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Società Italiana di Fisica
Springer-Verlag 2000

A wavelet-based method for multifractal image analysis.
II. Applications to synthetic multifractal rough surfaces

N. Decoster1, S.G. Roux1,2, and A. Arnéodo1,a

1 Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France
2 Climate & Radiation Branch, NASA’s Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

Received 10 August 1999

Abstract. We apply the 2D wavelet transform modulus maxima (WTMM) method to synthetic random
multifractal rough surfaces. We mainly focus on two specific models that are, a priori, reasonnable candi-
dates to simulate cloud structure in paper III (S.G. Roux, A. Arnéodo, N. Decoster, Eur. Phys. J. B 15,
765 (2000)). As originally proposed by Schertzer and Lovejoy, the first one consists in a simple power-law
filtering (known in the mathematical literature as “fractional integration”) of singular cascade measures.
The second one is the foremost attempt to generate log-infinitely divisible cascades on 2D orthogonal
wavelet basis. We report numerical estimates of the τ (q) and D(h) multifractal spectra which are in very
good agreement with the theoretical predictions. We emphasize the 2D WTMM method as a very efficient
tool to resolve multifractal scaling. But beyond the statistical information provided by the multifractal
description, there is much more to learn from the arborescent structure of the wavelet transform skeleton of
a multifractal rough surface. Various statistical quantities such as the self-similarity kernel and the space-
scale correlation functions can be used to characterize very precisely the possible existence of an underlying
multiplicative process. We elaborate theoretically and test numerically on various computer synthetized
images that these statistical quantities can be directly extracted from the considered multifractal function
using its WTMM skeleton with an arbitrary analyzing wavelets. This study provides algorithms that are
readily applicable to experimental situations.

PACS. 47.53.+n Fractals – 05.40.-a Fluctuations phenomena, random processes, noise, and Brownian
motion – 07.05.Pj Image processing – 68.35.Bs Surface structure, and topography

1 Introduction

Multiplicative cascade models have enjoyed increasing in-
terest in recent years as the paradigm of multifractal ob-
jects [1–5]. The notion of cascade actually refers to a
self-similar process whose properties are defined multi-
plicatively from coarse to fine scales. In that respect, it
occupies a central place in the statistical theory of tur-
bulence [4,6,7]. Since Richardson’s famous poem [8], the
turbulent cascade picture has been often invoked to ac-
count for the intermittency phenomenon observed in fully
developed turbulent flows [6–11]: energy is transfered from
large eddies down to small scales (where it is dissipated)
through a cascade process in which the transfer rate at a
given scale is not spatially homogeneous, as supposed in
the theory developed by Kolmogorov [12] in 1941, but un-
dergoes local intermittent fluctuations [6,7,10,11]. Over
the past fourty years, refined models including the log-
normal model of Kolmogorov [13] and Obukhov [14], mul-
tiplicative hierarchical cascade models like the random β-
model [15], the α-model [16], the p-model [17] (for a re-
view, see Ref. [4]), the log-stable models [18–20] and more
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recently the log-infinitely divisible cascade models [21–24]
with the rather popular log-Poisson model advocated by
She and co-workers [22,25], have grown in the literature
as reasonable models to mimic the energy cascading pro-
cess in turbulent flows. On a very general ground, a self-
similar cascade is defined by the way the scales are refined
and by the statistics of the multiplicative factors at each
step of the process [4,5,20]. One can thus distinguish dis-
crete cascades that involve discrete scale ratios leading to
log-periodic corrections to scaling (discrete scale invari-
ance [26–28]), from continuous cascades without prefer-
able scale factor (continuous scale invariance). As far as
the fragmentation process is concerned, one can specify
whether some conservation laws are operating or not [5];
in particular, one can discriminate between conservative
(the measure is conserved at each cascade step) and non
conservative (only some fraction of the measure is trans-
fered at each step) cascades. More fundamentally, there
are two main classes of self-similar cascade processes: de-
terministic cascades that generally correspond to solvable
models and random cascades that are likely to provide
more realistic models but for which some theoretical care
is required as far as their multifractal limit and some ba-
sic multifractal properties (including multifractal phase
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transitions) are concerned [5]. As a notable member of the
later class, the independent random cascades introduced
by Mandelbrot (commonly called M-cascades [9,29]) as
a general model of random curdling in fully developed
turbulence, have a special status since they are the main
cascade model for which deep mathematical results have
been obtained [30,31]. Note that most of these 1D cascade
models have natural generalization in 2D and higher di-
mensions. Since realistical turbulent systems (e.g. atmo-
spheric turbulence [32]) are likely to display anisotropic
scaling, full realism requires the possibility of introducing
spatial anisotropy [18,20,32–34]. Moreover, as pointed out
by Schertzer and Lovejoy [33], this “first generation” of
cascade models is static in the sense that it accounts for
the multiplicative hierarchical structure of the data in the
spatial domain only [20]. With the specific goal to model
temporal evolution, these authors have proposed a “sec-
ond generation” of space-time cascade models that take
into account both the scaling anisotropy between space
and time, and the breaking of the mirror symmetry along
the temporal axis, i.e., causality [20,33,34]. For the ba-
sic framework necessary to handle space-time anisotropic
scaling, we refer the reader to references [20,34], where the
concepts of Generalized Scale Invariance (GSI) and space-
time multifractals have been introduced and explored.

However, in physics as well as in other applied sci-
ences, fractals appear not only as singular measures but
also as singular functions [1,7,32,35–45]. For instance in
fully developed turbulence, directly observable quantities
are the velocity field or the temperature field rather than
the dissipation field [6,7,10,11]. Paradoxically, if there is
a plethora of mono and multifractal cascade models in
the literature that generate deterministic as well as ran-
dom singular measures in the small-scale limit, there are
still only a handful of distinct algorithms for synthesizing
“rough” functions of a single variable with multifractal
statistics. Beyond the problem of the multifractal descrip-
tion of singular functions that has been solved with the
WTMM method [46–50], there is thus the practical is-
sue of defining in any concrete way how to build a mul-
tifractal function. Schertzer and Lovejoy [18] suggested a
simple power-law filtering (fractional integration) of sin-
gular cascade measures. So, this model combines a mul-
tiplicative procedure with an additive one reminiscent of
some algorithms to generate fractional Brownian motion
(fBm) [1,51,52]. In the same spirit, the bounded cas-
cade model of Marshak et al. [53] consists in acting on
the multiplicative weights during the cascade in physical
space, to recover continuity in the small-scale limit. In
references [54,55], the midpoint displacement technique
for building fBm was generalized to generate determinis-
tic or random multi-affine functions. The same goal was
achieved in references [47,48] by combining fractional or
ordinary integration with signed measures obtained by re-
cursive cascade like procedures. Several other attempts
to simulate “synthetic turbulence” that shares the inter-
mittency properties of turbulent velocity data have par-
tially succeeded [56–59]. More recently, the concept of
self-similar cascades leading to multifractal measures has

been generalized to the construction of scale-invariant sig-
nals using orthonormal wavelet basis [60–63]. Instead of
redistributing the measure over sub-intervals with mul-
tiplicative weights, one allocates the wavelet coefficients
in a multiplicative way on the dyadic grid. This method
has been implemented to generate multifractal functions
from a given deterministic or probalistic multiplicative
process. From a mathematical point of view, the conver-
gence of these W-cascades and the regularity properties
of the so-obtained deterministic or stochastic functions
have been discussed by one of us (A.A.) and co-workers in
reference [64].

Coming to rough surfaces generated by fractal func-
tions of two variables, we are aware of various algorithms
for fBm surface generation [51,52,65–67]. We have listed
these algorithms in paper I [68] and shown that the rough
surfaces simulated with those additive processes display
homogeneous monofractal scaling properties as described
by a unique scaling exponent, namely the Hurst expo-
nent. To the best of our knowledge, only two algorithms
for multifractal functions of two variables have been doc-
umented, to some extend, in publications. Both were de-
veloped with atmospheric applications in mind and corre-
spond to straightforward generalizations in 2D of the frac-
tionally integrated singular cascade models [18,20,69,70]
and the “bounded cascade model” [71,72] mentioned just
above. But our purpose here is far from being restricted to
turbulence and to possible geophysical applications (this
issue will be addressed in paper III [73]). Actually our
first main objective is to explore ways of generating multi-
fractal rough surfaces with prescribed multifractal statis-
tics along the path open by the random W-cascades on
wavelet dyadic trees in references [60–64]. The idea is to
introduce a new class of square integrable (finite energy)
functions over the real plane R2, using a separable 2D
wavelet orthogonal basis [74–76]. The multifractal scaling
properties are recovered from the multiplicative process
used to generate the wavelet coefficients: these functions
are built recursively in the orthogonal wavelet space-scale
representation, “cascading” from an arbitrary given large
scale towards small scales. These 2D random W-cascade
models present two crucial advantages as far as future re-
search is concerned. From a theoretical point of view, the
fact of using wavelet orthogonal basis provides the frame-
work for some rigorous mathematical treatment. This is
out of the scope of the present work but we hope to elab-
orate about this point in a forthcoming publication. From
a practical point of view, the fact of using separable multi-
resolution schemes provides a simple and very efficient al-
gorithmic procedure for designing and synthesizing mul-
tifractal rough surfaces. Let us point out that this multi-
resolution synthesis algorithm has enough flexibility for
making tractable the implementation of anisotropic scale
invariance. Since our second and main objective in this
paper is to test the reliability of the 2D WTMM method
introduced in Section 4 of paper I [68], we will copi-
ously use this multi-resolution synthesis algorithm to gen-
erate collections of numerical images of multifractal rough
surfaces, each collection corresponding to a particular
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cascading process (e.g., log-normal process, log-Poisson
process, ...). Then, for each set of images, we will com-
pute the τ(q) and D(h) multifractal spectra with the
2D WTMM method and compare the numerical results
with the theoretical predictions. Within the perspective
of experimental application of the 2D WTMM method
to geophysical data in paper III [73], we will proceed
to a comparative multifractal analysis of rough surfaces
generated by the fractionally integrated singular cascade
model [18,20,69,70].

But from the very analogy that links the multifractal
description and statistical thermodynamics [2,49,77–79],
there still exists some fundamental insufficiency in the de-
termination of the multifractal spectra. In particular, τ(q)
and D(h) play respectively the role of thermodynamical
potentials, namely free energy and entropy, which intrin-
sically contain only some degenerate information about
the “Hamiltonian” of the problem, i.e., the underlying
cascading process [80,81]. Therefore, it is not surprising
that previous experimental determinations of the τ(q) and
D(h) spectra of turbulent fields, have failed to provide
a selective test to discriminate between existing (deter-
ministic or random) cascade models. In order to go be-
yond the classical multifractal description, Castaing and
co-workers [24,82–88] have proposed some approach of
the intermittency phenomenon which amounts to model
the evolution of the shape of the turbulent velocity incre-
ment probability density function (pdf), from Gaussian at
large scales to more intermittent profiles with stretched
exponential-like tails at smaller scales [82,89–92], by a
functional equation that relates two scales using a ker-
nel G. This self-similarity kernel actually contains deep
information on the underlying multiplicative process: its
shape is determined by the nature of the elementary step
in the cascade, while the way G depends on the coarse and
fine scales reflects the scale invariance properties of the
cascade. In their original work, Castaing et al. [24,82–87]
mainly focused on the estimate of the variance of G and
its scale behavior. A generalization of this approach to
the wavelet transform of the velocity field has been pro-
posed in a previous work and shown to provide direct ac-
cess to the entire shape of the kernel G [61–63,81]. This
wavelet-based method has been tested on synthetic 1D
turbulent signals and further applied to turbulence data.
At the highest accessible Reynolds numbers, the computa-
tion of the self-similarity kernel G yields a very convincing
log-normal law on a well defined range of scales that can
be further used as an objective definition of the inertial
range [62,63,81]. Moreover, the number of cascade steps
is found to evolve as a power-law (and not logarithmi-
cally) as a function of the scale, which is the signature
of the breaking of scale-invariance [62,63,81,93]. How-
ever, the investigation of data sets recorded at different
Reynolds numbers suggests the asymptotic validity of the
log-normal multifractal description [63,81,93].

As emphasized in a recent work [94], one can and
one must go even deeper in the multifractal analysis by
studying correlation functions in both space and scales.
The wavelet transform skeleton defined by the wavelet

transform modulus maxima actually contains the key
space-scale information required for this “two-point” sta-
tistical analysis. In the arborescent structure of the
wavelet transform is somehow uncoded the underlying
multiplicative cascade process [81,94–96]. The computa-
tion of the space-scale correlations functions from the
wavelet transform skeleton has been proved to provide
conclusive evidence for the existence of some internal
ultrametric structure [94]. We refer the readers to ref-
erences [81,94,97] for preliminary applications of this
wavelet based space-scale correlation method to fully de-
veloped turbulence data and financial time-series. Our
third goal in this paper, is to generalize the self-similarity
kernel and space-scale correlation function approaches to
the statistical study of multifractal rough surfaces. Part of
the work will consist in adapting the mathematical con-
cepts and in turn enriching our algorithmic park from 1D
to 2D analysis. The final touch will be test applications of
the corresponding softwares to numerical synthetic images
generated by 2D random W-cascade processes for which
the self-similarity kernel as well as the space-correlation
functions are known analytically.

The paper is organized as follows. In Section 2, we
describe the 2D versions of the fractionally integrated sin-
gular cascade model and of the randomW-cascade process
on separable wavelet orthogonal basis. These models can
be used to synthesize rough surfaces that display multi-
fractal scaling properties with prescribed τ(q) and D(h)
spectra. In Section 3, we report the results of test applica-
tions of the 2D WTMM method introduced in Section 4 of
paper I [68], to previously synthesized multifractal rough
surfaces. Our main goal is to calibrate our numerical tools
with respect to finite-size effects and statistical conver-
gence. Sections 4 and 5 are respectively devoted to the
generalization in 2D of the self-similarity kernel and space-
scale correlation function methods [81]. We illustrate our
purpose with numerical applications which confirm the ne-
cessity of investigating “two-point” statistics across scales
to get definite and conclusive evidence for a multiplicative
hierarchical structure underlying the roughness fluctua-
tions of multifractal surfaces. We conclude in Section 6 by
discussing the wide range of potential applications of this
2D wavelet-based statistical analysis in fundamental as
well as in applied sciences, from image processing to image
synthesis, from numerical to experimental data analysis.

2 Hierarchical models for multifractal rough
surface synthesis

There are many well documented methods for gen-
erating multifractal measures using multiplicative
cascades [9,13–25,32–34]. In contrast, the literature on
specific ways of synthesizing multifractal functions is
relatively small [18,47,48,53–64,98]. We present two
procedures here: the first one, the Fractionally Inte-
grated Singular Cascade (FISC) has been introduced
and plentifully applied for multifractal geophysical
field modeling [18,20,69,70,99–101]; the second one is
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Fig. 1. (a) Multifractal measure generated using the binomial cascade model with the parameter value p = 0.32. (b) Multifractal
rough surface obtained after fractional integration with an exponent H∗ = 0.638. In the top (1024 × 1024) panels, µ(x) and
f(x) are coded using 32 grey levels from white (minµ or min f) to black (maxµ or max f).

quite original since it consists in generating multifractal
rough surfaces from random cascade process on separable
wavelet orthogonal basis.

2.1 Fractionally integrated singular cascades

A stochastic model with continuously variable intermit-
tency was originally proposed by Schertzer and Lovejoy for
rain (1D), clouds (2D), landscapes (2D) or any other com-
pliant multifractal geophysical fields [18,20,69,70,72,101].
The idea is to start with a specific model of singular mul-
tiplicative cascade and then to proceed to a straightfor-
ward filtering in Fourier space (fractional integration) in
order to bring multifractal measures into the realm of
continuous multifractal functions. Let us note that this
strategy is strongly inspired from the devil’s staircase
concept which is nothing but a straightforward integra-
tion of some Bernoulli measure distributed on a Cantor
set [1,47–49].

A multiplicative cascade process consists in starting
with some 2D spatial domain, let say a square of charac-
teristic size L, on which a measure µ = µL is uniformly
distributed. At the first step of the construction, the ini-
tial domain breaks into smaller domains, let say the initial
square breaks into four smaller squares of characteristic
size L/2, each receiving a fraction of the original measure
as defined by a random variableM with a certain probabil-
ity distribution P (M). By repeating the same procedure
recursively at smaller scales using independent realizations
of the random variable M , one generates a random singu-

lar measure over the L× L square:

µn(x; l) = µL

n∏
i=1

Mi , l/L = 2−n → 0 . (1)

Since the cascading process is space-filling, all the informa-
tion on the singular nature of this multiplicative process is
contained in the specific shape of the so-called “measure
multiplier” [4,9] probability distribution. In the present
study, we will mainly focus on the “p-model” (also called
“binomial model”) originally proposed by Meneveau and
Sreenivasan [17] to simulate the highly intermittent fluc-
tuations of the kinetic energy dissipation field in fully de-
veloped turbulence. In this model, P (M) has the following
simple form [4,17]:

P (M) = 1/2
{
δ
(
M −M (1)

)
+ δ
(
M −M (2)

)}
, (2)

where

M (1) = p/2 , M (2) = (1− p)/2 , 0 ≤ p ≤ 1/2 , (3)

independently of the cascade step. For the present dis-
cussion, we additionally impose conservation of the mea-
sure at each step; this means that one selects at random
among the 4 sub-squares, the two which will receive a
fraction M (1) = p/2, the two others receiving the fraction
M (2) = (1 − p)/2 of the measure at the previous step. A
straightforward computation (see Refs. [4,17], for detailed
calculations) of the τ(q) spectrum defined in Section 4.1
of paper I [68] (Eqs. (59, 60)) yields:

τµ(q) = −(q + 1)− log2

(
pq + (1− p)q

)
. (4)
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Fig. 2. 1D profiles obtained along some horizontal cut in
Figures 1a and 1b respectively: (a) µ vs. x; (b) f vs. x.

When p 6= 1/2 (p = 1/2 corresponds to a uniform distri-
bution of the measure over the original square), one gets
a nonlinear τ(q) spectrum which is the hallmark of multi-
fractal scaling properties. Figure 1a shows a realisation of
such a random measure for the parameter value p = 0.32
after 10 cascade steps. The intense spikiness is witness to
the singularity of this binomial cascade model. The inter-
mittent character of this measure is clearly seen on 1D
cuts as illustrated in Figure 2a. In the limit of an infinite
number of steps, we are clearly not dealing with a function
of (x, y) ∈ [0, L]2: the product

∏n
i=1 Mi in equation (1) is

generally zero but infinite just often enough to keep the
domain average at unity.

As a mean of introducing continuity, the form of frac-
tional integration we use here, is a low-pass power-law
filtering in Fourier space [18,20]. The measure µn(x) is
“smoothed” into a function using:

fn(x) = µn(x) ∗ |x|−(1−H∗) , 0 < H∗ < 1 (5)

i.e., in Fourier space

f̂n(k) = A(H∗)µ̂n(k).|k|−H∗ , (6)

where the symbol ∗ denotes the convolution product and

A(H∗) =

√
2
π

cos
(π

2
H∗
)
Γ (H∗) . (7)

Figure 1b shows the result for the same binomial cascade
as in Figure 1a but for an order of fractional integration
H∗ = 0.638. The exponent H∗ of the power-law filter is
chosen so that the function f(x) = limn→+∞ fn(x) is con-
tinuous everywhere, i.e., the support of its D(h) singular-
ity spectrum (Eqs. (58) and (61) in paper I [68]) does not
extend to values lower or equal to zero (0 ≤ hmin ≤ hmax).
The intermittent or multifractal character of the corre-
sponding rough surface in Figure 1b is exemplified when
looking at the profiles obtained from 1D cuts as illustrated
in Figure 2b. A little algebra leads to the following expres-
sion for the τ(q) spectrum of these multifractal random
functions [72,99–101]:

τf (q) = τµ(q) + qH∗ ,

= −1− q(1−H∗)− log2

(
pq + (1− p)q

)
. (8)

Fig. 3. Power-spectrum analysis of the (1024 × 1024) im-
age of the fractionally integrated singular cascade shown in
Figure 1b. (a) ln |f̂n=10(k)| as coded using 32 grey levels from

white (min ln |f̂ |) to black (max ln |f̂ |). (b) The spectral den-
sity S(|k|) vs. |k| in a logarithmic representation. The solid
line corresponds to the theoretical power-law prediction with
exponent β = τf (2)+4 = 1+2H∗−log2(2p2−2p+1) (Eq. (11))
with p = 0.32 and H∗ = 0.638.

Let us note that for q = 0, one finds τf (0) = −DF =
−2, i.e., those fractionally integrated rough surfaces are
singular everywhere. For q = 1, one gets τf (1) = H∗ − 2,
which gives for the fractal dimension of this surface:

dF(S) = max
(
2, 1− τf (1)

)
,

= max(2, 3−H∗) ,
= 3−H∗ , (9)

i.e., a fractal dimension in between dF = 2 (H∗ = 1) and 3
(H∗ = 0). Now from the exponent obtained for q = 2, one
can derive the scaling exponent β of the spectral density:

S
(
|k|
)
∼ |k|−β , (10)

with

β = τf (2) + 4 ,

= 1 + 2H∗ − log2(2p2 − 2p+ 1) . (11)

In Figure 3 are reported the results of a power-spectrum
analysis of the (1024× 1024) image shown in Figure 1b.

In Figure 3a, the Fourier transform of this image dis-
plays some anisotropy along the kx and ky axis, which is
nothing but the signature of the square lattice anisotropy
which underlies the hierarchical construction rule of the
singular cascade. Despite this departure from isotropy,
the power-spectral density shown in Figure 3b behaves
as a power-law as a function of the wavevector modulus
k = |k|, with an exponent β = 3.10 which is in good
agreement with the theoretical prediction (11).

From the computation of ∂τf (q)/∂q in the limits q →
±∞ [48,49], one gets the following boundaries for the sup-
port of the D(h) singularity spectrum:

hmin = lim
q→+∞

∂τf (q)
∂q

= H∗ − 1− log2(1− p) , (12)
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Fig. 4. Fourier transforms of the 3 separable wavelets calculated from a 1D Daubechies 8 wavelet [74]: (a) ψ̂1(kx, ky); (b)

ψ̂2(kx, ky); (c) ψ̂3(kx, ky).

and

hmax = lim
q→−∞

∂τf (q)
∂q

= H∗ − 1− log2(p) , (13)

where we recall that 0 ≤ p ≤ 1/2. For p = 1/2, one re-
covers monofractal scaling with a unique Hölder exponent
h = H∗. For any other value of the parameter p, one has
multifractal scaling with a Hölder exponent h which fluc-
tuates from point to point, taking value in the interval
h ∈ [hmin, hmax].

2.2 Random cascades on separable wavelet orthogonal
basis

As mentioned in the introduction, a W-cascade [64] is
built recursively on the two-dimensional square grid of
separable wavelet orthogonal basis, involving only scales
that range between a given large scale L and the scale 0
(excluded). Thus the corresponding fractal function f(x)
will not involve scales greater than L. For that purpose,
we will use compactly supported wavelets [74].

2.2.1 Two-dimensional wavelet orthogonal basis [74–76]

As in one dimension, the notion of resolution is formalized
with orthogonal projections in spaces of various sizes. The
approximation of an image f(x) = f(x, y), at the resolu-
tion 2−j, is defined as the orthogonal projection of f on
a space V2

j that is included in L2(R2). The space V2
j is

the set of all approximations at the resolution 2−j. When
the resolution decreases, the size of V2

j decreases as well.
Here we consider the particular case of separable multi-
resolution. Let {Vj}j∈Z be a multi-resolution of L2(R). A
separable 2D multi-resolution is composed of the tensor
product spaces:

V2
j = Vj ⊗Vj . (14)

Let W2
j be the detail space equal to the orthogonal com-

plement of the lower resolution approximation space V2
j

in V2
j−1:

V2
j−1 = V2

j ⊕W2
j . (15)

One can rewrite this equation in the following way:

Vj−1 ⊗Vj−1 = (Vj ⊗Vj)⊕W2
j . (16)

Then, by inserting Vj−1 = Vj ⊕Wj in equation (16),
simple algebra yields:

W2
j = (Vj ⊗Wj)⊕ (Wj ⊗Vj)⊕ (Wj ⊗Wj) . (17)

As in the 1D case, the overall space L2(R2) can be de-
composed as an orthogonal sum of the detail spaces at all
resolutions [74–76]:

L2(R2) = ⊕+∞
j=−∞W2

j . (18)

A separable wavelet orthonormal basis of L2(R2) can
thus be constructed with separable products of a scal-
ing function φ and a wavelet ψ generating a wavelet or-
thogonal basis of L2(R). Let us define the following three
wavelets [74–76]:

ψ1(x, y) = φ(x)ψ(y) ,

ψ2(x, y) = ψ(x)φ(y) ,

ψ3(x, y) = ψ(x)ψ(y) , (19)

which take the following values on the 2D square grid:

ψkj,m,n(x, y) =

1
2j
ψk
(
x− 2j(m+ 1/2)

2j
,
y − 2j(n+ 1/2)

2j

)
, (20)

where 1 ≤ k ≤ 3. According to equation (17), the wavelet
family{

ψ1
j,m,n(x, y), ψ2

j,m,n(x, y), ψ3
j,m,n(x, y)

}
(m,n)∈Z2 (21)

is an orthonormal basis of W2
j . From equation (18), one

deduces that{
ψ1
j,m,n(x, y), ψ2

j,m,n(x, y), ψ3
j,m,n(x, y)

}
(j,m,n)∈Z3 (22)



N. Decoster et al.: A wavelet-based method for multifractal image analysis. II. 745

is an orthonormal basis of L2(R2).

The Fourier transform of the three separable
wavelets [76] calculated from a 1D Daubechies 8 wavelet
are shown in Figure 4. Wavelet coefficients calculated with
ψ1 and ψ2 are large along edges which are respectively hor-
izontal and vertical. The wavelet ψ3 produces large coeffi-
cients at the corners. Note that the separable wavelet ex-
pressions (Eq. (19)) imply that ψ̂1(kx, ky) = φ̂(kx)ψ̂(ky),
ψ̂2(kx, ky) = φ̂(ky)ψ̂(kx) and ψ̂3(kx, ky) = ψ̂(kx)ψ̂(ky).
Let us point out that in order to approach spatial isotropy,
the respective weights on (ψ1, ψ2, ψ3) have to be in the ra-
tios (1, 1, 1/2τ(2)/4+1), at least on average.

2.2.2 Random W-cascades

Let us consider the set {ψ1
j,m,n, ψ

2
j,m,n, ψ

3
j,m,n} of 2D sep-

arable compactly supported wavelets that form an or-
thonormal basis of L-periodic functions of L2

per([0, L]2),
where L = 2N . Thus ∀f ∈ L2

per([0, L]2), f can be written
under the form:

f(x) =
N∑
j=0

2N−j−1∑
m,n=0

3∑
k=0

ckj,m,nψ
k
j,m,n(x) , (23)

where the set of coefficients {ckj,m,n = 〈ψkj,m,n|f〉} provides
a complete characterization of the function f . The notion
of cascade is then rather natural on the 2D square grid.
The construction rule is very similar to the one used in
1D on wavelet dyadic trees [60–64]. We build a random
function f(x) by specifying its wavelet coefficients {ckj,m,n}
in a recursive way. Actually, it is the modulus

dj,m,n =
([
c1j,m,n

]2 +
[
c2j,m,n

]2 +
[
c3j,m,n

]2)1/2

, (24)

that one generates at successive scales, by iterating the
following system:

dj−1,2m,2n = M
(r1)
j,m,ndj,m,n ,

dj−1,2m+1,2n = M
(r2)
j,m,ndj,m,n ,

dj−1,2m,2n+1 = M
(r3)
j,m,ndj,m,n ,

dj−1,2m+1,2n+1 = M
(r4)
j,m,ndj,m,n , (25)

for all j (1 ≤ j ≤ N), m (0 ≤ m < 2N−j) and n

(0 ≤ n < 2N−j) and where the M (ri)
j,m,n are independent

identically distributed (i.i.d.) positive valued random vari-
ables with prescribed law P (M). To go from the dj,m,n
modulus coefficients to the ckj,m,n (1 ≤ k ≤ 3) wavelet co-
efficients, one has to specify the value of the angles (θ, ϕ)
involved in the following expressions:

c1j,m,n = cos(ϕ) cos(θ)dj,m,n ,

c2j,m,n = cos(ϕ) sin(θ)dj,m,n ,

c3j,m,n = sin(ϕ)dj,m,n . (26)

where θ ∈ [−π, π] and ϕ ∈ [−π/2, π/2].

To generate a given realization of the W-cascade, one
starts, at large scale, from arbitrarily chosen values of the
coefficients ckN,0,0 (1 ≤ k ≤ 3), i.e., from an arbitrarily
chosen value of dN,0,0. Then one generates the coefficients
dj,m,n at successive scales, by iterating equation (25). At
each step and for each realization of the random vari-
able M , the angle θ and ϕ in equation (26) are indepen-
dently and randomly chosen with a white distribution on
[θmin, θmax] and [ϕmin, ϕmax] respectively. Let us point
out that the so-obtained random function f(x) (assuming
that the sum

∑N
j=0 in equation (23), which actually should

be an infinite sum
∑N
j=−∞, converges) is self-similar in

the sense that the law of a wavelet coefficient dj,m,n at
the scale 2j can be linked to the law of another wavelet
coefficient dj′,m′,n′ at the scale 2j

′
> 2j using a multi-

plicative random variable depending only on the ratio of
the two scales:

dj,m,n 'l dj′,m,nXj′−j , (27)

where 'l stands for the equality in law and where Xj =∏N−j
i=1 Mi (the Mi’s are i.i.d. positive valued random vari-

ables with the same law as M). Thus, from a statistical
point of view, the details of the function f at a scale a
are the same as the details at a scale a′ up to a rescaling
factor that depends only on a′/a.

Remark

Let us note that equation (25) can be rewritten as

ln dj−1,2m,2n = ln dj,m,n + lnM (r1)
j,m,n ,

ln dj−1,2m+1,2n = ln dj,m,n + lnM (r2)
j,m,n ,

ln dj−1,2m,2n+1 = ln dj,m,n + lnM (r3)
j,m,n ,

ln dj−1,2m+1,2n+1 = ln dj,m,n + lnM (r4)
j,m,n . (28)

If M is log-normal, these equations correspond to what
one could call a tree-autoregressive process. This process
is of order 1 in the sense that the regression involves only
one term. We refer the reader to the work of Basseville and
co-workers [102] for some introduction to autoregressive
models lying on a tree (including the orthonormal wavelet
dyadic tree). As previously emphasized in Ref. [64], our
approach of W-cascades in 1D as well as in 2D, is signif-
icantly different from theirs since we concentrate on the
analysis of the fractal function f itself and not on the
properties of the tree-process.

2.2.3 Numerical simulations of 2D W-cascades

As inspired from the modeling of the energy cascading pro-
cess in fully developed turbulence by log-infinitely divisi-
ble multiplicative processes [21–25,61–63], we will mainly
concentrate here on the synthesis of multifractal rough
surfaces using log-normal and log-Poisson W-cascades.
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Log-normal W-cascades

Let us first start with M being a log-normal random vari-
able. If m and σ2 are, respectively, the mean and the vari-
ance of lnM , then a straightforward computation leads to
the following τ(q) spectrum:

τ(q) = − log2〈Mq〉 − 2 , ∀q ∈ R

= − σ2

2 ln 2
q2 − m

ln 2
q − 2 , (29)

where 〈. . .〉 means ensemble average. The corresponding
D(h) singularity spectrum is obtained by Legendre trans-
forming equation (29):

D(h) = − (h+m/ ln 2)2

2σ2/ ln 2
+ 2 . (30)

According to the convergence criteria established in
1D [64], we will only consider parameter values that satisfy
the conditions:

m < 0 and
|m|
σ2

> 2
√

ln 2 . (31)

Moreover, by solving D(h) = 0, one gets hmin and hmax:

hmin = − m

ln 2
− 2σ√

ln 2
,

hmax = − m

ln 2
+

2σ√
ln 2
· (32)

In Figure 5 are illustrated 3 realizations of a log-normal
W-cascade corresponding to 3 different ways of distribut-
ing the weights on ψ1, ψ2 and ψ3 during the construction.
The Fourier transforms of these 3 images are also shown
in order to evidence some underlying anisotropy induced
by the intrinsic anisotropy of the separable wavelets ψk
(1 ≤ k ≤ 3). The model parameters are fixed to the val-
ues m = −0.38 ln 2 and σ2 = 0.03 ln 2; 10 cascade steps
have been used to generate these images.

(i) In Figure 5a, we start from the following wavelet coef-
ficients at the largest scale:

c1N,0,0 = 1 , c2N,0,0 = 1 , c3N,0,0 = 0 . (33)

At each step of the cascade, the multiplier M is
randomly chosen with the previously defined log-
normal distribution. θ is randomly chosen between
[−π, π] while ϕ = 0 is kept fixed. This means that
the so-generated W-cascade develops on the wavelets
ψ1 and ψ2 only. The corresponding Fourier transform
in Figure 5b clearly displays anisotropic scaling with
enhanced values along the kx and ky axis. This square
lattice anisotropy results from the intrinsic anisotropic
shape of ψ1 and ψ2.

(ii) In Figure 5c, the W-cascade is generated on ψ3 only.
One starts at the largest scale from the following coef-
ficients:

c1N,0,0 = 0 , c2N,0,0 = 0 , c3N,0,0 = 1 , (34)

Fig. 5. Three realizations of a log-normal W-cascade (n =
10) with parameter values m = −0.38 ln 2 and σ2 = 0.03 ln 2,
on separable orthonormal wavelets, using 1D “Daubechies 8”
wavelet. (a) W-cascade on ψ1 and ψ2 (case (i) in the text). (c)
W-cascade on ψ3 (case (ii)). (e) W-cascade on ψ1, ψ2 and ψ3

(case (iii)). The corresponding Fourier transforms are shown in
(b), (d), and (f) respectively. The fuzzy curves made of small
black dots are level curves to guide the eyes. The amplitudes
of f and f̂ are coded using 32 grey levels from white (min f or

min f̂) to black (max f or max f̂).

and during the cascading process, ϕ = ±π/2 is chosen
at random. As seen in the image of f(x) itself, the
particular shape of ψ3(x, y) = ψ(x)ψ(y) induces
the presence of a texture with main axis along the
diagonals. This anisotropy is clearly patent on the
corresponding Fourier transform shown in Figure 5d.

(iii) In order to approach isotropy, one needs to adapt our
strategy to the specificity of the W-cascade one in-
tends to generate. The specific shape of the analyzing
wavelets ψ1, ψ2 and ψ3 in Fourier space (Fig. 4), re-
quires to adjust in a clever way the weights we put at
each step on each of these wavelet modes. One starts
at the largest scale from the following coefficients:

c1N,0,0 = 1 , c2N,0,0 = 1 , c3N,0,0 = 2(−τ(2)/4+1) ,

(35)

where τ(2) = β − 4 is chosen according to the power-
law decay of the energy spectrum one wants to impose.
At each step, θ is randomly chosen between [−π, π]
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Fig. 6. Multifractal (1024× 1024) rough surfaces generated using random W-cascades (n = 10 steps). (a) Log-normal cascade
with parameter values m = −0.38 ln 2 and σ2 = 0.03 ln 2. (b) Log-Poisson cascade with the parameter values γ = −1/9 ln 2,
β = (2/3)1/3 and λ = 2 ln 2. Same coding as in Figure 5.

while the domain for ϕ needs to be adapted so that
ϕ ∈ [−ϕ∗, ϕ∗] (white distribution), where ϕ∗ satisfies
the following equation:

sin 2ϕ∗

4ϕ∗
=

2τ(2)/2+3

1 + 2τ(2)/2+3
− 1

2
, ϕ∗ > 0 . (36)

The image shown in Figure 5e as well as its Fourier
transform in Figure 5f, no longer display significant
departure from isotropy. Even though each of the
wavelets ψk (1 ≤ k ≤ 3) are clearly anisotropic, this
does not prevent the synthesis of multifractal functions
from approaching isotropic scaling properties (Note
that there still remains some anisotropy coming from
the underlying fragmentation process).

Figure 6a illustrates another realization of an “isotropic”
log-normal W-cascade together with the corresponding
multifractal rough surface. The intermittent nature of
f(x) is enlightened on 1D cuts as shown in Figures 7a
and 7b. From the power-spectrum power-law behavior in
Figures 8a and 8b, one extracts a rather accurate estimate
of the power-spectral exponent β = τ(2) + 4 = 2.70, for
the set of considered parameter values.

Log-PoissonW-cascades

Let λ be the mean and the variance of the Poisson distri-
bution Y . We consider that the law of lnM is the same
as Y lnβ+ γ. A straightforward computation leads to the

Fig. 7. 1D profiles obtained along some horizontal and ver-
tical cuts in Figures 6a and 6b respectively. Log-normal W-
cascade: (a) horizontal profile; (b) vertical profile. Log-Poisson
W-cascade: (c) horizontal profile; (d) vertical profile.

following τ(q) spectrum:

τ(q) =
λ(1− βq)− γq

ln 2
− 2 . (37)
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Fig. 8. Power-spectrum analysis of the (1024 × 1024) im-
ages shown in Figures 6a and 6b respectively. Log-normal
W-cascade: (a) ln |f̂n=10(k)|; (b) S(|k|) vs. |k| in logarithmic

representation. Log-Poisson W-cascade: (c) ln |f̂n=10(k)|; (d)
S(|k|) vs. |k| in logarithmic representation. The solid lines in
(b) and (d) correspond to the theoretical power-law prediction
with exponent β = τ (2) + 4 = 2.70.

The correspondingD(h) singularity spectrum obtained by
Legendre transforming τ(q) writes:

D(h) =
(

h

lnβ
+

γ

ln 2 lnβ

)(
ln
(

h+ γ/ ln 2
−(λ/ ln 2) lnβ

)
− 1
)

− λ

ln 2
+ 2 . (38)

Very much like the spectra obtained for log-normal W-
cascades, τ(q) is a nonlinear function of q while D(h) has a
single humped shape characteristic of multifractal scaling
properties.

In Figure 6b is shown a multifractal rough surface gen-
erated with the log-PoissonW-cascade model with param-
eter values γ = −1/9 ln 2, β = (2/3)1/3 and λ = 2 ln 2.
1D profiles obtained along horizontal and vertical 1D cuts
are illustrated in Figures 7c and 7d. From a qualitative
point of view, this rough surface looks intermittent very
much like the one obtained with a log-normalW-cascade.
Actually, as seen on the power-spectrum analysis in
Figures 8c and 8d, the numerical data are in good agree-
ment with the theoretical prediction for the spectral ex-
ponent β = τ(2)+4 = 2.70. Let us remark that because of
our specific choices for the model parameter values, both
the log-normal and log-PoissonW-cascades generate mul-
tifractal rough surfaces with the same τ(2) exponent and
in turn the same spectral exponent β. From a quantita-
tive point of view, the data in Figures 8c and 8d fail to
distinguish log-Poisson from log-normalW-cascades. This

observation is not so surprising since we already know
that power spectrum analysis fails to discriminate between
rough surfaces that display multifractal scaling proper-
ties from those which are homogeneous and monofractal.
In particular, a fractional Brownian surface BH(x) with
the index H = (τ(2) + 2)/2 = 0.35, diplays the same
power-law decay than the power spectra in Figures 8b
and 8d (see Sect. 5 in paper I [68]).

Remark

As previously discussed for 1D random W-cascades in
reference [64], there is no reason, a priori, that all the
realizations of the same stochastic multifractal functions
correspond to a unique D(h)-curve. Each realization has
its own unique distribution of singularities and the cru-
cial issue is to relate the theoretical singularity spectrum
defined by equation (58) in paper I [68] to the statistical
D(h) spectrum given by equations (30) and (38) respec-
tively. From the mathematical results proved for 1D ran-
dom W-cascades [64], the statistical D(h) spectrum ob-
tained with the multifractal WTMM formalism, is likely
to be an upper bound for the theoretical singularity spec-
trum (at least for its left increasing branch).

3 WTMM analysis of synthetic multifractal
rough surfaces

This section is devoted to the application of the 2D
WTMM method to synthetic multifractal rough surfaces
generated with the two classes of models described in
Section 2. We systematically follow the numerical im-
plementation procedure described in Section 4.3 of pa-
per I [68]. For each model, we first wavelet transform 32
(1024× 1024) images of the stochastic multifractal rough
surfaces with an isotropic first-order analyzing wavelet. To
master edge effects, we then restrain our analysis to the
(512× 512) central part of the wavelet transform of each
image. From the wavelet transform skeleton defined by the
WTMMM, we compute partition functions from which we
extract the τ(q) and D(h) multifractal spectra (Sect. 4.2
of paper I [68]). We systematically test the robustness of
our estimates with respect to some change in the shape of
the analyzing wavelet, in particular when increasing the
number of zero moments.

3.1 Multifractal rough surfaces generated
by the fractionally integrated singular cascade model

In Figure 9 is illustrated the computation of the max-
ima chains and the WTMMM for an individual image of
a random multifractal rough surface generated with the
fractionally integrated singular cascade model described
in Section 2.1 [72,99–101], for the following parameter val-
ues: p = 0.32 and H∗ = 0.638 (Fig. 1b). In Figure 9b is
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Fig. 9. 2D wavelet transform analysis of a multifractal rough surface generated with the fractionally integrated singular cascade
model (p = 0.32, H∗ = 0.638). ψ is a third-order radially symmetric analyzing wavelet (see Fig. 1 of paper I [68]). (a) 32 grey-
scale coding of the original (1024×1024) image. In (b) a = 22.9σW, (c) a = 21.9σW and (d) a = 23.9σW (where σW = 13 pixels),
are shown the maxima chains; the local maxima of M along these chains are indicated by (•) from which originates an arrow
whose length is proportional to M and its direction (with respect to the x-axis) is given by A ; only the (512× 512) central
part delimited by a dashed square in the original image in (a) is taken into account to define the WT skeleton. In (b), the
smoothed image φb,a ∗ f is shown as a grey-scale coded background from white (min) to black (max).

shown the convolution of the original image (Fig. 9a) with
the isotropic mexican hat smoothing filter φ. According
to the definition of the WTMM, the maxima chains corre-
spond to well defined edge curves of the smoothed image.
The local maxima of Mψ along these curves are indi-
cated by (•) from which originates an arrow whose length
is proportional to Mψ and its direction (with respect to
the x-axis) is given by Aψ. After linking these WTMMM
across scales, one constructs the WT skeleton from which
one computes the partition functions Z(q, a) (Eq. (59) of
paper I [68]). As reported in Figure 10a, the annealed
average partition functions display a well defined scaling
behavior over about 4 octaves when plotted versus a in
a logarithmic representation. When processing to a linear
regression fit of the data over the first four octaves, one
gets the τ(q) spectrum shown in Figure 10c. In contrast to
fractional Brownian rough surfaces studied in Section 5 of
paper I [68], this τ(q) spectrum unambiguously devi-
ates from a straight line. Moreover, for −4 ≤ q ≤ 9,
the data are in remarkable agreement with the theo-
retical spectrum given in equation (8). The values of

h = ∂τ/∂q range in the interval ∼ [0.18, 1.30], which
means that hmax > 1, i.e., the multifractal function un-
der study has singularities in its first derivative also.
This result is corroborated by the scaling behavior of
the expectation value h(q, a), defined in equation (66)
in paper I [68], which clearly depends on q in Fig-
ure 10b. When Legendre transforming the nonlinear
τ(q) spectrum obtained in Figure 10c, one gets the
D(h) singularity spectrum reported in Figure 10d. Its
characteristic single humped shape over a finite range of
Hölder exponents is a clear signature of the multifrac-
tal nature of the synthetic rough surfaces generated by
the fractionally integrated singular cascade model. For
q = 0, the largest dimension is attained for singulari-
ties of Hölder exponent h(q = 0) = 0.74 ± 0.02, a value
which is in good agreement with the theoretical prediction
h(q = 0) = 0.738. Moreover, the corresponding maximum
of the D(h) curve, D(h(q = 0)) = −τ(0) = 2.00 ± 0.02
does not deviate substantially from the theoretical value
DF = 2, which confirms that the considered random mul-
tifractal functions are singular everywhere.
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Fig. 10. Determination of the τ (q) and D(h) spectra of mul-
tifractal rough surfaces generated with the fractionally inte-
grated singular cascade model (p = 0.32, H∗ = 0.638). The 2D
WTMM method is used with a third-order radially isotropic
analyzing wavelet (◦). (a) log2Z(q, a) vs. log2 a; the solid lines
correspond to linear regression fit of the data over the first 4
octaves. (b) h(q, a) vs. log2 a; the solid lines correspond to lin-
ear regression fit estimates of h(q). (c) τ (q) vs. q as obtained
from linear regression fit of the data in (a) over the first four
octaves. (d) D(h) vs. h, after Legendre transforming the τ (q)
curve in (c). In (c) and (d), the symbols (4) represent the
results obtained when using a first-order radially symmetric
analyzing wavelet. The solid lines correspond to the theoreti-
cal τ (q) (Eq. (8)) and D(h) spectra. These results come from
annealed averaging over 32 (1024×1024) images. a is expressed
in σW units.

In Figures 10c and 10d are also shown for compari-
son the results obtained when applying the 2D WTMM
method with a first-order analyzing wavelet (the smooth-
ing function φ being a Gaussian). With our statistical sam-
ple of 32 (1024×1024) images, it is clear that the estimates
of the τ(q) and D(h) spectra are poorer than the results
previously obtained with a third-order isotropic analyzing
wavelet. This observation is a direct consequence of the
fact that first-order analyzing wavelets are not adapted
to characterize the fluctuations of multifractal functions
whose singularity spectrum support extends beyond 1
(hmax > 1, i.e., the weakest singularities are located in
the first derivative of f(x)) on one side (q < 0), mean-
while it reaches almost 0 on the other side (q > 0). Ad-

Fig. 11. Pdf’s of the WTMMM coefficients of synthetic mul-
tifractal rough surfaces generated with the fractionally inte-
grated singular cascade model (p = 0.32, H∗ = 0.638). (a)
Pa(M) vs. M. (b) Pa(A) vs. A. ψ is a third-order radially
symmetric analyzing wavelet. Four different scales a = 1, 2, 4,
8 (in σW units) are shown. These results correspond to aver-
aging over 32 (1024 × 1024) images.

Fig. 12. Pdf’s of M when conditioned by A. The different
curves correspond to fixing A (mod π) to 0±π/8, π/4±π/8,
π/2 ± π/8 and 3π/4 ± π/8. (a) a = 20.1; (b) a = 21.1 (in σW
units). Same 2D WTMM computations as in Figure 11.

ditional computations on 32 newly generated images im-
prove the agreement with the theoretical τ(q) spectrum.
For the class of multifractal rough surfaces studied in this
section, it is clear that the use of a third-order analyzing
wavelet allows us to master in a more efficient way the
problem of the fractional integration to the benefit of a
better characterization of the multiplicative nature of the
underlying singular cascade.

In Figure 11 are shown the corresponding pdfs
Pa(M) =

∫
dA Pa(M,A) and Pa(A) =

∫
dM Pa(M,A),

for four different values of the scale parameter a.

As seen in Figure 11a, whatever the value of a,
Pa(M) displays some oscillatory decreasing tail as
the signature of the underlying discrete multiplica-
tive process (prior to the fractional integration). Note
that the main peaks observed in these distributions
occur for values of M within a proportional ratio
very close to (1 − p)/p = 0.68/0.32 = 2.125. In
Figure 11b, Pa(A) clearly does not evolve across scales,
which means that the scale invariance properties of the
considered synthetic rough surfaces are contained in the
scale dependence of the M-pdf. However, some oscilla-
tory departure from a flat distribution is observed with
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Fig. 13. Distribution of the WTMMM in the plane (Tψ1 , Tψ2)
for the following values of the scale parameter: a = 1 (a), 2 (b),
4 (c) and 8 (d) in σW units. Same 2D WTMM computations
as in Figure 11.

well defined maxima for A = 0, π/2, π and 3π/2. This
anisotropy in the reconstructed images (Fig. 1b) is the di-
rect consequence of the privileged role played by the x- and
y-axis in the binomial cascade process prior to the frac-
tional integration. Hopefully, this anisotropy does not dis-
turb the scaling properties ofM since, as reported in Fig-
ure 12 for two different scales, the pdf ofM, when condi-
tioned by the argument A, is shown to be shape invariant.
This independence of M and A is further illustrated in
Figure 13 where the WTMMM are plotted in the
(Tψ1 , Tψ2) plane (see Sect. 2 of paper I [68]). For the
4 scales represented, the distributions so obtained are
clearly “square” symmetric as the signature of the factor-
ization of the joint probability distribution: Pa(M,A) =
Pa(F(A)M)Pa(A), where F(A) is a function that does not
depend on the scale parameter and that allows us to super-
impose perfectly the curves in Figures 12a and 12b (F(A)
accounts simply for this square anisotropy but does not
affect the scaling properties of the partition functions);
Pa(A) is the scale independent distribution found in Fig-
ure 11b.

All the multifractal properties of the rough surfaces
generated by the fractionally integrated singular cascade
model are thus contained in the way the shape of the pdf of
M evolves when one decreases the scale parameter a. This
evolution is illustrated in Figure 14a when using a semi-
logarithmic representation. As experienced in paper I [68]
for fractional Brownian surfaces, a test of monofractal self-
similar scaling is the existence of a unique exponent h
which allows us to rescale all the pdf’s Pa(M) computed
at different scales, onto a universal function P independent

Fig. 14. Pdf’s of M as computed at different scales a = 1, 2,
4 and 8 (in σW units). (a) lnPa(M) vs. M. (b) lnPa(M) vs.
M/ah(q=0) with h(q = 0) = 0.738. Same 2D WTMM compu-
tations as in Figure 11.

of a, and which satisfies:

P
(
Mψ

(
L(a)

))
= P

(
Mψ

(
L(a)

)
/ah
)
. (39)

In Figure 14b, we have tried to find such an exponent
without any success. The results reported in this fig-
ure correspond to rescaling the WTMMM by ah(q=0),
where h(q = 0) = lima→0+ h(q = 0, a)/ lna (Eq. (68) in
paper I [68]) = ∂τ/∂q|q=0, is the Hölder exponent which
is the most frequently encountered in the rough surfaces
under consideration. As compared to the remarkable col-
lapse obtained in Figure 27 of paper I for B1/3(x), the
pdf’s obtained after rescaling in Figure 14b are clearly
different. Equation (39) is thus absolutely not relevant for
those synthetic rough surfaces whose intermittent fluctu-
ations display multifractal scaling properties as character-
ized by a singularity spectrum which involves a continuum
of (Hölder) scaling exponents (Fig. 10d).

3.2 Multifractal rough surfaces generated by random
cascades on separable wavelet orthogonal basis

This section is devoted to the application of the 2D
WTMM method to multifractal functions synthetized
fromW-cascades on separable wavelet orthogonal basis as
defined in Section 2.2. We mainly report results obtained
with the first-order radially symmetric analyzing wavelets
shown in Figure 1 of paper I [68]. Possibly because of
the range of Hölder exponent values which is restricted to
h ∈ [0, 1], but more probably because of the underlying
multiplicative structure of the multifractal surface itself
(without any need of some power-law filtering), a first-
order analyzing wavelets leads to numerical multifractal
spectra which are in remarkable agreement with the theo-
retical predictions. Let us point out that quite robust re-
sults are obtained with the third-order analyzing wavelet
used in the previous sub-section.
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Fig. 15. 2D wavelet transform analysis of a multifractal rough surface generated with the log-normal W-cascade model. Same
model parameters as in Figure 6a. ψ is the first-order radially symmetric analyzing wavelet shown in Figure 1 of paper I [68].
(a) 32 grey-scale coding of the original (1024× 1024) image. In (b) a = 22.9σW, (c) a = 21.9σW and (d) a = 23.9σW, are shown
the maxima chains and the WTMMM for the central (512× 512) part of the original image (dashed square in (a)). In (b), the
smoothed image φb,a ∗ f is shown as a grey-scale coded background from white (min) to black (max).

3.2.1 Log-normal W-cascades

In Figure 15 is illustrated the computation of the max-
ima chains and the WTMMM for an individual image
of a multifractal rough surface generated with the log-
normal W-cascade model described in Section 2.2. The
model parameters are the same as the ones used in
Figure 6a, namely m = −0.38 ln 2 and σ2 = 0.03 ln 2.
Equations (35, 36) are implemented in order to approach
as much as possible isotropic scaling. Again Figure 15b
illustrates perfectly the fact that the maxima chains cor-
respond to edge curves of the original image after smooth-
ing by a Gaussian filter φ. From the WTMMM defined on
these maxima chains, one constructs the WT skeleton ac-
cording to the procedure described in Section 4 of paper
I [68]. From the WT skeletons of 32 (1024× 1024) images
like the one in Figure 15a, one computes the annealed av-
erage of the partition functions Z(q, a). As shown in Fig-
ure 16a, when plotted versus the scale parameter a in a
logarithmic representation, these annealed average parti-
tion functions display a rather impressive scaling behavior
over a range of scales of about 4 octaves (i.e., σW . a .
16σW, where σW = 13 pixels). Let us point out that scal-

ing of quite good quality is found for a rather wide range
of values of q: −6 . q . 8. When processing to a linear re-
gression fit of the data over the first four octaves, one gets
the τ(q) spectrum (◦) shown in Figure 16c. For the range
of q values where scaling is operating, the numerical data
are in remarkable agreement with the theoretical nonlin-
ear τ(q) spectrum given by equation (29). Similar quanti-
tative agreement is observed on the D(h) singularity spec-
trum in Figure 16d. Let us note that consistant parabolic
shapes are obtained when using either the Legendre trans-
form of the τ(q) data or the formula (68) and (69) of
paper I [68] to compute h(q) and D(q). In Figure 16b are
reported the results for the expectation values h(q, a) (Eq.
(66) of paper I [68]) vs. log2 a; it is clear on this figure that
the slope h(q) depends upon q, the hallmark of multifrac-
tal scaling. Note that again, the theoretical predictions
h(q) = ∂τ/∂q = −σ2q/ ln 2 − m/ ln 2 provide very satis-
factory fits of the numerical data. From equation (32), the
multifractal rough surfaces under study, display intermit-
tent fluctuations corresponding to Hölder exponent values
ranging from hmin = 0.034 to hmax = 0.726. Unfortu-
nately, to capture the strongest and weakest singularities,
one needs to compute the τ(q) spectrum for very large
values of |q|. This requires the processing of many more
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Fig. 16. Determination of the τ (q) and D(h) spectra of mul-
tifractal rough surfaces generated with the log-normal (◦)
and log-Poisson (4) random W-cascade models, using the 2D
WTMM method. ψ is the first-order radially symmetric ana-
lyzing wavelet used in Section 3.1. (a) log2Z(q, a) vs. log2 a;
the solid lines correspond to linear regression fit of the data
over the first four octaves. (b) h(q, a) vs. log2 a; the solid lines
correspond to linear regression fit estimates of h(q). (c) τ (q) vs.
q as obtained from linear regression fit of the data in (a) over
the first four octaves. (d) D(h) vs. h, after Legendre trans-
forming the τ (q) curve in (c). In (c) and (d), the solid lines
represent the theoretical log-normal spectra (Eqs. (29, 30));
the log-Poisson predictions (Eqs. (37, 38)) are represented by
the dashed lines.

images of much larger size, which is out of our current
computer capabilities. Note that with the statistical sam-
ple studied here, one hasD(h(q = 0) = 0.38) = 2.00±0.02,
which allows us to conclude that the rough surfaces under
consideration are singular everywhere.

From the construction rule of these synthetic log-
normal rough surfaces (Sect. 2.2.2), the multifractal na-
ture of these random functions is expected to be contained
in the way the shape of the WT modulus pdf Pa(M)
evolves when varying the scale parameter a, as shown
in Figure 17a. Indeed the joint probability distribution
Pa(M,A) is expected to factorize, as the signature of the
implicit decoupling of M and A in the construction pro-
cess. This decoupling is numerically retrieved in Figure 18
where, for two different scales, the pdf of M, when con-
ditioned by the argument A, is shown to be shape invari-

Fig. 17. Pdf’s of the WTMMM coefficients of synthetic mul-
tifractal rough surfaces generated with the log-normal W-
cascade model (m = −0.38 ln 2 and σ2 = 0.03 ln 2). (a) Pa(M)
vs M. (b) Pa(A) vs. A. ψ is a first-order radially symmetric
analyzing wavelet. Four different scales a = 1, 2, 4, 8 (in σW

units) are shown. These results correspond to averaging over
32 (1024× 1024) images.

Fig. 18. Pdf’s of M when conditioned by A. The different
curves correspond to fixing A (mod π) to 0±π/8, π/4±π/8,
π/2 ± π/8 and 3π/4 ± π/8. (a) a = 20.1; (b) a = 21.1 (in σW

units). Same 2D WTMM computations as in Figure 17.

ant. For further evidence of this statistical independence
betweenM and A, we refer the reader to Figure 19 where
the WTMMM are plotted in the (Tψ1 , Tψ2) plane. When
varying the scale parameter a, no significant angular de-
pendent evolution is observed in the distribution of the
WTMMM. As seen in Figure 17b, Pa(A) does not exhibit
any significant change when increasing a, except some loss
in regularity at large scales due to the rarefaction of the
maxima lines. Let us point out that, even though Pa(A)
looks globally rather flat, one can notice some small am-
plitude almost periodic oscillations at the smallest scales
which reflects the existence of privileged directions in the
wavelet cascading process. These oscillations are maxi-
mum for A = 0, π/2, π and 3π/2, as the witness to the
square lattice anisotropy underlying the 2D wavelet tree
decomposition.

Another way to evidence multifractality is to report
the failure of the self-similarity relationship (39). As ex-
perienced in Figure 14b for the fractionally integrated sin-
gular cascades, we have tried to find a value of h such that,
when rescaling the WTMMM by ah, all the pdf Pa(M)
shown in Figure 20a in a semi-logarithmic representation,
collapse onto a single curve. Clearly, we have not been able
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Fig. 19. Distribution of the WTMMM in the plane (Tψ1 , Tψ2)
for the following values of the scale parameter: a = 1 (a), 2 (b),
4 (c) and 8 (d) in σW units. Same 2D WTMM computations
as in Figure 17.

Fig. 20. Pdf’s of M as computed at different scales a = 1, 2,
4 and 8 (in σW units). (a) lnPa(M) vs. M. (b) lnPa(M) vs.
M/ah(q=0) with h(q = 0) = 0.38. Same 2D WTMM computa-
tions as in Figure 17.

to find such a remarkable exponent. As reported in Fig-
ure 20b, when using the expected most frequent Hölder
exponent h(q = 0) = ∂τ/∂q|q=0 = −m/ ln 2 = 0.38, the
right tail of Pa(M) shrinks to smaller values of M/ah

when a is increased. Although this evolution does not look
very spectacular, its clearly deviates from the perfect col-
lapse found for fBm surfaces in Figure 27b of paper I, the
hallmark of monofractal scaling properties.

3.2.2 Log-Poisson W-cascades

We have reproduced our 2D WTMM statistical analysis on
32 (1024×1024) images of multifractal rough surfaces gen-
erated with the log-Poisson W-cascade model described
in Section 2.2.2, with the parameter values γ = −1/9 ln2,
β = (2/3)1/3 and λ = 2 ln 2. The results so obtained are

of the same good quality as those reported before for log-
normalW-cascades. As shown in Figures 16c and 16d, the
τ(q) and D(h) spectra obtained with the log-Poisson W-
cascades (4) are found in remarkable agreement with the
corresponding theoretical spectra (- - -) for values of q in
the range −6 . q . 8, where well-defined scaling is ob-
served. Let us remark that in this range of q values, for the
considered sets of parameter values (which for both log-
normal and log-Poisson W-cascades are directly inspired
from the multifractal 1D WTMM analysis of the longi-
tudinal velocity fluctuations in fully developed turbulent
flows [25,63,81]), the theoretical τ(q) spectrum given by
equation (37) is almost undistinguishable from the theo-
retical τ(q) spectrum for the log-normalW-cascades (29).
It is therefore not surprising that our numerical analy-
sis fails to distinguish log-Poisson from log-normal mul-
tifractal rough surfaces with the available statistical
sample of synthetic (1024 × 1024) images. As seen in
Figures 16c and 16d, the log-normal and log-Poisson the-
oretical multifractal spectra start departing one from the
other at large (q & 6) and small (q . −4) q values. Our
numerical data also start separating one from each other
at those rather large values of |q| in a way which is quite
consistent with the theoretical predictions. However, let
us emphasize that, as previously discussed in paper I [68],
finite-size effects as well as some lack of statistical con-
vergence start affecting our estimates of the τ(q) expo-
nents (and in turn the D(h) singularity spectrum) which
are no longer as reliable as they should be. This obser-
vation must not be considered as some limitation of the
2D WTMM method to discriminating between log-normal
and log-Poisson statistic since, with other choices of pa-
rameter values, this discrimination can be shown to be
quite operational. Because of the specific choice of the
model parameters, the above observation simply indicates
that in order to distinguish log-Poisson multifractal spec-
tra from their log-normal approximations (see the discus-
sion in Sect. 4), one needs to be able to investigate values
of |q| & 6 which requires many more images of much larger
size than those investigated in the present study.

In Figures 21, 22 and 23, we report the results of
the computation of the joint probability distribution
Pa(M,A) = Pa(M)Pa(A), which is found to factorize
as previously observed for log-normalW-cascades. These
figures have to be compared with Figures 17, 18 and
19 discussed just above. The similarities between those
two sets of data confirm the conclusions derived from
the multifractal spectra computations. In Figure 24, one
witnesses the impossibility of finding a value of the ex-
ponent h such that, when rescaling M by ah, all the
pdf’s computed at different scales collapse onto a single
curve. When using the most frequent Hölder exponent
h = h(q = 0) = −(γ/ ln 2 + λ lnβ/ ln 2) = 0.381 (a value
which, up to 10−3, is the same as for the log-normal W-
cascades in Fig. 20), the right tails of these pdf’s fail to
superimpose one on the top of each other. This discrep-
ancy is the signature of multiscaling, i.e., the existence
of a continuum of scaling exponent values which account
for the roughness fluctuations of the multifractal surfaces
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Fig. 21. Pdf’s of the WTMMM coefficients of synthetic mul-
tifractal rough surfaces generated with the log-Poisson W-
cascade model (γ = −1/9 ln 2, β = (2/3)1/3 and λ = 2 ln 2).
(a) Pa(M) vs. M. (b) Pa(A) vs. A. ψ is a first-order radi-
ally symmetric analyzing wavelet. Four different scales a = 1,
2, 4, 8 (in σW units) are shown. These results correspond to
averaging over 32 (1024 × 1024) images.

Fig. 22. Pdf’s of M when conditioned by A. The different
curves correspond to fixing A (mod π) to 0±π/8, π/4±π/8,
π/2 ± π/8 and 3π/4 ± π/8. (a) a = 20.1; (b) a = 21.1 (in σW

units). Same 2D WTMM computations as in Figure 21.

Fig. 23. Distribution of the WTMMM in the plane (Tψ1 , Tψ2)
for the following values of the scale parameter: a = 1 (a), 2 (b),
4 (c) and 8 (d) in σW units. Same 2D WTMM computations
as in Figure 21.

Fig. 24. Pdf’s of M as computed at different scales a = 1, 2,
4 and 8 (in σW units). (a) lnPa(M) vs. M. (b) lnPa(M) vs.
M/ah(q=0) with h(q = 0) = 0.381. Same 2D WTMM compu-
tations as in Figure 21.

under study. The single-humped D(h) singularity spec-
trum shown in Figure 16d quantifies statistically the rel-
ative contributions of the corresponding singularities of
different Hölder exponents.

4 WTMM computation of the self-similarity
kernel of multifractal rough surfaces

This section is devoted to the generalization in 2D of the
method for determining the self-similarity kernel G origi-
nally introduced by Castaing and co-workers [24,82–88] in
the context of the analysis of the velocity increment pdf
in fully developed turbulent flows. Note that this method
has been extended in previous works to the corresponding
WTMM pdf [61–63,81,93]. Our goal here is to pave the
way from 1D to 2D studies, under some specific assump-
tions that make this generalization rather straightforward.
Our working hypothesis will be the factorization of the
joint probability distribution:

Pa(M,A) = Pa(M)Pa(A) . (40)

This hypothesis of statistical independence between the
modulus and the argument of the WTMMM, is satisfied
by construction when investigating the WT skeleton of
the multifractal rough surfaces generated with the ran-
dom W-cascade models discussed in Section 2.2. We will
see in paper III [73], that this hypothesis is also quite re-
alistic when analyzing high resolution satellite images of
stratocumulus radiance fields [103]. Our strategy will thus
consists in computing a kernel G which will account for
the evolution of the shape of Pa(M). As far as Pa(A) is
concerned, either this distribution is scale independent, as
previously observed in Figures 17b and 21b, or it is found
to evolve as a function of a (or more likely of ln a) and
some important issue will be to explicit the underlying
evolution equation (or the underlying dynamical system
when dealing with discrete cascading process).
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4.1 A method to determine the self-similarity kernel

Under the hypothesis stated in equation (40), Castaing
et al. ansatz [24,82] can be revisited along the lines drawn
in references [61–63], i.e., by taking advantage of the
space-scale decomposition provided by the WT skeleton.
Because of the implicit assumption of the existence of an
underlying multiplicative structure, the WTMMM pdf at
a given scale a can be expressed as a weighted sum of
dilated pdfs at a larger scale a′ > a:

Pa(M) =
∫
Gaa′(u)Pa′(e−uM)e−udu , for a′ > a .

(41)

For any decreasing sequence of scales (a1, ..., an), the ker-
nel G satisfies the decomposition law:

Gana1 = Ganan−1 ∗ ... ∗Ga2a1 , (42)

where ∗ denotes the convolution product. According to
Castaing et al. [24,82], the cascade is self-similar if there
exists a decreasing sequence of scales {an} such that
Ganan−1 = G is independent of n. The cascade is said
continuously self-similar [24,82] if there exists a posi-
tive, decreasing function s(a) such that Gaa′ depends
upon a and a′ only through s(a, a′) = s(a) − s(a′), i.e.,
Gaa′(u) = G(u, s(a, a′)). s(a, a′) actually accounts for the
number of elementary cascade steps from scale a′ to scale
a. (s(a) can be seen as the number of cascade steps from
the “integral” scale L down to the considered scale a.) In
Fourier space, the convolution property (Eq. (42)) turns
into a multiplicative property for Ĝ, the Fourier transform
of G:

Ĝaa′(p) = Ĝ(p)s(a,a
′) , for a′ > a . (43)

From this equation, one deduces that Ĝ has to be the
characteristic function of an infinitely divisible pdf. Such
a cascade is referred to be a log-infinitely divisible cas-
cade [21,24]. According to Novikov’s definition [21], the
cascade is scale-similar (or scale-invariant) if:

s(a, a′) = ln
(
a′

a

)
, (44)

i.e., s(a) = ln(L/a).

Remark

In their original work, Castaing et al. [82] have developed
a formalism, based on an extremum principle, which turns
out to be consistent with the Kolmogorov-Obukhov (1962)
general ideas of log-normality [13,14], but which predicts
an anomalous power-law behavior of the depth of the cas-
cade. This departure from scale invariance has been con-
firmed experimentally [61–63,81,93] from the computa-
tion of the kernel Gaa′ of the WTMM pdf which corrobo-
rates that s(a) =

(
(L/a)β − 1

)
/β, where β is a Reynolds

number dependent exponent which quantifies the devi-
ation from scale-similarity (scale-invariance being ulti-
mately restored for β → 0, in the limit of infinite Reynolds
number).

Our numerical estimation of G [62,63] is based on the
computation of the characteristic function M(p, a) of the
WTMMM logarithms at scale a [103]:

M(p, a) =
∫

eip lnMPa(M) dM . (45)

From equation (41), it is easy to show that Ĝ satisfies:

M(p, a) = Ĝaa′(p)M(p, a′) . (46)

After the WT calculation and the WTMMM detection,
the real and imaginary parts of M(p, a) are computed
separately as < cos(p lnM) > and < sin(p lnM) > re-
spectively. The use of the WT skeleton instead of the con-
tinuous wavelet transform prevents M(p, a′) from getting
too small, as compared to numerical noise, over a reason-
able range of values of p, so that Ĝaa′(p) can be computed
from the ratio:

Ĝaa′(p) =
M(p, a)
M(p, a′)

· (47)

4.2 Computing the self-similarity kernel of multifractal
rough surfaces generated with random W-cascades

The aim of this sub-section is to perform test applica-
tions of our WTMMM methodology to compute the self-
similarity kernel using as guinea pigs, the synthetic multi-
fractal rough surfaces generated by the randomW-cascade
models introduced in Section 2.2.

4.2.1 Uncovering a continuously self-similar cascade

In order to test the validity of equation (43), one first has
to focus on the scale dependence of Ĝaa′ as calculated
with equation (47). Figures 25a and 25c respectively show
the modulus logarithm ln |Ĝaa′ | and the phase Φaa′ , of
Ĝaa′ , for various pairs of scales a < a′, as computed from
the WT skeletons of 32 (1024× 1024) images of synthetic
log-normal rough surfaces like the one illustrated in Fig-
ure 6a. In Figures 25b and 25d respectively, we succeed in
collapsing all different curves in Figures 25a and 25c onto
a single kernel Ĝ(p) = Ĝ

1/s(a,a′)
aa′ , with s(a, a′) = ln(a′/a)

in good agreement with equations (43, 44) and the con-
tinuously scale-invariant self-similar cascade picture. Let
us point out that this collapse deteriorates for |p| & 5, as
the consequence of finite-size effects as well as of a lack of
statistics. As illustrated in Figure 27, similar observations
also apply for synthetic log-Poisson multifractal rough sur-
faces.
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Fig. 25. Estimation of Ĝaa′(p) for 32 (1024 × 1024) images
of multifractal rough surfaces generated with the log-normal
W-cascade model for the parameter values m = −0.38 ln 2
and σ2 = 0.03 ln 2. The analyzing wavelet is the first-order
radially symmetric wavelet used in Figure 15. (a) ln |Ĝaa′(p)|
vs. p; (b) ln |Ĝaa′(p)|/ ln(a′/a) vs. p; (c) Φaa′(p) vs. p; (d)
Φaa′(p)/ ln(a′/a) vs. p. The symbols correspond to the follow-
ing pairs of scale (in σW units): a = 20.5, a′ = 23.5 (◦), a = 2,
a′ = 23.5 (�), a = 2, a′ = 23 (�), a = 21.5, a′ = 23 (•). In (a)
and (c), the solid lines correspond to the theoretical predictions

for Ĝaa′(p) (Eq. (55)) for a = 2, a′ = 23 (�). In (b) and (d),
the solid lines correspond to the theoretical self-similar kernel
Ĝ(p) = exp

�
(imp− σ2p2/2)/ ln 2

�
.

4.2.2 Discriminating between log-normal and log-Poisson
cascades

The relevance of equation (43) being established, let us
turn to the precise analysis of the nature of G. Using the
Taylor series expansion of ln Ĝ(p) [62,63]:

Ĝ(p) = exp

( ∞∑
k=1

ck
(ip)k

k!

)
, (48)

equation (43) can be rewritten as:

Ĝaa′(p) = exp

( ∞∑
k=1

s(a, a′)ck
(ip)k

k!

)
, (49)

where the real valued coefficients ck are the cumulants
of G.

Log-normal W-cascade process

Let us come back to the construction rule of the 2D W-
cascades defined in Section 2.2. Let Pj the pdf of the
wavelet coefficient modulus dj,m,n (Eqs. (24, 25)). Let

P
(log)
j (u) be the pdf of ln dj :

P
(log)
j (u) = euPj(eu) . (50)

If j1 > j2, then from equation (28):

ln dj2 = ln dj1 + lnMj1−1 + ..+ lnMj2 . (51)

This equation can be rewritten as

P
(log)
j2

(u) = P
(log)
j1

∗Gj2j1(u) , (52)

where Gj2j1(u) = G∗G...∗G, G(u) being the pdf of lnM .
In the Fourier space, one gets

P̂
(log)
j2

(p) = P̂
(log)
j1

(p)Ĝs(j2,j1)(p) , (53)

where

s(j2, j1) = j1 − j2 (54)

represents the number of steps of the cascade from the
scale 2j1 to the scale 2j2 . These rather straightforward
computations demonstrate the scale-invariance and the
self-similarity of the random W-cascades.

In the particular case of a log-normal W-cascade,
the self-similarity kernel G(u) is expected to be Gaus-
sian [61–64] which implies the following behavior of the
self-similarity kernel in Fourier space:

Ĝaa′(p) = exp
[(

imp
ln 2
− σ2p2

2 ln 2

)
ln
(
a′

a

)]
. (55)

From equation (49), this Gaussian kernel corresponds to
the following set of cumulants:

c1 = m/ ln 2 , c2 = σ2/ ln 2 , ck = 0 for k ≥ 3 . (56)

As shown in Figure 26, those cumulants can be extracted
from the behavior of:

C2n+1(a, a′) = (−1)n∂2n+1Φaa′/∂p
2n+1|p=0 , (57)

and

C2n+2(a, a′) = ∂2n+2 ln |Ĝaa′ |/∂p2n+2|p=0 , (58)

for n ≥ 0, as functions of ln(a′/a). When plotting C1(a, a′)
vs. ln(a′/a), one can see in Figure 26a that for differ-
ent values of the reference scale a′, all the points ob-
tained when varying the scale a fall on a unique straight
line which matches perfectly the theoretical prediction
C1(a, a′) = m ln(a′/a)/ ln 2 = −0.38 ln(a′/a). Very good
agreement is also found for C2(a, a′) = σ2 ln(a′/a)/ ln 2 in
Figure 26b, where the theoretical value σ2/ ln 2 = 0.03
provides a nice fit of the slope of the numerical data.
In Figure 26c are shown the results for C3(a, a′) which
theoretically should be equal to zero (Eq. (56)). Despite
some fluctuations resulting from finite-size effects and the
lack of statistical convergence, all the data points fall in a
rather narrow neighborhood of the horizontal line corre-
sponding to c3 = 0.
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Fig. 26. Computation of the cumulants of the self-similarity kernel Ĝ of multifractal rough surfaces generated with the log-
normal W-cascade model. Same computations as in Figure 25. (a) C1(a, a′) vs. ln(a′/a); (b) C2(a, a′) vs. ln(a′/a); (c) C3(a, a′)
vs. ln(a′/a). The symbols correspond to the following values of the reference scale a′ = 20.5 (•), 2 (◦), 21.5 (∗), 22 (�), 22.5 (�), 23

(×) and 23.5 (N), in σW units. The solid lines correspond to the theoretical slopes c1 = m/ ln 2 = −0.38 (a), c2 = σ2/ ln 2 = 0.03
(b) and c3 = 0 (c).

Log-PoissonW-cascade process

A log-PoissonW-cascade is characterized by the following
kernel shape [61–64]:

Ĝaa′(p) = exp

[[
λ
(
cos(p lnβ) − 1

)
ln 2

+ i

(
γp+ λ sin(p lnβ)

)
ln 2

]
ln
(
a′

a

)]
, (59)

where γ, β and λ are parameters (see Sect. 2.2). This
log-Poisson kernel corresponds to the following set of cu-
mulants:

c1 =
γ + λ ln β

ln 2
and ck =

λ(ln β)k

ln 2
for k ≥ 2 . (60)

Note that the log-Poisson process reduces to a log-normal
cascade for |p lnβ| � 1, i.e., in the limit β → 1 and
λ(ln β)2 → σ2, where the atomic nature of the quantized
log-Poisson process vanishes. In Figure 28 are reported
the results of the computation of C1(a, a′), C2(a, a′) and
C3(a, a′) from the numerical log-Poisson self-similarity
kernel Ĝaa′(p) shown in Figure 27, for different values
of the reference scale a′. In Figures 28a and 28b, all the
data points obtained for C1(a, a′) and C2(a, a′), remark-
ably fall on a straight line when plotted versus ln(a′/a).
This is a clear numerical evidence for the scale-similarity
of the underlying multiplicative process. Moreover, the
slopes of these straight lines are found in very good agree-
ment with the theoretical predictions for the first two
cumulants (Eq. (60)): c1 = (γ + λ lnβ)/ ln 2 = −0.381
and c2 = λ(ln β)2/ ln 2 = 0.036. Although we are again
faced with finite-size effects and some lack of statisti-
cal convergence, when comparing the results obtained
for C3(a, a′) in Figure 28c to those reported in Fig-
ure 26c for the log-normal W-cascades, one observes a
definite tendency of the numerical data to fall about

Fig. 27. Estimation of Ĝaa′(p) for 32 (1024 × 1024) images
of multifractal rough surfaces generated with the log-Poisson
W-cascade model for the parameter values γ = −1/9 ln 2,
β = (2/3)1/3 and λ = 2 ln 2. Same representation as in
Figure 25. In (a) and (c), the solid lines correspond to the

theoretical predictions for Ĝaa′(p) (Eq. (59)) for a = 2,
a′ = 23 (�) in σW units; the dashed lines correspond to the

log-normal approximation of Ĝaa′(p). In (b) and (d), the solid

lines correspond to the theoretical self-similar kernel Ĝ(p) =
exp

��
λ(cos(p ln β)− 1) + i(γp+ λ sin(p ln β))

�
/ ln 2

�
; the

dashed lines correspond to the log-normal approximation
Ĝ(p) = exp

�
(i(γ + ln β)p− λ(lnβ)2p2/2)/ ln 2

�
.

a straight line of negative slope when plotted versus
ln(a′/a). This is a strong indication that the third cu-
mulant c3 is different from zero and that the cascading
process is no longer log-normal. Furthermore, as shown in
Figure 28c, the theoretical value c3 = λ(ln β)3/ ln 2 =
−0.0049 provides a reasonable fit of the data. The rele-
vance of the theoretical self-similarity kernel (Eq. (59)) is
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Fig. 28. Computation of the cumulants of the self-similarity kernel Ĝ of multifractal rough surfaces generated with the log-
Poisson W-cascade model. Same computations as in Figure 27. (a) C1(a, a′) vs. ln(a′/a); (b) C2(a, a′) vs. ln(a′/a); (c) C3(a, a′)
vs. ln(a′/a). The symbols correspond to the following values of the reference scale a′ = 20.5 (•), 2 (◦), 21.5 (∗), 22 (�), 22.5

(�), 23 (×) and 23.5 (N), in σW units. The solid lines correspond to the theoretical slopes c1 = (γ + λ ln β)/ ln 2 = −0.381 (a),
c2 = λ(ln β)2/ ln 2 = 0.036 (b) and c3 = λ(ln β)3/ ln 2 = −0.0049 (c).

Fig. 29. Pdf’s of M as computed at different scales a = 1, 2, 4 and 8 (in σW units). (a) ln(Pa(M)) vs. M; same data for
log-normal W-cascades as in Figure 20a, after being transformed according to equation (41) with the Gaussian kernel estimated
in Figures 25 and 26. (b) ln(Pa(M)) vs. M; same data for log-Poisson W-cascades as in Figure 24a, after being transformed
with a Gaussian kernel build from the first two cumulants c1 and c2 estimated in Figure 28. (c) Same pdf’s as in (b) but after
being transformed with a kernel involving the first three cumulants c1, c2 and c3 estimated in Figure 28.

confirmed in Figures 27b and 27d, where the correspond-
ing solid lines are found in good agreement with the data
for −5 . p . 5. Note that the presence of a nonzero third-
order cumulant is hardly perceptible in Figure 27d, where
the dashed line corresponding to the log-normal linear ap-
proximation of Φaa′ cannot be discarded by the data ex-
cept for values of |p| & 4. Unfortunately, for these rather
large values of p, one can no longer trust quantitatively
our numerical data because of insufficient sampling.

As a check of the reliability of our numerical method
to compute the self-similarity kernel Gaa′(u), we have suc-
ceeded in Figure 29a, in collapsing all the WTMMM pdf’s
computed at different scales in Figure 20a for log-normal
W-cascades, onto a single curve when using the convo-
lution equation (41) with a scale-invariant Gaussian ker-
nel (Eq. (55)).We have tried to do the same remarkable
operation for the WTMMM pdf’s obtained for the log-
Poisson W-cascades in Figure 24a. When using the log-
normal approximation of the log-Poisson kernel, taking
into account c1 and c2 only, one clearly fails in Figure

29b to collapse the right tails of the M pdf’s onto a sin-
gle curve. When putting into the game the value of the
third cumulant c3 estimated from a linear regression fit of
the data in Figure 28c, the collapse is improved but still
not perfect because of the statistical uncertainty in our
estimate of c3 when considering a statistical sample of 32
(1024× 1024) images only (note that in paper III [73] we
will have at our disposal 32 (1024×1024) images of cloudy
scenes collected with Landsat satellite).

Remark

From the definition of the characteristic function
M(p, a) (Eq. (45)), one gets the following relationship with
the partition function Z(q, a) involved in the multifractal
WTMM description (Eq. (70) of paper I [68]) [63]:

S(q, a) =
Z(q, a)
Z(0, a)

= 〈Mq〉(a) = M(−iq, a) ,

∼ aτ(q)+2 , (61)
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where Z(0, a) ∼ a−2, as previously discussed for multi-
fractal rough surfaces that are singular everywhere. From
the expression (47) of the Fourier transform of the kernel
G and equation (61), one deduces:

S(q, a)
S(q, a′)

= Ĝaa′(−iq) . (62)

When further using equation (49), this last equation be-
comes

S(q, a)
S(q, a′)

=
(
a′

a

)P∞
k=1 ck

qk

k!

, (63)

which is consistent with the scaling behavior of S(q, a) in
equation (61) provided

τ(q) = −
∞∑
k=1

ck
qk

k!
− 2 . (64)

This general expression for the τ(q) spectrum reduces to
the specific spectra found in equations (29,37), when re-
placing the cumulants ck by their respective analytical
expressions found in equations (56, 60) for log-normal
and log-Poisson W-cascades. Let us note that with the
choices of parameter values made in our numerical simula-
tions, the first two cumulants of log-normal (c1 = −0.380,
c2 = 0.030) and log-Poisson (c1 = −0.381, c2 = 0.036)
W-cascades are so similar that the respective τ(q) spec-
tra mainly differ by the contribution of the cumulants of
order k ≥ 3. This explains, a posteriori, the difficulties
encountered with the 2D WTMM method in Section 3 to
distinguish the multifractal spectra of the corresponding
log-normal and log-Poisson rough surfaces.

5 Space-scale correlation functions from
wavelet analysis

5.1 Space-scale correlation functions

Correlations in multifractals have already been experi-
enced in the literature [104–106]. However, all these stud-
ies rely upon the computation of the scaling behavior of
some partition functions involving different points; they
thus mainly concentrate on spatial correlations of the lo-
cal singularity exponents. The approach recently devel-
oped in references [81,94,97] is different since it does not
focus on (nor suppose) any scaling property but rather
consists in studying the correlations of the logarithms of
the amplitude of a space-scale decomposition of the sig-
nal. More specifically, if χ(x) is a bump function such that
||χ||1 = 1, then by taking

ε2(x, a) = a−4

∫
χ
(
(x− y)/a

)∣∣Tψ[f ](y, a)
∣∣2 d2y ,

(65)

one has

||f ||22 =
∫∫

ε2(x, a)d2xda . (66)

Thus, ε2(x, a) can be interpreted as the local space-scale
energy density of the considered multifractal function
f(x). Since ε2(x, a) is a positive quantity, we can define
the magnitude of the function f at the point x and scale
a as:

ω(x, a) =
1
2

ln ε2(x, a) . (67)

Our aim in this section, is to show that a multiplicative
process can be revealed and characterized through the cor-
relations of its space-scale magnitudes:

C(x1,x2; a1, a2) = 〈ω̃(x1, a1)ω̃(x2, a2)〉, (68)

where 〈...〉 stands for ensemble average and ω̃ for the cen-
tered process ω − 〈ω〉.

Remark

Note that instead of working with the continuous wavelet
transform, one can use its skeleton defined by the
WTMMM. Within this alternative, the magnitude is sim-
ply ω(x, a) = lnM(x, a), where the point (x, a) is by def-
inition a WTMMM.

5.2 Analysis of random W-cascades using space-scale
correlation functions

The tree structure of a W-cascade defined on separable
wavelet orthogonal basis as explained in Section 2.2, in-
duces correlations between different “details” of the cor-
responding function f(x) [94–97]. These correlations can
be characterized by computing the correlation between
two wavelet coefficients at an arbitrary scale aj = 2j
and at a distance |∆x| = ∆x = 2j∆k, where for the
sake of simplicity, we will focus on spatial separations in
the x-direction only (we will see later on, that our the-
oretical predictions are independent of the chosen direc-
tion provided the function f(x) displays isotropic scaling
properties). Let us fix k = (kx, ky) and let k1 = k and
k2 = k +∆k, where ∆k = (∆k, 0). Let us suppose that
the last common ancestor (on the quaternary tree of the
W-cascade) of the wavelet coefficient modulus dj,k1 and
dj,k2 (Eqs. (24, 25)) is at a scale 2N−l(j,k1,k2), where in the
following l(j,k1,k2) will be referred as the ultrametricW-
distance between two wavelet coefficients [64]. Then, from
equation (25), one can write:

dj,k1 = M (N−1)...M

(
N−l(j,k1,k2)

)
×M

(
N−l(j,k1,k2)−1

)
[1] ...M

(j)
[1] , (69)
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and

dj,k2 = M (N−1)...M

(
N−l(j,k1,k2)

)
×M

(
N−l(j,k1,k2)−1

)
[2] ...M

(j)
[2] , (70)

where all the M (i), M (i)
[1] and M

(i)
[2] are i.i.d. random vari-

ables with the same law P (M) as M . Then their covari-
ance is

Cov(ln dj,k1 , ln dj,k2) =
l(j,k1,k2)∑
i=1

Cov
(
lnM (N−i), lnM (N−i))

= σ2l(j,k1,k2), (71)

where σ2 is the variance of lnM . But the ultrametric
structure of the W-cascades shows that such a process
is not stationary (nor ergodic). Moreover, we will gener-
ally consider uncorrelated realizations of size L = 2N of
the same cascade process, so that, in good approximation,
the correlation function depends only on the spatial dis-
tance ∆x = |∆x|. Thus one can replace ensemble average
by space average in the definition of the correlation func-
tion [64]:

C(∆xj,2p ; aj) = 4j−Nσ2

l=N−j−1∑
l=0

Nj,2p(l)l , (72)

where Nj,2p(l) is the number of wavelet coefficients dj,k
(0 ≤ kx ≤ 2j − 2p) such that dj,k and dj,k′ , where k =
(kx, ky) and k′ = (kx + 2p, ky), are at the W-distance l. It
is clear that Nj,2p(l) = 0 for l ≥ N − j− p. Moreover, one
can easily show that:

∀ l < N − j − p , Nj,2p(l) = 4pNj−p,1(l) . (73)

Since Nj,1(l) = 2N−j+l, equation (72) becomes (∀ p <
N − j):

C(∆xj,2p ; aj) = 4j−Nσ2

N−j−p−1∑
l=0

4pNj−p,1(l)l ,

= 4p+j−Nσ2

N−j−p−1∑
l=0

2N−j−p2ll ,

= 2p+j−Nσ22

×
[
(j − p)2N−j−p−1 − 2N−j−p + 1

]
,

= σ2(N − j − p− 2 + 2p+j−N+1) .
(74)

This means that when ∆x (= 2p+j) is small (a <
∆x � L), the correlation function C(∆x, a) of a W-
cascade behaves as a logarithm function of the spatial
distance [64,94]:

C(∆x, a) ∼ σ2 log2

(
L

∆x

)
. (75)

Thus, asymptotically, the correlation function does not
depend on the scale a. Moreover, equation (74) is not only
valid for spatial separations in the x-direction but also in
the y-direction as well as along the diagonals. Therefore
equation (75) is likely to apply for isotropic W-cascades
after averaging over the direction of ∆x.

Remark

Using the same kind of computations, one gets that the
“two-scale” correlation function C(∆x, a1, a2), between
the WT coefficients at scale a1 and the coefficients at scale
a2, follows the same law as long as ∆x is greater than the
supremum of a1 and a2, namely [64,94]:

C(∆x, a1, a2) = σ2

(
log2

(
L

∆x

)
− 2 + 2

∆x

L

)
,

when sup(a1, a2) ≤ ∆x < L . (76)

Thus, the ultrametric structure of the wavelet representa-
tion of multifractal rough surfaces generated with the ran-
dom W-cascade model, implies that the cross-correlation
functions (across scales) decrease very slowly, indepen-
dently of a1 and a2, as a logarithm function of the spatial
distance ∆x.

5.3 Distinguishing “multiplicative” from “additive”
processes underlying the scale invariance properties
of rough surfaces

In Figure 30a are reported the results of the computation
of C(∆x, a1, a2) when averaging over 32 (1024×1024) im-
ages of multifractal rough surfaces generated with the log-
normal W-cascade model for the same parameter values
as in Figure 6a. One can see that, for ∆x > sup(a1, a2),
all the data points fall onto a unique curve when plotted
versus log2(∆x), independently of the considered pair of
scales (a1, a2). Moreover, although the analyzing wavelet
is different from the one used in the construction process
of the W-cascade, these numerical data are in a strik-
ing good agreement with the theoretical prediction given
by equation (76) for σ2 = 0.03 ln 2 and L = 1024. The
observed slow (logarithmic) decay of the space-scale cor-
relation functions is thus a clear signature that magni-
tudes in random cascades are correlated over very long dis-
tances [64,94–97]. Note that both the scale independence
and the logarithmic decay are features that are not ob-
served in “additive” models like fractional Brownian mo-
tions whose long-range correlations originate from the sign
of their variations rather than from the amplitudes. In Fig-
ure 30b are plotted the correlation functions C(∆x, a1, a2)
computed from 32 (1024 × 1024) images of isotropic
fractional Brownian surfaces with index H = 1/3 (see
Fig. 14a of paper I [68]). When comparing with Figure 30a,
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Fig. 30. Magnitude correlation function C(∆x, a1, a2) vs.
log2(∆x), as computed from the continuous wavelet transform
of 32 (1024 × 1024) images. The analyzing wavelet  is the
radially symmetric first-order wavelet shown in Figure 1 of
paper I [68]. (a) Log-normal W-cascades for parameter values
m = −0.38 ln 2 and σ2 = 0.03 ln 2. (b) Fractional Brownian
surfaces BH=1/3(x). The symbols have the following meaning:
a1 = a2 = 2 (◦); a1 = 1, a2 = 2 (4); a1 = 1, a2 = 22 (�) and
a1 = 2, a2 = 22 ( ) in σW units. In (a) the solid line represents
the theoretical prediction given by equation (76). We have not
shown any data points for ∆x ≤ σW (∼ 13 pixels).

the difference is impressive: for∆x > sup(a1, a2), the mag-
nitudes of BH=1/3(x) are found uncorrelated.

Remark

We have reproduced our space-scale correlation analysis
for multifractal rough surfaces generated with the log-
PoissonW-cascade model. When using the model param-
eters defined in Figure 6b, one gets numerical data that
cannot be distinguished from those shown in Figure 30a
for log-normal W-cascades. This can be explained from
the fact that the variance parameter σ2 = λ(ln β)2 =
0.025 is very close to the value σ2 = 0.03 ln 2 = 0.021
used for generating the log-normal rough surfaces. This is
also an indication that in order to discriminate between
log-Poisson and log-normal multiplicative processes, one
needs to investigate “multi-point” space-scale correlation
functions in order to extract information about the higher

moments of the multiplier probability law that governs the
W-cascading process.

6 Perspectives

To summarize, we have reported the results of numerical
applications of the 2D WTMM method to synthetic mul-
tifractal rough surfaces. We have tested the reliability of
this method to measure the τ(q) and D(h) spectra which
are at the heart of the multifractal description of multi-
affine rough surfaces. We have further proposed a method
to compute the self-similarity kernel which provides addi-
tional information on the nature of the underlying multi-
plicative process (e.g., about the multiplier pdf) as well
as some subsequent tests of the scale-similarity properties
of this process. Finally, we have emphasized the computa-
tion of “multi-point” space-scale correlation functions as
a decisive test of the existence of magnitude correlations
over very long distances as induced by some ultrametric
space-scale organization.

Beyond the multifractal description, we have also ad-
dressed the very important issue of modeling multi-affine
rough surfaces by multifractal functions that are built re-
cursively on separable wavelet orthogonal basis. These 2D
random W-cascade models provide some mathematical
framework for future theoretical developments concern-
ing the regularity properties of the corresponding random
fractal functions. Very much like the rigorous results re-
ported in reference [64] for 1D W-cascades, we hope to
elaborate in a forthcoming publication about the actual
mathematical link between the D(h) spectrum obtained
with the 2D WTMM method, via the Legendre trans-
form of the τ(q) exponents, and the theoretical singularity
spectrum that can be derived analytically from the spe-
cific construction rule of the W-cascades. From a practi-
cal point of view, we have focused in the present work on
some standard isotropic version of the 2DW-cascade with
no correlation between the multiplier realizations at each
cascade step and no memory effects from one step to the
next ones. This rather crude model can be easily modified
to incorporate more realistic cascading rules with possi-
ble correlations in the branching process that may or may
not disturb the isotropic scale invariance properties of the
so-constructed rough surface.

Besides the new concepts introduced in this paper,
besides its potential theoretical interest, there is a more
concrete and technical contribution that is likely to have
strong impact on future research. For both image analy-
sis and image synthesis purposes, we have implemented
new algorithms and developed new softwares that can be
routinely used to analyze as well as to model experimen-
tal data. In paper III [73], we will report on the applica-
tion of our methodology and numerical tools to the anal-
ysis of high resolution satellite images of cloudy scenes.
This study will bring into light the underlying multiplica-
tive structure of marine stratocumulus clouds. From this
diagnostic, we will propose the log-normal isotropic
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random W-cascades as a very realistic (at least as com-
pared to commonly used model in literature) model for
the intermittent nature of the internal cloud structure.
Indeed, through this rather successful application to geo-
physical data, our message is to emphasize the wide range
of potential applications of our 2D wavelet based approach
to various domains of fundamental as well as applied sci-
ences. We are convinced that the methodology proposed
in the present work will lead to significant progress in the
understanding of the mechanisms that underly the for-
mation of rough surfaces in various fields like erosion and
corrosion processes, growth phenomena, catalysis, fracture
propagation, turbulence, medical imaging and many other
areas in physics, chemistry, biology, geology, meteorology
and material sciences.

We are very grateful to E. Bacry, A. Davis and J.F. Muzy
for helpful discussions and technical assistance. This work was
supported by NATO (Grant no CRG 960176) and was per-
formed while S.G. Roux held a National Research Council–
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79. T. Bohr, T. Tèl, in Direction in Chaos, Vol. 2, edited by
B.L. Hao (World Scientific, Singapore, 1988).
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100. J. Arrault, A. Arnéodo, A. Davis, A. Marshak, Phys. Rev.
Lett. 79, 75 (1997).

101. A. Davis, A. Marshak, R.F. Cahalan, W.J. Wiscombe, J.
Atmos. Sci. 54, 241 (1997).

102. M. Basseville, A. Benveniste, K.C. Chou, S. A. Golden,
R. Nikoukhah, A.S. Willsky, IEEE Trans. Inform. Theory
38, 766 (1992).
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