
Formal Models for Concurrent Reconfiguration

of Component Assemblies

Vincent Lanore
December 10, 2015

Based on work done with Christian Pérez

Discrete Structures Day

Avalon Programming Model People

Subset of Avalon working on

programming models

• for cloud

• for computing grids

• for High-Performance

Computing (HPC)...

People

• Christian Pérez

• Hélène Coullon

• Jérôme Richard

• Pedro Silva

• myself

2

Thesis Approach

Programming model:

• Idea

• Formal specification

• formal syntax

• formal semantics

• Properties?

• Implementation

• Evaluation on use cases

• performance

• code metrics

Benefits

• sturdier approach

• formal results

• connections with formal

software engineering

communities

3

Thesis Approach

Programming model:

• Idea

• Formal specification

• formal syntax

• formal semantics

• Properties?

• Implementation

• Evaluation on use cases

• performance

• code metrics

Benefits

• sturdier approach

• formal results

• connections with formal

software engineering

communities

3

Plan

1 Context

Component Models

Reconfiguration

2 The DirectMOD Component Model

3 Other Problems

4 Conclusion and Perspectives

4

Plan

1 Context

Component Models

Reconfiguration

2 The DirectMOD Component Model

3 Other Problems

4 Conclusion and Perspectives

5

Component-Based Programming

How to ease reuse by third parties?

code

→ a software component → a component assembly

6

Component-Based Programming

How to ease reuse by third parties?

code
entry point

function
pointer

→ a software component → a component assembly

6

Component-Based Programming

How to ease reuse by third parties?

code

→ a software component → a component assembly

6

Component-Based Programming

How to ease reuse by third parties?

code
provide

use

Ports

→ a software component → a component assembly

6

Component-Based Programming

How to ease reuse by third parties?

code
provide

use

Ports

black box

myType

→ a software component

→ a component assembly

6

Component-Based Programming

How to ease reuse by third parties?

type2

type3

type

thing

→ a software component

→ a component assembly
6

Component Models

Ports/component definitions

...

type type ...

+ assembly model

type2

type3

type

thing

Benefits

• reuse

• separation of concerns

• structure-level view

HPC Component Models

• Examples: CCA, L2C...

7

Component Models

Ports/component definitions

...

type type ...

+ assembly model

type2

type3

type

thing

Benefits

• reuse

• separation of concerns

• structure-level view

HPC Component Models

• Examples: CCA, L2C...

7

Component Models

Ports/component definitions

...

type type ...

+ assembly model

type2

type3

type

thing

Benefits

• reuse

• separation of concerns

• structure-level view

HPC Component Models

• Examples: CCA, L2C...

7

Component Models

Ports/component definitions

...

type type ...

+ assembly model

type2

type3

type

thing

Benefits

• reuse

• separation of concerns

• structure-level view

HPC Component Models

• Examples: CCA, L2C...

7

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

• fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers

8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

• fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers

8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Discretization

• fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers

8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

1 cell = 1 process
 + 1 mesh of data • fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers

8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Discretization • fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers

8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Variable resolution • fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers

8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Variable resolution

?

• fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers

8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Dynamic re-meshing • fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers

8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Dynamic re-meshing • fixed resolution cells

• one process per cell

• complex data

structure

• dynamic process pool

• dynamic data

structure

⇒complex for

programmers 8

Structure-level Reconfiguration

One possible way to write AMR:

Cell Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Cell

Interpolator

refine

CellIn
te
rp
ol
at
or

Pro

• structure-level

reconfiguration

Challenges

• application model

• performance
9

Plan

1 Context

Component Models

Reconfiguration

2 The DirectMOD Component Model

3 Other Problems

4 Conclusion and Perspectives

10

Programming Model Roles

Component
programmers

Something
Compute

Com

writes

writes

Assembler
(end user)

writes

in1out0

adapt0

Insert

Compute0

R1

Compute

reusable

application-specific

11

Programming Model Roles

Component
programmers

Something
Compute

Com

writes

writes

Transformation
programmers

writes

writes

MyTransfo

Disconnect
NOP

Assembler
(end user)

writes

in1out0

adapt0

Insert

Compute0

R1

Compute

reusable

application-specific

11

Programming Model Roles

Component
programmers

Something
Compute

Com

writes

writes

Locking/synchro
specialist

Domain C

Domain B

Domain A

writes

Transformation
programmers

writes

writes

MyTransfo

Disconnect
NOP

Assembler
(end user)

writes

in1out0

adapt0

Insert

Compute0

R1

Compute

reusable

application-specific

11

The DirectMOD Component Model

Base component model

• non-reconfigurable

• similar to L2C/CCA

• call-stack-based operational semantics (see manuscript)

• resource model (see manuscript)

DirectMOD: a full reconfigurable model

• additional concepts to

• specify locking scope

• specify reconfiguration

• extended syntax + reconfiguration semantics

12

Basic Assembly

Compute Compute

ComputeCompute

component

port

reference

owner

Elements

• components

• ports

Relations

• point-to-point

references

• owner

13

Domains

Compute Compute

ComputeCompute

domain

New element: domains

• manages a

subassembly

• unit of locking

• reconfigure its

contents

• user-defined scope

14

Domains

Compute Compute

ComputeCompute

domain

New element: domains

• manages a

subassembly

• unit of locking

• reconfigure its

contents

• user-defined scope

14

Transformations

transformation

Compute

state
topology

Insertorigin

destination{

15

Transformations

Compute

ComputeCompute

Monitor

Insert

15

Transformations

Compute

ComputeComputeCompute

Monitor

ComputeCompute

Monitor replace

Insert

15

Transformations

Compute

ComputeComputeCompute

Monitor

ComputeCompute

Monitor state

Insert

15

Transformations

Compute

ComputeComputeCompute

Monitor

ComputeCompute

Monitor topology

Insert

15

Adapters

transformation adapter

ComputeComputeCompute

Remove

Insert

subassembly

• special kind of port

• links transformation to its target

16

Full DirectMOD Assembly

Compute

Insert

Remove

Insert

• specify starting assembly

• assembly representation during runtime

17

Full DirectMOD Assembly

Compute

Remove

Remove

Insert

Compute

Insert

Remove

Insert

• specify starting assembly

• assembly representation during runtime

17

Full DirectMOD Assembly

Compute

Remove

Remove

Insert

Compute

ComputeCompute

Compute

Insert

Remove

Insert

Remove

Remove

InsertRemove

Insert

Compute

Insert

Remove

Insert

• specify starting assembly

• assembly representation during runtime

17

Full DirectMOD Assembly

Compute

Remove

Remove

Insert

Compute

ComputeCompute

Compute

Insert

Remove

Insert

Remove

Remove

InsertRemove

Insert

Compute

Insert

Remove

Insert

• specify starting assembly

• assembly representation during runtime

17

Definition Example: Ports

The set of DirectMOD ports on nameset N is defined by:

(1)

Portsdmod(N)

= {USE (name, ref) | (name, ref) ∈ N 2}
∪ {PROVIDE (name) | name ∈ N}
∪ {ADAPT (name, transfo) | (name, transfo) ∈ N 2}

where :

• provide and use ports are defined as for the preliminary model;

• the name ∈ N in the ADAPT operator is the name of the

adapter;

• transfo ∈ N is the transformation reference of the adapter;

• α is the target assembly.

18

Example Definition: Transformations

Let A be a set of assemblies and N a set of names. A

transformation τ is of the form:

(2)τ = (name, α, ω, s, t)

where:

• name ∈ N is the name of the transformation;

• α ∈ A is the origin of the transformation;

• ω ∈ A is the destination of the transformation;

• s : Support(α)→ Support(ω) ∪ {⊥} is the state mapping;

• t : Support(α)→ Support(ω) ∪ {⊥} is the topology mapping.

19

The DirectMOD Component Model

The DirectMOD model

• specialized graph structure

• components, ports, resources

• concurrent semantics

• transformations

Challenges and perspectives

• proofs with transformations

• locking / deadlock detection

20

Plan

1 Context

Component Models

Reconfiguration

2 The DirectMOD Component Model

3 Other Problems

4 Conclusion and Perspectives

21

SpecMOD Principle

Very simple assembly model

• components (squares)

• endpoints (circles)

• edges

Rich type system

• component types

• endpoint types

• specialization relations

Master
n

workers

Assembly

Type system
Worker

Worker1 Worker2

n
workers

2
workers

3
workers

2
workers

Worker

Worker

22

SpecMOD Principle

Very simple assembly model

• components (squares)

• endpoints (circles)

• edges

Rich type system

• component types

• endpoint types

• specialization relations

Master
2

workers

Assembly

Type system
Worker

Worker1 Worker2

n
workers

2
workers

3
workers

2
workers

Worker

Worker

22

SpecMOD Principle

Very simple assembly model

• components (squares)

• endpoints (circles)

• edges

Rich type system

• component types

• endpoint types

• specialization relations

Master

Assembly

Type system
Worker

Worker1 Worker2

n
workers

2
workers

3
workers

2
workers

Worker

Worker

Worker

Worker

22

SpecMOD Principle

Very simple assembly model

• components (squares)

• endpoints (circles)

• edges

Rich type system

• component types

• endpoint types

• specialization relations

Master

Assembly

Type system
Worker

Worker1 Worker2

n
workers

2
workers

3
workers

2
workers

Worker

Worker

Worker1

Worker

22

Formal Work

SpecMOD: a general specialization calculus

• type system definition

• assembly definition

• specialization operations as rewriting rules

• parametric type systems encoding

23

Encoding Example

Compute

Insert

Work with Chardet Maverick

24

Encoding Example

Work with Chardet Maverick
24

Hierarchy

Components implemented by component assemblies

called composite components

type2

thing

type

Structure

• bigraphs?

Challenges

• transformation expression

25

Hierarchy

Components implemented by component assemblies

called composite components

type2

type

thing

type_composite

type3

Structure

• bigraphs?

Challenges

• transformation expression

25

Hierarchy

Components implemented by component assemblies

called composite components

type2

type

thing

type_composite

t3

t4

tc2

Structure

• bigraphs?

Challenges

• transformation expression

25

Plan

1 Context

Component Models

Reconfiguration

2 The DirectMOD Component Model

3 Other Problems

4 Conclusion and Perspectives

26

Conclusion

Discrete structures themes:

• specialized graph-like structures

• multi-sorted graphs

• list edges

• hierarchy

• graph transformations

• graph specialization through

rewriting

Problems and perspectives

• proofs with transformations

• locking / deadlock detection

• encoding / decoding

complex structures

27

	Context
	Component Models
	Reconfiguration

	The DirectMOD Component Model
	Other Problems
	Conclusion and Perspectives

