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ABSTRACT

Scale invariance is a widely used concept to analyze real-world
data from many different applications and multifractal analy-
sis has become the standard corresponding signal processing
tool. It characterizes data by describing globally and geomet-
rically the fluctuations of local regularity, usually measured by
means of the Hölder exponent. A major limitation of the cur-
rent procedure is that it applies only to locally bounded func-
tions or signals, i.e., to signals with positive regularity. The
present contribution proposes to characterize local regularity
with a new quantity, the p-exponent, that permits negative reg-
ularity in data, a widely observed property in real-world data.
Relations to Hölder exponents are detailed and a corresponding
p-leader multifractal formalism is devised and shown at work
on synthetic multifractal processes, representative of a class of
models often used in applications. We formulate a conjecture
regarding the equivalence between Hölder and p-exponents for
a subclass of processes. Even when Hölder and p-exponents
coincide, the p-leader formalism is shown to achieve better es-
timation performance.

Index Terms— scale invariance, multifractal analysis,
negative local regularity exponent, wavelet Leaders, estimation
performance

1. CONTEXT, GOALS AND CONTRIBUTIONS

Scale invariance and Multifractal Analysis. Multifractal
analysis [1, 2] has recently matured to a standard signal pro-
cessing tool that provides a fine characterization of the scaling
properties of time series (cf. e.g., [1, 2, 3]). In essence, mul-
tifractal analysis relies on the notion of local regularity, theo-
retically grounded in the definition of the Hölder exponent h(t)
[1, 2]: The closer h(t) is to 0, the more irregular a signal X is
at time position t; conversely, the larger h(t), the more regular
X at t. Multifractal analysis does, however, not aim at char-
acterizing X via the fluctuations of its local regularity along
time, i.e., via the function h(t). Instead, it provides practition-
ers with a characterization of X via the multifractal spectrum

D(h), consisting of a global geometrical description of the fluc-
tuations of h(t). The practical estimation of D(h) is achieved
through a procedure referred to as a multifractal formalism. It
relies on the use of multiresolution quantities TX(a, t), i.e., of
quantities that measure the behavior of X around t at scale a,
such as wavelet coefficients. The asymptotic behavior of the
time average of the moments of order q of TX(a, t) in the limit
of fine scales theoretically defines the scaling function

⇣(q) = lima!0 log(1/na

P
k |TX(a, k)|q)/ log a,

whose Legendre transform provides an estimate of D(h) in
form of an upper bound (cf. Section 2 and [1, 2]).

The definition of ⇣(q) above in essence amounts to assum-
ing a scaling behavior with respect to the analysis scale a,

1/na

X

k

|TX(a, k)|q ' cqa
⇣(q), a ! 0, (1)

connecting multifractal analysis as an analysis tool and scale
invariance as a modeling paradigm. In practice, the asymptotic
power law above is assumed to hold over a finite yet large range
of scales am  a  aM , with aM/am � 1, thus enabling the
estimation of the scaling exponents ⇣(q) and further of D(h).

Multifractal analysis has been successfully used as a tool
to analyze, describe, model and classify temporal dynamics of
signals in numerous real-world applications of very different
types, including hydrodynamic turbulence [4], biomedical data
and body rhythms [5, 6], geophysical data [7, 8], fMRI [9, 10],
finance [11] and image textures [12]. For reviews and exam-
ples, see e.g., [13, 14].
Related works: recent developments and open issues.
Multifractal analysis has received significant research efforts
at both the theoretical and application levels. Most of the re-
cent developments aiming at improving multifractal analysis,
either in theoretical foundations or in applied schemes, fo-
cus on exploring the benefits of varying the multiresolution
quantities TX(a, t) serving as the basic analysis unit. Incre-
ments, oscillations, wavelet coefficients, continuous wavelet
transform modulus maxima [15, 16] and more recently wavelet
leaders [3] were used in the vast majority of cases. These de-
velopments were mainly concerned with parameter estimation



performance and robustness (cf. [3, 17] and references therein),
or, more recently, with analysis refinement (e.g., detection of
oscillating singular behaviors in data [18].) Along another line,
procedures avoiding the Legendre transform based formalism
(which yields the convex hull of D(h) only) have been inves-
tigated. Notably, large deviation principle based approaches
were studied, aiming at the estimation of non convex multi-
fractal spectra (cf. e.g., [2, 19]).

However, none of these developments reflected two funda-
mental facts. First, by definition, the Hölder exponent is pos-
itive, h(t) � 0. Consequently, its use as a measure of local
regularity induces a major a limitation for the application of
multifractal analysis to real-world data: It permits the analy-
sis of the fluctuations of local regularity for locally bounded
functions only. Second, the choice of a particular multireso-
lution quantity TX(a, t) is tied to the way local regularity is
measured and can therefore imply a change in the definition of
the exponent used to measure local regularity. Often, in ap-
plications, real-world data are well modeled by stochastic pro-
cesses whose sample paths do not constitute locally bounded
functions, this is the case e.g., for fractional Gaussian noise or
multifractal random walks [20], frequently used to model Heart
Rate Variability [6], fMRI fluctuations [9, 10] or Mandelbrot’s
multiplicative cascades, used to model, e.g., dissipation in hy-
drodynamic turbulence [4], rainfalls [7], cloud textures [15], to
list but a few examples. In these situations, the Hölder exponent
is of limited practical use, and so are the associated multireso-
lution quantities.

Recently, an alternative measure of regularity, the p-
exponent hp(t), has been introduced theoretically in the context
of multifractal analysis [21]. One of its potential advantages
is that it enables to weaken the positive regularity and bound-
edness requirement and admits a certain range of negative
exponents. It has, to the best of our knowledge, not been used
in applications and remains poorly studied in terms of practical
applicability and estimation performance.

Goals, contributions and outline. In this context, the goals
of the present contribution are three-fold: First, it aims at
defining the p-exponent, reviewing the key differences with
the Hölder exponent, and devising the corresponding multires-
olution quantities and multifractal formalism (cf. Section 2).
Second, the principles and limitations of the p-exponent based
multifractal formalism are illustrated on sample paths of a
stochastic process chosen as a representative model for scale
invariance in applications (cf. Section 3). Third, equality be-
tween Hölder and p-exponents is conjectured for a class of
model processes. In the case of coinciding exponents, it is
shown numerically that the p-leader formalism achieves better
estimation performance than the wavelet leader formalism, now
considered as a benchmark for practical multifractal analysis
(cf. Section 4).

2. LOCAL REGULARITY, MULTIFRACTAL
ANALYSIS

2.1. Hölder regularity

Wavelet coefficients. Let {X(t)}t2R denote the signal to be
analyzed. Let  denote the mother wavelet, characterized by
its uniform regularity index and number of vanishing moments
N , a strictly positive integer defined as:  2 CN �1 and
8n = 0, . . . , N � 1,

R
R tk (t)dt ⌘ 0 and

R
R tN  (t)dt 6= 0.

Let { j,k(t) = 2

�j/2 (2�jt � k)}(j,k)2N2 denote the col-
lection of dilated and translated templates of  that form an
orthonormal basis of L2

(R). The (L1-normalized) discrete
wavelet transform coefficients dX(j, k) of X are defined as
dX(j, k) = 2

�j/2h j,k|Xi. For a detailed introduction to
wavelet transforms, readers are referred to, e.g., [22] . Early
formulations of multifractal analysis were based on the struc-
ture functions of wavelet coefficients, of order q � 0,

S(d)
(j, q) = 1/nj

X

k

|dX(j, k)|q ⇠ c(d)q (2

j
)

⌘(q), (2)

but have been shown to suffer from poor practical performance
(cf. e.g., [16, 23, 1, 3]), this is thus not further discussed here.
Hölder exponent. Assume that {X(t)}t2R consists of a lo-
cally bounded function (or sample path of a stochastic process),
i.e., belongs to L1

(R). Then X is said to belong to C↵(t) at
time position t 2 R, with ↵ � 0, if there exist a constant
C > 0 and a polynomial Pt satisfying Deg(Pt) < ↵ such that,
in a neighborhood of t:

|X(t+ a)� Pt(t+ a)|  C|a|↵, |a| ! 0. (3)

The Hölder exponent of X at t is defined as:

h(t) = sup{↵ : X 2 C↵
(t)} � 0. (4)

It characterizes the local regularity of X at t in the sense that
the larger (smaller) h(t), the smoother (rougher) X around
t. The simplest example of a singularity at datum t0 whose
Hölder exponent is h (when h is not a even integer) is supplied
by the cusp-type function X(t) = X(t0) +B|t� t0|h.
Multifractal spectrum and wavelet leaders. Though
deeply rooted in the notions of local regularity and Hölder
exponents, multifractal analysis does not aim at characterizing
X through regularity as a function of time h(t). Instead, it pro-
vides practitioners with a global and geometrical description of
the fluctuations along time of the Hölder exponent h, in terms
of the multifractal spectrum D(h). Technically, D(h) is given
by the Hausdorff dimensions of the sets of points where the
Hölder exponent takes the value h (for details, the interested
reader is referred to [23, 2, 1].)

The practical measurement of D(h) relies on a procedure
referred to as the multifractal formalism: It requires the defini-
tion of multiresolution quantities, the wavelet leaders LX(j, k),
defined as the local supremum of wavelet coefficients taken
within a neighborhood over all finer scales [1, 3]:

LX(j, k) = sup

�0⇢3�j,k

|dX(�0)|, where (5)



�j,k = [k2j , (k + 1)2

j
) and 3�j,k =

S
m{�1,0,1} �j,k+m.

The LX(j, k) match the Hölder exponent in the sense that
for t = 2

jk, LX(j, k) ⇠ C2

jh(t) as 2j ! 0. This implies that
1
nj

Pnj

k=1 LX(j, k)q ⇠ cq2
j⇣(q) as 2j ! 0 as in (1) and that the

Legendre transform of ⇣(q) yields an (upper-bound) estimate
of the multifractal spectrum, L(h) = minq (1 + qh� ⇣(q)) �
D(h).
Limitation. The key limitation in the practical use of the
Hölder based multifractal formalism resides in its applicability
to locally bounded functions only. This requirement implies
the equivalent condition that the minimum regularity hm =

inft h(t) of the data is non-negative, which can be practically
checked prior to application of the multifractal formalism by
using the wavelet coefficient based estimate

hm = lim

2j!0
log2 supk|dX(j, k)|/ log2 2j . (6)

2.2. p-exponent regularity

p-exponents. We extend local regularity measures to nega-
tive values by replacing the bounded function requirement by
the condition that X(t) locally belongs to Lp

(R) for p � 1: X
is said to belong to T p

↵(t) with ↵ > �1/p at time t if there exist
C,R > 0 and a polynomial Pt (of degree N less than or equal
to ↵) such that 8a  R

T
(p)
X (a, t) =

 
1

a

Z t+a/2

t�a/2
|X(u)� Pt,N (u� t)|pdu

!1/p

 Ca↵.

(7)
The p-exponent hp(t) of X at t is defined as [21]:

hp(t) = sup{↵ : X 2 T p
↵(t)} (8)

and constitutes a natural substitute for the Hölder exponent
when dealing with functions which are not bounded but lo-
cally belong to Lp and admits negative local regularity expo-
nents hp > �1/p. Obviously, the Hölder exponent coincides
with the p-exponent for p = +1: h(t) ⌘ h1(t); furthermore,
hp0  hp if p0 � p [21, 24].
p-multifractal spectrum and p-leaders. Mimicking the
definition of D(h), mutatis mutandis, the p-multifractal spec-
trum D(p)

(hp) is defined as the Hausdorff dimensions of the
sets of points where the p-exponent takes the value hp.

The practical measurement of D(p)
(h) requires the defini-

tion of new multiresolution quantities, the p-leaders [25, 26,
21]:

L(p)
(j, k) =

 
2

j
X

�0⇢3�j

|d�0 |p2�j0

!1/p

, (9)

that match p-exponent local regularity in the sense that

for t = 2

jk, L(p)
(j, k) ⇠ C2

jhp(t), 2j ! 0. (10)

The p-scaling function is defined similarly as in (1):

S(p, q, j) = 1/nj

njX

k=1

L(p)
(j, k)q ⇠ C(p)

q 2

j⇣p(q), 2j ! 0;

(11)

and the Legendre transform of ⇣p(q) yields an (upper-bound)
estimate of D(p)

(hp),

L(p)
(hp) = min

q
(1 + qhp � ⇣p(q)) � D(p)

(hp). (12)

The demonstration of that results follows from the proof given
in [27], which is generic for any well-behaved multiresolution
quantity.

In practice, X 2 Lp
(R) must be verified prior to applica-

tion of the p-leader multifractal formalism, by checking that
⌘(p) � 0 [21, 25, 26], or equivalently that its Legendre trans-
form L(h) satisfies

L(h)  1 + ph. (13)

Cumulants and estimation. Following the original intuition
in [28], a polynomial expansion ⇣p(q) =

P
m�1 c

(p)
m qm/m!

enables a simplified analysis of ⇣p(q) through the expansion
coefficients {c(p)l , c

(p)
2 , c

(p)
3 , . . .}. Reproducing the calculations

in [28] for p-leaders immediately yields that these coefficients
are directly related to the dependence with respect to scales
2

j of the cumulants of order m, denoted by C
(p)
m (j), of the

logarithm of the p-leaders:

C(p)
m (j) = Cumm lnL(p)

(j, k) = c(0,p)m + c(p)m ln 2

j . (14)

This scaling behavior is used for the practical estimation of
the coefficients c

(p)
m by linear regressions of the estimates of

C
(p)
m (j) against ln 2j , for j 2 [j1, j2]. In view of (11), the

⇣p(q) are also estimated by linear regressions of log2 S(p, q, j)
versus log2 2j = j. These estimation procedures, implemented
by ourselves, are used to obtain the results produced in Sections
3 and 4.
Hölder versus p-exponents. In general, p-exponents do not
coincide for different ps nor with Hölder exponent (see [24] for
a theoretical discussion); thus the associated spectrum yields a
novel and versatile collection of characterizations of local reg-
ularity fluctuations, further illustrated and studied in Sections 3
and 4.

3. NEGATIVE REGULARITY

Multifractal random walk. The differences and potential
benefits in using p-exponents and p-leaders for the character-
ization of local regularity fluctuations are now illustrated on
pedagogical examples, containing negative p-exponents. They
are based on fractionally differentiated realizations of multi-
fractal random walk (MRW) [20, 29], a popular and representa-
tive member of the class of multiplicative cascade based multi-
fractal processes. This class constitutes one of the most promi-
nently used class of multifractal models for applications.

MRW is a non Gaussian process with stationary increments
and its multifractal properties mimic those of the celebrated
multiplicative log-normal cascades of Mandelbrot. It is defined
as X(k) =

Pn
k=1 GH(k)e!(k), where GH(k) are the incre-

ments of fractional Brownian motion with parameter H , and !



is a Gaussian random process, independent of GH and with non
trivial autocovariance Cov[!(k1),!(k2)] = c2 ln

⇣
L

|k1�k2|+1

⌘

when |k1 � k2| < L and 0 otherwise. MRW has scal-
ing properties as in (1) for q 2

h
�
p
2/c2,

p
2/c2

i
, with

⇣(q) = (H + c2)q � c2q
2/2 and its multifractal spectrum is

given by D(1)
(h) = 1 + (h � c1)

2/(2c2) (with c1 = H + c2
and hm = c1 �

p
�2c2).

Hölder versus p-exponents. Regarding p-exponent analy-
sis, we form the following conjecture, strongly backed up by
the numerical simulations reported below, that will be proven
in [24]:
Conjecture 1 The p-exponents of multiplicative cascade based
multifractal processes X 2 Lp0 coincide for all p 2 [1, p0],
hence D(p)

(h) = D(p0)
(h) for all p 2 [1, p0].

Notably, this conjecture implies that when hm � 0, the Hölder
and the p-exponents coincide 8p � 1 and thus that the Hölder
and the p-exponent based multifractal spectra coincide for
MRW, and 8p � 1 : D(p)

(h) = D(1)
(h) = D(h).

Numerical experiments. We fix c1 = 0.8 and c2 =

�0.08 and use fractional differentiation of order � to con-
trol the minimal regularity and function class embedding
of the sample paths, X(�)

= F�1
⇥
(ı!)�F [X]

⇤
, where F

stands for the discrete Fourier transform [30]. We set � =

{0, 0.4, 0.5, 0.6, 0.7}, yielding h
(�)
m = hm � � =

{0.4, 0, �0.1, �0.2, �0.3}, c(�)1 = c1 � �, c(�)m = cm
for m � 2 and p0 = {+1, +1, 10, 5, 2.5}, where p0
denotes the value for p such that X(�) 2 Lp0 and 8" > 0 :

X(�) /2 Lp0+". We fix N = 2

19. Examples of sample paths
are plotted in Fig. 1 (left column) and illustrate the potential
of processes with negative p-exponents as models for applica-
tions, offering a continuum of moderately to strongly irregular
sample paths. The corresponding multifractal spectra and esti-
mates (as detailed in Section 2) for p = {2, 4, 8, 1} (mean
over 50 realizations) are plotted in Fig. 1 (right column), to-
gether with the theoretical limits D(p)

(hp)  1 + php for the
multifractal p-spectra of Lp functions.
Quality of estimation. First, we observe that in consistency
with Conjecture 1, the results obtained with the wavelet leader
and p-leader formalisms coincide one with another for any of
the values of p considered as long as h

(�)
m � 0 (p0 = +1),

and the formalisms, for any p, provide excellent estimates of
the multifractal spectrum D(h) (Fig. 1, row 1–2). Second,
as soon as h

(�)
m < 0 (p0 < 1), the wavelet leader based

formalism fails to correctly estimate the spectrum D(p0)
(h)

since the theoretical (bounded function) prerequisite for its
application is violated, while the p-leaders estimates L(p)

(h)
correctly recover the multifractal spectrum D(p0)

(h) for values
of p such that p  p0 (Fig. 1, row 3–5). Once this condition
for the function to be in Lp is violated, the p-leader formalism
provides biased estimates L(p)

(h) which are bound to be at
best tangent to 1 + ph (Fig. 1, row 3–5). For example, in row
4, h(�)

m = �0.2 and estimations L(p) are found to correctly es-
timate the theoretical spectrum D only for p = 2, 4 < p0 = 5,
estimates for p = {8,1} � p0 are found to differ significantly
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Fig. 1. Left column: A single realization of fractionally dif-
ferentiated MRW with h

(�)
m = {0.4, 0, �0.1, �0.2, �0.3}

(from top to bottom, respectively). Right column: The theo-
retical multifractal spectra (black solid) and Legendre spectra
(mean over 50 realizations, N = 2

19, N = 2, j1 = 10)
corresponding with the functions in the left column for p =

{2, 4, 8, 1} (solid lines; red circle, green diamond, blue
cross and magenta square); the dashed line segments indicate
the theoretical bound 1+hp for the spectrum of any Lp function
(in respective colors for the different p).



from the expected spectrum. In row 5, h(�)
m = �0.4 and L(p)

estimates are correct for p = 2 < p0 = 2.5 only, while L(p)

obtained with p = {4, 8,1} > p0 are clearly biased and con-
strained by the 1 + ph limits. These results are consistent with
the theory outlined in Section 2 and demonstrate the practical
effectiveness of the p-leader multifractal formalism in measur-
ing negative values in local regularity.

4. ESTIMATION PERFORMANCE

The performance of the wavelet leader and p-leader multifractal
formalisms for estimating the log-cumulants cm, m = 1, . . . , 4
are compared for 500 realizations from Monte Carlo simula-
tions performed on MRW with process parameters as in Sec-
tion 3 and � = 0, hence with hm > 0 and Hölder and p-
exponents and the corresponding spectra coinciding 8p � 1.
A Daubechies’ wavelet with N = 2 is used, linear regres-
sions are performed over the range (j1, j2) = (3, 18). In Fig.
2, estimation performance are summarized as a function of p
in terms of bias b(ˆ✓) =

ˆE[ˆ✓] � ✓ (blue dashed lines with cir-

cles), standard deviations s(ˆ✓) =
q

ˆE[ˆ✓2]� ˆE[ˆ✓]2 (red dashed
lines with crosses) and root mean squared errors (rmse) r(ˆ✓) =q
b(ˆ✓)2 + s(ˆ✓)2 (black solid lines with squares).
It is observed that, for cm, m � 2, variances systemati-

cally decrease when p decreases and also that biases decrease
or remain constant when p decreases, thus rmse is systemati-
cally decreased when p decreases towards 1. For c1, variances
appear to decrease only slightly with p while biases tend to re-
increase when p ! 1, thus yielding a minimum with an optimal
trade-off p around 2. In overall, it is thus observed that, sys-
tematically, when p is decreased, the p-leader based estimation
outperforms the wavelet leader based one, currently considered
to achieve benchmark performance. Also, it provides practi-
tioners with the possibility of tuning the parameter p to data
and applications.

5. CONCLUSIONS

The present contribution has shown that p-exponent and p-
leader based multifractal analysis extends the classical Hölder
and leader based formulation in two ways: Local regularity
analysis is extended to possibly negative values, commonly
observed in real world data. For processes where Hölder and
p-exponents coincide, estimation performance for multifractal
attributes are significantly improved compared to the reference
wavelet leader formalism when tuning p to small values, close
to 1. Connections between Multifractal Detrended Fluctuation
Analysis, another popular tool for multifractal analysis [17]
and p-leader multifractal analysis can be established and yield
theoretical insights in the former tool. Also, while written
explicitly for 1D signals, p-leader multifractal analysis can be
extended to Rd random fields, notably for image texture anal-
ysis. These developments are under current investigations, cf.
[24].
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