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Structure-level Reconfiguration

One possible way to write AMR:
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The DirectMOD Component Model

Base component model

e non-reconfigurable
similar to L2C/CCA

call-stack-based operational semantics (see manuscript)

e resource model (see manuscript)

DirectMOD: a full reconfigurable model

e additional concepts to
e specify locking scope
e specify reconfiguration

e extended syntax + reconfiguration semantics
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Full DirectMOD Assembly
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Definition Example: Ports

The set of DirectMOD ports on nameset N is defined by:

Portsgmod(N')
= {USE(name, ref) | (name, ref) € N*°} (1)
U {PROVIDE (name) | name € N'}
U {ADAPT (name, transfo) | (name, transfo) € N2}

where :

e provide and use ports are defined as for the preliminary model;
e the name € N in the ADAPT operator is the name of the
adapter;

e transfo € N is the transformation reference of the adapter;
e « is the target assembly.
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Example Definition: Transformations

Let A be a set of assemblies and N a set of names. A
transformation 7 is of the form:

T = (name, a,w, s, t) (2)

where:

e name € N is the name of the transformation;
e o € A is the origin of the transformation;

e w € A is the destination of the transformation;

s : Support(a) — Support(w) U {_L} is the state mapping;

t : Support(a) — Support(w) U {_L} is the topology mapping.
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The DirectMOD Component Model

The DirectMOD model Challenges and perspectives
e specialized graph structure e proofs with transformations

e components, ports, resources e locking / deadlock detection

e concurrent semantics

e transformations
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SpecMOD Principle
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Formal Work

SpecMOD: a general specialization calculus

e type system definition
e assembly definition
e specialization operations as rewriting rules

e parametric type systems encoding
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Hierarchy
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Conclusion and Perspectives
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Conclusion

Discrete structures themes: Problems and perspectives
° specialized graph-like structures ° proofs with transformations
Sl depls e locking / deadlock detection
e list edges

e hierarchy e encoding / decoding

: complex structures
e graph transformations

e graph specialization through

rewriting
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