
Formal Models for Concurrent Reconfiguration

of Component Assemblies

Vincent Lanore
December 10, 2015

Based on work done with Christian Pérez
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Avalon Programming Model People

Subset of Avalon working on

programming models

• for cloud

• for computing grids

• for High-Performance

Computing (HPC)...

People

• Christian Pérez

• Hélène Coullon

• Jérôme Richard

• Pedro Silva

• myself
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Thesis Approach

Programming model:

• Idea

• Formal specification

• formal syntax

• formal semantics

• Properties?

• Implementation

• Evaluation on use cases

• performance

• code metrics

Benefits

• sturdier approach

• formal results

• connections with formal

software engineering

communities
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Component-Based Programming

How to ease reuse by third parties?

code

→ a software component → a component assembly
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Component-Based Programming

How to ease reuse by third parties?

type2

type3

type

thing
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Component Models

Ports/component definitions

...

type type ...

+ assembly model

type2

type3

type

thing

Benefits

• reuse

• separation of concerns

• structure-level view

HPC Component Models

• Examples: CCA, L2C...
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Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

• fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers
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Structure-level Reconfiguration

One possible way to write AMR:

Cell Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Cell

Interpolator

refine

CellIn
te
rp
ol
at
or

Pro

• structure-level

reconfiguration

Challenges

• application model

• performance
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Programming Model Roles

Component
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The DirectMOD Component Model

Base component model

• non-reconfigurable

• similar to L2C/CCA

• call-stack-based operational semantics (see manuscript)

• resource model (see manuscript)

DirectMOD: a full reconfigurable model

• additional concepts to

• specify locking scope

• specify reconfiguration

• extended syntax + reconfiguration semantics
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Basic Assembly

Compute Compute

ComputeCompute

component

port

reference

owner

Elements

• components

• ports

Relations

• point-to-point

references

• owner
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Domains

Compute Compute

ComputeCompute

domain

New element: domains

• manages a

subassembly

• unit of locking

• reconfigure its

contents

• user-defined scope
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Transformations

transformation

Compute

state
topology

Insertorigin

destination{
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Adapters

transformation adapter

ComputeComputeCompute

Remove

Insert

subassembly

• special kind of port

• links transformation to its target
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Full DirectMOD Assembly

Compute

Insert

Remove

Insert

• specify starting assembly

• assembly representation during runtime
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Definition Example: Ports

The set of DirectMOD ports on nameset N is defined by:

(1)

Portsdmod(N )

= {USE (name, ref ) | (name, ref ) ∈ N 2}
∪ {PROVIDE (name) | name ∈ N}
∪ {ADAPT (name, transfo) | (name, transfo) ∈ N 2}

where :

• provide and use ports are defined as for the preliminary model;

• the name ∈ N in the ADAPT operator is the name of the

adapter;

• transfo ∈ N is the transformation reference of the adapter;

• α is the target assembly.
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Example Definition: Transformations

Let A be a set of assemblies and N a set of names. A

transformation τ is of the form:

(2)τ = (name, α, ω, s, t)

where:

• name ∈ N is the name of the transformation;

• α ∈ A is the origin of the transformation;

• ω ∈ A is the destination of the transformation;

• s : Support(α)→ Support(ω) ∪ {⊥} is the state mapping;

• t : Support(α)→ Support(ω) ∪ {⊥} is the topology mapping.
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The DirectMOD Component Model

The DirectMOD model

• specialized graph structure

• components, ports, resources

• concurrent semantics

• transformations

Challenges and perspectives

• proofs with transformations

• locking / deadlock detection
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SpecMOD Principle

Very simple assembly model

• components (squares)

• endpoints (circles)

• edges

Rich type system

• component types

• endpoint types

• specialization relations

Master
n

workers

Assembly

Type system
Worker

Worker1 Worker2

n
workers

2
workers

3
workers

2
workers

Worker

Worker
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Formal Work

SpecMOD: a general specialization calculus

• type system definition

• assembly definition

• specialization operations as rewriting rules

• parametric type systems encoding
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Encoding Example

Compute

Insert

Work with Chardet Maverick
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Encoding Example

Work with Chardet Maverick
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Hierarchy

Components implemented by component assemblies

called composite components

type2

thing

type

Structure

• bigraphs?

Challenges

• transformation expression
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Conclusion

Discrete structures themes:

• specialized graph-like structures

• multi-sorted graphs

• list edges

• hierarchy

• graph transformations

• graph specialization through

rewriting

Problems and perspectives

• proofs with transformations

• locking / deadlock detection

• encoding / decoding

complex structures
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