Flows, Subset Sums, Permanent and Graph Decompositions

Stéphan Thomassé

LIP - ENS LYON

One Day Meeting in Discrete Structures - 17 Décembre 2015

A directed graph D = (V, A) is balanced if $e^+(X, Y) = e(X, Y)/2$ for every bipartition X, Y of V.

A directed graph D = (V, A) is balanced if $e^+(X, Y) = e(X, Y)/2$ for every bipartition X, Y of V.

A directed graph D = (V, A) is balanced if $e^+(X, Y) = e(X, Y)/2$ for every bipartition X, Y of V.

For instance $e^+(123, 45678) = 3$ and e(123, 45678) = 6.

A directed graph D = (V, A) is balanced if $e^+(X, Y) = e(X, Y)/2$ for every bipartition X, Y of V.

For instance $e^+(123,45678)=3$ and e(123,45678)=6. In particular, $d^+(v)=d^-(v)$ for all vertices v.

A directed graph D = (V, A) is balanced if $e^+(X, Y) = e(X, Y)/2$ for every bipartition X, Y of V.

For instance $e^+(123,45678)=3$ and e(123,45678)=6. In particular, $d^+(v)=d^-(v)$ for all vertices v.

This is a characterization of balanced directed graphs.

A balanced orientation D of an oriented graph G is called a 2-flow of G.

A balanced orientation D of an oriented graph G is called a 2-flow of G. Here 2-flow means that $e^+(X,Y) \ge e(X,Y)/2$ for every bipartition X,Y of V.

A balanced orientation D of an oriented graph G is called a 2-flow of G. Here 2-flow means that $e^+(X,Y) \ge e(X,Y)/2$ for every bipartition X,Y of V.

In other words at least one half of the arcs of D in every cut goes in each direction.

A balanced orientation D of an oriented graph G is called a 2-flow of G. Here 2-flow means that $e^+(X,Y) \ge e(X,Y)/2$ for every bipartition X,Y of V.

In other words at least one half of the arcs of D in every cut goes in each direction.

Theorem (Euler)

A graph G has a 2-flow if and only if all the degrees d(v) are even.

A balanced orientation D of an oriented graph G is called a 2-flow of G. Here 2-flow means that $e^+(X,Y) \ge e(X,Y)/2$ for every bipartition X,Y of V.

In other words at least one half of the arcs of D in every cut goes in each direction.

Theorem (Euler)

A graph G has a 2-flow if and only if all the degrees d(v) are even.

Proof: Greedily extract cycles from G and orient them as circuits.

A balanced orientation D of an oriented graph G is called a 2-flow of G. Here 2-flow means that $e^+(X,Y) \ge e(X,Y)/2$ for every bipartition X,Y of V.

In other words at least one half of the arcs of D in every cut goes in each direction.

Theorem (Euler)

A graph G has a 2-flow if and only if all the degrees d(v) are even.

Proof: Greedily extract cycles from G and orient them as circuits.

We assume our graphs connected from this point.

Definition

A k-flow of a graph G is an orientation D such that $e^+(X,Y) \ge e(X,Y)/k$ for every bipartition X,Y of V.

Definition

A *k-flow* of a graph G is an orientation D such that $e^+(X,Y) \ge e(X,Y)/k$ for every bipartition X,Y of V.

A bridge in a connected graph G is an edge which removal disconnects G.

Definition

A *k-flow* of a graph G is an orientation D such that $e^+(X,Y) \ge e(X,Y)/k$ for every bipartition X,Y of V.

A bridge in a connected graph G is an edge which removal disconnects G.

Definition

A *k-flow* of a graph G is an orientation D such that $e^+(X,Y) \ge e(X,Y)/k$ for every bipartition X,Y of V.

A bridge in a connected graph G is an edge which removal disconnects G.

Here ce is a bridge.

Definition

A *k-flow* of a graph G is an orientation D such that $e^+(X,Y) \ge e(X,Y)/k$ for every bipartition X,Y of V.

A bridge in a connected graph G is an edge which removal disconnects G.

Here ce is a bridge. If a graph has a k-flow, it is bridgeless.

Definition

A *k-flow* of a graph *G* is an orientation *D* such that $e^+(X, Y) \ge e(X, Y)/k$ for every bipartition *X*, *Y* of *V*.

A bridge in a connected graph G is an edge which removal disconnects G.

Here ce is a bridge. If a graph has a k-flow, it is bridgeless.

Conjecture (Tutte 1954)

Every bridgeless graph has a 5-flow.

Definition

A graph is k-edge connected if the removal of less than k edges leaves G connected.

Definition

A graph is k-edge connected if the removal of less than k edges leaves G connected.

Definition

A graph is k-edge connected if the removal of less than k edges leaves G connected.

The *Petersen Graph* is 3-edge connected.

Definition

A graph is k-edge connected if the removal of less than k edges leaves G connected.

The *Petersen Graph* is 3-edge connected. Bridgeless means 2-edge connected.

Definition

A graph is k-edge connected if the removal of less than k edges leaves G connected.

The *Petersen Graph* is 3-edge connected. Bridgeless means 2-edge connected.

Conjecture (Tutte 1966)

Every 4-edge connected graph has a 3-flow.

Definition

A graph is k-edge connected if the removal of less than k edges leaves G connected.

The *Petersen Graph* is 3-edge connected. Bridgeless means 2-edge connected.

Conjecture (Tutte 1966)

Every 4-edge connected graph has a 3-flow.

Can we make a weaker version of Tutte's conjectures?

Problems

Problems

 \bullet Every 2-edge connected graph has a 10^{10} -flow.

Problems

- Every 2-edge connected graph has a 10¹⁰-flow.
- \bullet Every 10^{10} -edge connected graph has a 3-flow.

Problems

- Every 2-edge connected graph has a 10¹⁰-flow.
- Every 10¹⁰-edge connected graph has a 3-flow.
- \bullet Even more relaxed: every 10^{10} -edge connected graph has a 10^{10} -flow.

Problems

- Every 2-edge connected graph has a 10¹⁰-flow.
- Every 10¹⁰-edge connected graph has a 3-flow.
- ullet Even more relaxed: every 10^{10}-edge connected graph has a 10^{10}-flow .

Difficulty: How to use connectivity? What is really a k-flow?

Problems

- Every 2-edge connected graph has a 10¹⁰-flow.
- Every 10¹⁰-edge connected graph has a 3-flow.
- \bullet Even more relaxed: every 10^{10} -edge connected graph has a 10^{10} -flow.

Difficulty: How to use connectivity? What is really a k-flow?

Theorem (Nash-Williams 1961)

Every 2k-edge connected graph has k edge-disjoint spanning trees.

Problems

- Every 2-edge connected graph has a 10¹⁰-flow.
- Every 10¹⁰-edge connected graph has a 3-flow.
- \bullet Even more relaxed: every 10^{10} -edge connected graph has a 10^{10} -flow.

Difficulty: How to use connectivity? What is really a k-flow?

Theorem (Nash-Williams 1961)

Every 2k-edge connected graph has k edge-disjoint spanning trees.

Definition

A (nowhere zero) k-flow of a graph G is:

Definition

A (nowhere zero) k-flow of a graph G is:

• An orientation D of G and

Definition

A (nowhere zero) k-flow of a graph G is:

- An orientation D of G and
- a *flow value* on each arc in $\{1, \ldots, k-1\}$ such that

Definition

A (nowhere zero) k-flow of a graph G is:

- An orientation D of G and
- ullet a flow value on each arc in $\{1,\ldots,k-1\}$ such that
- the total incoming flow equals the total outcoming flow for every vertex v. (Conservation of flow)

Definition

A (nowhere zero) k-flow of a graph G is:

- An orientation D of G and
- ullet a flow value on each arc in $\{1,\ldots,k-1\}$ such that
- the total incoming flow equals the total outcoming flow for every vertex v. (Conservation of flow)

When k = 2, we have a balanced orientation.

The real stuff

Definition

A (nowhere zero) k-flow of a graph G is:

- An orientation D of G and
- ullet a flow value on each arc in $\{1,\ldots,k-1\}$ such that
- the total incoming flow equals the total outcoming flow for every vertex v. (Conservation of flow)

When k = 2, we have a balanced orientation. Example of 4-flow:

Theorem

Theorem

For a given graph G, are equivalent:

• G has a k-flow (1/k) balanced orientation)

Theorem

- G has a k-flow (1/k) balanced orientation)
- G has a k-flow (flow value in $\{1, \ldots, k-1\}$)

Theorem

- G has a k-flow (1/k) balanced orientation)
- G has a k-flow (flow value in $\{1, \ldots, k-1\}$)
- G has a modular k-flow (flow value in $\{1, \ldots, k-1\}$)

Theorem

- G has a k-flow (1/k) balanced orientation)
- G has a k-flow (flow value in $\{1, \ldots, k-1\}$)
- G has a modular k-flow (flow value in $\{1, \ldots, k-1\}$)
- G has a Γ -flow for some group Γ of order k (flow value in Γ^*)

Theorem

For a given graph G, are equivalent:

- G has a k-flow (1/k) balanced orientation)
- G has a k-flow (flow value in $\{1,\ldots,k-1\}$)
- G has a modular k-flow (flow value in $\{1, \ldots, k-1\}$)
- G has a Γ -flow for some group Γ of order k (flow value in Γ^*)

Magic?

Theorem

For a given graph G, are equivalent:

- G has a k-flow (1/k) balanced orientation)
- G has a k-flow (flow value in $\{1,\ldots,k-1\}$)
- G has a modular k-flow (flow value in $\{1,\ldots,k-1\}$)
- G has a Γ -flow for some group Γ of order k (flow value in Γ^*)

Magic? No, Tutte! The number of flows of the three last definitions satisfies the same recurrence relation.

Theorem

For a given graph G, are equivalent:

- G has a k-flow (1/k) balanced orientation)
- G has a k-flow (flow value in $\{1, \ldots, k-1\}$)
- G has a modular k-flow (flow value in $\{1, \ldots, k-1\}$)
- G has a Γ -flow for some group Γ of order k (flow value in Γ^*)

Magic? No, Tutte! The number of flows of the three last definitions satisfies the same recurrence relation.

Easier to find a $(\mathbb{Z}/2\mathbb{Z})^2$ -flow than a 4-flow.

Theorem: Every 4-edge connected graph G has a 4-flow Proof.

Theorem: Every 4-edge connected graph G has a 4-flow

Proof.

• G has two edge-disjoint trees T_1 and T_2 .

Theorem: Every 4-edge connected graph G has a 4-flow

- G has two edge-disjoint trees T_1 and T_2 .
- There is an eulerian graph H_1 sandwiched between $G E(T_1)$ and G, i.e. $G E(T_1) \subseteq H_1 \subseteq G$. Same for H_2 .

Theorem: Every 4-edge connected graph G has a 4-flow

- G has two edge-disjoint trees T_1 and T_2 .
- There is an eulerian graph H_1 sandwiched between $G E(T_1)$ and G, i.e. $G E(T_1) \subseteq H_1 \subseteq G$. Same for H_2 .
- (for every even set of vertices X in a tree T there exists |X|/2 edge-disjoint paths of T with exactly X as set of endvertices.)

Theorem: Every 4-edge connected graph G has a 4-flow

- G has two edge-disjoint trees T_1 and T_2 .
- There is an eulerian graph H_1 sandwiched between $G E(T_1)$ and G, i.e. $G E(T_1) \subseteq H_1 \subseteq G$. Same for H_2 .
- (for every even set of vertices X in a tree T there exists |X|/2 edge-disjoint paths of T with exactly X as set of endvertices.)
- Orient G arbitrarily. For each edge e, give flow value $(e \in H_1, e \in H_2)$.

Theorem: Every 4-edge connected graph G has a 4-flow

- G has two edge-disjoint trees T_1 and T_2 .
- There is an eulerian graph H_1 sandwiched between $G E(T_1)$ and G, i.e. $G E(T_1) \subseteq H_1 \subseteq G$. Same for H_2 .
- (for every even set of vertices X in a tree T there exists |X|/2 edge-disjoint paths of T with exactly X as set of endvertices.)
- Orient G arbitrarily. For each edge e, give flow value $(e \in H_1, e \in H_2)$.
- Flow values are (0,1), (1,0) or (1,1) and form a $(\mathbb{Z}/2\mathbb{Z})^2$ -flow.

Theorem: Every 4-edge connected graph G has a 4-flow

Proof.

- G has two edge-disjoint trees T_1 and T_2 .
- There is an eulerian graph H_1 sandwiched between $G E(T_1)$ and G, i.e. $G E(T_1) \subseteq H_1 \subseteq G$. Same for H_2 .
- (for every even set of vertices X in a tree T there exists |X|/2 edge-disjoint paths of T with exactly X as set of endvertices.)
- Orient G arbitrarily. For each edge e, give flow value $(e \in H_1, e \in H_2)$.
- Flow values are (0,1), (1,0) or (1,1) and form a $(\mathbb{Z}/2\mathbb{Z})^2$ -flow.

Jaeger 1979: Every bridgeless graph has a 8-flow.

Theorem: Every 4-edge connected graph G has a 4-flow

Proof.

- G has two edge-disjoint trees T_1 and T_2 .
- There is an eulerian graph H_1 sandwiched between $G E(T_1)$ and G, i.e. $G E(T_1) \subseteq H_1 \subseteq G$. Same for H_2 .
- (for every even set of vertices X in a tree T there exists |X|/2 edge-disjoint paths of T with exactly X as set of endvertices.)
- Orient G arbitrarily. For each edge e, give flow value $(e \in H_1, e \in H_2)$.
- Flow values are (0,1), (1,0) or (1,1) and form a $(\mathbb{Z}/2\mathbb{Z})^2$ -flow.

Jaeger 1979: Every bridgeless graph has a 8-flow.

Seymour 1981: Every bridgeless graph has a 6-flow.

What about 10¹⁰-edge connected implies 3-flow?

What about 10¹⁰-edge connected implies 3-flow?

Theorem (Thomassen 2012)

Every 8-edge-connected graph has a 3-flow.

What about 10¹⁰-edge connected implies 3-flow?

Theorem (Thomassen 2012)

Every 8-edge-connected graph has a 3-flow.

Theorem (Lovász, Thomassen, Wu, Zhang 2013)

Every 6-edge-connected graph has a 3-flow.

What about 10^{10} -edge connected implies 3-flow?

Theorem (Thomassen 2012)

Every 8-edge-connected graph has a 3-flow.

Theorem (Lovász, Thomassen, Wu, Zhang 2013)

Every 6-edge-connected graph has a 3-flow.

Modular 3-flows are special, since reversing an arc with flow 2 turns it into 1, we can assume that all arcs have flow 1.

What about 10^{10} -edge connected implies 3-flow?

Theorem (Thomassen 2012)

Every 8-edge-connected graph has a 3-flow.

Theorem (Lovász, Thomassen, Wu, Zhang 2013)

Every 6-edge-connected graph has a 3-flow.

Modular 3-flows are special, since reversing an arc with flow 2 turns it into 1, we can assume that all arcs have flow 1.

Hence G has a 3-flow if and only if it has an orientation such that $d^+(v) = d^-(v) \mod 3$.

Taylor-made induction of a much stronger statement.

Taylor-made induction of a much stronger statement.

Taylor-made induction of a much stronger statement. On the (very long) road to 3-flow, Barát and Thomassen showed in 2006 that the following statements are equivalent:

Every 8-edge-connected graph has a 3-flow.

Taylor-made induction of a much stronger statement.

- Every 8-edge-connected graph has a 3-flow.
- Every 8-edge-connected graph has an orientation such that $d^-(v) = 0$ mod 3 for all vertices v (provided that |E(G)| is divisible by 3).

Taylor-made induction of a much stronger statement.

- Every 8-edge-connected graph has a 3-flow.
- Every 8-edge-connected graph has an orientation such that $d^-(v) = 0$ mod 3 for all vertices v (provided that |E(G)| is divisible by 3).
- The edges of any 8-edge-connected graph can be decomposed into 3-stars (provided that |E(G)| is divisible by 3).

Taylor-made induction of a much stronger statement.

- Every 8-edge-connected graph has a 3-flow.
- Every 8-edge-connected graph has an orientation such that $d^-(v) = 0$ mod 3 for all vertices v (provided that |E(G)| is divisible by 3).
- The edges of any 8-edge-connected graph can be decomposed into 3-stars (provided that |E(G)| is divisible by 3).

Taylor-made induction of a much stronger statement.

On the (very long) road to 3-flow, Barát and Thomassen showed in 2006 that the following statements are equivalent:

- Every 8-edge-connected graph has a 3-flow.
- Every 8-edge-connected graph has an orientation such that $d^-(v) = 0$ mod 3 for all vertices v (provided that |E(G)| is divisible by 3).
- The edges of any 8-edge-connected graph can be decomposed into 3-stars (provided that |E(G)| is divisible by 3).

Examples of k-stars, when k = 3, 4, 5, 6.

In his 3-flow paper, Thomassen showed:

In his 3-flow paper, Thomassen showed:

For every k, there exists c_k such that every c_k -edge-connected graph G has a k-star decomposition (provided that |E(G)| is divisible by k).

In his 3-flow paper, Thomassen showed: For every k, there exists c_k such that every c_k -edge-connected graph G has a k-star decomposition (provided that |E(G)| is divisible by k). Which is a particular case of:

In his 3-flow paper, Thomassen showed:

For every k, there exists c_k such that every c_k -edge-connected graph G has a k-star decomposition (provided that |E(G)| is divisible by k). Which is a particular case of:

Conjecture (Barát-Thomassen)

For every fixed tree T, there exists c_T such that every c_T -edge-connected graph G has a T-decomposition (provided that |E(G)| is divisible by |E(T)|).

In his 3-flow paper, Thomassen showed:

For every k, there exists c_k such that every c_k -edge-connected graph G has a k-star decomposition (provided that |E(G)| is divisible by k). Which is a particular case of:

Conjecture (Barát-Thomassen)

For every fixed tree T, there exists c_T such that every c_T -edge-connected graph G has a T-decomposition (provided that |E(G)| is divisible by |E(T)|).

Proved in September 2015 with Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, Martin Merker

In his 3-flow paper, Thomassen showed:

For every k, there exists c_k such that every c_k -edge-connected graph G has a k-star decomposition (provided that |E(G)| is divisible by k). Which is a particular case of:

Conjecture (Barát-Thomassen)

For every fixed tree T, there exists c_T such that every c_T -edge-connected graph G has a T-decomposition (provided that |E(G)| is divisible by |E(T)|).

Proved in September 2015 with Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, Martin Merker

Our proof implicitely uses the case of k-stars

Subset sums

Let M be a $n \times m$ matrix with entries in \mathbb{F}_3 .

Let M be a $n \times m$ matrix with entries in \mathbb{F}_3 . If M has rank n, every vector of $(\mathbb{F}_3)^n$ is a linear combination of the columns vectors of M with coefficients in -1,0,1.

Let M be a $n \times m$ matrix with entries in \mathbb{F}_3 .

If M has rank n, every vector of $(\mathbb{F}_3)^n$ is a linear combination of the columns vectors of M with coefficients in -1,0,1.

What about forbidding coefficient -1?

Let M be a $n \times m$ matrix with entries in \mathbb{F}_3 .

If M has rank n, every vector of $(\mathbb{F}_3)^n$ is a linear combination of the columns vectors of M with coefficients in -1, 0, 1.

What about forbidding coefficient -1?

Subset Sum Property: Every vector of $(\mathbb{F}_3)^n$ is a linear combination of the columns vectors of M with coefficients in 0, 1.

Let M be a $n \times m$ matrix with entries in \mathbb{F}_3 .

If M has rank n, every vector of $(\mathbb{F}_3)^n$ is a linear combination of the columns vectors of M with coefficients in -1,0,1.

What about forbidding coefficient -1?

Subset Sum Property: Every vector of $(\mathbb{F}_3)^n$ is a linear combination of the columns vectors of M with coefficients in 0, 1.

Conjecture (Jaeger, Linial, Payan, Tarsi)

If M contains 10^{10} disjoint rank n matrices, then it satisfies the subset sum property.

Let M be a $n \times m$ matrix with entries in \mathbb{F}_3 .

If M has rank n, every vector of $(\mathbb{F}_3)^n$ is a linear combination of the columns vectors of M with coefficients in -1,0,1.

What about forbidding coefficient -1?

Subset Sum Property: Every vector of $(\mathbb{F}_3)^n$ is a linear combination of the columns vectors of M with coefficients in 0, 1.

Conjecture (Jaeger, Linial, Payan, Tarsi)

If M contains 10^{10} disjoint rank n matrices, then it satisfies the subset sum property.

Same question with coefficients in -1, 1.

Consider a 2.10¹⁰-edge connected graph G = (V, E).

Consider a 2.10^{10} -edge connected graph G = (V, E). Orient its edges in some arbitrary way.

Consider a 2.10^{10} -edge connected graph G = (V, E).

Orient its edges in some arbitrary way.

Consider the $V \times E$ incidence matrix M of G (hence every column has exactly a 1 and a -1).

Consider a 2.10¹⁰-edge connected graph G = (V, E).

Orient its edges in some arbitrary way.

Consider the $V \times E$ incidence matrix M of G (hence every column has exactly a 1 and a -1).

Observe that M has rank n-1.

Consider a 2.10^{10} -edge connected graph G = (V, E).

Orient its edges in some arbitrary way.

Consider the $V \times E$ incidence matrix M of G (hence every column has exactly a 1 and a -1).

Observe that M has rank n-1.

Since G has 10^{10} disjoint spanning trees, M has 10^{10} disjoint matrices of rank n-1.

Consider a 2.10^{10} -edge connected graph G = (V, E).

Orient its edges in some arbitrary way.

Consider the $V \times E$ incidence matrix M of G (hence every column has exactly a 1 and a -1).

Observe that M has rank n-1.

Since G has 10^{10} disjoint spanning trees, M has 10^{10} disjoint matrices of rank n-1.

If subset sum conjecture holds, the vector 0 is achievable via a linear combination with coefficients -1 or 1.

Consider a 2.10^{10} -edge connected graph G = (V, E).

Orient its edges in some arbitrary way.

Consider the $V \times E$ incidence matrix M of G (hence every column has exactly a 1 and a -1).

Observe that M has rank n-1.

Since G has 10^{10} disjoint spanning trees, M has 10^{10} disjoint matrices of rank n-1.

If subset sum conjecture holds, the vector 0 is achievable via a linear combination with coefficients -1 or 1.

This is exactly a 3-flow.

And at last the permanent

Permanent Lemma (Alon)

Let M be a $n \times n$ matrix with entries in \mathbb{F}_3 with non zero permanent. Let x be any vector of $(\mathbb{F}_3)^n$. Then there is a linear combination v of M in -1,1 such that x and v differs on all coordinates.

And at last the permanent

Permanent Lemma (Alon)

Let M be a $n \times n$ matrix with entries in \mathbb{F}_3 with non zero permanent. Let x be any vector of $(\mathbb{F}_3)^n$. Then there is a linear combination v of M in -1,1 such that x and v differs on all coordinates.

Question (with Mathieu R.)

If M contains 10^{10} disjoint rank n matrices, then it contains a non zero permanent matrix?

And at last the permanent

Permanent Lemma (Alon)

Let M be a $n \times n$ matrix with entries in \mathbb{F}_3 with non zero permanent. Let x be any vector of $(\mathbb{F}_3)^n$. Then there is a linear combination v of M in -1,1 such that x and v differs on all coordinates.

Question (with Mathieu R.)

If M contains 10^{10} disjoint rank n matrices, then it contains a non zero permanent matrix?

Would imply the subset sum problem.