Formal Models for Concurrent Reconfiguration
of Component Assemblies

Vincent Lanore
December 10, 2015

Based on work done with Christian Pérez

Discrete Structures Day

A\

ENS DE LYON

OLI7O ‘VALON UvasRsrr:E D= LYON

S

Avalon Programming Model People
lVlLON

Subset of Avalon working on People

rogramming models
HS & e Christian Pérez
e for cloud
e Hélene Coullon
e for computing grids
e Jérome Richard

e Pedro Silva

myself

e for High-Performance
Computing (HPC)...

Thesis Approach

Programming model:

e |dea

Formal specification

e formal syntax
e formal semantics

Properties?

Implementation

Evaluation on use cases

e performance
e code metrics

Thesis Approach

Programming model: Benefits
e |dea e sturdier approach
e Formal specification e formal results

o formal syntax e connections with formal

o formal semantics . .
software engineering

N .
Properties? communities

Implementation

Evaluation on use cases

e performance
e code metrics

Context
@ Component Models

@ Reconfiguration
The DIRECTMOD Component Model
Other Problems

Conclusion and Perspectives

Context
@ Component Models

@ Reconfiguration

Component-Based Programming

How to ease reuse by third parties?

code

Component-Based Programming

How to ease reuse by third parties?

entry point
code

_— function

— . pointer

Component-Based Programming

How to ease reuse by third parties?

code
0 —— G
D

/

—*
G

Component-Based Programming

How to ease reuse by third parties?

Ports code

provide
.]

S

—*
G

u

Component-Based Programming

How to ease reuse by third parties?

black box
Ports /, \\
o——
provide
myType
>
use

. J

— a software component

Component-Based Programming

How to ease reuse by third parties?

M))
type © type2
— O_\—/
) M)
thing © type3
| —

— a component assembly

Component Models

Ports/component definitions

oD 0.

Component Models

Ports/component definitions + assembly model
Y M
O) |:| type © type2
e
Y S
type type| --- ¢
Yp thing type3

Component Models

Ports/component definitions + assembly model
Y SR
O) |:| type O type2
/J(o__/
Y Y
type| .- thing —O— type3
~ ~
Benefits
® leuse

e separation of concerns

e structure-level view

Component Models

Ports/component definitions + assembly model
M Y
O) |:| type O type2
D o G
Y Y
t t cos ¢
ype thing 60— type3
~ ~ /
Benefits HPC Component Models
® reuse e Examples: CCA, L2C...

e separation of concerns

e structure-level view

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Discretization

)
=

(

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

1 cell = 1 process

+ 1 mesh of data——-F i e fixed resolution cells

T
14 ENEENN]

e one process per cell

)
=

(

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Discretization e fixed resolution cells

e one process per cell

//!

)
=

(

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Variable resolution o fixed resolution cells
e one process per cell
N e complex data
\\‘\\ structure
NN
\:\
AN
N
N
N
8

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Variable resolution o fixed resolution cells

e one process per cell

e complex data
B | structure

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Dynamic re-meshing e fixed resolution cells

e one process per cell

e complex data

structure

/ /
[]

dynamic process pool

dynamic data

A/
°

structure

Reconfigurable HPC Applications

Reconfigurable applications

application structure changes at runtime

Example: Adaptive Mesh Refinement (AMR)

Dynamic re-meshing e fixed resolution cells

e one process per cell

e complex data

structure

/ /
[]

dynamic process pool

N e dynamic data

structure

=complex for

programmers 8

Structure-level Reconfiguration

One possible way to write AMR:

/ <1 Cell Cell
: I I

Interpolator

Cell
Cell | Cell A Cell | Cell
| | I I
Cell Y cell Infer/,;o/amr
Cell Cell
Pro Challenges
e structure-level e application model

reconfiguration e performance

The DIRECTMOD Component Model

10

Programming Model Roles

writes =]
gl =) Com
writes Compute
eS|
Component ng
programmers

reusable

application-specific

gl adapto :
writes Compute ::

—writes]
Computeo

Assembler _—"O—'O_“‘
(end user) I

11

Programming Model Roles

writes =]
gl =) Com
writes Compute
Component ng
programmers
writes MyTransfo 2>
;)
D
NoP> =
writes (P (P ? ;
Transformation é é (5 (5
reusable programmers
application-specific
gl adapto :
writes Compute
Computeo -
Assembler I
(end user) I

11

Programming Model Roles

writes =]
gl =) Com
writes Compute
Component ng
programmers
writes MyTransfo=>
;)
D
NoP> =
writes (P (P ? ;
Transformation é é (5 (5
reusable programmers
application-specific
writes
Locking/synchro Domain A
specialist
gl adapto :
writes Compute
Computeo -
Assembler I
(end user) I

11

The DirectMOD Component Model

Base component model

e non-reconfigurable
similar to L2C/CCA

call-stack-based operational semantics (see manuscript)

e resource model (see manuscript)

DirectMOD: a full reconfigurable model

e additional concepts to
e specify locking scope
e specify reconfiguration

e extended syntax + reconfiguration semantics

12

Basic Assembly

=] N Elements
Compute [—O—3(O— Compute | < C()mp()nent ° Components
e ports
~€—— port
~€— reference .
Relations
~&— owner . .
=]) e point-to-point
Compute | —O€——O—| Compute references
e owner

13

< domain

g] g]
Compute [—O—»O Compute
T
i
1
g] g]
Compute 1 Compute

New element: domains

e manages a
subassembly

e unit of locking

e reconfigure its
contents

e user-defined scope

14

a .
g & New element: domains
Compute [—O—»(O— Compute

® manages a
~&domain subassembly

e unit of locking

e reconfigure its

gl gl contents
Compute —O<€——O— Compute

e user-defined scope

14

Transformations

Insert o
e & transformation
€—Tstate

topology

origin =

g]

Compute

destination

ii5)

Transformations

Insert ¢>

g]

Compute

gl
Monitor

gl gl
Compute Compute

ii5)

Transformations

Insert ¢>

g]

Compute

g] g]
Monitor replace Monitor ~ [—O
—
=1 =1l g] =1 g]
Compute Compute Compute O—>»0O—{ Compute —O QO— Compute

ii5)

Transformations

Insert ¢>

g]

Compute

g] g]
Monitor State Monitor ~ [—O

=1 =1l g] =1 g]
Compute Compute Compute O—>»(O— Compute | —O—I»(Q— Compute

ii5)

Transformations

Insert ¢>

g]

Compute

=1l g1
Monitor topology Monitor
—_—

=1l =1l g] =1 g]
Compute Compute Compute Compute —O—3»(O—{ Compute

ii5)

Remove |:>

=H gl =l
Compute [O—+—3»(O— Compute —O+—3(O— Compute

e special kind of port

e links transformation to its target

16

Full DirectMOD Assembly

17

Full DirectMOD Assembly

nsert G

17

Full DirectMOD Assembly

E Remove g

Compute —O-€

nsert G

17

Full DirectMOD Assembly

nsert G

E Remove g %: E

Compute —O-€

e specify starting assembly

e assembly representation during runtime

17

Definition Example: Ports

The set of DirectMOD ports on nameset N is defined by:

Portsgmod(N')
= {USE(name, ref) | (name, ref) € N*°} (1)
U {PROVIDE (name) | name € N'}
U {ADAPT (name, transfo) | (name, transfo) € N2}

where :

e provide and use ports are defined as for the preliminary model;
e the name € N in the ADAPT operator is the name of the
adapter;

e transfo € N is the transformation reference of the adapter;
e « is the target assembly.

18

Example Definition: Transformations

Let A be a set of assemblies and N a set of names. A
transformation 7 is of the form:

T = (name, a,w, s, t) (2)

where:

e name € N is the name of the transformation;
e o € A is the origin of the transformation;

e w € A is the destination of the transformation;

s : Support(a) — Support(w) U {_L} is the state mapping;

t : Support(a) — Support(w) U {_L} is the topology mapping.

19

The DirectMOD Component Model

The DirectMOD model Challenges and perspectives
e specialized graph structure e proofs with transformations

e components, ports, resources e locking / deadlock detection

e concurrent semantics

e transformations

20

Other Problems

21

SpecMOD Principle

Very simple assembly model Rich type system
e components (squares) e component types
e endpoints (circles) e endpoint types
e edges e specialization relations
Assembly Worker worILers
Master —o—. rrll(N / \ Type system2 / \ :
Workerl Worker2 workers| workers
> Worker
workers| i
Worker

22

SpecMOD Principle

Very simple assembly model Rich type system
e components (squares) e component types
e endpoints (circles) e endpoint types
e edges e specialization relations
Assembly Worker wor?cers
T tem
Master _o_wor21<ers / \ YPesyste 2/ \ 3
Workerl Worker2 workers| workers
> Worker
workers| i
Worker

22

SpecMOD Principle

Very simple assembly model Rich type system
e components (squares) e component types
e endpoints (circles) e endpoint types
e edges e specialization relations
Assembl n
Y Worker| workers
Work Type system
Master Ai orker / \ 2/ \ 3
Worker Workerl| Worker2 workers| workers
> Worker|

workers|— i i
i | Worker|

22

SpecMOD Principle

Very simple assembly model Rich type system
e components (squares) e component types
e endpoints (circles) e endpoint types
e edges e specialization relations
Assembly Worker worILers
Mastor Worker / \ Type system — 77X
ﬁ Worker Workerl Worker2) W0r21<ers Wor3kers

> Worker
workers| i
Worker

22

Formal Work

SpecMOD: a general specialization calculus

e type system definition
e assembly definition
e specialization operations as rewriting rules

e parametric type systems encoding

23

Encoding Example

Insert |:>

g]

Compute

24

Encoding Example

Topo —

inserer

output

sub-
Port assembly,

T

v
4— Composant —)

o
Port —>| |€—] Connection

Work with Chardet Maverick
24

Components implemented by component assemblies
called composite components

e D

@ type?2

type
N J
<|> thing
Structure Challenges
e bigraphs? e transformation expression

25

Hierarchy

Components implemented by component assemblies
called composite components

(type composite)
<> @ type?2
type type3
. & J
<Y> thing
Structure Challenges
e bigraphs? e transformation expression

25

Components implemented by component assemblies
called composite components

(type composite)
@ type?2
type
(N
thing
Structure Challenges
e bigraphs? e transformation expression

25

Conclusion and Perspectives

26

Conclusion

Discrete structures themes: Problems and perspectives
° specialized graph-like structures ° proofs with transformations
Sl depls e locking / deadlock detection
e list edges

e hierarchy e encoding / decoding

: complex structures
e graph transformations

e graph specialization through

rewriting

27

	Context
	Component Models
	Reconfiguration

	The DirectMOD Component Model
	Other Problems
	Conclusion and Perspectives

