
Flows, Subset Sums, Permanent and Graph
Decompositions

Stéphan Thomassé
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Balanced Directed Graph

A directed graph D = (V ,A) is balanced if e+(X ,Y ) = e(X ,Y )/2 for
every bipartition X ,Y of V .

For instance e+(123, 45678) = 3 and e(123, 45678) = 6. In particular,
d+(v) = d−(v) for all vertices v .
This is a characterization of balanced directed graphs.
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2-flows

A balanced orientation D of an oriented graph G is called a 2-flow of G .

Here 2-flow means that e+(X ,Y ) ≥ e(X ,Y )/2 for every bipartition X ,Y
of V .
In other words at least one half of the arcs of D in every cut goes in each
direction.

Theorem (Euler)

A graph G has a 2-flow if and only if all the degrees d(v) are even.

Proof: Greedily extract cycles from G and orient them as circuits.

We assume our graphs connected from this point.

Stéphan Thomassé (LIP) Flows, Subset Sums, etc Discrete Structures 3 / 15



2-flows

A balanced orientation D of an oriented graph G is called a 2-flow of G .
Here 2-flow means that e+(X ,Y ) ≥ e(X ,Y )/2 for every bipartition X ,Y
of V .

In other words at least one half of the arcs of D in every cut goes in each
direction.

Theorem (Euler)

A graph G has a 2-flow if and only if all the degrees d(v) are even.

Proof: Greedily extract cycles from G and orient them as circuits.

We assume our graphs connected from this point.
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k-flows

Definition

A k-flow of a graph G is an orientation D such that
e+(X ,Y ) ≥ e(X ,Y )/k for every bipartition X ,Y of V .

A bridge in a connected graph G is an edge which removal disconnects G .

Here ce is a bridge. If a graph has a k-flow, it is bridgeless.

Conjecture (Tutte 1954)

Every bridgeless graph has a 5-flow.
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Connectivity

Definition

A graph is k-edge connected if the removal of less than k edges leaves G
connected.

The Petersen Graph is 3-edge connected. Bridgeless means 2-edge
connected.

Conjecture (Tutte 1966)

Every 4-edge connected graph has a 3-flow.

Can we make a weaker version of Tutte’s conjectures?
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Let’s relax

Problems

Every 2-edge connected graph has a 1010-flow.

Every 1010-edge connected graph has a 3-flow.

Even more relaxed: every 1010-edge connected graph has a 1010-flow.

Difficulty: How to use connectivity? What is really a k-flow?

Theorem (Nash-Williams 1961)

Every 2k-edge connected graph has k edge-disjoint spanning trees.
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The real stuff

Definition

A (nowhere zero) k-flow of a graph G is:

An orientation D of G and

a flow value on each arc in {1, . . . , k − 1} such that

the total incoming flow equals the total outcoming flow for every
vertex v . (Conservation of flow)

When k = 2, we have a balanced orientation. Example of 4-flow:
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Equivalent statements

Theorem

For a given graph G , are equivalent:

G has a k-flow (1/k balanced orientation)

G has a k-flow (flow value in {1, . . . , k − 1})
G has a modular k-flow (flow value in {1, . . . , k − 1})
G has a Γ-flow for some group Γ of order k (flow value in Γ∗)

Magic? No, Tutte! The number of flows of the three last definitions
satisfies the same recurrence relation.
Easier to find a (ZZ/2ZZ)2-flow than a 4-flow.
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A proof

Theorem: Every 4-edge connected graph G has a 4-flow

Proof.

G has two edge-disjoint trees T1 and T2.

There is an eulerian graph H1 sandwiched between G − E (T1) and G ,
i.e. G − E (T1) ⊆ H1 ⊆ G . Same for H2.

(for every even set of vertices X in a tree T there exists |X |/2
edge-disjoint paths of T with exactly X as set of endvertices.)

Orient G arbitrarily. For each edge e, give flow value
(e ∈ H1, e ∈ H2).

Flow values are (0, 1), (1, 0) or (1, 1) and form a (ZZ/2ZZ)2-flow.

Jaeger 1979: Every bridgeless graph has a 8-flow.
Seymour 1981: Every bridgeless graph has a 6-flow.
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Stéphan Thomassé (LIP) Flows, Subset Sums, etc Discrete Structures 9 / 15



A proof

Theorem: Every 4-edge connected graph G has a 4-flow

Proof.

G has two edge-disjoint trees T1 and T2.

There is an eulerian graph H1 sandwiched between G − E (T1) and G ,
i.e. G − E (T1) ⊆ H1 ⊆ G . Same for H2.

(for every even set of vertices X in a tree T there exists |X |/2
edge-disjoint paths of T with exactly X as set of endvertices.)

Orient G arbitrarily. For each edge e, give flow value
(e ∈ H1, e ∈ H2).

Flow values are (0, 1), (1, 0) or (1, 1) and form a (ZZ/2ZZ)2-flow.

Jaeger 1979: Every bridgeless graph has a 8-flow.

Seymour 1981: Every bridgeless graph has a 6-flow.
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The other question

What about 1010-edge connected implies 3-flow?

Theorem (Thomassen 2012)

Every 8-edge-connected graph has a 3-flow.

Theorem (Lovász, Thomassen, Wu, Zhang 2013)

Every 6-edge-connected graph has a 3-flow.

Modular 3-flows are special, since reversing an arc with flow 2 turns it into
1, we can assume that all arcs have flow 1.
Hence G has a 3-flow if and only if it has an orientation such that
d+(v) = d−(v) mod 3.
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About Thomassen’s proof.

Taylor-made induction of a much stronger statement.

On the (very long) road to 3-flow, Barát and Thomassen showed in 2006
that the following statements are equivalent:

Every 8-edge-connected graph has a 3-flow.

Every 8-edge-connected graph has an orientation such that d−(v) = 0
mod 3 for all vertices v (provided that |E (G )| is divisible by 3).

The edges of any 8-edge-connected graph can be decomposed into
3-stars (provided that |E (G )| is divisible by 3).

Examples of k-stars, when k = 3, 4, 5, 6.
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The Barát-Thomassen conjecture.

In his 3-flow paper, Thomassen showed:

For every k, there exists ck such that every ck -edge-connected graph G
has a k-star decomposition (provided that |E (G )| is divisible by k).
Which is a particular case of:

Conjecture (Barát-Thomassen)

For every fixed tree T , there exists cT such that every cT -edge-connected
graph G has a T -decomposition (provided that |E (G )| is divisible by
|E (T )|).

Proved in September 2015 with Julien Bensmail, Ararat Harutyunyan,
Tien-Nam Le, Martin Merker
Our proof implicitely uses the case of k-stars
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Stéphan Thomassé (LIP) Flows, Subset Sums, etc Discrete Structures 12 / 15



The Barát-Thomassen conjecture.

In his 3-flow paper, Thomassen showed:
For every k, there exists ck such that every ck -edge-connected graph G
has a k-star decomposition (provided that |E (G )| is divisible by k).
Which is a particular case of:

Conjecture (Barát-Thomassen)

For every fixed tree T , there exists cT such that every cT -edge-connected
graph G has a T -decomposition (provided that |E (G )| is divisible by
|E (T )|).

Proved in September 2015 with Julien Bensmail, Ararat Harutyunyan,
Tien-Nam Le, Martin Merker
Our proof implicitely uses the case of k-stars
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Subset sums

Let M be a n ×m matrix with entries in F3.

If M has rank n, every vector of (F3)n is a linear combination of the
columns vectors of M with coefficients in −1, 0, 1.
What about forbidding coefficient -1?
Subset Sum Property: Every vector of (F3)n is a linear combination of the
columns vectors of M with coefficients in 0, 1.

Conjecture (Jaeger, Linial, Payan, Tarsi)

If M contains 1010 disjoint rank n matrices, then it satisfies the subset
sum property.

Same question with coefficients in −1, 1.
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Stéphan Thomassé (LIP) Flows, Subset Sums, etc Discrete Structures 13 / 15



Subset sums

Let M be a n ×m matrix with entries in F3.
If M has rank n, every vector of (F3)n is a linear combination of the
columns vectors of M with coefficients in −1, 0, 1.
What about forbidding coefficient -1?
Subset Sum Property: Every vector of (F3)n is a linear combination of the
columns vectors of M with coefficients in 0, 1.

Conjecture (Jaeger, Linial, Payan, Tarsi)

If M contains 1010 disjoint rank n matrices, then it satisfies the subset
sum property.

Same question with coefficients in −1, 1.
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Link with flows

Consider a 2.1010-edge connected graph G = (V ,E ).

Orient its edges in some arbitrary way.
Consider the V × E incidence matrix M of G (hence every column has
exactly a 1 and a -1).
Observe that M has rank n − 1.
Since G has 1010 disjoint spanning trees, M has 1010 disjoint matrices of
rank n − 1.
If subset sum conjecture holds, the vector 0 is achievable via a linear
combination with coefficients -1 or 1.
This is exactly a 3-flow.

Stéphan Thomassé (LIP) Flows, Subset Sums, etc Discrete Structures 14 / 15



Link with flows

Consider a 2.1010-edge connected graph G = (V ,E ).
Orient its edges in some arbitrary way.

Consider the V × E incidence matrix M of G (hence every column has
exactly a 1 and a -1).
Observe that M has rank n − 1.
Since G has 1010 disjoint spanning trees, M has 1010 disjoint matrices of
rank n − 1.
If subset sum conjecture holds, the vector 0 is achievable via a linear
combination with coefficients -1 or 1.
This is exactly a 3-flow.
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And at last the permanent

Permanent Lemma (Alon)

Let M be a n × n matrix with entries in F3 with non zero permanent. Let
x be any vector of (F3)n. Then there is a linear combination v of M in
-1,1 such that x and v differs on all coordinates.

Question (with Mathieu R.)

If M contains 1010 disjoint rank n matrices, then it contains a non zero
permanent matrix?

Would imply the subset sum problem.

Stéphan Thomassé (LIP) Flows, Subset Sums, etc Discrete Structures 15 / 15



And at last the permanent

Permanent Lemma (Alon)

Let M be a n × n matrix with entries in F3 with non zero permanent. Let
x be any vector of (F3)n. Then there is a linear combination v of M in
-1,1 such that x and v differs on all coordinates.

Question (with Mathieu R.)

If M contains 1010 disjoint rank n matrices, then it contains a non zero
permanent matrix?

Would imply the subset sum problem.
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