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Abstract

Intrapartum fetal heart rate monitoring constitutes an
important stake aiming at early acidosis detection. Mea-
suring heart rate variability is often considered a power-
ful tool to assess the intrapartum health status of fetus and
has has been envisaged using various techniques. In the
present contribution, the power of scale invariance param-
eters, such as the Hurst exponent and the global regular-
ity exponent, estimated from wavelet coefficients of intra-
partum fetal heart rate time series, to evaluate the health
status of fetuses is quantified from a case study database,
constituted at a French Academic Hospital in Lyon. No-
tably, the ability of such parameters to discriminate subjects
incorrectly classified according to FIGO rules as abnormal
will be discussed. Also, the impact of the occurrence of de-
celerations identified as complicated by obstetricians on the
values taken by Hurst parameter is investigated in detail.

1 Motivation
Fetal Heart Rate Surveillance. Cardiotocography (CTG)
– monitoring of fetal heart rate (FHR) and uterine contrac-
tions (TOCO) – has been, since the sixties used routinely
by obstetricians to detect antepartum as well as intrapartum
fetal hypoxia (cf. e.g., [5]). Notably, intrapartum FHR
surveillance constitutes a crucial task, whose stakes are re-
duction of fetal and neonatal mortality and morbidity due
to asphyxia. The evaluation of FHR status in clinical set-
ting mostly relies on the evaluation of macroscopic morpho-
logical beat-per-minute (bpm) time series features, notably
those defined by the FIGO guidelines [11]. Such guidelines,
aiming at detecting almost surely any case of fetal asphyxia
(high sensitivity) are however also known to yield a low
specificity. Such false positives in turn induce a high num-
ber of operative deliveries, with potentially severe conse-
quences for the mother and the newborn, that may actually
not have been needed. Increasing specificity thus consti-
tutes a challenging task in intrapartum FHR analysis.

Fetal Heart Rate Analysis. Beyond FIGO features, many
different characterizations of FHR have been considered,
cf. e.g., [21, 14] for reviews and comparisons, a number
of them focusing on the notion of FHR variability. In prac-
tice, variability is often measured as the largest difference
(oscillation) that can be measured within a time window of
size a:

Va(t) = sup{|X(u)−X(v)|},
(u, v) ∈ [t− a/2, t+ a/2]2,

(1)

where X(t) denotes the (regularly sampled) FHR time se-
ries in bpm. Classically, Short term Variability (STV) and
Long term Variability (LTV) (as defined in [7, 11] respec-
tively) correspond to specific choices of analysis windows
(a = 3.75s and a = 60s, respectively). Most systems
for automated CTG evaluation – including current Sisporto
3.5 [3] — are making use of LTV, while the potential of
STV for intrapartum FHR surveillance remains controver-
sial. The reader is referred to [4] for a survey on the use of
STV intrapartum FHR surveillance and to [20, 19] for inter-
esting discussions. Alternatively, FHR has also been char-
acterized by means of spectrum analysis (cf. e.g., [22, 23]).
In essence, it amounts to assuming that FHR time series
X can be regarded as (second-order) stationary process,
with power spectrum density (PSD) ΓX(f) that measures
the contribution of the different frequencies, or frequency
bands, to the temporal dynamics of X . Changes in that fre-
quency balance may provide obstetricians with indications
of modification in the fetus health status. More recently, the
concept of fractal (or scale invariance) has been envisaged
for FHR characterization (cf. e.g., [10, 9, 18]), providing
practitioners with scaling exponents such as the Hurst ex-
ponent, or the Hölder exponent, to analyze FHR. Very re-
cently, multifractal analysis, a signal processing tool aim-
ing at characterizing the variations along time of the local
regularity fluctuations of data, has been shown to have in-
teresting potential for the analysis of HRV in adults [16, 15]
or intrapartum FHR [13, 2, 8], yielding a richer variety of



scaling exponents.
Goals and contributions. In that context, the present con-
tribution elaborates on the investigation of the potential ben-
efits of using fractal-type attributes to accurately character-
ize FHR time series. Namely, the attributes used here are
the Hurst exponent H and of the global regularity exponent
hm, as defined in Section 3. These exponents are practi-
cally estimated using a wavelet decomposition framework,
detailed in Section 3 on a case study database, presented
in Section 2, and constructed in French University Hospital
Femme-Mère-Enfant, in Lyon, under the supervision of the
obstetrician in charge of the present research program. Pre-
cisely, the contributions presented here are fourfold: First,
it is explained how the fractal paradigm provides a natu-
ral mean to reconcile time variability and spectrum anal-
ysis in a single perspective (cf. Section 3.3); Second, it
is shown that H and hm exponents, when measured along
sliding time windows, provide a satisfactory characteriza-
tion of FHR, both in terms of separating Healthy from Non-
Healthy subjects, and in terms of evolution along time (cf.
Section 4.1); Third, a careful case study is conducted that
enables to split FIGO False Positive into various subclasses,
those that can actually be re-classified as healthy by fractal
attributes and those for which fractal attributes fail to rec-
ognize FIGO False Positive as healthy subjects. These two
classes are interpreted in terms of FIGO attributes, the latter
class being characterized by complicated decelerations (cf.
Section 4.2). Fourth, therefore, following the case study
examples described in [23], the impact of decelerations on
the value taken by Hurst exponents is studied in detail and
related to the Health status of the fetus (cf. Section 4.3).

2 DataSet
A subset of a large database collected at French Aca-

demic Hospital Femme-Mère-Enfant, in Lyon, is used here.
Three classes of FHR recordings are set up based on a
combination of visual analysis by experts (using the FIGO
classification) and objective (umbilical cord pH) evaluation.
Each class contains 15 FHR signals, from in total 45 dif-
ferent singleton pregnancies (gestation age between 37 and
42 weeks). The database is documented case-by-case with
the umbilical cord artery pH, as well as obstetricians an-
notations related to Baseline (High, Normal, Low), Vari-
ability (Low, Normal), Reactivity (Low, Normal), Deceler-
ations (None, Uniform, Variable and Complicated-Shape).
The database is organized into three classes as:
FIGO True Negative (FIGO-TN): normal pH (> 7.30),
FIGO classification of CTG as Normal;
FIGO True Positive (FIGO-TN): abnormal pH (< 7.05),
FIGO classification of CTG as Pathological;
FIGO False Positive (FIGO-FP): normal pH (> 7.30),
FIGO classification of CTG as Pathological.
All FHR signals are collected using the STAN S31 record-

ing device using the direct scalp electrode. FHR record-
ings are of various lengths (mean 123min [min 43min; max
550min]), they are recorded almost in all cases until a few
minutes before delivery. RR-intervals are converted into a
regularly sampled FHR time series, in bpm, with sampling
frequency fs = 8Hz.

3 Scale invariance and wavelet analysis
3.1 Scale invariance and Hurst exponent

It is now commonly observed that FHR variability time
series are well characterized by robust fractal (or scale in-
variance) properties (cf. e.g. [10, 9, 18, 2, 8]), which leads
to assume that X can be considered as a second-order sta-
tionary process, with PSD characterized by a algebraic (or
power-law) decrease:

ΓX(f) ∼ C|f |−(2H−1), |f | → 0, (2)

where the scaling exponent depends on the so-called Hurst
exponent 0 < H < 1. Such an algebraic PSD decrease
also corresponds to an algebraic decrease of the covariance
function, instead of the more usual exponential decrease.
A classical example of such processes is fractional Gaus-
sian noise (fGn) that requires in addition that data are Gaus-
sian. Note however that there is naturally a practical issue
that consists of knowing whether data are better modeled
by fGn of by fractional Brownian motion (fBm), which es-
sentially consists of the cumulated sum of fGn. Thus, fBm
consists of a non stationary process, whose increments are
stationary and that possesses scaling properties equally well
described by Hurst parameter. In the wavelet framework de-
tailed below, this distinction no longer needs to be made a
priori as the estimation for parameter H works equally well
in both cases: When data actually follow a fBm model,
the estimated Hurst parameter naturally falls in the range
Ĥ ∈ [1, 2), instead of the theoretical range H ∈ (0, 1). Ac-
commodating both fGn and fBm in a same H estimation
framework is one of the many advantages of the wavelet
based framework for the analysis of scaling properties in
data (see [1] for a review).

Further note that, for fGn, the theoretical request that the
power-law behavior of ΓX theoretically holds in the limit of
low frequencies f → 0, is, for practical use on real world-
data, weakened and assumed to hold over a large scaling
rangefm ≤ f ≤ fM , with fM/fm � 1, whose experi-
mental determination conveys per se important information
related to analyzed data. Both assumptions (Gaussiannity
and f → 0) are not needed for the present study, so that
explicit reference to fGn is avoided from now on.

3.2 Wavelet Analysis of Scale Invariance

Wavelet Transform. A mother wavelet ψ0(t) is a reference
pattern with narrow supports in both the time and frequency
domains. The analysis wavelet collection {ψa,t(u) ≡



a−1/2 ψ0((u− t)/a), a ∈ R+, t ∈ R} consists of templates
of ψ0(t), dilated at analysis scale a > 0 and shifted at time
position t. The wavelet transform coefficients of X are de-
fined as TX(a, t) =

∫
RX(u)ψa,t(u)du. For a complete

introduction to wavelet transforms, readers are referred to
e.g. [17].
Scale Invariance. It has been shown for the analysis of pro-
cesses with scaling properties, that their wavelet coefficients
accurately and robustly reproduce scale invariance (cf. e.g.,
[1]). Notably, for processes with power law spectra, as in
Eq. (2), it has been shown that:

ETX(a, t)2 ' a2H−1, am ≤ a ≤ aM , aM/am � 1. (3)

In addition, recent advances in the analysis of scaling in
data have shown that another quantity plays an impor-
tant role as it conveys a complementary information to H ,
the global regularity, related to the lowest Hölder expo-
nent, observed in data, and theoretically defined as [8]):
hm = lim infa→0

ln supt |TX(a,t)|
ln a , hm notably differs from

H when data are non Gaussian.
The scale invariance parameters H and hm thus pro-

vide relevant descriptors of the scale invariance properties
of data.

3.3 Variability versus Scale invariance

Wavelet variability. As discussed in introduction, variabil-
ity is often measured according to Eq. (1), which shed an
interesting first interpretation of Eq. (3) above: The quan-
tity ETX(a, t)2 can be read as a measure of variability
which implies two major changes compared to the tradi-
tional one: First, the oscillation is no longer used and re-
placed by wavelet coefficient, a quantity bringing robust-
ness and versatility to the practical measure; Second, and
even more importantly, variability is not characterized by
the value it actually takes at specific analysis scales a (such
as in the STV and LTV cases) but instead, it is described by
the way it varies when the analysis scale a is varied, hence
by exponent H .
Wavelet spectrum. When X is a 2nd order stationary ran-
dom process, it has been shown [1] that the power of the
wavelet coefficients can be related to the data spectrum as
ETX(a, t)2 =

∫
ΓX(f)a|Ψ0(af)|2df , where Ψ0 stands for

the Fourier transform of ψ0 and E for the mathematical ex-
pectation. Therefore, the quantity ETX(a, t)2 can be inter-
preted as a (wavelet-based) estimate of the PSD ΓX , around
frequency f = f0/a, and is thus often referred to as the
wavelet spectrum.
Hurst exponent. The Hurst exponent, via the wavelet
quantity ETX(a, t)2, therefore reconciles the time vari-
ability and spectrum estimation perspectives into a uni-
fied framework: The energy balance of wavelet coeffi-
cients across scales measures both variability as in the tra-
ditional setting, but at all scales jointly (rather than only at

a = 3.75s or a = 60s) and temporal dynamic as spectrum
estimation does.

3.4 Estimation

It has also been proposed (e.g. in [1]) that the ensem-
ble average ETX(a, t)2 can be relevantly estimated by the
corresponding time average: S(a) = 1

na

∑na

k=1 TX(a, k)2,
where na denote the number of TX(a, t) actually computed
at scale a. This enables to perform an estimation of the the
scaling exponent α (and thus of the Hurst parameter H) via
a linear regression: Ĥ = ((

∑
j wj lnS(aj)) + 1)/2, where

weights wj satisfying
∑

j wj ln aj ≡ 1 and
∑

j wj ≡ 0. It
has been shown to be a robust and efficient procedure for the
estimation of H (see [1]). Along the same line, hm can be
estimated in the same manner from a non-weighted linear
regression.

4 Results and discussions
4.1 Classification, constancy along time

Scaling properties of FHR time series are now studied by
estimating jointly H and hm, from the FHR time series of
each subject, of each class, in 20min long sliding windows
(with 50% overlap), for the last 180min before delivery,
whenever available. As illustrated in Fig. 3 below, for FHR
time series, the power-law behavior as predicted in Eq. (3)
is found to hold between scales aj = 3 (corresponding to
1s) to aJ = 8 (corresponding to 64s), which, interestingly,
are observed to be closely related to the scales used to mea-
sure STV and LTV. Fig. 1 displays, for each time window,
the median per class of the Ĥ (with ± 1 standard devia-
tion (std) lines) as well as, for the 3 pairs of classes and for
each time window, the p-values of Wilcoxon ranksum tests,
testing the null hypothesis that there is no difference in me-
dian. It shows, first, that the FIGO-TP class exhibit much
larger Ĥ than the FIGO-TN, while the FIGO-FP are in be-
tween. The p-values confirm that FIGO-TP and FIGO-TN
have statistically significant different medians for Ĥ , and
also show that the median for FIGO-FP Ĥ is much closer to
the median for FIGO-TN Ĥ than to that of the FIGO-TP Ĥ .
Therefore, the time dynamic or variability of the FIGO-TP
subjects, as measured by Ĥ , clearly differs from that of the
FIGO-TN and the time dynamic or variability, of the FIGO-
FP resembles more to that of the FIGO-TN than to that of
the FIGO-TP. Fig. 1 also shows that these differences in
time dynamic, as measured by Ĥ , are already present 2 to
3 hours before delivery, and that this time dynamic within
each class is not significantly varying along time up to three
hours before delivery as delivery comes closer, a result that
potentially contradict obstetricians intuitions of a smooth
decrease of variability when delivery approaches.

A scatter plot of estimated Ĥ and ĥm averaged across
the last hour before delivery is shown in Fig. 2, together
with linear classification performance ROC curve. It shows



satisfactory performance (specificity of 64% for a requested
sensitivity of 100%) which outperforms the FIGO classifi-
cation obtained on the same case study database as refer-
ence (specificity of 50% for a sensitivity of 100%) as well
as what can be achieved using (STV, LTV) (specificity of
24% for a sensitivity of 100%). Equivalent results are ob-
tained when using 10min long sliding times windows.
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Figure 1: Time evolution of Ĥ and discrimination. Top
plot: Median of Ĥ per class (solid line), for each time
window , together with the median ±1SD (dashed line).
Bottom plot: Wilcoxon ranksum test p-values, obtained
for each time windows, for the 3 pairs of classes.
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Figure 2: Scatter plots (top) and ROC curve (bottom)

4.2 FIGO False Positive case study

Besides global classification performance, the scatter
plot in Fig. 2 also enables us to perform a case study of
the FIGO-FP with respect to Ĥ and ĥm. Subjects FIGO-
FP 1, 2, 4, 7, 10, 12, 13, 15 are documented as having low
LTV. Interestingly, 7 out of 8 such subjects are actually tak-
ing values of Ĥ, ĥm within the range of the FIGO-TN (thus
healthy) subjects. Also, subjects FIGO-FP 2, 3, 4, 5, 7,
10, 12, 15 are documented as having low reactivity. All
but 2 (3 and 10) are are actually taking values of Ĥ, ĥm
within the range of the FIGO-TN (thus healthy) subjects.
This indicates that low LTV and low reactivity actually do

not correspond to a change in the scale invariance properties
of FHR time series, and thus that the temporal dynamics of
such subjects, as measured byH,hm, actually match that of
healthy fetuses. This provides an interesting new perspec-
tive of low LTV and low reactivity: Not accompanied by
a change of the scaling or temporal dynamics property, it
might not be a sign of unhealthy status for the fetus, hence
potentially decreasing the number of false positive. Con-
versely, FIGO-FP 3 and 10 remain misclassified by Ĥ, ĥm,
they are documented as having very high baseline (above
180bpm), which thus may essentially results from a global
change of the temporal dynamics and scale invariance prop-
erties. Also, FIGO-FP 11 remains misclassified by Ĥ, ĥm
and FIGO-FP 8, 9 and 14 are very close to the boundary of
the healthy domain. These correspond to FIGO-FP subjects
documented as having either variable or complicated-shape
decelerations, thus indicating that such decelerations are ac-
companied by a clear change in the temporal dynamics and
scale invariance properties of FHR times series, and hence
cannot be discriminated by Ĥ, ĥm parameters. This obser-
vation motivates the next section that studies in details the
relations between scaling and decelerations.

To finish this case study analysis, let us note that most of
FIGO-TP are clearly identified as having different Ĥ, ĥm
and thus different scale invariance properties and temporal
dynamics, compared to healthy fetuses. However, a number
FIGO-TP have Ĥ, ĥm taking values in the healthy range,
thus indicating that they were not classified as healthy be-
cause of a change in their FHR temporal dynamics but for
other reasons.

Figure 3: FHR time series (FIGO-FP14) with automat-
ically detected decelerations (top) and comparison of
the wavelet spectrum against the wavelet spectra con-
ditioned to the presence or absence of decelerations.



4.3 Decelerations versus scale invariance

Automated deceleration detection. To study the relations
between decelerations and scale invariance, use is made
of an automated baseline evaluation (inspired by [12]), to
which an automated deceleration detection has been added
by ourselves [6], where decelerations are defined according
to FIGO criteria (at least 15 bpm drop of 10s duration). Ex-
amples of the output of this automated detection procedure
is illustrated in Fig. 3.
Conditional wavelet spectra. Now that decelerations can
be detected in an automated manner, their impact on the
scaling properties of data can be investigated. To that
end, wavelet coefficients are split into two groups, those
corresponding to the time occurrences of decelerations,
{TX(a, t)}t∈TD

versus those computed at time instant
where no decelerations were detected {TX(a, t)}t∈TND

(as
illustrated in Fig. 3). Then two different wavelet spectra can
be computed, conditional to the occurrence of decelerations
or to their absence: SD(a) = 1

nD

∑
k∈TD

TX(a, k)2 and
SND(a) = 1

nND

∑
k∈TND

TX(a, k)2, and compared, as in
Fig. 3.
Decelerations versus scale invariance. First, Fig. 3 shows
that, for FHR time series with variable or complicated shape
decelerations, the non conditional spectra (computed using
all wavelet coefficients) display perfect scaling across the
same large range of scales as FHR time series with no or
uniform decelerations. Thus, decelerations participate in
the same mechanism that produce scale invariance and thus
do not correspond to a different temporal dynamics. Sec-
ond, Fig. 3 clearly shows, that the two conditional wavelet
spectra essentially show the same wavelet spectra, at least
on the range am = 1s ≤ a ≤ a∗ = 32s (corresponding
to scales aj 3 to 7). This means that the two Hurst ex-
ponents estimated on the two conditional wavelet spectra
are essentially equivalent, therefore, the temporal dynam-
ics of FHR time series during decelerations or in-between
decelerations is actually the same in the range of scales
am = 1s ≤ a ≤ a∗ = 32s. These empirical obser-
vation shed an interesting light on the relations between
decelerations and scale invariance: FIGO-FP and FIGO-
TP subjects with variables and complicated shape deceler-
ation are mostly found to have large Ĥ , which betrays a
clear changes in the temporal dynamics and scale invari-
ance properties of the FHR time series, that are not caused
by decelerations; instead variable or complicated-shape de-
celerations are rather a manifestation or consequence of one
same mechanism that drives the overall change of temporal
dynamics and scale invariance properties.
Long term evolution of scale invariance. In the database,
there exists a number of very long recordings (several
hours), such as FIGO-TP7, shown in Fig. 4. From those, the
wavelet spectrum computed in a window of 30 minutes tak-
ing place 5 hours before delivery, when almost no decelera-

tions occur, is compared against the wavelet spectrum com-
puted in a window of 30 minutes taking place 40 minutes
before delivery, when variable decelerations occur. In addi-
tion, conditional wavelet spectra computed from this second
time window are also superimposed. Fig. 4 clearly show
that 5 hours before delivery this FIGO-TP had a temporal
dynamics and scale invariance properties, as measured by
Ĥ , that correspond to that of a healthy subject (Ĥ = 0.6),
this is no longer the case before delivery when Ĥ has in-
creased thus showing a significant change in the temporal
dynamics towards the non healthy zone (Ĥ = 0.79). For
this later block, wavelet spectra conditional to the occur-
rence or absence of variable decelerations show again the
same increased Ĥ and thus the same temporal dynamics:
Variable decelerations are not responsible for the increase
in Ĥ; Instead an obvious change in the mechanisms driving
time dynamics induces a global change in Ĥ irrespective of
the presence of a deceleration or not as well as the occur-
rence of variable decelerations.

Figure 4: Long term time variation of Ĥ . Compar-
isons of the wavelet spectrum, computed from a 6 hour
long recording (FIGO-TP7), in two windows of 30 min-
utes taking place 5 hours and 40 minutes before delivery
(above). Wavelet spectrum of early window (black doted
line) is plotted against the wavelet spectrum of later win-
dow (black solid line), conditional wavelet spectra com-
puted from this second block are also superimposed.

5 Conclusions and perspectives
It has been explained how fractal (or scale invariance)

paradigm reconciles the time variability and spectrum anal-
ysis perspectives on FHR times series temporal dynamic of
variability, as measured through parameters Ĥ, ĥm. These
parameters can thus be used to characterize different tem-
poral dynamics in intrapartum FHR times series. Also, it is



observed that when departures of parameters Ĥ, ĥm from
the healthy zone are observed, the departures is usually vis-
ible up to 3 hours before delivery. Further, it has been
shown that while these two parameters cannot be used alone
to achieve perfect classification of intrapartum healthy and
non healthy, they enabled us to show that low variability
and low reactivity, per se, are not necessarily implying a
change in temporal dynamics and hence unhealthy fetuses;
Parameters Ĥ, ĥm can thus help to classify such cases as
healthy and thus to decrease the number of FIGO-FP. Ad-
ditionally Ĥ estimation does not require a priori detection
of deceleration as is the case when estimating the LTV. Fi-
nally, the analysis of the relations between decelerations and
scale invariance suggest that changes in Ĥ and the occur-
rence of variable and complicated shape decelerations are
two manifestations of one same mechanism driving a global
and across all scales change in FHR temporal dynamics. In
the future, parameters Ĥ, ĥm will be used to classify a much
larger database and the case study analysis will be extended
to other FHR features.

References
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