Q_j: Next point is P_{i+1} + Q_j or P_i + Q_{j+1}, depending on slopes of P_iP_{i+1} and Q_jQ_{j+1}.

Definition: $P + Q = \{x + y; x \in P, y \in Q\}.$ P + Q is convex if the sets P and Q are convex.

Proposition: For convex polygons, $P + Q = \text{conv}(P_i + Q_j)$ where the P_i , Q_j are the vertices of P and Q.

- Order the P_i in counterclockwise direction; let P₁ = leftmost point of P.
- Order the Q_j in counterclockwise direction; let Q₁ = leftmost point of Q.
- 3. Leftmost point of P + Q is $P_1 + Q_1$.
- If current point is P_i + Q_j: Next point is P_{i+1} + Q_j or P_i + Q_{j+1}, depending on slopes of P_iP_{i+1} and Q_jQ_{j+1}.

Definition: $P + Q = \{x + y; x \in P, y \in Q\}.$ P + Q is convex if the sets P and Q are convex.

Proposition: For convex polygons, $P + Q = \text{conv}(P_i + Q_j)$ where the P_i , Q_j are the vertices of P and Q.

- Order the P_i in counterclockwise direction; let P₁ = leftmost point of P.
- Order the Q_j in counterclockwise direction; let Q₁ = leftmost point of Q.
- 3. Leftmost point of P + Q is $P_1 + Q_1$.
- If current point is P_i + Q_j: Next point is P_{i+1} + Q_j or P_i + Q_{j+1}, depending on slopes of P_iP_{i+1} and Q_jQ_{j+1}.

Definition: $P + Q = \{x + y; x \in P, y \in Q\}.$ P + Q is convex if the sets P and Q are convex.

Proposition: For convex polygons, $P + Q = \text{conv}(P_i + Q_j)$ where the P_i , Q_j are the vertices of P and Q.

Incremental construction of P + Q:

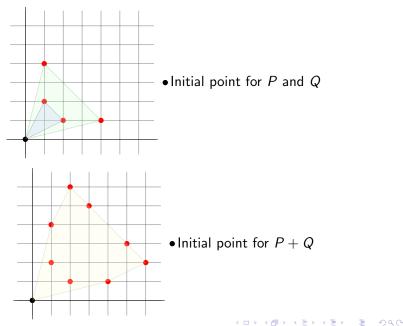
- Order the P_i in counterclockwise direction; let P₁ = leftmost point of P.
- Order the Q_j in counterclockwise direction; let Q₁ = leftmost point of Q.
- 3. Leftmost point of P + Q is $P_1 + Q_1$.
- If current point is P_i + Q_j: Next point is P_{i+1} + Q_j or P_i + Q_{j+1}, depending on slopes of P_iP_{i+1} and Q_jQ_{j+1}.

Definition: $P + Q = \{x + y; x \in P, y \in Q\}.$ P + Q is convex if the sets P and Q are convex.

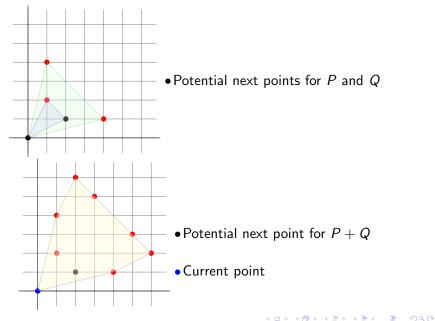
Proposition: For convex polygons, $P + Q = \operatorname{conv}(P_i + Q_j)$ where the P_i , Q_j are the vertices of P and Q.

- Order the P_i in counterclockwise direction; let P₁ = leftmost point of P.
- Order the Q_j in counterclockwise direction; let Q₁ = leftmost point of Q.
- 3. Leftmost point of P + Q is $P_1 + Q_1$.
- If current point is P_i + Q_j: Next point is P_{i+1} + Q_j or P_i + Q_{j+1}, depending on slopes of P_iP_{i+1} and Q_jQ_{j+1}.

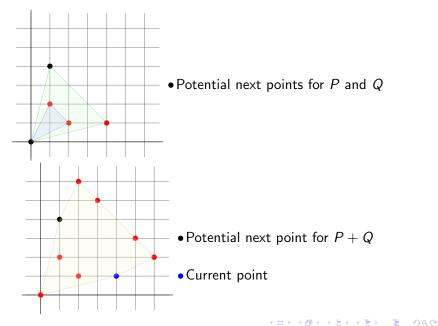
Construction of a Minkowski sum: an example (1/7)



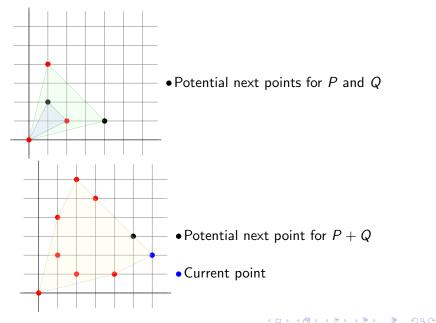
Construction of a Minkowski sum: an example (2/7)



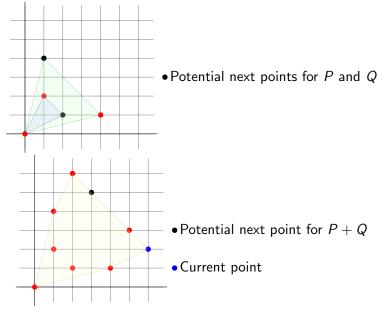
Construction of a Minkowski sum: an example (3/7)• Next points for P and Q• Next point for P + Q Current point ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@ Construction of a Minkowski sum: an example (4/7)



Construction of a Minkowski sum: an example (5/7)• Next points for P and Q• Next point for P + Q Current point ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@ Construction of a Minkowski sum: an example (6/7)



Construction of a Minkowski sum: an example (7/7)



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Construction of a Minkowski sum: the analysis

Incremental construction of P + Q:

- Order the P_i in counterclockwise direction; let P₁ = leftmost point of P.
- Order the Q_j in counterclockwise direction; let Q₁ = leftmost point of Q.
- 3. Leftmost point of P + Q is $P_1 + Q_1$.
- If current point is P_i + Q_j: Next point is P_{i+1} + Q_j or P_i + Q_{j+1}, depending on slopes of P_iP_{i+1} and Q_jQ_{j+1}.

Analysis. we have constructed p + q points because:

- Pointer P_i may move p times.
- Pointer Q_i may move q times.

- $f = \sum_i a_i \mathbb{X}^{f_i}$, $g = \sum_j b_j \mathbb{X}^{g_j}$; $a_i, b_j \neq 0$.
- ▶ Newt(f) + Newt(g) = conv(f_i) + conv(g_j) = conv(f_i + g_j).
- Newt(fg) ⊆ Newt(f) + Newt(g):
 All monomials of fg are of the form X^{f_i+g_i}.
- Newt(f) + Newt(g) ⊆ Newt(fg):
 Each monomial X^{f_i+g_j} appears by expansion of the product fg.

- $f = \sum_i a_i \mathbb{X}^{f_i}$, $g = \sum_j b_j \mathbb{X}^{g_j}$; $a_i, b_j \neq 0$.
- ► Newt(f) + Newt(g) = conv(f_i) + conv(g_j) = conv(f_i + g_j).
- Newt(fg) ⊆ Newt(f) + Newt(g):
 All monomials of fg are of the form X^{f_i+g_j}.
- Newt(f) + Newt(g) ⊆ Newt(fg):
 Each monomial X^{f_i+g_j} appears by expansion of the product fg.

•
$$f = \sum_{i} a_i \mathbb{X}^{f_i}, g = \sum_{j} b_j \mathbb{X}^{g_j}; a_i, b_j \neq 0.$$

- ► Newt(f) + Newt(g) = conv(f_i) + conv(g_j) = conv(f_i + g_j).
- Newt(fg) ⊆ Newt(f) + Newt(g):
 All monomials of fg are of the form X^{f_i+g_j}.
- Newt(f) + Newt(g) ⊆ Newt(fg):
 Each monomial X^{f_i+g_j} appears by expansion of the product fg.

•
$$f = \sum_{i} a_i \mathbb{X}^{f_i}, g = \sum_{j} b_j \mathbb{X}^{g_j}; a_i, b_j \neq 0.$$

- ► Newt(f) + Newt(g) = conv(f_i) + conv(g_j) = conv(f_i + g_j).
- Newt(fg) ⊆ Newt(f) + Newt(g):
 All monomials of fg are of the form X^{f_i+g_j}.
- Newt(f) + Newt(g) ⊆ Newt(fg):
 Each monomial X^{f_i+g_j} appears by expansion of the product fg.

•
$$f = \sum_{i} a_i \mathbb{X}^{f_i}, g = \sum_{j} b_j \mathbb{X}^{g_j}; a_i, b_j \neq 0.$$

- ► Newt(f) + Newt(g) = conv(f_i) + conv(g_j) = conv(f_i + g_j).
- Newt(fg) ⊆ Newt(f) + Newt(g):
 All monomials of fg are of the form X^{f_i+g_j}.
- Newt(f) + Newt(g) ⊆ Newt(fg):
 Each monomial X^{f_i+g_j} appears by expansion of the product fg.

Recall $Newt(f) + Newt(g) = conv(f_i + g_j)$. Each monomial $\mathbb{X}^{f_i+g_j}$ appears by expansion of the product fg, but it may appear several times.

Univariate example: $(1 - X)(1 + X + X^2 + \dots + X^n) = 1 - X^{n+1}$.

Some observations:

- 1. $\operatorname{conv}(f_i + g_j)$ is the convex hull of its extremal points.
- 2. $f_i + g_j$ extremal $\Rightarrow \mathbb{X}^{f_i + g_j}$ appears uniquely in expansion of fg: If $p = f_i + g_j = f_k + g_l$, then $p = \frac{1}{2}[(f_i + g_l) + (f_k + g_j)]$.

3. If $\mathbb{X}^{f_i+g_j}$ appears uniquely, its coefficient in fg is nonzero. **Property 2 fails for** fg + 1.

Recall $Newt(f) + Newt(g) = conv(f_i + g_j)$. Each monomial $\mathbb{X}^{f_i+g_j}$ appears by expansion of the product fg, but it may appear several times.

Univariate example: $(1 - X)(1 + X + X^2 + \dots + X^n) = 1 - X^{n+1}$.

Some observations:

1. $\operatorname{conv}(f_i + g_j)$ is the convex hull of its extremal points.

 f_i + g_j extremal ⇒ X^{f_i+g_j} appears uniquely in expansion of fg: If p = f_i + g_j = f_k + g_l, then p = ½[(f_i + g_l) + (f_k + g_j)].
 3. If X^{f_i+g_j} appears uniquely, its coefficient in fg is nonzero.

 Property 2 fails for fg + 1.

Recall $Newt(f) + Newt(g) = conv(f_i + g_j)$. Each monomial $\mathbb{X}^{f_i+g_j}$ appears by expansion of the product fg, but it may appear several times.

Univariate example: $(1 - X)(1 + X + X^2 + \dots + X^n) = 1 - X^{n+1}$.

Some observations:

- 1. $\operatorname{conv}(f_i + g_j)$ is the convex hull of its extremal points.
- 2. $f_i + g_j$ extremal $\Rightarrow \mathbb{X}^{f_i + g_j}$ appears uniquely in expansion of fg: If $p = f_i + g_j = f_k + g_l$, then $p = \frac{1}{2}[(f_i + g_l) + (f_k + g_j)]$.

3. If $\mathbb{X}^{f_i+g_j}$ appears uniquely, its coefficient in fg is nonzero. **Property 2 fails for** fg + 1.

Recall $Newt(f) + Newt(g) = conv(f_i + g_j)$. Each monomial $\mathbb{X}^{f_i+g_j}$ appears by expansion of the product fg, but it may appear several times.

Univariate example: $(1 - X)(1 + X + X^2 + \dots + X^n) = 1 - X^{n+1}$.

Some observations:

- 1. $\operatorname{conv}(f_i + g_j)$ is the convex hull of its extremal points.
- 2. $f_i + g_j$ extremal $\Rightarrow \mathbb{X}^{f_i + g_j}$ appears uniquely in expansion of fg: If $p = f_i + g_j = f_k + g_l$, then $p = \frac{1}{2}[(f_i + g_l) + (f_k + g_j)]$.

3. If $\mathbb{X}^{f_i+g_j}$ appears uniquely, its coefficient in fg is nonzero. Property 2 fails for fg + 1.

Recall $Newt(f) + Newt(g) = conv(f_i + g_j)$. Each monomial $\mathbb{X}^{f_i+g_j}$ appears by expansion of the product fg, but it may appear several times.

Univariate example: $(1 - X)(1 + X + X^2 + \dots + X^n) = 1 - X^{n+1}$.

Some observations:

- 1. $\operatorname{conv}(f_i + g_j)$ is the convex hull of its extremal points.
- 2. $f_i + g_j$ extremal $\Rightarrow \mathbb{X}^{f_i + g_j}$ appears uniquely in expansion of fg: If $p = f_i + g_j = f_k + g_l$, then $p = \frac{1}{2}[(f_i + g_l) + (f_k + g_j)]$.
- 3. If $\mathbb{X}^{f_i+g_j}$ appears uniquely, its coefficient in fg is nonzero.

Property 2 fails for fg + 1.

Back to the Newton polygon of fg + 1

Let's compare the monomials of fg + 1 and fg.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Back to the Newton polygon of fg + 1

Let's compare the monomials of $\mathit{fg}+1$ and fg .

 If fg has no constant term, Mon(fg + 1) = Mon(fg) ∪ {0}. Thus Newt(fg + 1) is the convex hull of Newt(fg) ∪ {0}: at most 2t + 1 vertices.

Let's compare the monomials of $\mathit{fg}+1$ and fg .

1. If fg has no constant term, $Mon(fg + 1) = Mon(fg) \cup \{0\}$. Thus Newt(fg + 1) is the convex hull of $Newt(fg) \cup \{0\}$: at most 2t + 1 vertices.

2. If fg and fg + 1 both have a constant term: Newt(fg + 1) = Newt(fg).

Let's compare the monomials of $\mathit{fg}+1$ and fg .

 If fg has no constant term, Mon(fg + 1) = Mon(fg) ∪ {0}. Thus Newt(fg + 1) is the convex hull of Newt(fg) ∪ {0}: at most 2t + 1 vertices.

- 2. If fg and fg + 1 both have a constant term: Newt(fg + 1) = Newt(fg).
- 3. If fg has -1 as constant term:

Let's compare the monomials of $\mathit{fg}+1$ and fg .

 If fg has no constant term, Mon(fg + 1) = Mon(fg) ∪ {0}. Thus Newt(fg + 1) is the convex hull of Newt(fg) ∪ {0}: at most 2t + 1 vertices.

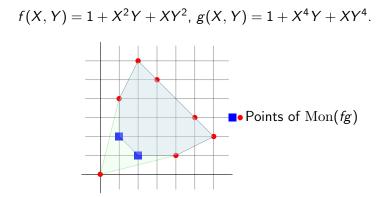
- 2. If fg and fg + 1 both have a constant term: Newt(fg + 1) = Newt(fg).
- 3. If fg has -1 as constant term: $Mon(fg + 1) = Mon(fg) \setminus \{0\}.$

Let's compare the monomials of $\mathit{fg}+1$ and fg .

- If fg has no constant term, Mon(fg + 1) = Mon(fg) ∪ {0}. Thus Newt(fg + 1) is the convex hull of Newt(fg) ∪ {0}: at most 2t + 1 vertices.
- 2. If fg and fg + 1 both have a constant term: Newt(fg + 1) = Newt(fg).
- If fg has −1 as constant term: Mon(fg + 1) = Mon(fg) \ {0}. The cancellation may expose new points of Mon(fg)!

Understanding cancellations seems to be the main difficulty.

The Newton polygon of fg - 1: an example



The 2 blue points lie on the convex hull of Mon(fg - 1), but do not lie on the convex hull of Mon(fg).

Consider again case 3: fg has constant term -1.

Observation: The vertices of Newt(fg + 1) form a convexly independent subset of Mon(f) + Mon(g).

Consider again case 3: fg has constant term -1.

Observation: The vertices of Newt(fg + 1) form a convexly independent subset of Mon(f) + Mon(g).

Theorem [Eisenbrand-Pach-Rothvoß-Sopher'08]: Let A and B be sets of at most t points each. Any convexly independent subset of A + B has cardinality $O(t^{4/3})$.

Consider again case 3: fg has constant term -1.

Observation: The vertices of Newt(fg + 1) form a convexly independent subset of Mon(f) + Mon(g).

Theorem [Eisenbrand-Pach-Rothvoß-Sopher'08]: Let A and B be sets of at most t points each. Any convexly independent subset of A + B has cardinality $O(t^{4/3})$.

Remark: This bound was shown to be optimal (2010).

Consider again case 3: fg has constant term -1.

Observation: The vertices of Newt(fg + 1) form a convexly independent subset of Mon(f) + Mon(g).

Theorem [Eisenbrand-Pach-Rothvoß-Sopher'08]: Let A and B be sets of at most t points each. Any convexly independent subset of A + B has cardinality $O(t^{4/3})$.

Remark: This bound was shown to be optimal (2010).

Corollary: Newt(fg + 1) has $O(t^{4/3})$ vertices.

Open problem: Is there a linear upper bound for fg + 1? **Remark:** this problem looks very combinatorial if $f, g \in F_2[X, Y]$.

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- ▶ k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- ▶ k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- ▶ Naive upper bound: at most *kt^m* vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- ▶ k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- ▶ Naive upper bound: at most *kt^m* vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- ▶ Naive upper bound: at most *kt^m* vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- Naive upper bound: at most kt^m vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- ▶ Naive upper bound: at most *kt^m* vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

Three "toy problems:"

1. Number of vertices for Newton polygon of fg + 1: trivial bound is $O(t^2)$, best current bound is $O(t^{4/3})$.

2. For real univariate polynomials:

 $t \text{ monomials} \Rightarrow \text{at most } t-1 \text{ positive real roots (Descartes)}.$ Number of real roots of fg + 1: trivial bound is $O(t^2)$.

3. Any non-zero (complex) root has multiplicity at most t - 1 (Hajós lemma). Multiplicity of non-zero root of fg + 1: trivial bound is $O(t^2)$.

Three "toy problems:"

- 1. Number of vertices for Newton polygon of fg + 1: trivial bound is $O(t^2)$, best current bound is $O(t^{4/3})$.
- 2. For real univariate polynomials: t monomials \Rightarrow at most t - 1 positive real roots (Descartes). Number of real roots of fg + 1: trivial bound is $O(t^2)$.
- 3. Any non-zero (complex) root has multiplicity at most t 1 (Hajós lemma). Multiplicity of non-zero root of fg + 1: trivial bound is $O(t^2)$.

Three "toy problems:"

- 1. Number of vertices for Newton polygon of fg + 1: trivial bound is $O(t^2)$, best current bound is $O(t^{4/3})$.
- 2. For real univariate polynomials: $t \text{ monomials} \Rightarrow \text{ at most } t-1 \text{ positive real roots (Descartes).}$ Number of real roots of fg + 1: trivial bound is $O(t^2)$.
- 3. Any non-zero (complex) root has multiplicity at most t 1 (Hajós lemma). Multiplicity of non-zero root of fg + 1: trivial bound is $O(t^2)$.

Three "toy problems:"

- 1. Number of vertices for Newton polygon of fg + 1: trivial bound is $O(t^2)$, best current bound is $O(t^{4/3})$.
- 2. For real univariate polynomials: $t \text{ monomials} \Rightarrow \text{ at most } t-1 \text{ positive real roots (Descartes).}$ Number of real roots of fg + 1: trivial bound is $O(t^2)$.
- 3. Any non-zero (complex) root has multiplicity at most t 1 (Hajós lemma). Multiplicity of non-zero root of fg + 1: trivial bound is $O(t^2)$.

Peeling a Minkowski sum (A problem of combinatorial geometry)

Onion peeling of a finite set $A \subseteq \mathbb{R}^2$:

1. First layer: compute conv(A), remove the extremal points.

2. Repeat until $A = \emptyset$.

Onion peeling of a Minkowski sum: Let A = F + G, where F and G have t points. How many points on *i*-th layer of A? There are at most 2t points on first layer.

Remark: This is relevant to Newt(fg - h).

Peeling a Minkowski sum (A problem of combinatorial geometry)

Onion peeling of a finite set $A \subseteq \mathbb{R}^2$:

1. First layer: compute conv(A), remove the extremal points.

2. Repeat until $A = \emptyset$.

Onion peeling of a Minkowski sum: Let A = F + G, where F and G have t points. How many points on *i*-th layer of A ? There are at most 2t points on first layer.

Remark: This is relevant to Newt(fg - h).

Appendix

(日) (個) (目) (日) (日) (の)

Lower bounds from Newton polygons

Theorem:

 $\begin{array}{lll} \tau \text{-conjecture} & \Rightarrow & \text{no polynomial-size arithmetic circuits} \\ \text{for Newton polygons} & & \text{for the permanent (VP } \neq \text{VNP)}. \end{array}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Remark: Recall
$$f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$$
.
Upper bounds of the form $2^{O(m)}(kt)^{O(1)}$, or even $2^{(m+\log kt)^c}$ for some $c < 2$ are enough.

A Newton polygon with 2^n edges

For
$$f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$$
:
 $2^n - 1$ edges on lower hull, 1 edge on upper hull,

since all vertices lie on graph of $i \mapsto i^2$.

Remarks:

• Our preprint's first version uses $g_n(X, Y) = \prod_{i=1}^{2^n} (X + Y^i)$: 2ⁿ edges on lower hull, 2ⁿ edges on upper hull.

► f_n is very "explicit:" it has 0/1 coefficients and they are computable in polynomial time.

Lower bounds from Newton polygons: A proof sketch

- 1. Assume that the permanent is easy to compute.
- 2. Express f_n as $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ with $k = n^{O(\sqrt{n})}$, $t = n^{O(\sqrt{n})}$, $m = O(\sqrt{n})$.
- 3. Contradiction with τ -conjecture for Newton polygons: Newt (f_n) has 2^n vertices.

Main ingredient: Reduction to depth 4 for arithmetic circuits.

No need for results on counting hierarchy by: [Allender, Bürgisser, Kjeldgaard-Pedersen,Miltersen'06, Bürgisser'07]. They are still relevant for the τ -conjecture for multiplicities (Hrubes).

Lower bounds from Newton polygons: A proof sketch

- 1. Assume that the permanent is easy to compute.
- 2. Express f_n as $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ with $k = n^{O(\sqrt{n})}$, $t = n^{O(\sqrt{n})}$, $m = O(\sqrt{n})$.
- Contradiction with *τ*-conjecture for Newton polygons: Newt(*f_n*) has 2ⁿ vertices.

Main ingredient: Reduction to depth 4 for arithmetic circuits.

No need for results on counting hierarchy by: [Allender, Bürgisser, Kjeldgaard-Pedersen,Miltersen'06, Bürgisser'07]. They are still relevant for the τ -conjecture for multiplicities (Hrubes).

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Reduction to depth 4 [Agrawal-Vinay'08]

Theorem [Tavenas'13]:

Let C be a circuit of size s, degree d, in n variables. We assume $d, s = n^{O(1)}$.

There is an equivalent depth 4 $(\sum \prod \sum \prod)$ circuit of size $s^{O(\sqrt{d})}$, with multiplication gates of fan-in $O(\sqrt{d})$.

Depth-4 circuit with inputs of the form X^{2^i} , Y^{2^j} , or constants

(Shallow circuit with high-powered inputs)

The $\sum \prod$ gates compute sparse polynomials.

Reduction to depth 4 [Agrawal-Vinay'08]

Theorem [Tavenas'13]:

Let C be a circuit of size s, degree d, in n variables. We assume $d, s = n^{O(1)}$.

There is an equivalent depth 4 $(\sum \prod \sum \prod)$ circuit of size $s^{O(\sqrt{d})}$, with multiplication gates of fan-in $O(\sqrt{d})$.

Depth-4 circuit with inputs of the form X^{2^i} , Y^{2^j} , or constants

(Shallow circuit with high-powered inputs)

The $\sum \prod$ gates compute sparse polynomials.

Recall $f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$.

- 1. Write $f_n(X, Y) = h_n(\overline{X}, \overline{Y})$ where h_n is multilinear in the new variables $X_j = X^{2^j}$, $Y_j = Y^{2^j}$ (consider radix 2 representation of *i* and *i*²).
- 2. h_n is in VNP by Valiant's criterion, and in VP if VP = VNP.
- 3. Reduce corresponding circuit for h_n to a depth 4 circuits C_n .

Recall $f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$.

- 1. Write $f_n(X, Y) = h_n(\overline{X}, \overline{Y})$ where h_n is multilinear in the new variables $X_j = X^{2^j}$, $Y_j = Y^{2^j}$ (consider radix 2 representation of *i* and *i*²).
- 2. h_n is in VNP by Valiant's criterion, and in VP if VP = VNP.
- 3. Reduce corresponding circuit for h_n to a depth 4 circuits C_n .

Recall $f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$.

- 1. Write $f_n(X, Y) = h_n(\overline{X}, \overline{Y})$ where h_n is multilinear in the new variables $X_j = X^{2^j}$, $Y_j = Y^{2^j}$ (consider radix 2 representation of *i* and *i*²).
- 2. h_n is in VNP by Valiant's criterion, and in VP if VP = VNP.
- 3. Reduce corresponding circuit for h_n to a depth 4 circuits C_n .

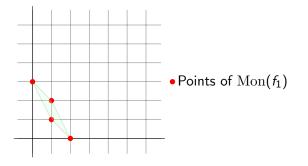
Recall $f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$.

- 1. Write $f_n(X, Y) = h_n(\overline{X}, \overline{Y})$ where h_n is multilinear in the new variables $X_j = X^{2^j}$, $Y_j = Y^{2^j}$ (consider radix 2 representation of *i* and *i*²).
- 2. h_n is in VNP by Valiant's criterion, and in VP if VP = VNP.
- 3. Reduce corresponding circuit for h_n to a depth 4 circuits C_n .

Another Newton polygon, with 2^{n+1} edges

For
$$f_n(X, Y) = \prod_{i=1}^{2^n} (X + Y^i)$$
:
2^{*n*} edges on lower hull, 2^{*n*} edges on upper hull.

The Newton polygon of f_1 : $f_1(X, Y) = (X + Y)(X + Y^2) = X^2 + XY + XY^2 + Y^3$:



Conjecture: Consider a polynomial $f \in \mathbb{R}[X]$ of the form

$$f(X) = \sum_{i=1}^k \prod_{j=1}^m f_{ij}(X);$$

where the f_{ij} have at most monomials. If f is nonzero, its number of **real roots** is polynomial in kmt. **Remarks:**

- Case k = 1 of the conjecture follows from Descartes' rule (t monomials ⇒ at most 2t − 1 real roots).
- ▶ By expanding the products, f has at most $2kt^m 1$ zeros.
- How many real solutions to f₁... f_m = 1 ?
 How many real solutions to fg = 1 ?
 Descartes' bound is O(t²) but true bound could be O(t).

Conjecture: Consider a polynomial $f \in \mathbb{R}[X]$ of the form

$$f(X) = \sum_{i=1}^k \prod_{j=1}^m f_{ij}(X);$$

where the f_{ij} have at most monomials.

If *f* is nonzero, its number of **real roots** is polynomial in *kmt*. **Remarks:**

- Case k = 1 of the conjecture follows from Descartes' rule (t monomials ⇒ at most 2t − 1 real roots).
- ▶ By expanding the products, f has at most $2kt^m 1$ zeros.
- How many real solutions to f₁... f_m = 1 ? How many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).

Conjecture: Consider a polynomial $f \in \mathbb{R}[X]$ of the form

$$f(X) = \sum_{i=1}^k \prod_{j=1}^m f_{ij}(X);$$

where the f_{ij} have at most monomials.

If *f* is nonzero, its number of **real roots** is polynomial in *kmt*. **Remarks:**

- Case k = 1 of the conjecture follows from Descartes' rule (t monomials ⇒ at most 2t − 1 real roots).
- By expanding the products, f has at most $2kt^m 1$ zeros.
- How many real solutions to f₁... f_m = 1 ? How many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).

Conjecture: Consider a polynomial $f \in \mathbb{R}[X]$ of the form

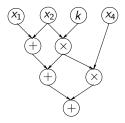
$$f(X) = \sum_{i=1}^k \prod_{j=1}^m f_{ij}(X);$$

where the f_{ij} have at most monomials.

If *f* is nonzero, its number of **real roots** is polynomial in *kmt*. **Remarks:**

- Case k = 1 of the conjecture follows from Descartes' rule (t monomials ⇒ at most 2t − 1 real roots).
- By expanding the products, f has at most $2kt^m 1$ zeros.
- How many real solutions to f₁... f_m = 1 ? How many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).

Arithmetic circuits: A model of computation for multivariate polynomials



Circuit

Size : 9

Depth: 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\tau(f)$ = size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$ = number of +, × needed to build f from -1, X. **Conjecture:** The number of integer zeros of f is polynomially bounded in $\tau(f)$.

Theorem [Shub-Smale'95]: τ -conjecture $\Rightarrow \mathsf{P}_{\mathbb{C}} \neq \mathsf{NP}_{\mathbb{C}}$.

```
Theorem [Bürgisser'07]:

\tau-conjecture \Rightarrow no polynomial-size arithmetic circuits

for the permanent

(Valiant's algebraic version of P versus NP).
```

Reminder:
$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$

 $\tau(f) =$ size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$ = number of +, × needed to build f from -1, X. **Conjecture:** The number of integer zeros of f is polynomially bounded in $\tau(f)$.

Theorem [Shub-Smale'95]: τ -conjecture $\Rightarrow \mathsf{P}_{\mathbb{C}} \neq \mathsf{NP}_{\mathbb{C}}$.

Theorem [Bürgisser'07]: τ -conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent (Valiant's algebraic version of P versus NP).

Reminder:
$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$

 $\tau(f) =$ size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$ = number of +, × needed to build f from -1, X. **Conjecture:** The number of integer zeros of f is polynomially bounded in $\tau(f)$.

Theorem [Shub-Smale'95]: τ -conjecture $\Rightarrow P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Theorem [Bürgisser'07]: τ -conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent (Valiant's algebraic version of P versus NP).

Reminder:
$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$

 $\tau(f)$ = size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$ = number of +, × needed to build f from -1, X. **Conjecture:**

The number of integer zeros of f is polynomially bounded in $\tau(f)$.

Theorem [Shub-Smale'95]: τ -conjecture $\Rightarrow \mathsf{P}_{\mathbb{C}} \neq \mathsf{NP}_{\mathbb{C}}$.

Theorem [Bürgisser'07]: τ -conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent (Valiant's algebraic version of P versus NP).

Reminder:
$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$