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ABSTRACT
Multifractal analysis describes data as a collection of singularities.
However, its classical formulation does not account for their possibly
oscillating nature, while, in a number of applications, distinguish-
ing between oscillating and non oscillating singularities may signifi-
cantly enrich the analysis. This is notably the case in hydrodynamic
turbulence, of interest here, where two different important heuristic
models contradictorily lead to predict the existence or absence of os-
cillating singularities. This contribution proposes a wavelet Leader
oscillation formalism enabling to evidence the presence of oscillat-
ing singularities in real data. It is first validated on synthetic data
both with and without oscillating singularities and second applied to
high quality 1D velocity turbulence data. This constitutes the first
quantitative evidence against the presence of oscillating singularities
in turbulence data.

Index Terms— Oscillating singularity, multifractal formalism,
wavelet Leaders, hydrodynamic turbulence.

1. INTRODUCTION

Multifractal analysis and oscillating singularities. Multifractal
analysis is now considered as a standard tool in Signal Processing,
aiming at characterizing the fluctuations of local regularity in time
and space, the roughness, of a given signal. This local regularity, at
position t0, is essentially measured by the Hölder (or singularity) ex-
ponent, h(t0) ≥ 0, obtained by comparing X around t0 to a locally
singular behavior:

|X(t)−X(t0)| ' C|t− t0|h(t0), |t− t0| → 0. (1)

Multifractal analysis describes globally and geometrically the fluc-
tuations of h(t) via the multifractal (or singularity) spectrum D(h),
consisting of the Hausdorff dimension of the set of points t0 hav-
ing the same Hölder exponent h: h(t0) = h. For thorough and
detailed introductions to multifractal analysis, the reader is referred
to e.g., [1, 2]. In essence, multifractal analysis hence describes the
data X(t) as a collection of singularities. Such singularities are po-
tentially superimposed to smooth (polynomial-like) behaviors, dis-
regarded by multifractal analysis. However, this heuristic reading of
multifractal analysis, commonly underlying the intuition leading to
its use on real-life data in applications, does not fully account for
the variety of singular behaviors that can actually be encountered in
data. Indeed, stating thatX has Hölder exponent h at t0 can actually
correspond to any of the following collection of oscillating singular-
ity behaviors:

X(t)−X(t0) ' C|t− t0|h sin

„
1

|t− t0|β

«
, β ≥ 0. (2)

The case β > 0 corresponds to the so-called chirp-type singularity,
while β = 0 actually only constitutes a particular case, referred to as
a cusp-type singularity. Such behaviors are illustrated in Fig. 1. By
definition, the multifractal spectrum D(h) concentrates on the reg-
ularity exponents but misses the potentially oscillating nature of the
singularities existing in data. Nevertheless, the detection and charac-
terization of such chirp type singularities is a key-issue in a number
of applications ranging from gravitational wave detection to hydro-
dynamic turbulence, of interest here.
Oscillating singularities and hydrodynamic turbulence. Hy-
drodynamic turbulence refers to the analysis of non laminar fluid
flows [3]. It has long been accepted that velocity fluctuations in tur-
bulent flows are well described by their multifractal spectra. The
seminal work of Mandelbrot [4] initiated these analyses and for-
malized their relations to the heuristic Richardson energy cascade
model (cf. e.g., [3]): Energy is injected by flow at a coarse (or in-
tegral) scale and dissipated at a fine (viscosity) scale, the non linear
term of the Navier-Stokes equation ensuring the energy transfer from
coarse to fine scales. This energy transfer is modeled by multiplica-
tive cascades, known as the very (and for long the only) paradigm of
stochastic processes with well controlled multifractal spectra. It has
recently been conjectured [5] that for multiplicative cascades, used
to model scaling properties in turbulence, singularities can only con-
sist of cusps. However, independently from the Richardson energy
cascade model and in parallel, qualitative analyses of the Navier-
Stokes equation predict that the competition between the advective
non linear term and the Laplacian dissipative term may induce a vor-
tex stretching mechanism and hence oscillating singularity behavior
(cf. [3, 6]). This generated a number of research works proposing to
model and describe turbulence data by the superimposition in time
and space of oscillating singularities (cf. [7] and references therein).
These two heuristic models are to some extent hence in contradic-
tion and the use of statistical signal processing tools that enable to
detect the presence of oscillating singularities in turbulence velocity
data could enable to shed light on this challenging issue.
Goals, contributions and outline. So far, the actual characteri-
zation of multifractal spectra issued from oscillating singularities on
real data only received preliminary attempts [8, 9, 5]. In this context,
the goal of this contribution is to propose an extension of the classical
wavelet Leader multifractal formalism, enabling to measure D(h),
to an oscillation formalism, permitting to evidence the existence (or
not) of oscillating singularities in data. This construction, relying on
fractional integration, is introduced, detailed and analyzed (cf. Sec-
tion 2), and validated on known synthetic data (cf. Section 3). It
is then shown at work on a set of velocity data, collected from well
controlled high Reynolds turbulence experiments, and considered as
reference data in hydrodynamic turbulence studies (cf. Section 4).
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Fig. 1. Cusp vs. Chirp singularities.

2. WAVELET LEADER OSCILLATION SPECTRUM

2.1. Singularity and Oscillations Exponents and Spectra

Regularity Hölder exponent. The local regularity of a bounded
function X(t) is quantified by comparison against a local power law
behavior: |X(t) − PX,t0(t)| ≤ C|t − t0|α, where PX,t0 is a poly-
nomial of degree less than or equal to the integer part of α ≥ 0 and
C > 0. Technically, the Hölder exponent of X at t0, h(t0), is de-
fined as the supremum of the values of α such that the inequality
above holds. Multifractal analysis then characterizes globally and
geometrically the fluctuations of h along t, through the multifractal
spectrum D(h), consisting of the Hausdorff dimension of the set of
points t0 having the same Hölder exponent h: h(t0) = h. For chirp
singularities such as (2), the Hölder exponent takes the same value
h, whatever the value of β > 0. D(h) hence conveys no information
on the oscillating nature of the singularities.
Fractional Integration. Let X denote a L2(R) function and X̃
its Fourier transform. The fractional integral of order s > 0 of X ,
X(−s), is defined via its Fourier transform X̃(−s) as:

X̃(−s)(ν) = (1 + |ν|2)−s/2X̃(ν). (3)

Oscillating exponents. The fractional integration, of integer or-
der n, of the function X(t) = C|t|h sin(1/|t|β) has a Hölder expo-
nent, in t = 0, of the form h′ = h+(1+β)n, where h is the Hölder
exponent of X at t = 0. This particular chirp-type case suggests to
propose a definition of the local oscillation exponent β(t0) as:

β(t0) = lim
s→0

∂

∂s
(h−s(t0))− 1, (4)

where h−s(t0) denotes the Hölder exponent of X(−s) at t0. As for
the Hölder exponent, one can define the oscillation spectrum D(β),
as the Hausdorff dimension of the set of points where β(t0) = β.

It is crucial to note that the definition of the oscillation exponent
is closely tied to that of the regularity exponent. The use of a regu-
larity definition other than the Hölder exponent would hence yield a
different oscillation measure.

2.2. Multifractal Formalisms

The so-called multifractal formalism consists of a practical proce-
dure that enables to estimate, from real data X , their multifractal
spectrum D(h), that describes the range of h actually observed.
Recently, it has been shown that this formalism must be based on
wavelet Leaders [2]. This section aims at extending this procedure
to the practical measure of the oscillation spectrum D(β).
Wavelet coefficients and Leaders. Let dX(j, k) = 〈X,ψj,k〉
denote the (L1-normalized) discrete wavelet transform coefficients
of X , where j refers to the analysis scale (a = 2j) and k to time
(t = 2jk), and where ψ denotes the oscillating reference pattern
referred to as the mother wavelet, and ψj,k(t) = 2−jψ(2−jt − k)

the dilated and translated wavelets [10]. The Wavelet Leaders
LX(j, k) are defined as the local supremum of wavelet coeffi-
cients taken within a spatial neighborhood over all finer scales [2]:
LX(j, k) = supλ′⊂3λj,k

|dX(λ′)|, where λj,k = [k2j , (k + 1)2j)

and 3λj,k =
S
m{−1,0,1} λj,k+m.

Hölder Formalism. The following procedure, referred to as the
multifractal formalism (because originally based on thermodynamic
formalism used in statistical physics [3]) can be used in order to ob-
tain D(h). The structure functions SL(2j , q) = 1

nj

P
k LX(j, k)q

exhibit power-law behavior in the limit of fine scales a = 2j → 0,

SL(2j , q) ' S0(q)2
jζL(q). (5)

The ζL(q) are called the scaling exponents and their Legendre trans-
form DL(h) = infq(1 + qh − ζL(q)) provides an upper bound of
the multifractal spectrum, i.e., DL(h) ≥ D(h). For further theoret-
ical details on multifractal analysis and wavelet Leader formalism,
the reader is referred to, e.g., [1] and [2], respectively.
Wavelet Leaders and Oscillation Exponents. The derivation
of the oscillation formalism follows the following heuristic: Let X
be characterized at t0 by an oscillating singularity with exponents
h(t0), β(t0). The wavelet leaders of X at t0 satisfies LX(j, k) '
C2jh, 2j → 0, for j, k, such that 2−jk ' t0. The wavelet leaders of
X(−s), at t0 satisfies LX(−s)(j, k) ' C2j(h+s(1+β)), 2j → 0, s→
0, for j, k, such that 2−jk ' t0. Therefore, the β-Leaders, defined
as

B(−s)(j, k) = 2−j(LX(−s)(j, k)/LX(j, k))1/s, (6)

behave as (for (j, k), such that 2−jk ' t0):

B
(−s)
X (j, k) = 2jβ(t0), 2j → 0, s→ 0. (7)

Oscillation Formalism. Once multiresolution quantities such as
the B(−s)(j, k) above are obtained, the key thermodynamic argu-
ment that leads to the obtention of the multifractal spectrum for
Hölder exponents [3] can be rephrased mutatis mutandis. The new
structure functions

Sβ(2
j , q) =

1

nj

X
k

B
(−s)
X (j, k)q (8)

exhibit power-law behaviors in the limit of fine scales a = 2j →
0 and s→ 0,

Sβ(2
j , q) ' S0(q)2

jζβ(q). (9)

The Legendre transform Dβ(β) = infq(1 + qβ − ζβ(q)) of the
exponents ζβ(q) is expected to provide an upper bound of the os-
cillation spectrum: Dβ(β) ≥ D(β). The study of this conjecture
is beyond the scope of the present contribution, that focuses on its
practical use in turbulence. It will be detailed in [11]. However, its
formulation follows from the combined use of the thermodynamic
formalism and of fractional integration. In Section 3, it is validated
by application of the oscillation formalism to a variety of synthetic
processes whose oscillation spectrum is known theoretically.
Pseudo-fractional Integration. The numerical computation of
the fractional integration X(−s) of X , that can be complicated in
practice can actually be avoided [12]: For X characterized at t0 by
an oscillating singularity with exponents (h(t0), β(t0)), the pseudo-
wavelet Leaders L(−s)

X (j, k), computed as leaders of the modified
wavelet coefficients 2jsdX(j, k), exhibit a power law behavior,
L

(−s)
X (j, k) ' C2j(h+s(1+β)), 2j → 0, s → 0, that reproduces

that of the wavelet Leaders LX(−s)(j, k) computed from the true
fractional integration X(−s) of X , and hence exactly yields the
same multifractal spectrum as that of X(−s). The L(−s)

X (j, k) are
therefore referred to as the pseudo-fractional integration wavelet



Leaders. In the practical implementation of the oscillation formal-
ism, the L(−s)

X (j, k), that are straightforward to compute, naturally
replace the LX(−s)(j, k) in the definition of B(−s)(j, k).
Practical choice of s. Practically the limit s → 0 cannot be
taken. The actually chosen value results from the following prac-
tical trade-off: a too small s yields practically unstable and higly
variable results, as can be anticipated from the use of the power 1/s

entering the definition of the B(−s)(j, k) ; for too large s, the linear
behavior in s founding the definition of β (cf. Eq. (4)) may no
longer be valid hence potentially inducing a bias. Practically and for
this contribution the numerical experimentations conducted on the
synthetic processes described below indicate that when s is varied
in the narrow range s ∈ [0.2, 0.5], results and hence conclusions are
not significantly varied. All figures are shown here for s = 0.25.

3. SYNTHETIC PROCESSES

To assess the validity of the oscillation formalism, it is applied to
a set of synthetic process whose multifractal properties are well
known a priori. Results and Figures are obtained from average over
100 independent copies of the same process.
Fractional Brownian motion (FBM). FBM, with parameter
0 < H < 1, is defined as the only Gaussian exactly self-similar
process with stationary increments [13]. It is well known to be a
mono-Hölder process (i.e., a process whose local regularity takes the
only value h = H) so that its multifractal spectrum is degenerate:
D(H) = 1 and D(h) = −∞ else. Also, FBM contains only and
everywhere cusp-type (β = 0) singularities, hence D(β) = δ(β).
Fig. 2 (a) compares the results of the oscillation formalism pro-
cedure applied to FBM to its theoretical oscillation spectrum. As
commonly observed for multifractal formalisms for Hölder expo-
nents, the estimated spectrum does not collapse onto a single point,
yet remains concentrated around the theoretical single point consti-
tuting the spectrum, a very satisfactory result.
Lacunary Wavelet Series (LWS). LWS are defined as wavelet
series: Xα,γ(t) =

P
j,k dα,γ(j, k)ψj,k(t), α > 0, 0 < γ < 1,

where a random fraction of 2−jγ of dα,γ(j, k) takes the single value
2jα, while the others are set to 0. Such processes possess an oscilla-
tion spectrum of the form D(β) = γ(β + 1), β ∈ [0, 1/γ − 1] [11].
Fig. 2 (b) compares the results of the oscillation formalism proce-
dure applied to LWS to its theoretical oscillation spectrum. Despite
a clear discrepancy between the theoretical and estimated spectra,
the two satisfactory outcomes of the current procedure stem from
the fact that the maximum of the estimatedD(β) falls far to the right
of β = 0 and that the estimated D(β) is found significantly above 0
for a range of β that matches the theoretical range β ∈ [0, 1/γ − 1].
By comparing the top plots of Fig. 2, the oscillation formalism
clearly and unambiguously leads to conclude that FBM is a cusp
only process, while LWS contains chirp singularities over a wide
range of βs. The extent to which the observed discrepancy is caused
by numerical instabilities inherent to the proposed procedure or by
difficulties in the synthesis of LWS remains to be understood [11].
Random Wavelet Cascades (RWC) versus Random Wavelet
Series (RWS). As mentioned in Section 1, turbulence data are
commonly modeled as multiplicative cascade random processes to
account for the Richardson energy cascade and to model their well-
accepted multifractal properties [4, 3]. It is hence natural to apply
the oscillation formalism to classes of processes that mimic these
properties. RWC [14] are defined as an expansion on an orthonormal
wavelet basis

P
j,k dX(j, k)ψj,k(t), where the wavelet coefficients
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Fig. 2. Wavelet Leader Oscillating Singularity Formalism. ap-
plied to FBM (a), LWS (b), RWC (c), RWS (d), Wind-Tunnel (e) and
Jet (f) experiments turbulence 1D Velocity Data.

are obtained as products of i.i.d. positive random variables (called
the multipliers):

dX(j, k) = (−1)εj,k
Y

{(j′,k′)∈Ij,k}

Wj,k, (10)

where Ij,k denote the dyadic intervals {[k2−j , (k + 1)2−j), j =
1, . . . , J, k = 1, . . . , 2j} and where the εj,k consist of random
variable taking values 1 or 2 with probability 1/2. It has been
proven that for certain classes of multipliers W , RWC contain only
cusp type singularities, this is conjectured to be valid for all mul-
tiplicative cascades [11]. RWS [15] are also defined as wavelet
series:

P
j,k dX(j, k)ψj,k(t), with dX(j, k) defined to have exactly

the same marginal distribution as those of RWC at each scale. This
is practically easily achieved by synthesizing first a RWC, whose
dX(j, k) are then shuffled randomly scale by scale. By construction,
RWS contain chirp type singularities almost everywhere [11]. Here,
the multipliers are chosen log-normal, in agreement with the most
commonly accepted model of multiplicative cascades in turbulence,
the parameters of the log normal distribution are chosen to match
well-aggreed measures in turbulence [4, 3]. Results reported in Fig.
2 (c, d) are obtained from average over a large number of indepen-
dent copies of the process, the number of copies and the sample
size being chosen to match those of the turbulence data analyzed in
Section 4. For RWC, the estimated D(β) concentrates around the
point β = 0 and D = 1 as for FBM, hence comforting the cusp
type only nature of the singularities. For RWS, the estimated D(β)
has a maximum that falls clearly to the left of β = 0 and spans
over a much wider range of values of β, hence validating the chirp
type nature of the singularities. Various mother wavelets were used
to simulate synthetic data and are unrelated to the mother wavelet
involved in the application of the oscillation formalism, so that the
fact that the synthetic data are constructed from wavelet expansion
cannot cause any bias in the results obtained here.



4. HYDRODYNAMIC TURBULENCE

The wavelet Leader Oscillation formalism is now applied to turbu-
lence velocity data with the aim of characterizing the presence (or
not) of oscillating singularities.
1D Eulerian Velocity Data. Two data sets are analyzed, collected
over different experiments, both consisting of 1D Eulerian veloc-
ity signals, obtained from hot-wire anemometry measurement tech-
niques: Wind-Tunnel refers to data measured at the ONERA Modane
wind tunnel (1995 campaign), at a very high Reynolds numbers
Rλ ' 2000 and further described in [16] ; Jet refers to measure-
ments collected on a Jet Turbulence performed in low temperature
helium at moderately high Reynolds number, Rλ ' 1000 (as de-
scribed in [17]). Results reported below are obtained from 192 and
492 independent time series collected in the Wind-Tunnel and Jet
experiments respectively, each of sample size n = 217, with an esti-
mated integral scale equivalent to 105 samples. Both data sets hence
consists of very large database and high quality turbulence experi-
ment data, considered as reference in the field of turbulence. these
data sets were made available to us by Y. Gagne, B. Castaing and C.
Baudet, who are gratefully acknowledged.
Oscillating singularities. Fig. 2 (e, f) reports the results obtained
from the Wind-Tunnel and Jet experiments, respectively, and clearly
reveals for both cases that the D(β) essentially concentrate around
the point β = 0,D = 1: The ranges of β whereD(β) remains close
to 1 is as narrow as in the FBM and RWC cases, and anyway signifi-
cantly narrower than those observed for LWS and RWS, when RWS
were synthesized to have the same statistical properties, sample size
and number of independent copies as the experimental data ; For the
Jet experiment, the maximum D(β) is observed to be located for
β < 0, when by definition, β ≥ 0, this biased estimation is in favor
of the maximum ofD(β) being actually located at β = 0. These ex-
perimental evidences clearly lead to conclude against the existence
of oscillating singularities in 1D component of the velocity fluctua-
tions collected on high Reynolds turbulence experiments, of various
types.

5. CONCLUSIONS AND PERSPECTIVES

Elaborating on the now standard wavelet Leader based multifrac-
tal formalism aiming at characterizing the fluctuations along time
of the Hölder exponents encountered in data, an oscillation formal-
ism has been proposed and analyzed: It describes, with identical
tools based on Hausdorff dimension, structure functions and Leg-
endre transforms, the fluctuations along time of the oscillation ex-
ponents in data. This therefore enriches the classical multifractal
analysis framework by investigating whether the singularities exist-
ing in data, and accounted for by the classical multifractal spectrum,
are of cusp (non oscillating) or chirp (oscillating) nature. Proofs
of the results obtained and used here will be detailed in [11]. This
can be further extended by considering a spectrum, often referred
to Grand-Canonical, measuring the Hausdorf dimension of the set
of points having jointly Hölder and oscillation exponents (h, β) and
devising the corresponding formalism, in the spirit of [8, 5]. Also,
further examples of stochastic processes possessing oscillating sin-
gularities with a known spectrum D(β) and that can be efficiently
synthesized are being investigated.

For hydrodynamic turbulence, this is, to the best of our knowl-
edge, and despite the huge corpus of literature dedicated to the anal-
ysis of turbulence data, the first attempt to perform a quantitative sta-
tistically grounded analysis centered on the existence of oscillating
singularities. It unambiguously leads to conclude that 1D velocity

fluctuations do not possess oscillating singularity, an important con-
clusion with respect to the heuristic understanding and modeling of
turbulence. It leaves open the question of whether oscillating sin-
gularities could be detected on full 3D turbulence data, that are far
more difficult to collect and whose analysis is much more involved.
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