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[1] We reexamine the scaling structure of temporal rainfall using wavelet-based
methodologies which, as we demonstrate, offer important advantages compared to the
more traditional multifractal approaches such as box counting and structure function
techniques. In particular, we explore two methods based on the Continuous Wavelet
Transform (CWT) and the Wavelet Transform Modulus Maxima (WTMM): the partition
function method and the newer and more efficient magnitude cumulant analysis method.
We also report the results of a two-point magnitude correlation analysis which is able
to infer the presence or absence of multiplicativity as the underlying mechanism of
scaling. The diagnostic power of these methodologies for small samples, signals with short
ranges of scaling, and signals for which high-frequency fluctuations are superimposed on
a low-frequency component (all common attributes of geophysical signals) is carefully
documented. Application of these methodologies to several midwestern convective storms
sampled every 5 s over several hours provides new insights. They reveal the presence of a
very intermittent multifractal structure (a wide spectrum of singularities) in rainfall
fluctuations between the scales of 5 min and the storm pulse duration (of the order of
1–2 hours for the analyzed storms). The two-point magnitude statistical analysis suggests
that this structure is consistent with a multiplicative cascading mechanism which however
is local in nature; that is, it applies only within each storm pulse but not over the
whole storm duration.
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1. Introduction

[2] Analysis and modeling of space-time rainfall [e.g.,
Schertzer and Lovejoy, 1987; Olsson et al., 1993; Marsan et
al., 1996; Veneziano et al., 1996; Cârsteanu and Foufoula-
Georgiou, 1996; Venugopal and Foufoula-Georgiou, 1996;
Harris et al., 1998; Deidda et al., 1999; Menabde and
Sivapalan, 2000] (see also Foufoula-Georgiou [1997] for a
review) have been influenced by statistical theories of
turbulence aiming at understanding the partition of energy
at different scales. A breakthrough in the statistical theory of
turbulence came about with the observation that the support
of the transfer of energy is spatially intermittent, i.e., that
the energy associated with the small scales in a turbulent
flow is not distributed uniformly in space [Meneveau and
Sreenivasan, 1991; Frisch, 1995]. This observation
prompted a shift from the global Fourier-based analysis of
Kolmogorov to a local analysis aimed at characterizing the
nature of the very abrupt variations in velocity fluctuations.

This led to the so-called multifractal formalism introduced by
Parisi and Frisch [1985]. Loosely speaking, this formalism
relates the scale dependence of the statistical moments of
turbulent velocity fluctuations to the intermittent and multi-
fractal nature of the points at which abrupt local increases of
velocities exist.
[3] More specifically, Parisi and Frisch [1985] computed

from experimental data, as a function of displacement ‘, the
average value of the qth power of the change in the
turbulent velocity, that is, the average value of jv(x + ‘) �
v(x)jq and found that it varied as power law ‘z(q), where the
exponent z(q) depended nonlinearly on q. They interpreted
the nonlinear behavior of z(q) as an indication (or direct
consequence) of the existence of spatial heterogeneity in the
local regularity of the velocity field. Namely, by calling
D(h) the Hausdorff dimension of the set of points for which
the increase in velocity acts as ‘h (points of singularity h),
they showed that the contribution of these ‘‘singularities of
order h’’ to the average value of jv(x + ‘) � v(x)jq is of the
order of magnitude of the product ‘qh � ‘1�D(h); the second
factor is the probability that a circle of radius ‘ intersects a
fractal set of dimension D(h). This forms the basis of the
multifractal formalism, as one notes that when ‘ tends to 0,
the dominant term in the above expression is the one with
the smallest possible exponent, giving rise to the so-called
Legendre transform z(q) = inf

h>0
[qh +1 � D(h)]. The

nonlinearity of z(q) therefore indicates that the velocity
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fluctuations display multifractal scaling as characterized by
a suite of h values given by h(q) = @z(q)/@q.
[4] Having understood in a heuristic manner the intimate

connection between z(q) and D(h), we point out that the
traditional multifractal analysis of turbulence [Parisi and
Frisch, 1985; Frisch, 1995] or other geophysical signals,
including rainfall, starts by estimating z(q) via a moment
analysis (power law decay of jv(x + ‘) � v(x)jq with ‘) and
then estimating D(h) from the Legendre transform. It is
noted however, that to conclusively infer the nonlinearity of
z(q) versus q, higher-order moments are typically needed
which presents a problem for small sample sizes, or when
the range of scaling is short. In addition, there are other
shortcomings of this traditional methodology [Muzy et al.,
1993, 1994], such as the inability to access the whole range
of singularity exponents, as will be discussed in detail in the
following section.
[5] Motivated by recent advances in multifractal analysis

of turbulence velocity signals [e.g., Arneodo et al., 1998c,
1999; Delour et al., 2001], this paper proposes to use an
alternative methodology for diagnosing and estimating the
multifractal structure of rainfall. The centerpiece of this
estimation is access to the whole spectrum of singularities
D(h) which fully characterizes the intermittent structure of
rainfall fluctuations and therefore the scaling of their statis-
tical moments, or the scaling of the whole probability
density function (PDF) using the so-called ‘‘propagator’’
method [Castaing et al., 1990; Arneodo et al., 1997b,
1998c]. As will be formally presented later, a natural tool
for unraveling local singularities of a signal is the wavelet
transform [e.g., Muzy et al., 1994; Mallat, 1998] which acts
as a microscope and by zooming locally at the signal can
characterize the nature of its abrupt local fluctuations. A
multifractal formalism based on wavelets has been well
established in the turbulence literature [e.g., Muzy et al.,
1991; Bacry et al., 1993; Muzy et al., 1994; Arneodo et al.,
1995a], but has not been adequately explored yet for
geophysical signals. One of the goals of this paper is to
introduce the wavelet-based multifractal formalism [see also
Davis et al., 1994] and the related magnitude cumulant
analysis method [Delour et al., 2001] in a pedagogical way
such that it can motivate further exploration of these
powerful methodologies in geophysics. In particular, we
will emphasize the investigation of the correlations of the
logarithms of the wavelet coefficients (the so-called ‘‘mag-
nitude’’) as a powerful test of the existence of a possible
underlying multiplicative structure [Arneodo et al., 1998a,
1998b]. The second goal is to revisit the multiscaling
analysis of high-resolution temporal rainfall and offer new
insights on its multifractal structure.
[6] The paper is structured as follows. In section 2 we

present a brief but self-contained review of the wavelet-
based multifractal formalism. We start with the continuous
wavelet transform and show how it can be used to extract
singularities of a signal. We then demonstrate that by
concentrating on critically selected points only (the maxima
lines pointing to singularities), i.e., working with the Wave-
let Transform Modulus Maxima (WTMM) coefficients,
results in a more robust estimate of the singularity spectrum
D(h). We also note that by using the WTMM coefficients
instead of the CWT coefficients, we have access to the
whole range of singularities including the decaying part of

the D(h) curve, which can only be resolved by computing
the scaling of negative moments (not possible in the typical
structure function or CWT multifractal analysis as the PDFs
of those fluctuations are centered around zero). In section 3
we introduce the one- and two-point cumulant analysis
method and explain its advantages versus the CWT and
WTMM standard multifractal analysis. In section 4 we
present the results of applying the proposed methodology
to four high-resolution storms sampled every 5 s over the
midwestern U.S. For illustrative purposes we present and
compare the results of the structure function, CWT, WTMM
and cumulant analysis on one data set. We pay special
attention to using wavelets of increasing order, i.e., increas-
ing number of vanishing moments, to (1) properly remove
nonstationarities in the signal and define (instead of impose)
the ‘‘fluctuations’’ whose scaling properties we characterize
and (2) to have confidence that the scaling behavior and
scaling exponent estimates do not depend on the chosen
wavelet. Section 5 presents the results of a timescale
magnitude correlation analysis of rainfall fluctuations and
poses the hypothesis of a local (within storm pulse) multi-
plicative cascade. This hypothesis is further tested via a
numerical experiment. Section 6 presents the theory of
probability density function rescaling via the so-called
‘‘propagator’’ approach and demonstrates its application to
the rainfall intensity series. A summary of the inferences
about the multiscaling structure of temporal rainfall and
concluding remarks are made in section 7.

2. Wavelet-Based Multifractal Formalism

2.1. Spectrum of Singularities

[7] The traditional multifractal formalism was developed
in the framework of dynamical systems for the description of
the scale-invariant properties of singular measures [Halsey et
al., 1986; Collet et al., 1987; Paladin and Vulpiani, 1987].
The formalism is based on the mathematical concept of a
measure m on R which is only defined under an integral
over an arbitrary subset S of R: m(S) =

R
x2S dm(x). A good

example is the Dirac measure (not actually a ‘‘function’’)R x2
x1

d(x) dx = 1 if x1 < 0 and x2 > 0 and 0 otherwise. The
singularity exponent a(x0) at a point x0 of a measure m (on
R) is then defined as:

a x0ð Þ ¼ lim
�!0þ

ln m Bx0 �ð Þð Þ
ln �

; ð1Þ

where Bx0
(�) is a ‘‘box’’ of size � centered around x0. The

exponent a(x0) represents the singularity ‘‘strength’’ of the
measure m at x0. The smaller the value of a(x0), the more
singular the measure. The limit a = 0 corresponds to a
behavior similar to a Dirac distribution at x0. The spectrum
of singularities F (a) of the measure m is defined as the
fractal (more precisely, Hausdorff) dimension of the set of
all points x0 such that a(x0) = a:

F að Þ ¼ dH x0 2 Support of m;a x0ð Þ ¼ af g: ð2Þ

The singularity spectrum describes the statistical contribu-
tion of the singularity exponents a(x). Thus a measure is
monofractal, if it has the same singularity exponent, a0,
throughout its support, and the singularity spectrum is a
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point at (a0, F (a = a0) = Df), where Df is the fractal
dimension of the support of the singularities of the measure.
A multifractal measure, on the other hand, has singularities
of different strengths (orders) throughout its support, and
the resulting singularity spectrum is a concave function (a
‘‘bump’’) with the maximum at the most frequently
occurring singularity.
[8] The concept of singularity exponent a for measures

has a natural counterpart for functions, which is called the
Hölder exponent, h, defined as [Muzy et al., 1994; Mallat,
1998]:

jf x0ð Þ � f x0 þ �ð Þj � Cj�jh x0ð Þ; ð3Þ

where h(x0) characterizes the singularity of the function f at
x0. As h! 0, the function becomes more singular (i.e., less
regular). By definition, 0 � h < 1, with the limits h = 0
corresponding to a discontinuity (e.g., step function), and
h = 1 corresponding to a discontinuity in the derivative (e.g.,
integral of a step function). The similarity of equation (3) to
(1) can be easily seen. While equation (1) refers to a box of
size � around a point, equation (3) refers to the ‘‘change’’ of a
function from a point to another point � ‘‘distance’’ away. In
other words, integrals/sums in ‘‘boxes’’ are replaced by
‘‘increments.’’ Similar to the definition of the singularity
spectrum F (a), one can define a spectrum of Hölder
exponents D(h), as the Hausdorff dimension dH of the set
of all points x such that h(x) = h [Parisi and Frisch, 1985;
Bacry et al., 1993; Muzy et al., 1994; Jaffard, 1997]. That is,

D hð Þ ¼ dH x 2 support of f xð Þ; h xð Þ ¼ hf g: ð4Þ

One could generalize the definition in equation (3), to
functions for which singularities of higher orders (h > 1)
exist; that is, singularities exist in the higher-order
derivatives of the function. Thus a generalized definition
of the Hölder exponent, h(x0) is [Muzy et al., 1994; Arneodo
et al., 1995a]:

jf xð Þ � Pn x� x0ð Þj � Cjx� x0jh x0ð Þ: ð5Þ

In words, h(x0) is the largest exponent such that there exists
a polynomial Pn(x) of order n that satisfies the above
condition in the neighborhood of x0. For example, h(x0) =
0.7 implies that the function f(x) is not differentiable
at x0 and h(x0) = 1.3 implies that the function is
differentiable at x0, but its derivative is not, i.e., that the
singularity lies in the second derivative of the function. Thus,
if we have a function whose nth derivative is singular, then
g(x) = dn f(x)/dxn is singular with 0 < hg < 1. This implies f(x)
has a singularity exponent hf = hg + n, or, n < hf < n + 1. Note
that this is because of the fact that differentiation reduces the
regularity order by 1 and integration increases it by 1, as long
as the function does not possess oscillatory singularities
[Arneodo et al., 1995b; Arneodo et al., 1997a]. In this study
we will implicitly assume that all singularities are cusp
shaped. As mentioned before (equation (4)), by collecting all
the points x at which the local Hölder exponent is equal to h,
and computing the Hausdorff dimension D(h) of this set of
points, one can obtain its singularity spectrum D(h). We now
have a generalized framework wherein singularities (of any
order) of functions can be characterized by the exponent h,
where 0 � h <1, and its spectrum D(h).

[9] Furthermore, the above framework can be extended to
singular measures by defining the Hölder exponent h as h =
a �1, where a is defined in equation (1). Since a > 0, this
amounts to allowing the Hölder exponent to take values h �
�1. Thus, in the unified framework for defining singular-
ities for distributions, including measures and functions,
D(h) represents the singularity spectrum with �1 � h <1.
In the rest of the discussion, we use h and D(h). We refer the
reader to the end of section 2.4 for a discussion on the
properties of D(h). We now show that the wavelet transform
provides an appropriate framework for adaptively incorpo-
rating the singularity properties of both ‘‘sums in boxes’’ as
well as the ‘‘increments.’’

2.2. Extraction of Singularities Using Wavelet
Transforms

[10] The continuous wavelet transform of a function f(x)
can be defined as:

Ty f½ � b; að Þ ¼ 1

jaj

Z
f xð Þy x� b

a

� �
dx; a > 0; b 2 R; ð6Þ

where a is the scale parameter, and b is the location
parameter. y defines a family of wavelets; that is, for varying
values of a, wavelets of different length scales can be
constructed. (For a general reference on wavelets, seeMeyer
[1992], Daubechies [1992], andMallat [1998].) The wavelet
transform can be seen as decomposing the function f(x) into
elementary space-scale contributions by convolving it with a
suite of localized (space/time and scale/frequency) functions,
the so-called wavelets, all of which are constructed by
translation and dilation of a single function, the analyzing or
‘‘mother’’ wavelet. Note that in equation (6), we have used
an L1 norm ( 1jaj). The classical definition [Meyer, 1992;

Daubechies, 1992] defines it with an L2 norm ( 1

jaj1=2
).

Depending on the application, there are a variety of ways of
computing the wavelet transform. For instance, for the
purpose of compact representation (compression), one could
compute an orthogonal wavelet transform on dyadic scales
(multiresolution framework introduced by Mallat [1989]).
For the study of self-similar processes (fractals), continuous
wavelet transforms have been found to be effective [Arneodo
et al., 1988, 1995a; Muzy et al., 1994].
[11] An attractive feature of wavelets is that one could

construct various analyzing patterns (which satisfy the
requirements for a function to be called a wavelet; see
Daubechies [1992]) depending on the application. On the
one hand, when periodic functions are to be analyzed, or
when the objective is to localize a time-dependent frequency,
or when there are characteristic (temporal or spatial)
scales present in the phenomenon under study, a complex
wavelet (e.g., Morlet wavelet) is better than a real wavelet
(e.g., Mexican hat wavelet [Meyer, 1992; Daubechies, 1992;
Mallat, 1998]. On the other hand, when the underlying
process does not have characteristic scales, or when the goal
is to identify discontinuities or singularities, a real wavelet is
more appropriate [Muzy et al., 1994; Mallat, 1998]. In this
work, we use the successive derivatives of a Gaussian
function:

g Nð Þ xð Þ ¼ dN

dxN
e�x

2=2; ð7Þ
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which have been extensively used, as a smooth general-
ization of Nth-order increments, to study the behavior of
fractal functions [Muzy et al., 1994; Arneodo et al., 1995a].
It is easy to see (Figure 1) that g(0)(x), a Gaussian function,
is equivalent to the ‘‘box’’ function (used to compute the
singularities of a measure) and g(1)(x) is equivalent to the
‘‘increment’’ (structure function used for computing singu-
larities in a function which is continuous, but not
differentiable). g(2)(x) is the well-known ‘‘Mexican hat’’
wavelet. These functions (g(N)(x)) are well localized in both
space and frequency, and more importantly, the property of
the (first) N vanishing moments of g(N)(x), i.e.,

Z 1

�1
xqg Nð Þ xð Þdx ¼ 0; 0 � q < N ; ð8Þ

proves to be a very useful property in extracting
singularities, as discussed below.
[12] It has been shown [Jaffard, 1989; Holschneider and

Tchamitchian, 1990; Mallat and Hwang, 1992] that by
using an analyzing wavelet y which has ny vanishing
moments, the behavior of Ty[ f ](x0, a) as a function of
scale, a, as a! 0 characterizes the local behavior of f(x) in
equation (5), i.e.,

Ty f½ � x0; að Þ � ah x0ð Þ a! 0; ð9Þ

provided ny > h(x0). In other words, the local singular
behavior of f around x0 is characterized by a power law
behavior (with an exponent h(x0)) of the wavelet transform
of f at the point x0, as a function of scale, a, as a ! 0. If
h(x0) is positive and small (implying that the function is
singular), then we can visualize this as a slow decay of

wavelet coefficients with scale; if h(x0) is large and positive
(implying that the function is regular) [see Jaffard, 1989;
Holschneider and Tchamitchian, 1990], then the wavelet
coefficients decay rapidly as a function of scale. If h(x0) < 0,
then the wavelet coefficients, instead of decaying, increase
with scale [Roux et al., 1999]. Thus the more singular the
function at a given location, the larger the wavelet
coefficients at that location at small scales.
[13] A remark on the choice of the order of wavelet is in

order. Note that in equation (9), ny, the number of vanishing
moments of the wavelet must be greater than h(x0) in order
to be able to resolve this singularity. If one were to choose a
wavelet with ny < h(x0), then the resulting decay of wavelet
coefficients would be at a rate equal to ny giving a
misleading estimate of h(x0) equal to ny [Bacry et al.,
1993; Muzy et al., 1994]. Therefore to resolve all singular-
ities present in a function, the analyzing wavelet must be
chosen to have ny � hmax where hmax is the weakest
singularity present in the function. Since hmax is not known
a priori, the most appropriate way to correctly estimate all
singularities is to analyze the given function with wavelets
of increasing order (i.e., increasing number of vanishing
moments). If for order ny and ny + 1, one gets the same
D(h) curve, then it can be assured that ny (or ny + 1) is the
right order of the wavelet. It is noted that the convolution of
f(x) with a wavelet of order (ny + 1) can be shown to
remove polynomial trends of order ny [e.g., see Muzy et al.,
1994]. This implies that if a wavelet of degree (ny + 1) is
accepted as the one resulting in a robust estimate of D(h),
this wavelet has also filtered out nonstationarities of poly-
nomial type of degree ny from the function. In other words,
the wavelet coefficients Ty[f] can be assumed stationary and
their statistical moments safely computed. This is important

Figure 1. Derivatives of the Gaussian, g(N)(x) (equation (7)), for (a) N = 0, (b) 1, (c) 2, and (d) 3.

4 of 20

W06D14 VENUGOPAL ET AL.: REVISITING MULTIFRACTALITY IN RAINFALL W06D14



since it is these moments that form the basis of estimating
D(h) as explained in the next section.

2.3. D(h) Estimation Using CWT

[14] Having seen the ability of the continuous wavelet
transform to capture singularities of all orders (<1), we
turn our attention to the specific task of estimating the
singularity spectrum, D(h), and the intricacies involved
therein. As originally proposed by Holschneider [1989]
and further used by Muzy et al. [1994], one can define a
‘‘partition function’’ Z(q, a) from the wavelet coefficients:

Zcwt q; að Þ ¼
Z
jTy f½ � x; að Þjqdx; ð10Þ

that can be shown to behave for a multifractal process, as

Zcwt q; að Þ � atcwt qð Þ a! 0; q > 0: ð11Þ

Then by taking the Legendre transform of tcwt(q), one can
compute the singularity spectrum D(h) [Muzy et al., 1994].

D hð Þ ¼ min
q

qh� tcwt qð Þ þ Df

� �
; ð12Þ

where Df is the fractal dimension of the support of
singularities of f. For the case of a continuously differenti-
able tcwt(q), the following relations hold:

q ¼ dD=dh;

tcwt qð Þ ¼ qh� D hð Þ þ Df ;
ð13Þ

and, equivalently

h ¼ dtcwt=dq;

D hð Þ ¼ qh� tcwt qð Þ þ Df :
ð14Þ

Although this methodology provides an improvement to the
standard structure function-based multifractal formalism
[Parisi and Frisch, 1985; Frisch, 1995], it still has a couple
of critical shortcomings [see also Muzy et al., 1993].
[15] 1. First, if one takes a continuous sum of the wavelet

coefficients (see equation (10)) to estimate the partition
function, the number of points used in the summation
remains the same irrespective of the scale. In other words,
for q = 0, the partition function is independent of scale, and
equal to the number of samples in the given data set, i.e.,
Zcwt(0, a) = constant � atcwt(0). This, in turn, implies that
tcwt(0) = 0 trivially, and thus by using all the wavelet
coefficients, it is not possible to estimate the fractal dimen-
sion Df of the support of singularities. For example, for the
‘‘Devil’s staircase’’ the method would give Df = 1 instead
the true fractal dimension of ln 2/ln 3 (the fractal dimension
of the triadic Cantor set). This shortcoming prompts the
explicit introduction of Df (which needs to be estimated by
other methods) in equations (12)–(14).
[16] 2. Second, note that the probability density function

of the wavelet coefficients is finite (if not maximum) at
zero. This presents a problem for q < 0, because the partition
function Z(q, a) would diverge. Similar to the problem that
one encounters with a first-order structure function, one
cannot estimate the right side (decreasing limb) of the D(h)

spectrum (see Figure 2), which corresponds to q < 0 [Muzy
et al., 1993, 1994]. Note however that the difference
between the structure function approach and the CWT-based
approach described above is that while the former approach
(at least, first-order increments) cannot estimate h > 1, the
latter approach, using higher-order wavelets systematically,
can estimate h > 1, as long as those values of h are to the left
of hhi where the maximum value of the D(h) spectrum is
achieved. For practical purposes however, one cannot take
advantage of this unless the function analyzed has a mean
singularity hhi greater than 1. This will be discussed later in
the context of the rainfall data analysis.
[17] On the basis of the above discussion, it is seen that

estimation of D(h) based on the partition function presented
in equations (10)–(14) (which is the classical multifractal
formalism extended via wavelets) has the limitation that
only part of the singularity spectrum, i.e., the rising limb of
D(h) corresponding to q > 0, can be captured. To be able to
take negative moments and to estimate the complete singu-
larity spectrum, Muzy et al. [1991, 1993, 1994] proposed to
use the wavelet transform modulus maxima (WTMM)
method.

2.4. D(h) Estimation Using WTMM

[18] The Wavelet Transform Modulus Maxima (WTMM)
are defined at each scale a as the local maxima of jTy[f](x, a)j
considered as a function of x [Mallat and Hwang, 1992;
Mallat, 1998]. These WTMM form connected curves,
called maxima lines and contain information about the
hierarchical structure of singularities. In fact, each time
the function f(x) has a local Hölder exponent h(x0) < ny at
the point x0, there are ny + 1 lines pointing toward x0 along
which equation (9) is true (for example, if the first deriv-
ative of the Gaussian is used, the two extrema in the
analyzing function g(1)(x) (see Figure 1) would manifest
themselves as modulus maxima in the wavelet coefficient
timescale plane). The partition function defined in equation
(10) can then be modified such that it is computed only on
the wavelet transform skeleton [Muzy et al., 1991, 1994;
Bacry et al., 1993] as:

Zwtmm q; að Þ ¼
X
‘2L að Þ

jTy f½ � x; að Þj
� �q

; ð15Þ

Figure 2. Generic shape of the D(h) singularity spectrum
considered as the Legendre transform of t(q).
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where q 2 R, L(a) is the set of all maxima lines ‘ that
satisfy: ‘ 2 L(a), if 8 a0 � a, 9(x, a0) 2 ‘.
[19] The definition of Zwtmm(q, a) in equation (15),

implies that the summation is done over ‘‘well chosen’’
points (scale-adaptive partition via the WTMM) rather than
taking a ‘‘blind’’ global average over the whole length of
the signal. Muzy et al. [1993, 1994] found that even this
definition is not fully equipped with the ability to provide
reliable and complete estimates of the scaling exponents
spectrum (t(q)) and the singularity spectrum (D(h)). The
particular case where this aforementioned formulation can
diverge is when the maximum value of the modulus of the
wavelet transform is very small in value. In such a case, for
q < 0, there could potentially be numerical instabilities in
the computation of the partition function. To alleviate this
concern, Muzy et al. [1993, 1994] reformulated the defini-
tion of the partition function in equation (15) by replacing
the value of the wavelet transform modulus at each maxi-
mum by the supremum value along the corresponding
maxima line at scales smaller than a:

Zwtmm q; að Þ ¼
X
‘2L að Þ

sup
x;a0ð Þ2‘; a0<a

jTy f½ � x; a
0

� 	
j

2
4

3
5
q

; ð16Þ

where the ‘‘sup’’ is a way of preventing divergence in the
computation of Z(a, q) for negative q values [Bacry et al.,
1993]. In this procedure, one traverses along a maxima line
(L(a)) from the largest to smallest scale, and at each scale
(say a1), replaces the value of the modulus maxima of the
wavelet transform with a value that corresponds to the
maximum for all scales a < a1 along that maxima line. In
our analysis, this was the estimation procedure used. There
is however a drawback with computing the sup. If there are
any singularities with negative Hölder exponent present in
the signal, i.e., h < 0, recall that the modulus of the wavelet
transform of the signal does not decay, but increases from
large to small scales. Thus, if one were to replace the
modulus maxima with sup along a maxima line, that would
result in a horizontal maxima line, which would mean a
trivial incorrect value of zero for the strength of the
singularity.
[20] The inability of the ‘‘WTMM with sup’’ methodol-

ogy to access negative singularities (h < 0) can easily be
circumvented by working with the cumulative (or integral)
of the signal of interest. Recall that integration adds 1 to the
(cusp like) singularities of the signal, that is, it shifts D(h) to
the right by 1. Therefore singularities �1 < h < 0 in a signal
would become singularities 0 < h < 1 in the cumulative,
posing no estimation problem in the ‘‘WTMM with sup’’
method. Once the spectrum of singularities of the cumula-
tive signal, denoted by Dc(h), is estimated, then

D hð Þ ¼ Dc hþ 1ð Þ: ð17Þ

[21] Unless otherwise specified, for the rest of the dis-
cussion, the subscript wtmm implicitly includes the sup, i.e.,
Zwtmm computed from equation (16). The multifractal
formalism then involves [see Muzy et al., 1994]

Zwtmm q; að Þ � atwtmm qð Þ a! 0; q 2 R; ð18Þ

and, by taking the Legendre transform of twtmm(q), the
singularity spectrum D(h) results (see Figure 2):

D hð Þ ¼ min
q

qh� twtmm qð Þ½ �: ð19Þ

[22] Similarly, for the case of a continuously differentia-
ble twtmm(q), the following relations hold:

q ¼ dD=dh;

twtmm qð Þ ¼ qh� D hð Þ;
ð20Þ

and, equivalently

h ¼ dtwtmm=dq;

D hð Þ ¼ qh� twtmm qð Þ:
ð21Þ

A few important points to be noted about this formalism are
as follows [Muzy et al., 1993, 1994; Bacry et al., 1993;
Arneodo et al., 1995a]:
[23] 1. Unlike the case of the partition function compu-

tation using the continuous wavelet transform, we note that
with WTMM, t(0) can also be computed, because by
summing over only the maxima lines, for q = 0, one would
see how the number of maxima lines changes with scale,
i.e., a�Df, where Df is the fractal dimension of the support of
the singularities. Furthermore, for q < 0, there is no concern
of divergence, since the PDF of the WTMM coefficients
decreases to zero at zero whatever the scale (at least in the
limit of infinitely long signal), and t(q) for q < 0 character-
izes the way this decrease evolves across scale. Thus, using
WTMM, one has access to the entire singularity spectrum,
namely its increasing as well as its decreasing limbs.
[24] 2. If one were to choose a Gaussian function as the

analyzing wavelet (g(0)(x)), the WTMM method and the
classical box counting method would be similar. Recall that
the box counting methodology for singular measures only
takes into account those boxes which have ‘‘mass,’’ and
which contain singularities [Halsey et al., 1986; Paladin
and Vulpiani, 1987; Grassberger et al., 1988; Meneveau
and Sreenivasan, 1991]. Summing over the maxima lines
achieves exactly the same objective, since the maxima lines
converge to the support of the singularities of the function.
However, they are not exactly identical in the sense that the
partition function from the WTMM has a scale (a) as a
normalization factor (coming from the definition of the
wavelet transform, see equation (6)). Thus aq Zwtmm(q, a)
= Zbox(q, a). This implies tbox(q) = twtmm(q) + q. Taking
the Legendre transform on both sides, it can be easily shown
that D(h) (from WTMM) is equal to F (h + 1) (from box
counting), where F (a) is the singularity spectrum that one
typically obtains with a box counting methodology. Thus
the singularity spectrum for the box counting is shifted by 1
in the WTMM formalism [Muzy et al., 1994].
[25] 3. For the sake of completeness, we mention here

some well-known facts about t(q) and D(h) [Muzy et al.,
1994] where, from here on, we drop the subscript ‘‘wtmm.’’
First, t(0)(= �Df), as mentioned before, captures the fractal
dimension of the support of the function. Moreover, it is
easy to see that the maximum value of D(h) is at q = 0

6 of 20

W06D14 VENUGOPAL ET AL.: REVISITING MULTIFRACTALITY IN RAINFALL W06D14



(equation (20)), with the value of h = hhi being the most
frequently occurring singularity and D(h) equal to the fractal
dimension of the support. t(1) is related to the dimension
of the graph of the given function (dG = max(1, 1 � t(1)));
and t(2), also called the correlation dimension, is related
to the scaling exponent of the Fourier spectral density
(jf̂ (w)j2 � w�b), by the relation t(2) = b � 2. D(h) is a
convex function, whose tangents (dD/dh) give the values of
the order of the moment, q. In addition, one can deduce that
q < 0 is mapped to the right of the maximum D(h), and q > 0
is mapped to the left of the maximum. From equation (20),
one can also deduce that hmax corresponds to q = �1 and
hmin corresponds to q = +1 (see Figure 2).
[26] 4. From the Legendre transform properties (equa-

tions (19)–(21)), it is clear that the signature of monofrac-
tality, i.e., the existence of a unique Hölder exponent, h = H,
will be a linear t(q) spectrum of slope H. Multifractality,
i.e., the existence of a finite range of h = [hmin, hmax], will
manifest as a nonlinear behavior of t(q) versus q.

3. Cumulant Analysis Method

[27] In the multifractal formalism presented in the
previous section, the process of obtaining the singularity
spectrum involves fitting straight lines, if appropriate, to the
log-log plots of the partition function Z(q, a) versus scale a
for different order moments q. Each value of q yields a
value of the slope t(q). To be able to define the entire t(q)
curve (and subsequently h and D(h) via a Legendre trans-
form), one needs to be able to fit many straight lines for a
large range of q values and then proceed to fit a t(q) curve
to the resulting slopes of the straight lines, prior to the
Legendre transform. While this has been the traditional way
of estimating t(q) and D(h), recently in the turbulence
literature [Delour, 2001; Delour et al., 2001], an alternate
method, based on cumulants, was introduced which
involves fitting only a few lines (as low as 3) while still
adequately inferring and accurately estimating the nonlinear
behavior of the spectrum of scaling exponents t(q). This
method is based on cumulants and is described below.

3.1. Magnitude Cumulant Analysis

[28] Let X be a random variable and P(x) its probability
density function. The moment generating function (or
characteristic function) defined as

Fp kð Þ �
Z 1

�1
eikxP xð Þdx; ð22Þ

can be shown via Taylor series expansion to take the form

Fp kð Þ ¼ heikxi ¼
X1
n¼0

Mn

ikð Þn

n!
; ð23Þ

where Mn is the nth-order moment of X

Mn ¼
Z 1

�1
xnP xð Þdx; n ¼ 0; 1; 2; � � � ð24Þ

In other words, the moments Mn result by taking the nth

derivative of Fp(k) at k = 0. Similarly, the cumulant
generating function of X is defined as

Yp kð Þ � lnFp kð Þ; ð25Þ

and can be shown via Taylor series expansion of ln Fp(k),
around Fp(0) = M0 = 1, to take the form

Yp kð Þ ¼ lnheikxi ¼
X1
n¼1

Cn

ikð Þn

n!
; ð26Þ

where Cn are the so-called cumulants of X. Similar to Mn,
Cn can be obtained by taking the nth derivative of Yp(k) at
k = 0. Furthermore, the moments and the cumulants of X
can be related as:

C1 ¼ M1;

C2 ¼ M2 �M 2
1 ;

C3 ¼ M3 � 3M2M1 þ 2M 3
1 ;

C4 ¼ M4 � 4M3M1 � 3M2
2 þ 12M2M

2
1 � 6M 4

1 :

� � �

ð27Þ

[29] With this background, let us look at the qth-order
moment of the modulus maxima of the wavelet coefficients,
jTywtmm[f](x, a)j (as defined in equations (15) and (16)).
Dropping the subscripts and superscripts except for the
dependence on the scale (a) for the sake of clarity, we have:

hjTajqi ¼ heq ln jTaji: ð28Þ

Let us consider the left side of equation (28). Since we
compute the sum of the modulus maximum of the wavelet
coefficients over only the maxima lines (equation (16)), we
have

hjTajqi ¼
1

Na

Z q; að Þ; ð29Þ

where Na is the number of maxima lines at scale a, which
we know is �a�Df where Df is the fractal dimension of the
support of the singularities. Noting that Z(q, a) � at(q)

(where t(q) here stands for twtmm(q)), we have

hjTajqi �
1

a�Df
at qð Þ � at qð ÞþDf : ð30Þ

[30] This implies

at qð ÞþDf � heq ln jTa ji; ð31Þ

and thus

t qð Þ þ Df

� �
ln að Þ � ln heq ln jTaji

n o
: ð32Þ

Using equation (26), we get

ln heq ln jTaji
n o

¼ ln heqi ln jTaj=ið Þi
n o

¼
X1
n¼1

C
0

n

iqð Þn

n!
; ð33Þ

where C0n are the cumulants of (ln jTaj)/i = Cn/i
n, Cn being

the cumulants of the magnitude ln jTaj. Rearranging the
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terms in equation (33), and substituting the result in
equation (32) we get:

X1
n¼1

Cn að Þ q
n

n!
� t qð Þ þ Df

� �
ln að Þ; ð34Þ

or

�Df ln að Þ þ
X1
n¼1

Cn að Þ q
n

n!
� t qð Þ ln að Þ; ð35Þ

where

C1 að Þ � hln jTaji � c1 ln að Þ;

C2 að Þ � hln2 jTaji � hln jTaji2 � �c2 ln að Þ;

C3 að Þ � hln3 jTaji � 3hln2 jTajihln jTaji þ hln jTaji3 � c3 ln að Þ;

� � �
ð36Þ

[31] It is then easy to see that:

t qð Þ ¼ �Df

q0

0!
þ
X1
n¼1

Cn að Þ
ln að Þ

� �
qn

n!

¼ �c0 þ c1q� c2q
2=2!þ c3q

3=3! � � � ð37Þ

where the coefficients cn > 0 are estimated as the slope of
Cn(a) versus ln(a) (n = 1, 2, 3 � � �), and c0 = Df.
[32] The implication of the above developments is that

one can estimate t(q) from the polynomial expansion of
equation (37), where the coefficients of the expansion are
obtained from the log-log linear regressions of the cumu-
lants of the ‘‘magnitude’’ Cn(a) versus ln (a) [Delour et al.,
2001]. It is noted that in the case of a monofractal (linear
t(q)), only two linear regressions are needed in order to
estimate c0 and c1, while in the case of a multifractal, a
quadratic t(q) approximation would need only three such
linear regressions, and so forth. Comparing with the stan-
dard structure function or wavelet-based multifractal for-
malism based on the partition function, the efficiency of the
cumulant-based multifractal analysis becomes apparent.
[33] It is of interest to understand how the coefficients cn

relate to the spectrum of singularities D(h). It can be shown
that [Castaing et al., 1993; Malecot et al., 2000; Delour et
al., 2001] the cn coefficients control the way the PDF
of singularities h(x) (treated as random variables) shrinks
to a delta distribution d(h � c1), where c1 = hhi, when
a ! 0. Indeed, the cumulants of this PDF go to zero as
cn/(ln(1/a))

n�1 for n � 2 (large deviations theory; see
Frisch [1995]). This is an alternative statistical point of
view of the Legendre Transform (geometrical point of
view), which relates t(q) and D(h). Finally, it is noted that
for a log-normal multifractal process for which t(q) and
D(h) are quadratic, all the cn are zero for n � 2 and D(h)
can be shown to be (see Appendix B):

D hð Þ ¼ c0 �
h� c1ð Þ2

2c2
; ð38Þ

with

hmin;max ¼ c1 �
ffiffiffiffiffiffiffiffiffiffiffi
2c2c0

p
; ð39Þ

being the limiting values of h at which D(h) = 0 (note that
D(h), being a dimension, cannot be negative). The
corresponding limiting values of q for the t(q) curve can
be obtained via the Legendre transform, and are:

q * ¼  
ffiffiffiffiffiffiffi
2c0

c2

r
; ð40Þ

implying a linear-effect behavior of t(q) with a slope of hmin

(respectively, hmax) for values of q > q*+ (respectively, q <
q*�). Note that in a traditional moments-based approach, the
computation of higher-order moments is guided only by
issues of statistical convergence of moments, and not by
theoretical considerations (i.e., the underlying multifractal
nature of the process) which, as shown above, impose limits
on q, beyond which t(q) is inherently linear. Thus the
cumulant-based methodology not only provides information
about the multifractality of a process, but also explicitly
provides the estimates of the limiting values of q given by
equation (40).
[34] It is worth emphasizing that c2, the so-called inter-

mittency coefficient, determines the way the variance of the
probability distribution of Hölder exponents h (Pa(h); see
Appendix B) changes with scale; that is, it relates to the
variability of singularities at any scale. Thus, if c2 is zero
(no variance), it implies that the singularity spectrum is a
point or the given signal is monofractal (assuming that cn =
0 8n � 2). On the other hand, if c2 is nonzero, the given
signal has multifractal properties. Thus one does not have to
compute t(q) for a range of values of q to establish whether
it is linear (monofractal signal) or nonlinear (multifractal
signal). Estimating just one coefficient from one straight
line fit, C2(a) versus ln(a), can establish if a given data set
possesses intermittent multifractal characteristics [Castaing
et al., 1990, 1993; Arneodo et al., 1998c, 1999; Malecot et
al., 2000; Chanal et al., 2000].

3.2. Two-Point Magnitude Statistical Analysis

[35] In addition to the one-point WTMM statistics pre-
sented above, it is useful to study the two-point correlation
function of the logs of the WTMM coefficients lnjTa(x)j,
which determines the way the correlation structure of the
Hölder exponents h (or singularities) changes with scale
[Arneodo et al., 1998a, 1998b]. Defining

Cða;DxÞ ¼ h ðln jTa xð Þj � hln jTaðxÞjiÞ
� ln jTa xþ Dxð Þj � hln jTa xð Þjið Þ i; ð41Þ

and seeing how this two-point correlation changes as a
function of Dx at scale a, provides information about the
space-scale (or timescale) structure that underlies the
multifractal properties of the considered signal. For
example, if C(a, Dx) is logarithmic in Dx and independent
of scale a provided that Dx > a, i.e.,

C a;Dxð Þ � lnDx Dx > a ; ð42Þ

then long-range dependence is inferred. Moreover, Arneodo
et al. [1998a, 1998b] have shown that for random
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multiplicative cascades on wavelet dyadic trees [see also
O’Neil and Meneveau, 1993]:

C a;Dxð Þ � �c2 lnDx; ð43Þ

where the proportionality coefficient c2 is the same as the
proportionality coefficient of C2(a) (defined in equation
(36)) versus ln(a), i.e.,

C a;Dx ¼ 0ð Þ � C2 að Þ � �c2 ln að Þ: ð44Þ

By computing C(a, Dx) from equation (41) and plotting it as
a function of ln Dx, inferences can be made about long-
range dependence and consistency with a multiplicative
cascading process. Note that the presence of multifractality
does not necessarily imply either long-range dependence or
multiplicative cascade [Arneodo et al., 1999]. For example,
one can have scaling in C2(a), with C(a, Dx) rapidly
decreasing to zero (no long-range dependence) or with C(a,
Dx) linear in ln Dx (long-range dependence) with a slope
different than c2, or with a slope equal to c2 (signature of a
multiplicative cascade). In making inference from a data set,
it is often helpful to superimpose on the same plot the
curves C(a, Dx) versus ln Dx for several Dx > a and the
C2(a) versus ln (a) curve and see whether their slopes agree
as a consistent estimate of the intermittency coefficient c2.
This will be illustrated later in the analysis of the rainfall
series.

4. Multifractal Analysis of Rainfall Intensity
Series

[36] The high-resolution temporal rainfall series analyzed
in this work have been collected at the Iowa Institute of
Hydraulic Research, University of Iowa, with specially
calibrated instrumentation that allows high-resolution sam-

pling. Further details about the instrumentation and other
auxiliary data such as wind speed, pressure, etc., collected at
the same site are given by Georgakakos et al. [1994].
[37] In this work, we report results from analysis of four

events that occurred during the period of May 1990 through
April 1991. It is noted that the sampling interval of all the
storms is 5 s except for the storm on 2 December 1990
which has a 10 s sampling interval. The maximum rainfall
rates in these events range from 10 to 120 mm h�1, the
average rain rates range from 0.38 to 3.9 mm h�1 and the
coefficients of variation range from 0.75 to 2. The rainfall
time series are shown in Figure 3, and a summary of the
basic statistics shown in Table 1. The notation of Rains 1, 4,
5, and 6 has been used to remain consistent with the names
of the events at the ftp site (which is used world wide). The
original notation was made in the order of decreasing signal
length.
[38] We first present an exhaustive step-by-step analysis

of one of the storms (Rain 6) as an illustration of the
intricacies involved in the methodology and as a demon-
stration that without a priori knowledge of the signal, a
reliable multifractal analysis is the result of an iterative
process between diagnosis and estimation until robustness is
achieved. In Figure 4, we illustrate how the continuous
wavelet transform is able to filter out the nonstationarities of

Figure 3. Time series of rainfall intensity (mm/h). Rains 4, 5, and 6 were sampled at 5 s, while Rain 1
was sampled at 10 s.

Table 1. Statistics of Rain 1, 4, 5 and 6, the Events Analyzed in

This Work

Number of
Samples Mean, mm/h

Standard
Deviation, mm/h

Rain 1 (2 Dec. 1990) 9696 3.9 6.2
Rain 4 (3 Oct. 1990) 6689 1.2 1.2
Rain 5 (1 Nov. 1990 A) 6689 3.0 3.4
Rain 6 (3 May 1990) 6661 2.7 2.2
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polynomial type (Figure 4a) when using an analyzing
wavelet (g(n)) of high enough order (Figures 4e and 4f).
We then describe the results obtained from the other three
storms, such that generalized inferences can be made.
[39] In terms of terminology, it is noted that the devel-

opment of the multifractal formalism and the related esti-

mation procedures was presented in the previous sections
using ‘‘x’’ as the dependent variable, to be consistent with
the terminology of the original work of Arneodo et al.
However, given that we are analyzing temporal series, for
the rest of the discussion, we use t instead of x.

4.1. ‘‘WTMM With Sup’’ on the Cumulative Rain

[40] On the basis of the technical reasons presented in the
previous section, the ‘‘WTMM with sup’’ analysis was
applied to the cumulative rainfall series. Figure 5 (top)
shows the cumulative of Rain 6 along with its continuous
wavelet transform (using g(3)) (Figure 5, middle), and the
corresponding WTMM skeleton (Figure 5, bottom). The
partition function was computed using equation (16) for
various values of q (q = �1 to 4 in increments of 0.2) and
some example plots (for q = �1, �0.6, 0, 1, 2 and 3) are

Figure 4. (a) Rainfall (Rain 6) intensity (mm/hr) versus
time (hours). Rainfall intensity filtered at scale a = 742s
with (b) g(0), (c) g(1), (d) g(2), (e) g(3) and (f) g(4). The
analyzing functions g(N) are defined in the text. Figure 5. (top) Cumulative rainfall (Rain 6) (in 104 mm/

hr) versus time (hours). (middle) Timescale wavelet trans-
form representation of cumulative rainfall with the analyz-
ing wavelet g(3). The modulus of the wavelet transform is
coded, independently at each scale a, using 64 gray levels
from black (jTg(3)(t, a)j = 0) to white (maxt jTg(3)(t, a)j).
(bottom) Wavelet transform skeleton defined by the maxima
lines. The scale a is expressed in sampling time (Dt = 5s)
unit.
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shown in Figure 6. It is observed that in the range of scales
between ln(a) = 4 (’4–5 min) and ln(a) = 6.5 (’1 hour),
one can certainly assume a log-log linearity of the moments
with scale. The different symbols in Figure 6 represent
analysis using wavelets of increasing order (g(1) through
g(4); see Figure 1). One notices that the results obtained with
g(1) are very different compared to those obtained using g(2)

through g(4). The fact that the results obtained using g(3) and
g(4) are very close to each other suggests that the proper
filter to define ‘‘rainfall fluctuations’’ and estimate their
multifractal properties is g(3). Using the slopes of these plots
(for q = �1 up to 4 in increments of 0.2) and for wavelets
g(1) through g(4), the spectra of scaling exponents tc(q) were

computed (the superscript c stands for ‘‘cumulative’’), and
these are shown in Figure 7a, using the same symbols for
each wavelet as in Figure 6. As anticipated from Figure 6,
the tc(q) curve obtained from g(1) (equivalent to a structure
function analysis) is misleading, while the estimate with g(3)

can be considered as an accurate and robust estimate. By
taking the Legendre transform of tc(q), we obtain the
spectrum of singularities Dc(h) as shown in Figure 7b.
Again, we witness that using g(1) results in a misleading
estimate of D(h), since all singularities h > 1 are trivially
underestimated to be close to h = 1, while the other wavelets
do capture singularities of strength greater than 1. Since g(2)

shows singularities of maximum strength h ’ 2, analysis

Figure 6. Moments analysis of the cumulative rainfall (Rain 6) intensity [ln(Zc(q, a)) versus ln(a): q =
�1, �0.6, 0, 1, 2, 3] using the ‘‘WTMM with sup’’ method with the analyzing wavelets g(1) (circles), g(2)

(squares), g(3) (stars) and g(4) (inverted triangles). The vertical dashed lines delimit the range of scales
(expressed in 5s unit) used for the linear regression estimate of tc(q).

Figure 7. (a) tc(q) spectrum and (b) Dc(h) singularity spectrum obtained for the cumulative rainfall
(Rain 6) intensity using the WTMM method with the analyzing wavelets g(1) (circles), g(2) (squares), g(3)

(stars) and g(4) (inverted triangles). The solid lines correspond to the spectra obtained using the cumulant
method with g(3) (c0

c = 1, c1
c = 1.64, c2

c = 0.26 and c3
c = 0). Note that the solid line corresponding to t(q)

in Figure 7a is shown only up to q*+ # 3 (see text for details).
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with g(3) and g(4) is prudent. The results from g(3) and g(4)

confirm that the singularity spectrum has singularities of
strength h greater than 2, but less than 3, thus confirming
that g(3) is the proper wavelet for this signal.

4.2. Cumulant Analysis on the Cumulative Rain

[41] Having seen the WTMM partition function ap-
proach, we turn our attention to the alternate cumulant
analysis methodology. The first-, second- and third-order
cumulants were computed using equation (36) and are
plotted versus ln(scale) in Figure 8. Once again, we note
that the results obtained using g(1) as the analyzing wavelet
are different from those obtained using g(2) through g(4).
Similar to the partition function approach, the results using
g(3) and g(4) are very close to each other. Fitting log-log
straight lines between the range of scales ln(a) = 4 to 6.5,
the estimated coefficients, cc0, c

c
1, c

c
2 and cc3 are summarized

in Table 2 for all analyzing wavelets. Using the coefficients
corresponding to g(3) (c0

c = 1.00, c1
c = 1.64, c2

c = 0.26 and
c3
c ’ 0) and the analytical expression (37), the tc(q) curve
was computed and is shown as a solid line in Figure 7a. It is
noted that the t(q) curve has been plotted only up to q#3, as
the limiting value of the moment order q*+ (computed from
equation (40)) is 3, implying that for higher-order moments,
a linear behavior of t(q) is theoretically expected [see also
Lashermes et al., 2004; Lashermes, 2005]. As shown in
Appendix B, a parabolic t(q) results in a parabolic D(h) =

c0 � h�c1ð Þ2
2c2

, and this curve is shown as a solid line in
Figure 7b.
[42] It is recalled that the analysis was performed on the

cumulative rain to take advantage of the estimation effi-
ciency of the ‘‘WTMM with sup’’ method. To convert the
results to the rainfall intensities, it is noted that tI(q) =
tc(q) � q and DI(h) = Dc(h + 1) (note also that c0

I = c0
c,

c1
I = c1

c � 1, c2
I = c2

c etc.). With this in mind, one sees from

Figure 7b that the cumulant analysis estimate of D(h)
points to the possible presence of h ] 1 in the cumulative
rainfall series or h < 0 in the rainfall intensities them-
selves. The actual presence of h < 0 singularities in this
rather short time series calls for a more direct estimation of
these singularities. As discussed in section 2, unfortunate-
ly, the ‘‘WTMM with sup’’ methodology does not provide
access to h < 0 singularities, and therefore cannot be used
directly on rainfall intensities. The only way to access
them is via a partition function or cumulant analysis of the
CWT coefficients, as opposed to the WTMM coefficients,
of the rainfall intensity signal. Such an analysis has been
performed and is presented below.

4.3. CWT and Cumulant Analysis on the Rainfall
Intensities

[43] The CWT-based partition functions use all the (ab-
solute) wavelet coefficients and not just the maxima lines as
in the WTMM method. Thus one cannot take negative
moments because the PDFs of the (algebraic) wavelet
coefficients are centered at zero. Figure 9 shows the log-
log plots of CWT moments versus scale for q = 1, 2, and 3,
and for analyzing wavelets g(0), g(1), g(2) and g(3) (note that

Figure 8. Cumulant analysis of the cumulative rainfall (Rain 6) intensity [Cn
c(a) versus ln(a): n = 0, 1,

2, 3] using the ‘‘WTMM with sup’’ method with the analyzing wavelets g(1) (circles), g(2) (squares), g(3)

(stars) and g(4) (inverted triangles). The vertical dashed lines delimit the range of scales (expressed in 5s
unit) used for the linear regression estimate of cn

c.

Table 2. Estimates of cn
c for the Cumulative Rainfall (Rain 6)

Obtained From Cumulant Analysis Using the WTMM Method

Over the Range of Scales 4–58 mina

c0
c c1

c c2
c c3

c

g(1) 0.94 ± 0.05 1.11 ± 0.02 0.15 ± 0.02 �0
g(2) 0.95 ± 0.04 1.54 ± 0.03 0.28 ± 0.05 �0
g(3) 0.98 ± 0.02 1.64 ± 0.03 0.26 ± 0.04 �0
g(4) 1.00 ± 0.02 1.69 ± 0.06 0.24 ± 0.05 �0

aThe error bars were obtained from the standard deviation of the local
slope fluctuations).
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g(0) on the intensities is equivalent to g(1) on the cumulative
rain). Again, log-log linearity is observed within the scales
of ln(a) = 4 to 6.5 and, as expected, the results with g(0)

(equivalent to a box-counting method on rainfall intensities)
are trivial. The slopes of such log-log linear plots (for q = 0
to 4 in intervals of 0.2) result in the tI(q) curve of
Figure 10a, and by Legendre transform to the DI(h) curve
of Figure 10b.
[44] Similarly, a cumulant analysis directly on rainfall

intensities results in the plots of Figure 11 for C1(a), C2(a)
and C3(a) versus ln(a). The coefficients of the linear
regression lines between scales ln(a) = 4 to 6.5 are sum-
marized in Table 3. If one compares the results of ‘‘WTMM
with sup’’ on the cumulative rainfall series using g(3), which
give cI1 = 0.64 ± 0.03, cI2 = 0.26 ± 0.04 and c3

I ’ 0 (see

Table 2) with those of the CWT directly on the intensities
with g(2), which give c1

I = 0.65 ± 0.03, c2
I = 0.23 ± 0.06 and

c3
I ’ 0 (see Table 3), the robustness of the estimates is
satisfactory. Using the CWT estimates and the t(q) = �c0 +
c1 q � c2 q2/2! + c3q

3/3! expression, the tI(q) and DI(h)
spectra are obtained and shown as solid lines in Figure 10.
Note again that the tI(q) curve (from the cumulant compu-
tations) is shown only up to q #3 (following equation (40)).
In agreement with the ‘‘WTMM with sup’’ analysis on the
cumulative rainfall series (which showed h ] 1), the CWT
analysis directly on rainfall intensities confirms the possible
presence of singularities of strength h ] 0 (Cantor-type sets
of points) in rainfall intensity fluctuations. Unfortunately, as
mentioned before, the observed domain �0.1 ] h < 0 is so
tiny that in regards of statistical convergence issues, one

Figure 9. Moments analysis of the rainfall (Rain 6) intensity [ln(ZI(q, a)) versus ln(a): q = 1, 2, 3] using
the CWT method with the analyzing functions g(0) (circles), g(1) (squares), g(2) (stars) and g(3) (inverted
triangles). Note that the analysis with g(0) corresponds to the box-counting method and gives spurious
results. The vertical dashed lines delimit the range of scales (expressed in 5s unit) used for the linear
regression estimate of tI(q).

Figure 10. (a) tI(q) spectrum and (b) DI(h) singularity spectrum obtained with moments of the rainfall
(Rain 6) intensity using the CWT method with the analyzing functions g(0) (circles), g(1) (squares), g(2)

(stars) and g(3) (inverted triangles). The dashed lines correspond to the spectra of rainfall intensity
obtained using the cumulant method with g(2) (c0

I = 1, c1
I = 0.65, c2

I = 0.23 and c3
I = 0). The solid lines

correspond to the spectra in Figure 7 (obtained from the estimates of cn
c ), via the relation tI(q) = tc(q) �

q and DI(h) = Dc(h + 1), respectively. Note that the solid and dashed lines corresponding to t(q) in
Figure 10a are shown only up to q+* #3 (see text for details).
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cannot state positively the actual presence of singularities
stronger than discontinuities in rainfall intensity.

4.4. Summary of One-Point Multifractal Analysis

[45] Similar analysis was performed on the three other
rainfall intensity series. Table 4 summarizes the c0, c1, c2
and c3 estimates obtained from the cumulant analysis on the
cumulative rainfall series obtained from the linear regres-
sions in Figure 12. Figure 13 displays the spectra of scaling
exponents and spectra of singularities using g(3) on the
cumulative rainfall using both the cumulant analysis (solid
lines) and the ‘‘WTMM with sup’’ method (symbols). It is
observed that while series Rain 4 and Rain 5 show a very
similar multifractal behavior as series Rain 6, Rain 1 shows
approximately the same strong intermittency as the other
series (c2 # 0.3), but a significantly more singular behavior,
i.e., hhi # 0.1 instead of hhi # 0.5–0.7 for the other series.
What physical mechanisms drive the multifractal structure
of rainfall and give rise to these differences is still an open
question, and is beyond the scope of this paper.
[46] The multifractal behavior was found to hold only

within the storm pulses, i.e., from scales of the order of 4–
5 min up to the storm pulse duration, which was of the order
of 1–2 hours for the analyzed storms. For scales less than
4–5 min, no inference on scaling can be made; much higher
resolution data would be needed to establish the presence or
absence of scaling. Also, for scales larger than the pulse
duration, a deviation from scaling becomes apparent. How-
ever, to conclusively infer the nature of scaling (absence of
scaling or presence of a different scaling regime), analysis
of longer series (so that a larger number of storm pulses is

available) or many more data sets (which can serve as
ensembles) would be needed.

5. Two-Point Magnitude Analysis of Rainfall
Intensities

[47] The two-point WTMM magnitude correlation anal-
ysis of Rain 6, Rain 5, Rain 4 and Rain 1 is shown in
Figure 14. On the left are the two-point correlation functions
C(a, Dt) versus ln Dt (equation (41), where Dx is replaced
by Dt) for rainfall intensities using the CWT method with
g(2), and on the right are the plots obtained from the analysis
of the cumulative rainfall using WTMM with g(3). It is
observed that C(a, Dt) shows a slow logarithmic decay with
the time of separation Dt (equation (42)), and that the curves
fall on top of each other for Dt > a, indicating the presence
of long-range correlation in rainfall fluctuations.
[48] The slopes of these lines are very close to �c2 (up to

numerical uncertainty) as evidenced by comparison to the
cumulant C2(a) versus ln (a) curve shown on the same plots
(open circles). This implies that the long-range dependence
found in the series is consistent with both equations (43)
and (44), and therefore is likely to be the signature of the
existence of an underlying multiplicative cascade process.
Note that as seen in Figures 14a and 14b and Figures 14c
and 14d for Rain 6 and Rain 5, the statistics of the CWT
coefficients are nearly Gaussian (C2I (a) = p2/8; see Delour et
al. [2001]) at a scale a ’ 1 hour which coincides with the
time lag beyond which the WTMM magnitudes become
decorrelated (C(a, Dt) = 0). This scale corresponds to the

Figure 11. Cumulants analysis of the rainfall (Rain 6) intensity [Cn
I(a) versus ln(a): n = 1, 2, 3] using

the CWT method with the analyzing functions g(0) (circles), g(1) (squares), g(2) (stars) and g(3) (inverted
triangles). The vertical dashed lines delimit the range of scales (expressed in 5s unit) used for the linear
regression estimate of cIn. Again, the results of the box-counting method (i.e., using g(0)) are spurious.

Table 3. Cumulant Analysis Estimate of cn
I for Rainfall (Rain 6)

Intensity With the CWT Method Over the Range of Scales 4–

58 min

c1
I c2

I c3
I

g(0) 0.10 ± 0.02 0.20 ± 0.04 �0
g(1) 0.54 ± 0.03 0.29 ± 0.03 �0
g(2) 0.65 ± 0.03 0.23 ± 0.06 �0
g(3) 0.70 ± 0.03 0.28 ± 0.04 �0

Table 4. Estimates of cn
I for Rainfall Intensity Obtained From the

Cumulant Analysis of the Cumulative Rainfall Data Rain 6, Rain 5,

Rain 4, and Rain 1 Using the WTMM Method With g(3) Over the

Range of Scales 4–58 min

c0
I c1

I c2
I c3

I

Rain 6 0.98 ± 0.02 0.64 ± 0.03 0.26 ± 0.04 �0
Rain 5 0.97 ± 0.02 0.55 ± 0.05 0.38 ± 0.05 �0
Rain 4 0.99 ± 0.02 0.62 ± 0.03 0.35 ± 0.15 �0
Rain 1 1.00 ± 0.02 0.14 ± 0.03 0.30 ± 0.08 �0
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duration of the storm pulse, and therefore the inference is
made that a multiplicative cascading mechanism is associ-
ated with rainfall fluctuations within storm pulses only, but
not from one pulse to another.
[49] To further confirm the above hypothesis, the follow-

ing numerical experiment was performed. First, a synthetic
series from a fractionally integrated cascade (FIC) with
similar multifractal properties as that found for Rain 6 (i.e.,
c0
I = 1, c1

I = 0.65, c2
I = 0.3 and c3

I = 0) was generated and with
integral scale T = exp(9), i.e., corresponding to the whole
storm duration of approximately 6 hours (see Schertzer
and Lovejoy [1987] and Schertzer et al. [1997] for FIC
generation). We call this ‘‘signal 1.’’ Second, the above FIC
with T = exp(9) was superimposed on the low-frequency
component (LFC) of Rain 6 corresponding to the g(3)

wavelet (see Figure 4a); we call this ‘‘signal 2.’’ Third, on
the Rain 6 low-frequency component, FIC realizations with

the same multifractal structure as before but with integral
timescale T0 = exp(6.5), i.e., corresponding to the storm pulse
duration, were superimposed next to each other; we call this
‘‘signal 3.’’ If our hypothesis of a local cascading mechanism
is correct, then the results for Rain 6 would resemble only
those of ‘‘signal 3’’ and would differ significantly from those
of ‘‘signal 1’’ and ‘‘signal 2.’’ Indeed, this is the case as seen
by comparing Figure 15 for the three synthetic signals and
Figures 14a and 14b for Rain 6.
[50] Figure 15a shows a long-range dependence up to

scale T(= exp(9)), and also scaling over the whole range T
for ‘‘signal 1,’’ as expected. Figure 15b shows a long-range
dependence up to scale T (because of the integral scale of
the underlying cascade), but break of scaling at the scale of
the pulse duration (because of the presence of the LFC). The
long-range dependence of rainfall fluctuations over the
whole duration of the storm implies memory of the rainfall

Figure 12. Cumulant analysis of cumulative rainfall intensity [Cn
c(a) versus ln(a): n = 1, 2, 3] using the

WTMM method with the analyzing wavelet g(3). The symbols correspond to the following rainfall data:
Rain 1 (circles), Rain 4 (squares), Rain 5 (stars) and Rain 6 (inverted triangles). The vertical dashed lines
delimit the range of scales (expressed in 5s unit) used for the linear regression estimate of cn

c.

Figure 13. Multifractal spectra of rainfall intensity for Rain 1 (circles), Rain 4 (squares), Rain 5 (stars)
and Rain 6 (inverted triangles) obtained from the estimates of the multifractal spectra (a) tc(q)(= tI(q) + q)
and (b) Dc(h)(= DI(h � 1)) of the cumulative rainfall intensity using the WTMM method with the
analyzing wavelet g(3). The solid lines correspond to the same spectra obtained with the cumulant
method; the values of c0

I, c1
I, c2

I and c3
I are listed in Table 4. Note that the solid lines corresponding to t(q)

in Figure 13a are shown only up to q*+ # 2.4 to 3 (see text for details).
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fluctuations from one storm pulse to another (as in fact
expected because of the FIC spanning the whole signal).
Figure 15c shows a long-range dependence and also scaling
only up to the storm pulse duration (timescale = T0 =
exp(6.5)). This implies that there is no memory from one
storm pulse to another (as in fact expected because of the
local FICs). This numerical experiment provides further
confidence of the hypothesis for a local cascading mecha-
nism associated with rainfall fluctuations within each storm
pulse, but not throughout the storm duration.

6. Evolution of the PDF Shape Over Scales

[51] One of the by-products of scaling in rainfall fluctua-
tions is the knowledge of how to estimate the PDF at one
scale from that of another scale, i.e., how to rescale the PDF
across scales. This can have practical implications in down-

scaling [e.g., see Perica and Foufoula-Georgiou, 1996;
Venugopal et al., 1999], or can serve as an additional
verification that indeed the inferred multiscaling and the
estimated multifractal spectra are correct, if the appropriately
rescaled PDFs collapse on each other. The purpose of this
section is to (1) present theoretical background on the
wavelet-based PDF rescaling inmultifractal signals [Arneodo
et al., 1997b, 1998c] and (2) illustrate the application of the
methodology for rainfall and corroborate the accuracy of the
previously obtained multifractal spectra.
[52] It is recalled that for an almost everywhere singular

monofractal function, the linear spectrum t(q) = qH � 1
implies that all the points of the signal have the same local
Hölder exponent: h(x) = H, 8x. In this case, the PDF of the
WTMM coefficients Ta at scale a, denoted by Pa(T) has
been shown to relate to that at another scale a0 = la via [see
Arneodo et al., 1997b].

Pa Tð Þ ¼ a0

a

� ��H
Pa0

a0

a

� ��H
T

 !
: ð45Þ

In other words, the shape of the PDF of Ta does not depend
on scale provided that we appropriately normalize the
WTMM coefficients. Castaing et al. [1990] proposed a
generalization of equation (45) for multifractals by

Figure 14. Two point correlation functions C(a, Dt) versus
ln(Dt) (equation (41)) for rainfall intensity using the CWT
method with g(2) (left column) and for cumulative rainfall
intensity using WTMM with g(3) (right column). Each curve
(solid line) corresponds to a different scale a within the
scaling range. Shown are (a and b) Rain 6, (c and d) Rain 5,
(e and f) Rain 4 and (g and h) Rain 1. For comparison is
shown (in circles) the behavior of the corresponding
second-order cumulant C2

I(a) (left column) and C2
c(a)

(right column) versus ln(a). Note that for the CWT estimate
of C2

I(a) we have actually plotted C2
I(a) � p2/8 (see text).

In each panel, the straight solid line corresponds to the
estimated slope �c2 of the corresponding second-order
cumulant (see Table 4).

Figure 15. Two point magnitude correlation functions
C(a, Dt) versus ln(Dt) obtained using the CWT method with
g(3) for (a) fractionally integrated cascade (FIC) of integral
timescale T = exp(9); (b) the sum of the low frequency
component of rainfall intensity (Rain 6) (Figure 4a) and the
previous FIC; and (c) the same superposition as in Figure 15b
but with a FIC with T0 = exp(6.5). For comparison is
also shown (in circles) the behavior of the corresponding
second-order cumulant C2

I(a) versus ln(a).
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considering that H fluctuates according to a probability
density function r(h) i.e.,

Pa Tð Þ ¼
Z 1

�1
r hð Þ a0

a

� ��h
Pa0

a0

a

� ��h
T

 !
dh; for a0 > a;

ð46Þ

that is, the PDF at scale a can be expressed as a weighted
sum of dilated PDFs at larger scales a0 > a. Let us note that
the monofractal situation (equation (45)) is recovered when
assuming that r(h) = d(h � H) in equation (46). By denoting
u = h ln(a) and Gaa0(u) = r( u

lnl)/ln l, where l = a0

a
, the above

expression can be rewritten as:

Pa Tð Þ ¼
Z 1

�1
Gaa0 uð Þe�uPa0 e

�uTð Þdu for a0 > a; ð47Þ

i.e., as a convolution-type equation, where the kernel G for
any decreasing sequence of scales (a1, � � � ak) satisfies the
composition law

Gana1 ¼ Ganan�1 $ � � � $ Ga2a1 ; ð48Þ

where $ denotes this convolution product. The kernel
Gaa0(u) is called the propagator and depends only on u (a
random variable here) and a, a0.
[53] Now from the definition of the partition function Z(q,

a) (equations (15) and (16)), it is easy to see that

Z q; að Þ ¼
Z 1

0

jT jqPa jT jð Þd jT jð Þ; ð49Þ

where Pa(jTj) is the WTMM PDF at scale a, can be
reexpressed, using equation (47), in the following form:

Z q; að Þ ¼
Z 1

0

jT jq
Z 1

�1
Gaa0 uð Þe�uPa0 e

�ujT jð Þdu
� �

d jT jð Þ:

ð50Þ

With the change of variable T0 = e�u jTj, one gets

Z q; að Þ ¼
Z 1

�1
equGaa0 uð Þdu

� �
Z q; a0ð Þ;

¼ FGaa0 k ¼ �iqð ÞZ q; a0ð Þ; ð51Þ

where FGaa0
is the moment generating function (equation

(22)) of Gaa0. In fact, Arneodo et al. [1997b] propose to
estimate G as

FGaa0 k ¼ �iqð Þ ¼ Z q; að Þ=Z q; a0ð Þ ¼ a=a0ð Þt qð Þ
: ð52Þ

This demonstrates that the t(q) multifractal spectrum is
directly related to the cumulant generating function
(equation (25)) of the propagator Gaa0:

YGaa0 �iqð Þ ¼
X1
n¼0

Cn a=a0ð Þ q
n

n!
¼ t qð Þ ln a=a0ð Þ; ð53Þ

where we have used equations (33)–(37).

[54] The reader is referred to Arneodo et al. [1997b,
1998c, 1999] for test applications of this estimation method
to synthetic turbulence data. The WTMM partition function
Zwtmm(q, a) has been computed for the Rain 6 series for
scales a corresponding to the exp of {4.8, 5.14, 5.49, 5.84
and 6.18}, and using the values of c0 = 1, c1 = 0.64, and c2 =
0.26 (see Table 4). Then via equation (52), the propagator
Gaa0(u) has been estimated and the PDFs at scales larger
than exp(4.8) have been rescaled to that at scale exp(4.8)
using equation (46). Figure 16a shows the original WTMM
PDFs at those scales and Figure 16b shows the rescaled
PDFs. The collapse of the rescaled PDFs on each other is
impressive, further establishing confidence in the estimates
of the multifractal spectra. It is noted that a wrong inference
of monofractality for Rain 6 (c1 = 0.67; c2 = 0) would
simply result in translated PDFs which do not collapse to
each other as seen in Figure 16c. Actually the fact that the
intermittency coefficient c2 is non zero accounts for the
observed change in the width of these PDFs across scales.

7. Conclusions

[55] In this paper, we have revisited some issues relating
to the inference and estimation of the multifractal nature of
high-resolution temporal rainfall, using wavelet-based

Figure 16. Demonstration of PDF rescaling via the
propagator: (a) Original PDFs of the logs of WTMM
coefficients (magnitude coefficients) of Rain 6 at scales ln
a = {4.8, 5.14, 5.49, 5.84 and 6.18} corresponding to {10,
14, 20, 29 and 40 min}; (b) rescaled PDF using the
multifractal estimates of the cumulant c0 = 1, c1 = 0.64;
c2 = 0.26; and (c) rescaled PDFs using an erroneous
monofractal estimate of c0 = 1 and c1 = 0.64 clearly
depicting the wrong inference.
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methods. We have established that traditional techniques
can result in spurious estimates of the spectrum of scaling
exponents (t(q)) and correspondingly the singularity spec-
trum (D(h)). We introduced an alternate formalism based on
magnitude cumulants that is much more efficient than the
traditional moments analysis or the wavelet-based partition
function formalism. We have also explored the possibility of
a multiplicative cascade as the generating mechanism for
these rainfall data using the two-point magnitude analysis
method.
[56] On the basis of the analysis of four high-resolution

temporal rainfall series collected at IIHR, the following
observations can be made:
[57] 1. Rainfall fluctuations (properly defined here via a

wavelet filtering) exhibit multifractality. This is evidenced
by the nonzero and large value of the intermittency coeffi-
cient (c2 # 0.3), which is an order of magnitude larger than
the intermittency coefficient found for turbulent velocity
fluctuations (c2 # 0.025 [e.g., see Frisch, 1995, p. 25]).
[58] 2. The range of singularities is between �0.1 and

1.3, centered at hhi # 2/3. The presence of h > 1 suggests
that traditional techniques of estimating the singularity
spectrum (for instance, using the structure function method,
which cannot capture singularities h > 1) could yield
spurious estimates of D(h). It also stresses the fact that
rainfall intensity series should not be analyzed as a singular
measure, but as a singular function. Thus the moment
scaling function on the average rainfall intensities (i.e.,
box-counting method) would give misleading results.
[59] 3. Multifractality is documented to hold only within

storm pulses, i.e., from scales of the order of #4–5 min to
the storm pulse duration which is of the order of #1–
2 hours. For scales less than 4–5 min, no inference can be
made as this would require much higher resolution data. For
scales larger than the storm pulse duration, a break of
scaling is observed. However, not enough storms are
available to explore the nature of scaling in interstorm pulse
period (absence of scaling or the onset of a new scaling
regime).
[60] 4. Rainfall fluctuations exhibit long-range depen-

dence only up to the scale of the storm pulse duration
implying that there is no memory in rainfall fluctuations
from one storm pulse to another. In this sense, the duration
of a storm pulse can be seen as equivalent to the integral
scale in fully developed turbulence.
[61] 5. The long-range dependence of within-storm-pulse

rain fluctuations or, equivalently, the correlation structure of
the singularities inferred by the two-point magnitude anal-
ysis, suggests the presence of an underlying multiplicative
cascade process. The fact that c3 is very close to zero is also
suggestive that a lognormal cascade is a good approxima-
tion of this multiplicative process.
[62] 6. An important aspect of the analysis presented here

is to note that the large value of c2 for rainfall fluctuations
(i.e., large intermittency or a wide spectrum of singulari-
ties), limits the order of moments (q*± = ±3, for the analyzed
data, following equation (40)) up to which one can assess
the nonlinear behavior of the t(q) curve. Note that this
limitation in the order of moments is not imposed by
statistical considerations, i.e, statistical convergence, but is
based on purely theoretical grounds. The practical implica-
tion is that even for a very large sample, the nature of

multifractality in the process reflected in c2 restricts the
useful order of moments from which multifractality can be
inferred on the basis of the t(q) curve. This is an important
observation for the hydrologic literature where the extrac-
tion of the spectrum of scaling exponents (t(q)) and the
subsequent inference of multifractality from the nonlinearity
of t(q) have been done on the basis of computations of
moments of order as high as 7.
[63] As a concluding remark, we note that the record

length of the analyzed storms is relatively short (#6000
points), and the inferred scaling range is even smaller (#100
to 1000 points) making it thus difficult to obtain accurate
estimates of the multifractal spectra. This is the reason for
the different complementary analyses employed in this
paper, including CWT, WTMM and cumulant analysis,
using wavelets of different orders, until reliable estimates
are obtained. For the four storms analyzed, three exhibit
similar characteristics (Rain 4, 5 and 6), while one (Rain 1)
exhibits a considerably more singular behavior (a smaller
c1 = hhi) but the same degree of intermittency (same c2).
The connection of the multiscaling properties of rain to the
underlying physical mechanism responsible for its forma-
tion is a long-standing problem in hydrology, but falls
beyond the scope of the present paper. Progress in method-
ologies that can conclusively infer the multifractal structure
of rainfall fluctuations from small samples (as presented in
this paper) offers confidence in proceeding with a micro-
physical analysis of these storms (whenever data are avail-
able) in the hope to be able to eventually understand the
statistical-physical connections.

Appendix A: Practical Recipe for Calculating the
Singularity Spectrum of a Given Data Set

[64] Without a priori knowledge of the multifractal nature
of the signal, the following approach is recommended such
that access to the whole spectrum of singularities is enabled
via the most efficient estimation techniques.
[65] 1. Take the cumulative of the given signal f(x).
[66] 2. Choose the analyzing wavelet (start with g(1)(x),

the first derivative of the Gaussian function).
[67] 3. Compute the continuous wavelet transform of the

cumulative signal.
[68] 4. Estimate c0 = Df from the computation of

Zwtmm(a, 0).
[69] 5. Estimate the cumulants C1(a), C2(a) � � � using

‘‘WTMM with sup.’’
[70] 6. From the plots of C1(a), C2(a) � � � versus ln(a),

estimate c1, c2 � � �
[71] 7. Using c0, c1, c2, � � �, compute t(q) = �c0 + c1 q �

c2q
2/2 + c3q

3/3! � � � �
[72] 8. From the Legendre transform of t(q), estimate

D(h)
[73] 9. If D(h) extends up to h = 1, it implies that there

might be singularities of Hölder exponent h > 1 present in
the cumulative.
[74] 10. Repeat steps 2 and 3 with higher-order wavelets

(ny = 2, 3, � � �), and see if D(h) extends up to hmax < ny. If
two successive wavelets show the same results, then one
can be assured that the correct D(h) spectrum has been
obtained. Also this wavelet defines the ‘‘fluctuations’’ of the
process (f * g(ny)(.)) to which multiscaling applies.

18 of 20

W06D14 VENUGOPAL ET AL.: REVISITING MULTIFRACTALITY IN RAINFALL W06D14



[75] 11. If c2 is significantly different from 0, the given
function is multifractal.

Appendix B: Derivation of the Relation Between
Cumulant Coefficients and the Moments of h for a
Parabolic Singularity Spectrum D(h)

[76] Using equation (36),

C1 að Þ ¼ hln jTaji � hln ahi � hhi ln a; ðB1Þ

since jTaj � ah (see equation (9)). Similarly,

C2 að Þ ¼ hln2 jTaji � hln jTaji2 � hln ah ln ahi � hhi2 ln að Þ2:
ðB2Þ

Thus

C2 að Þ � hh2i � hhi2
� 	

ln að Þ2: ðB3Þ

Thus we have expressed C1(a) and C2(a) in terms of the
moments of h, the singularity strength (i.e., treating h as a
random variable). The task is to express the moments of h in
terms of the cumulant coefficients. Noting that the
probability density function of h behaves as ac0�D(h), we get

hhi ¼
Z

hPa hð Þdh �
Z

hac0�D hð Þdh

�
Z

h exp c0 � D hð Þð Þ ln a½ � dh: ðB4Þ

For the sake of simplicity, let us assume that the spectrum of
scaling exponents is parabolic, i.e., t(q) =�c0 + c1q� c2q

2/2!.
By definition the singularity spectrum D(h) is the Legendre
transform of t(q), i.e.,

D hð Þ ¼ min
q

qh� t qð Þ½ � ¼ min
q

c0 � c1 � hð Þqþ c2q
2=2!

� �
¼ c0 �

h� c1ð Þ2

2c2
: ðB5Þ

Substituting this above expression for D(h) in equation (B4),
we get

hhi �
Z

h exp
h� c1ð Þ2

2c2
ln a

" #
dh �

Z
h exp

� h� c1ð Þ2

2 � c2
ln a

� �
" #

dh:

ðB6Þ

Noting that themean of the distribution is c1 and the variance is
�c2/ln a, and solving the above Gaussian integral, we get

hhi ¼ c1; and hh2i � hhi2 ¼ �c2= ln a: ðB7Þ

Substituting these expressions into the expressions above for
C1(a) and C2(a), we get

C1 að Þ � hhi ln a � c1 ln a; ðB8Þ

and

C2 að Þ � hh2i � hhi2
� 	

ln að Þ2� � c2

ln a
ln að Þ2� �c2 ln a: ðB9Þ
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Delour, J. (2001), Processus aléatoire auto-similaire: Applications en turbu-
lence et en finance, Ph.D. thesis, Univ. of Bordeaux I, Talence, France.

Delour, J., J. F. Muzy, and A. Arneodo (2001), Intermittency of 1D velocity
spatial profiles in turbulence: A magnitude cumulant analysis, Eur. Phys.
J. B, 23, 243–248.

Foufoula-Georgiou, E. (1997), On stochastic theories of space-time rainfall:
Some recent results and open problems, in Stochastic Methods in Hy-
drology: Rain, Landforms and Floods, Adv. Ser. on Stat. Sci. and Appl.

W06D14 VENUGOPAL ET AL.: REVISITING MULTIFRACTALITY IN RAINFALL

19 of 20

W06D14



Probab., vol. 7, edited by V. Gupta et al., pp. 25–72, World Sci., Hack-
ensack, N. J.

Frisch, U. (1995), Turbulence, Cambridge Univ. Press, New York.
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